Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

EDAR: an efficient error detection and removal algorithm for next generation sequencing data.

Identifieur interne : 002641 ( Main/Exploration ); précédent : 002640; suivant : 002642

EDAR: an efficient error detection and removal algorithm for next generation sequencing data.

Auteurs : Xiaohong Zhao [États-Unis] ; Lance E. Palmer ; Randall Bolanos ; Cristian Mircean ; Dan Fasulo ; Gayle M. Wittenberg

Source :

RBID : pubmed:20973743

Descripteurs français

English descriptors

Abstract

Genomic sequencing techniques introduce experimental errors into reads which can mislead sequence assembly efforts and complicate the diagnostic process. Here we present a method for detecting and removing sequencing errors from reads generated in genomic shotgun sequencing projects prior to sequence assembly. For each input read, the set of all length k substrings (k-mers) it contains are calculated. The read is evaluated based on the frequency with which each k-mer occurs in the complete data set (k-count). For each read, k-mers are clustered using the variable-bandwidth mean-shift algorithm. Based on the k-count of the cluster center, clusters are classified as error regions or non-error regions. For the 23 real and simulated data sets tested (454 and Solexa), our algorithm detected error regions that cover 99% of all errors. A heuristic algorithm is then applied to detect the location of errors in each putative error region. A read is corrected by removing the errors, thereby creating two or more smaller, error-free read fragments. After performing error removal, the error-rate for all data sets tested decreased (∼35-fold reduction, on average). EDAR has comparable accuracy to methods that correct rather than remove errors and when the error rate is greater than 3% for simulated data sets, it performs better. The performance of the Velvet assembler is generally better with error-removed data. However, for short reads, splitting at the location of errors can be problematic. Following error detection with error correction, rather than removal, may improve the assembly results.

