Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.

Identifieur interne : 001F27 ( PubMed/Checkpoint ); précédent : 001F26; suivant : 001F28

Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.

Auteurs : David M. Yurek [États-Unis] ; Anita M. Flectcher ; Tomasz H. Kowalczyk ; Linas Padegimas ; Mark J. Cooper

Source :

RBID : pubmed:19650971

Descripteurs français

English descriptors

Abstract

Previously it was established that infusion of glial cell line-derived neurotrophic factor (GDNF) protein into grafts of embryonic dopamine cells has a neurotrophic effect on the grafted cells. In this study we used a nonviral technique to transfer the gene encoding for GDNF to striatal cells. Plasmid DNA encoding for GDNF was compacted into DNA nanoparticles (DNPs) by 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK(30)PEG10k) and then injected into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Sham controls were injected with saline. One week later, experimental animals received either a ventral mesencephalic (VM) tissue chunk graft or a cell suspension VM graft implanted into the denervated striatum. Grafts were allowed to integrate for 4-6 weeks and during this period we monitored spontaneous and drug-induced motor activity. Using stereological cell counting we observed a 16-fold increase in the number of surviving TH(+) cells within tissue chunk grafts placed into the striatum pretreated with pGDNF DNPs (14,923 +/- 4,326) when compared to grafts placed into striatum pretreated with saline (955 +/- 343). Similarly, we observed a sevenfold increase in the number of TH(+) cells within cell suspension grafts placed into the striatum treated with pGDNF DNPs when compared to cell suspension grafts placed into the saline dosed striatum. Behaviorally, we observed significant improvement in rotational scores and in spontaneous forepaw usage of the affected forelimb in grafted animals receiving prior treatment with compacted pGDNF DNPs when compared to grafted animals receiving saline control pretreatment. Data analysis for protein, morphological, and behavioral measures suggests that compacted pGDNF DNPs injected into the striatum can result in transfected cells overexpressing GDNF protein at levels that provide neurotrophic support for grafted embryonic dopamine neurons.

