Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Positional bias in variant calls against draft reference assemblies

Identifieur interne : 000C32 ( Main/Exploration ); précédent : 000C31; suivant : 000C33

Positional bias in variant calls against draft reference assemblies

Auteurs : Roman V. Briskine ; Kentaro K. Shimizu [Japon]

Source :

RBID : PMC:5368935

Descripteurs français

English descriptors

Abstract

Background

Whole genome resequencing projects may implement variant calling using draft reference genomes assembled de novo from short-read libraries. Despite lower quality of such assemblies, they allowed researchers to extend a wide range of population genetic and genome-wide association analyses to non-model species. As the variant calling pipelines are complex and involve many software packages, it is important to understand inherent biases and limitations at each step of the analysis.

Results

In this article, we report a positional bias present in variant calling performed against draft reference assemblies constructed from de Bruijn or string overlap graphs. We assessed how frequently variants appeared at each position counted from ends of a contig or scaffold sequence, and discovered unexpectedly high number of variants at the positions related to the length of either k-mers or reads used for the assembly. We detected the bias in both publicly available draft assemblies from Assemblathon 2 competition as well as in the assemblies we generated from our simulated short-read data. Simulations confirmed that the bias causing variants are predominantly false positives induced by reads from spatially distant repeated sequences. The bias is particularly strong in contig assemblies. Scaffolding does not eliminate the bias but tends to mitigate it because of the changes in variants’ relative positions and alterations in read alignments. The bias can be effectively reduced by filtering out the variants that reside in repetitive elements.

Conclusions

Draft genome sequences generated by several popular assemblers appear to be susceptible to the positional bias potentially affecting many resequencing projects in non-model species. The bias is inherent to the assembly algorithms and arises from their particular handling of repeated sequences. It is recommended to reduce the bias by filtering especially if higher-quality genome assembly cannot be achieved. Our findings can help other researchers to improve the quality of their variant data sets and reduce artefactual findings in downstream analyses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-017-3637-2) contains supplementary material, which is available to authorized users.