DOI: 10.1089/cmb.2010.0127
PubMed: 20973743


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">EDAR: an efficient error detection and removal algorithm for next generation sequencing data.</title>
<author>
<name sortKey="Zhao, Xiaohong" sort="Zhao, Xiaohong" uniqKey="Zhao X" first="Xiaohong" last="Zhao">Xiaohong Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Siemens Corporate Research , Princeton, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Siemens Corporate Research , Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Lance E" sort="Palmer, Lance E" uniqKey="Palmer L" first="Lance E" last="Palmer">Lance E. Palmer</name>
</author>
<author>
<name sortKey="Bolanos, Randall" sort="Bolanos, Randall" uniqKey="Bolanos R" first="Randall" last="Bolanos">Randall Bolanos</name>
</author>
<author>
<name sortKey="Mircean, Cristian" sort="Mircean, Cristian" uniqKey="Mircean C" first="Cristian" last="Mircean">Cristian Mircean</name>
</author>
<author>
<name sortKey="Fasulo, Dan" sort="Fasulo, Dan" uniqKey="Fasulo D" first="Dan" last="Fasulo">Dan Fasulo</name>
</author>
<author>
<name sortKey="Wittenberg, Gayle M" sort="Wittenberg, Gayle M" uniqKey="Wittenberg G" first="Gayle M" last="Wittenberg">Gayle M. Wittenberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20973743</idno>
<idno type="pmid">20973743</idno>
<idno type="doi">10.1089/cmb.2010.0127</idno>
<idno type="wicri:Area/PubMed/Corpus">001F28</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F28</idno>
<idno type="wicri:Area/PubMed/Curation">001F28</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F28</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E51</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E51</idno>
<idno type="wicri:Area/Ncbi/Merge">000784</idno>
<idno type="wicri:Area/Ncbi/Curation">000784</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000784</idno>
<idno type="wicri:Area/Main/Merge">002666</idno>
<idno type="wicri:Area/Main/Curation">002641</idno>
<idno type="wicri:Area/Main/Exploration">002641</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">EDAR: an efficient error detection and removal algorithm for next generation sequencing data.</title>
<author>
<name sortKey="Zhao, Xiaohong" sort="Zhao, Xiaohong" uniqKey="Zhao X" first="Xiaohong" last="Zhao">Xiaohong Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Siemens Corporate Research , Princeton, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Siemens Corporate Research , Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Palmer, Lance E" sort="Palmer, Lance E" uniqKey="Palmer L" first="Lance E" last="Palmer">Lance E. Palmer</name>
</author>
<author>
<name sortKey="Bolanos, Randall" sort="Bolanos, Randall" uniqKey="Bolanos R" first="Randall" last="Bolanos">Randall Bolanos</name>
</author>
<author>
<name sortKey="Mircean, Cristian" sort="Mircean, Cristian" uniqKey="Mircean C" first="Cristian" last="Mircean">Cristian Mircean</name>
</author>
<author>
<name sortKey="Fasulo, Dan" sort="Fasulo, Dan" uniqKey="Fasulo D" first="Dan" last="Fasulo">Dan Fasulo</name>
</author>
<author>
<name sortKey="Wittenberg, Gayle M" sort="Wittenberg, Gayle M" uniqKey="Wittenberg G" first="Gayle M" last="Wittenberg">Gayle M. Wittenberg</name>
</author>
</analytic>
<series>
<title level="j">Journal of computational biology : a journal of computational molecular cell biology</title>
<idno type="eISSN">1557-8666</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computational Biology (methods)</term>
<term>Genome</term>
<term>Sequence Alignment (methods)</term>
<term>Sequence Analysis, DNA (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Alignement de séquences ()</term>
<term>Analyse de séquence d'ADN ()</term>
<term>Biologie informatique ()</term>
<term>Génome</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Genome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Biologie informatique</term>
<term>Génome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genomic sequencing techniques introduce experimental errors into reads which can mislead sequence assembly efforts and complicate the diagnostic process. Here we present a method for detecting and removing sequencing errors from reads generated in genomic shotgun sequencing projects prior to sequence assembly. For each input read, the set of all length k substrings (k-mers) it contains are calculated. The read is evaluated based on the frequency with which each k-mer occurs in the complete data set (k-count). For each read, k-mers are clustered using the variable-bandwidth mean-shift algorithm. Based on the k-count of the cluster center, clusters are classified as error regions or non-error regions. For the 23 real and simulated data sets tested (454 and Solexa), our algorithm detected error regions that cover 99% of all errors. A heuristic algorithm is then applied to detect the location of errors in each putative error region. A read is corrected by removing the errors, thereby creating two or more smaller, error-free read fragments. After performing error removal, the error-rate for all data sets tested decreased (∼35-fold reduction, on average). EDAR has comparable accuracy to methods that correct rather than remove errors and when the error rate is greater than 3% for simulated data sets, it performs better. The performance of the Velvet assembler is generally better with error-removed data. However, for short reads, splitting at the location of errors can be problematic. Following error detection with error correction, rather than removal, may improve the assembly results.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bolanos, Randall" sort="Bolanos, Randall" uniqKey="Bolanos R" first="Randall" last="Bolanos">Randall Bolanos</name>
<name sortKey="Fasulo, Dan" sort="Fasulo, Dan" uniqKey="Fasulo D" first="Dan" last="Fasulo">Dan Fasulo</name>
<name sortKey="Mircean, Cristian" sort="Mircean, Cristian" uniqKey="Mircean C" first="Cristian" last="Mircean">Cristian Mircean</name>
<name sortKey="Palmer, Lance E" sort="Palmer, Lance E" uniqKey="Palmer L" first="Lance E" last="Palmer">Lance E. Palmer</name>
<name sortKey="Wittenberg, Gayle M" sort="Wittenberg, Gayle M" uniqKey="Wittenberg G" first="Gayle M" last="Wittenberg">Gayle M. Wittenberg</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Zhao, Xiaohong" sort="Zhao, Xiaohong" uniqKey="Zhao X" first="Xiaohong" last="Zhao">Xiaohong Zhao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002641 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002641 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20973743
   |texte=   EDAR: an efficient error detection and removal algorithm for next generation sequencing data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20973743" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021