DOI: 10.3727/096368909X12483162196881
PubMed: 19650971


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19650971

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.</title>
<author>
<name sortKey="Yurek, David M" sort="Yurek, David M" uniqKey="Yurek D" first="David M" last="Yurek">David M. Yurek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA. David.Yurek@uky.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flectcher, Anita M" sort="Flectcher, Anita M" uniqKey="Flectcher A" first="Anita M" last="Flectcher">Anita M. Flectcher</name>
</author>
<author>
<name sortKey="Kowalczyk, Tomasz H" sort="Kowalczyk, Tomasz H" uniqKey="Kowalczyk T" first="Tomasz H" last="Kowalczyk">Tomasz H. Kowalczyk</name>
</author>
<author>
<name sortKey="Padegimas, Linas" sort="Padegimas, Linas" uniqKey="Padegimas L" first="Linas" last="Padegimas">Linas Padegimas</name>
</author>
<author>
<name sortKey="Cooper, Mark J" sort="Cooper, Mark J" uniqKey="Cooper M" first="Mark J" last="Cooper">Mark J. Cooper</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19650971</idno>
<idno type="pmid">19650971</idno>
<idno type="doi">10.3727/096368909X12483162196881</idno>
<idno type="wicri:Area/PubMed/Corpus">001F99</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F99</idno>
<idno type="wicri:Area/PubMed/Curation">001F99</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F99</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F27</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.</title>
<author>
<name sortKey="Yurek, David M" sort="Yurek, David M" uniqKey="Yurek D" first="David M" last="Yurek">David M. Yurek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA. David.Yurek@uky.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flectcher, Anita M" sort="Flectcher, Anita M" uniqKey="Flectcher A" first="Anita M" last="Flectcher">Anita M. Flectcher</name>
</author>
<author>
<name sortKey="Kowalczyk, Tomasz H" sort="Kowalczyk, Tomasz H" uniqKey="Kowalczyk T" first="Tomasz H" last="Kowalczyk">Tomasz H. Kowalczyk</name>
</author>
<author>
<name sortKey="Padegimas, Linas" sort="Padegimas, Linas" uniqKey="Padegimas L" first="Linas" last="Padegimas">Linas Padegimas</name>
</author>
<author>
<name sortKey="Cooper, Mark J" sort="Cooper, Mark J" uniqKey="Cooper M" first="Mark J" last="Cooper">Mark J. Cooper</name>
</author>
</analytic>
<series>
<title level="j">Cell transplantation</title>
<idno type="eISSN">1555-3892</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Behavior, Animal</term>
<term>Brain Tissue Transplantation</term>
<term>Corpus Striatum (metabolism)</term>
<term>Corpus Striatum (pathology)</term>
<term>DNA (administration & dosage)</term>
<term>Disease Models, Animal</term>
<term>Dopamine (metabolism)</term>
<term>Fetal Tissue Transplantation</term>
<term>Gene Transfer Techniques</term>
<term>Glial Cell Line-Derived Neurotrophic Factor (genetics)</term>
<term>Glial Cell Line-Derived Neurotrophic Factor (metabolism)</term>
<term>Male</term>
<term>Mesencephalon (transplantation)</term>
<term>Motor Activity (drug effects)</term>
<term>Nanoparticles (chemistry)</term>
<term>Neurons (cytology)</term>
<term>Neurons (metabolism)</term>
<term>Neurons (transplantation)</term>
<term>Parkinson Disease (therapy)</term>
<term>Plasmids (metabolism)</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Polylysine (chemistry)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Rotarod Performance Test</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (administration et posologie)</term>
<term>Activité motrice ()</term>
<term>Animaux</term>
<term>Comportement animal</term>
<term>Corps strié (anatomopathologie)</term>
<term>Corps strié (métabolisme)</term>
<term>Dopamine (métabolisme)</term>
<term>Facteur neurotrophique dérivé des cellules gliales (génétique)</term>
<term>Facteur neurotrophique dérivé des cellules gliales (métabolisme)</term>
<term>Maladie de Parkinson ()</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Mésencéphale (transplantation)</term>
<term>Nanoparticules ()</term>
<term>Neurones (cytologie)</term>
<term>Neurones (métabolisme)</term>
<term>Neurones (transplantation)</term>
<term>Plasmides (métabolisme)</term>
<term>Polylysine ()</term>
<term>Polyéthylène glycols ()</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de transfert de gènes</term>
<term>Test du rotarod</term>
<term>Transplantation de tissu cérébral</term>
<term>Transplantation de tissu foetal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polyethylene Glycols</term>
<term>Polylysine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glial Cell Line-Derived Neurotrophic Factor</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Corps strié</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Neurones</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Motor Activity</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur neurotrophique dérivé des cellules gliales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Corpus Striatum</term>
<term>Dopamine</term>
<term>Glial Cell Line-Derived Neurotrophic Factor</term>
<term>Neurons</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Corps strié</term>
<term>Dopamine</term>
<term>Facteur neurotrophique dérivé des cellules gliales</term>
<term>Neurones</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Corpus Striatum</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="transplantation" xml:lang="en">
<term>Mesencephalon</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Behavior, Animal</term>
<term>Brain Tissue Transplantation</term>
<term>Disease Models, Animal</term>
<term>Fetal Tissue Transplantation</term>
<term>Gene Transfer Techniques</term>
<term>Male</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Rotarod Performance Test</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activité motrice</term>
<term>Animaux</term>
<term>Comportement animal</term>
<term>Maladie de Parkinson</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Mésencéphale</term>
<term>Nanoparticules</term>
<term>Neurones</term>
<term>Polylysine</term>
<term>Polyéthylène glycols</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de transfert de gènes</term>
<term>Test du rotarod</term>
<term>Transplantation de tissu cérébral</term>