Url:
DOI: 10.1186/s12864-017-3637-2
PubMed: 28351369
PubMed Central: 5368935


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Positional bias in variant calls against draft reference assemblies</title>
<author>
<name sortKey="Briskine, Roman V" sort="Briskine, Roman V" uniqKey="Briskine R" first="Roman V." last="Briskine">Roman V. Briskine</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 0650</institution-id>
<institution-id institution-id-type="GRID">grid.7400.3</institution-id>
<institution>Department of Evolutionary Biology and Environmental Studies,</institution>
<institution>University of Zurich,</institution>
</institution-wrap>
Winterthurerstrasse 190, Zurich, CH-8057 Switzerland</nlm:aff>
<wicri:noCountry code="subfield">CH-8057 Switzerland</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Functional Genomics Center Zurich, Winterthurerstrasse 190, Zurich, CH-8057 Switzerland</nlm:aff>
<wicri:noCountry code="subfield">CH-8057 Switzerland</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, Kentaro K" sort="Shimizu, Kentaro K" uniqKey="Shimizu K" first="Kentaro K." last="Shimizu">Kentaro K. Shimizu</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 0650</institution-id>
<institution-id institution-id-type="GRID">grid.7400.3</institution-id>
<institution>Department of Evolutionary Biology and Environmental Studies,</institution>
<institution>University of Zurich,</institution>
</institution-wrap>
Winterthurerstrasse 190, Zurich, CH-8057 Switzerland</nlm:aff>
<wicri:noCountry code="subfield">CH-8057 Switzerland</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 1033 6139</institution-id>
<institution-id institution-id-type="GRID">grid.268441.d</institution-id>
<institution>Kihara Institute for Biological Research,</institution>
<institution>Yokohama City University,</institution>
</institution-wrap>
641-12 Maioka, Totsuka-ward, Yokohama, 244-0813 Japan</nlm:aff>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>641-12 Maioka, Totsuka-ward, Yokohama</wicri:regionArea>
<wicri:noRegion>Yokohama</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28351369</idno>
<idno type="pmc">5368935</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368935</idno>
<idno type="RBID">PMC:5368935</idno>
<idno type="doi">10.1186/s12864-017-3637-2</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000295</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000295</idno>
<idno type="wicri:Area/Pmc/Curation">000295</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000295</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000746</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000746</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:28351369</idno>
<idno type="wicri:Area/PubMed/Corpus">000D40</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D40</idno>
<idno type="wicri:Area/PubMed/Curation">000D40</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000D40</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B68</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000B68</idno>
<idno type="wicri:Area/Ncbi/Merge">001990</idno>
<idno type="wicri:Area/Ncbi/Curation">001990</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001990</idno>
<idno type="wicri:Area/Main/Merge">000C35</idno>
<idno type="wicri:Area/Main/Curation">000C32</idno>
<idno type="wicri:Area/Main/Exploration">000C32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Positional bias in variant calls against draft reference assemblies</title>
<author>
<name sortKey="Briskine, Roman V" sort="Briskine, Roman V" uniqKey="Briskine R" first="Roman V." last="Briskine">Roman V. Briskine</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 0650</institution-id>
<institution-id institution-id-type="GRID">grid.7400.3</institution-id>
<institution>Department of Evolutionary Biology and Environmental Studies,</institution>
<institution>University of Zurich,</institution>
</institution-wrap>
Winterthurerstrasse 190, Zurich, CH-8057 Switzerland</nlm:aff>
<wicri:noCountry code="subfield">CH-8057 Switzerland</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Functional Genomics Center Zurich, Winterthurerstrasse 190, Zurich, CH-8057 Switzerland</nlm:aff>
<wicri:noCountry code="subfield">CH-8057 Switzerland</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, Kentaro K" sort="Shimizu, Kentaro K" uniqKey="Shimizu K" first="Kentaro K." last="Shimizu">Kentaro K. Shimizu</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 0650</institution-id>
<institution-id institution-id-type="GRID">grid.7400.3</institution-id>
<institution>Department of Evolutionary Biology and Environmental Studies,</institution>
<institution>University of Zurich,</institution>
</institution-wrap>
Winterthurerstrasse 190, Zurich, CH-8057 Switzerland</nlm:aff>
<wicri:noCountry code="subfield">CH-8057 Switzerland</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 1033 6139</institution-id>
<institution-id institution-id-type="GRID">grid.268441.d</institution-id>
<institution>Kihara Institute for Biological Research,</institution>
<institution>Yokohama City University,</institution>
</institution-wrap>
641-12 Maioka, Totsuka-ward, Yokohama, 244-0813 Japan</nlm:aff>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>641-12 Maioka, Totsuka-ward, Yokohama</wicri:regionArea>
<wicri:noRegion>Yokohama</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computational Biology (methods)</term>
<term>Computer Simulation</term>
<term>Contig Mapping</term>
<term>Datasets as Topic</term>
<term>Genome</term>
<term>Genome-Wide Association Study (methods)</term>
<term>Genomics (methods)</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Software</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Biologie informatique ()</term>
<term>Cartographie de contigs</term>
<term>Données de la recherche comme sujet</term>
<term>Génome</term>
<term>Génomique ()</term>
<term>Logiciel</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Simulation numérique</term>
<term>Séquences répétées d'acides nucléiques</term>
<term>Étude d'association pangénomique ()</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Genome-Wide Association Study</term>
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Contig Mapping</term>
<term>Datasets as Topic</term>
<term>Genome</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Biologie informatique</term>
<term>Cartographie de contigs</term>
<term>Données de la recherche comme sujet</term>
<term>Génome</term>
<term>Génomique</term>
<term>Logiciel</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Simulation numérique</term>
<term>Séquences répétées d'acides nucléiques</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Whole genome resequencing projects may implement variant calling using draft reference genomes assembled de novo from short-read libraries. Despite lower quality of such assemblies, they allowed researchers to extend a wide range of population genetic and genome-wide association analyses to non-model species. As the variant calling pipelines are complex and involve many software packages, it is important to understand inherent biases and limitations at each step of the analysis.</p>
</sec>
<sec>
<title>Results</title>
<p>In this article, we report a positional bias present in variant calling performed against draft reference assemblies constructed from de Bruijn or string overlap graphs. We assessed how frequently variants appeared at each position counted from ends of a contig or scaffold sequence, and discovered unexpectedly high number of variants at the positions related to the length of either k-mers or reads used for the assembly. We detected the bias in both publicly available draft assemblies from Assemblathon 2 competition as well as in the assemblies we generated from our simulated short-read data. Simulations confirmed that the bias causing variants are predominantly false positives induced by reads from spatially distant repeated sequences. The bias is particularly strong in contig assemblies. Scaffolding does not eliminate the bias but tends to mitigate it because of the changes in variants’ relative positions and alterations in read alignments. The bias can be effectively reduced by filtering out the variants that reside in repetitive elements.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Draft genome sequences generated by several popular assemblers appear to be susceptible to the positional bias potentially affecting many resequencing projects in non-model species. The bias is inherent to the assembly algorithms and arises from their particular handling of repeated sequences. It is recommended to reduce the bias by filtering especially if higher-quality genome assembly cannot be achieved. Our findings can help other researchers to improve the quality of their variant data sets and reduce artefactual findings in downstream analyses.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-017-3637-2) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Briskine, Roman V" sort="Briskine, Roman V" uniqKey="Briskine R" first="Roman V." last="Briskine">Roman V. Briskine</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Shimizu, Kentaro K" sort="Shimizu, Kentaro K" uniqKey="Shimizu K" first="Kentaro K." last="Shimizu">Kentaro K. Shimizu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:5368935
   |texte=   Positional bias in variant calls against draft reference assemblies
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28351369" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021