Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.

Identifieur interne : 002810 ( Main/Exploration ); précédent : 002809; suivant : 002811

Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.

Auteurs : David M. Yurek [États-Unis] ; Anita M. Flectcher ; Tomasz H. Kowalczyk ; Linas Padegimas ; Mark J. Cooper

Source :

RBID : pubmed:19650971

Descripteurs français

English descriptors

Abstract

Previously it was established that infusion of glial cell line-derived neurotrophic factor (GDNF) protein into grafts of embryonic dopamine cells has a neurotrophic effect on the grafted cells. In this study we used a nonviral technique to transfer the gene encoding for GDNF to striatal cells. Plasmid DNA encoding for GDNF was compacted into DNA nanoparticles (DNPs) by 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK(30)PEG10k) and then injected into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Sham controls were injected with saline. One week later, experimental animals received either a ventral mesencephalic (VM) tissue chunk graft or a cell suspension VM graft implanted into the denervated striatum. Grafts were allowed to integrate for 4-6 weeks and during this period we monitored spontaneous and drug-induced motor activity. Using stereological cell counting we observed a 16-fold increase in the number of surviving TH(+) cells within tissue chunk grafts placed into the striatum pretreated with pGDNF DNPs (14,923 +/- 4,326) when compared to grafts placed into striatum pretreated with saline (955 +/- 343). Similarly, we observed a sevenfold increase in the number of TH(+) cells within cell suspension grafts placed into the striatum treated with pGDNF DNPs when compared to cell suspension grafts placed into the saline dosed striatum. Behaviorally, we observed significant improvement in rotational scores and in spontaneous forepaw usage of the affected forelimb in grafted animals receiving prior treatment with compacted pGDNF DNPs when compared to grafted animals receiving saline control pretreatment. Data analysis for protein, morphological, and behavioral measures suggests that compacted pGDNF DNPs injected into the striatum can result in transfected cells overexpressing GDNF protein at levels that provide neurotrophic support for grafted embryonic dopamine neurons.