<term>Transplantation de tissu foetal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previously it was established that infusion of glial cell line-derived neurotrophic factor (GDNF) protein into grafts of embryonic dopamine cells has a neurotrophic effect on the grafted cells. In this study we used a nonviral technique to transfer the gene encoding for GDNF to striatal cells. Plasmid DNA encoding for GDNF was compacted into DNA nanoparticles (DNPs) by 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK(30)PEG10k) and then injected into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Sham controls were injected with saline. One week later, experimental animals received either a ventral mesencephalic (VM) tissue chunk graft or a cell suspension VM graft implanted into the denervated striatum. Grafts were allowed to integrate for 4-6 weeks and during this period we monitored spontaneous and drug-induced motor activity. Using stereological cell counting we observed a 16-fold increase in the number of surviving TH(+) cells within tissue chunk grafts placed into the striatum pretreated with pGDNF DNPs (14,923 +/- 4,326) when compared to grafts placed into striatum pretreated with saline (955 +/- 343). Similarly, we observed a sevenfold increase in the number of TH(+) cells within cell suspension grafts placed into the striatum treated with pGDNF DNPs when compared to cell suspension grafts placed into the saline dosed striatum. Behaviorally, we observed significant improvement in rotational scores and in spontaneous forepaw usage of the affected forelimb in grafted animals receiving prior treatment with compacted pGDNF DNPs when compared to grafted animals receiving saline control pretreatment. Data analysis for protein, morphological, and behavioral measures suggests that compacted pGDNF DNPs injected into the striatum can result in transfected cells overexpressing GDNF protein at levels that provide neurotrophic support for grafted embryonic dopamine neurons.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19650971</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1555-3892</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Cell transplantation</Title>
<ISOAbbreviation>Cell Transplant</ISOAbbreviation>
</Journal>
<ArticleTitle>Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.</ArticleTitle>
<Pagination>
<MedlinePgn>1183-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3727/096368909X12483162196881</ELocationID>
<Abstract>
<AbstractText>Previously it was established that infusion of glial cell line-derived neurotrophic factor (GDNF) protein into grafts of embryonic dopamine cells has a neurotrophic effect on the grafted cells. In this study we used a nonviral technique to transfer the gene encoding for GDNF to striatal cells. Plasmid DNA encoding for GDNF was compacted into DNA nanoparticles (DNPs) by 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK(30)PEG10k) and then injected into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Sham controls were injected with saline. One week later, experimental animals received either a ventral mesencephalic (VM) tissue chunk graft or a cell suspension VM graft implanted into the denervated striatum. Grafts were allowed to integrate for 4-6 weeks and during this period we monitored spontaneous and drug-induced motor activity. Using stereological cell counting we observed a 16-fold increase in the number of surviving TH(+) cells within tissue chunk grafts placed into the striatum pretreated with pGDNF DNPs (14,923 +/- 4,326) when compared to grafts placed into striatum pretreated with saline (955 +/- 343). Similarly, we observed a sevenfold increase in the number of TH(+) cells within cell suspension grafts placed into the striatum treated with pGDNF DNPs when compared to cell suspension grafts placed into the saline dosed striatum. Behaviorally, we observed significant improvement in rotational scores and in spontaneous forepaw usage of the affected forelimb in grafted animals receiving prior treatment with compacted pGDNF DNPs when compared to grafted animals receiving saline control pretreatment. Data analysis for protein, morphological, and behavioral measures suggests that compacted pGDNF DNPs injected into the striatum can result in transfected cells overexpressing GDNF protein at levels that provide neurotrophic support for grafted embryonic dopamine neurons.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yurek</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305, USA. David.Yurek@uky.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flectcher</LastName>
<ForeName>Anita M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kowalczyk</LastName>
<ForeName>Tomasz H</ForeName>
<Initials>TH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Padegimas</LastName>
<ForeName>Linas</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Mark J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 NS050311</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS050311-04</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS050311-05</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Transplant</MedlineTA>
<NlmUniqueID>9208854</NlmUniqueID>
<ISSNLinking>0963-6897</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051100">Glial Cell Line-Derived Neurotrophic Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25104-18-1</RegistryNumber>
<NameOfSubstance UI="D011107">Polylysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3WJQ0SDW1A</RegistryNumber>
<NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001522" MajorTopicYN="N">Behavior, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016380" MajorTopicYN="Y">Brain Tissue Transplantation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016332" MajorTopicYN="Y">Fetal Tissue Transplantation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="Y">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051100" MajorTopicYN="N">Glial Cell Line-Derived Neurotrophic Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008636" MajorTopicYN="N">Mesencephalon</DescriptorName>
<QualifierName UI="Q000637" MajorTopicYN="N">transplantation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009043" MajorTopicYN="N">Motor Activity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000637" MajorTopicYN="Y">transplantation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011092" MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011107" MajorTopicYN="N">Polylysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045442" MajorTopicYN="N">Rotarod Performance Test</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19650971</ArticleId>
<ArticleId IdType="pii">ct2084yurek</ArticleId>
<ArticleId IdType="doi">10.3727/096368909X12483162196881</ArticleId>
<ArticleId IdType="pmc">PMC3031110</ArticleId>
<ArticleId IdType="mid">NIHMS265692</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2006;1:e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2006 Jul;13(13):1048-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosurg. 2007 Jul;107(1):136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17639883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Gene Ther. 2007 Oct;7(5):347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17979681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2008 Feb;16(2):333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18059369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2008 May;211(1):252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 May;14(5):507-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 May;14(5):504-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 May;14(5):501-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2009 Apr;17(4):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 1999 Dec;2(12):1137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Transplant. 2000 Mar-Apr;9(2):179-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2000 Jul;48(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10894213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2000 Oct;165(2):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Neuroanat. 2000 Oct;20(1):93-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11074347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2001 Feb 9;891(1-2):228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11164827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2001 Mar 8;344(10):710-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11236774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2001 May;169(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11312554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem Lab Med. 2001 Apr;39(4):356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11388662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2001 Oct;8(20):1539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11704814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2002 Oct;8(5):457-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 May;4(5):346-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12728277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):32578-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2003 Dec;8(6):936-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14664796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2003 Dec;8(6):948-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14664797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 1986 Jan-Feb;7(1):155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3520509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 1990;13:415-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2183683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 1993 Nov;124(1):140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8282071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1995;104(2):227-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7672016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 1996 Aug 1;7(12):1437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8844203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 1996 Mar;19(3):102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 1996 Dec;75(4):979-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8938733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 1996 Nov 4;7(15-17):2547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8981421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1997 Sep 1;17(17):6504-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 1998 Mar;83(2):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9460746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 1998 Jan;149(1):230-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9454632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 1998 Oct;153(2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 1998 Dec 15;54(6):766-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9856860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 1998 Dec;10(12):3681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9875347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1999 Mar 15;19(6):2301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2004 Dec;20(11):3121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 2004 Dec;15(12):1255-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Bull. 2005 Jul 30;66(2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15982530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Control Release. 2006 Jan 10;110(2):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2007 Jun;28(18):2876-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363053</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kentucky</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cooper, Mark J" sort="Cooper, Mark J" uniqKey="Cooper M" first="Mark J" last="Cooper">Mark J. Cooper</name>
<name sortKey="Flectcher, Anita M" sort="Flectcher, Anita M" uniqKey="Flectcher A" first="Anita M" last="Flectcher">Anita M. Flectcher</name>
<name sortKey="Kowalczyk, Tomasz H" sort="Kowalczyk, Tomasz H" uniqKey="Kowalczyk T" first="Tomasz H" last="Kowalczyk">Tomasz H. Kowalczyk</name>
<name sortKey="Padegimas, Linas" sort="Padegimas, Linas" uniqKey="Padegimas L" first="Linas" last="Padegimas">Linas Padegimas</name>
</noCountry>
<country name="États-Unis">
<region name="Kentucky">
<name sortKey="Yurek, David M" sort="Yurek, David M" uniqKey="Yurek D" first="David M" last="Yurek">David M. Yurek</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001F27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19650971
   |texte=   Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19650971" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021