DOI: 10.3727/096368909X12483162196881
PubMed: 19650971


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.</title>
<author>
<name sortKey="Yurek, David M" sort="Yurek, David M" uniqKey="Yurek D" first="David M" last="Yurek">David M. Yurek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA. David.Yurek@uky.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flectcher, Anita M" sort="Flectcher, Anita M" uniqKey="Flectcher A" first="Anita M" last="Flectcher">Anita M. Flectcher</name>
</author>
<author>
<name sortKey="Kowalczyk, Tomasz H" sort="Kowalczyk, Tomasz H" uniqKey="Kowalczyk T" first="Tomasz H" last="Kowalczyk">Tomasz H. Kowalczyk</name>
</author>
<author>
<name sortKey="Padegimas, Linas" sort="Padegimas, Linas" uniqKey="Padegimas L" first="Linas" last="Padegimas">Linas Padegimas</name>
</author>
<author>
<name sortKey="Cooper, Mark J" sort="Cooper, Mark J" uniqKey="Cooper M" first="Mark J" last="Cooper">Mark J. Cooper</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19650971</idno>
<idno type="pmid">19650971</idno>
<idno type="doi">10.3727/096368909X12483162196881</idno>
<idno type="wicri:Area/PubMed/Corpus">001F99</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F99</idno>
<idno type="wicri:Area/PubMed/Curation">001F99</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F99</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F27</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F27</idno>
<idno type="wicri:Area/Ncbi/Merge">000705</idno>
<idno type="wicri:Area/Ncbi/Curation">000705</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000705</idno>
<idno type="wicri:Area/Main/Merge">002836</idno>
<idno type="wicri:Area/Main/Curation">002810</idno>
<idno type="wicri:Area/Main/Exploration">002810</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.</title>
<author>
<name sortKey="Yurek, David M" sort="Yurek, David M" uniqKey="Yurek D" first="David M" last="Yurek">David M. Yurek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA. David.Yurek@uky.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flectcher, Anita M" sort="Flectcher, Anita M" uniqKey="Flectcher A" first="Anita M" last="Flectcher">Anita M. Flectcher</name>
</author>
<author>
<name sortKey="Kowalczyk, Tomasz H" sort="Kowalczyk, Tomasz H" uniqKey="Kowalczyk T" first="Tomasz H" last="Kowalczyk">Tomasz H. Kowalczyk</name>
</author>
<author>
<name sortKey="Padegimas, Linas" sort="Padegimas, Linas" uniqKey="Padegimas L" first="Linas" last="Padegimas">Linas Padegimas</name>
</author>
<author>
<name sortKey="Cooper, Mark J" sort="Cooper, Mark J" uniqKey="Cooper M" first="Mark J" last="Cooper">Mark J. Cooper</name>
</author>
</analytic>
<series>
<title level="j">Cell transplantation</title>
<idno type="eISSN">1555-3892</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Behavior, Animal</term>
<term>Brain Tissue Transplantation</term>
<term>Corpus Striatum (metabolism)</term>
<term>Corpus Striatum (pathology)</term>
<term>DNA (administration & dosage)</term>
<term>Disease Models, Animal</term>
<term>Dopamine (metabolism)</term>
<term>Fetal Tissue Transplantation</term>
<term>Gene Transfer Techniques</term>
<term>Glial Cell Line-Derived Neurotrophic Factor (genetics)</term>
<term>Glial Cell Line-Derived Neurotrophic Factor (metabolism)</term>
<term>Male</term>
<term>Mesencephalon (transplantation)</term>
<term>Motor Activity (drug effects)</term>
<term>Nanoparticles (chemistry)</term>
<term>Neurons (cytology)</term>
<term>Neurons (metabolism)</term>
<term>Neurons (transplantation)</term>
<term>Parkinson Disease (therapy)</term>
<term>Plasmids (metabolism)</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Polylysine (chemistry)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Rotarod Performance Test</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (administration et posologie)</term>
<term>Activité motrice ()</term>
<term>Animaux</term>
<term>Comportement animal</term>
<term>Corps strié (anatomopathologie)</term>
<term>Corps strié (métabolisme)</term>
<term>Dopamine (métabolisme)</term>
<term>Facteur neurotrophique dérivé des cellules gliales (génétique)</term>
<term>Facteur neurotrophique dérivé des cellules gliales (métabolisme)</term>
<term>Maladie de Parkinson ()</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Mésencéphale (transplantation)</term>
<term>Nanoparticules ()</term>
<term>Neurones (cytologie)</term>
<term>Neurones (métabolisme)</term>
<term>Neurones (transplantation)</term>
<term>Plasmides (métabolisme)</term>
<term>Polylysine ()</term>
<term>Polyéthylène glycols ()</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de transfert de gènes</term>
<term>Test du rotarod</term>
<term>Transplantation de tissu cérébral</term>
<term>Transplantation de tissu foetal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polyethylene Glycols</term>
<term>Polylysine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glial Cell Line-Derived Neurotrophic Factor</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Corps strié</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Neurones</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Motor Activity</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur neurotrophique dérivé des cellules gliales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Corpus Striatum</term>
<term>Dopamine</term>
<term>Glial Cell Line-Derived Neurotrophic Factor</term>
<term>Neurons</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Corps strié</term>
<term>Dopamine</term>
<term>Facteur neurotrophique dérivé des cellules gliales</term>
<term>Neurones</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Corpus Striatum</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="transplantation" xml:lang="en">
<term>Mesencephalon</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Behavior, Animal</term>
<term>Brain Tissue Transplantation</term>
<term>Disease Models, Animal</term>
<term>Fetal Tissue Transplantation</term>
<term>Gene Transfer Techniques</term>
<term>Male</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Rotarod Performance Test</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activité motrice</term>
<term>Animaux</term>
<term>Comportement animal</term>
<term>Maladie de Parkinson</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Mésencéphale</term>
<term>Nanoparticules</term>
<term>Neurones</term>
<term>Polylysine</term>
<term>Polyéthylène glycols</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de transfert de gènes</term>
<term>Test du rotarod</term>
<term>Transplantation de tissu cérébral</term>
<term>Transplantation de tissu foetal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previously it was established that infusion of glial cell line-derived neurotrophic factor (GDNF) protein into grafts of embryonic dopamine cells has a neurotrophic effect on the grafted cells. In this study we used a nonviral technique to transfer the gene encoding for GDNF to striatal cells. Plasmid DNA encoding for GDNF was compacted into DNA nanoparticles (DNPs) by 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK(30)PEG10k) and then injected into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Sham controls were injected with saline. One week later, experimental animals received either a ventral mesencephalic (VM) tissue chunk graft or a cell suspension VM graft implanted into the denervated striatum. Grafts were allowed to integrate for 4-6 weeks and during this period we monitored spontaneous and drug-induced motor activity. Using stereological cell counting we observed a 16-fold increase in the number of surviving TH(+) cells within tissue chunk grafts placed into the striatum pretreated with pGDNF DNPs (14,923 +/- 4,326) when compared to grafts placed into striatum pretreated with saline (955 +/- 343). Similarly, we observed a sevenfold increase in the number of TH(+) cells within cell suspension grafts placed into the striatum treated with pGDNF DNPs when compared to cell suspension grafts placed into the saline dosed striatum. Behaviorally, we observed significant improvement in rotational scores and in spontaneous forepaw usage of the affected forelimb in grafted animals receiving prior treatment with compacted pGDNF DNPs when compared to grafted animals receiving saline control pretreatment. Data analysis for protein, morphological, and behavioral measures suggests that compacted pGDNF DNPs injected into the striatum can result in transfected cells overexpressing GDNF protein at levels that provide neurotrophic support for grafted embryonic dopamine neurons.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kentucky</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cooper, Mark J" sort="Cooper, Mark J" uniqKey="Cooper M" first="Mark J" last="Cooper">Mark J. Cooper</name>
<name sortKey="Flectcher, Anita M" sort="Flectcher, Anita M" uniqKey="Flectcher A" first="Anita M" last="Flectcher">Anita M. Flectcher</name>
<name sortKey="Kowalczyk, Tomasz H" sort="Kowalczyk, Tomasz H" uniqKey="Kowalczyk T" first="Tomasz H" last="Kowalczyk">Tomasz H. Kowalczyk</name>
<name sortKey="Padegimas, Linas" sort="Padegimas, Linas" uniqKey="Padegimas L" first="Linas" last="Padegimas">Linas Padegimas</name>
</noCountry>
<country name="États-Unis">
<region name="Kentucky">
<name sortKey="Yurek, David M" sort="Yurek, David M" uniqKey="Yurek D" first="David M" last="Yurek">David M. Yurek</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002810 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002810 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19650971
   |texte=   Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19650971" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021