Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate

Identifieur interne : 000741 ( Main/Exploration ); précédent : 000740; suivant : 000742

A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate

Auteurs : Gautam Krishnan [Inde] ; Utpal Roy [Inde]

Source :

RBID : PMC:6387734

Abstract

Mycobacterium tuberculosis Acr is an important protein expressed in latent tuberculosis which is active as an oligomer in preventing misfolding of cellular proteins. In this study, Mycobacterium alpha crystallin (acr) gene was cloned and expressed in Escherichia coli (E. coli). The recombinant Acr protein was purified by Nickel-NTA resin. The oligomeric state of Acr was confirmed by gel filtration chromatography using Sephacryl S-200 and Native-PAGE. Studies of chaperone activity were performed with insulin as a substrate at different mole ratios of Acr with 2 types of samples, His tag elutes (H) and His tag elutes with gel filtration (G). It was observed that the ratio of different sizes of oligomers (9 to 24 mers) had a significant effect on chaperone activity. Using the mole ratio of Acr for both (H) and (G) samples to insulin B chain and ratio of oligomers, we determined the number of Acr molecules binding to insulin as a model substrate. We found that if 1.5% of the insulin B chains are covered completely by the (G) samples, aggregation is completely inhibited as compared to 6% with (H) samples. Pre-heat treatment studies were carried out at 37°C, 60°C, and 70°C. Far-ultraviolet Circular Dichroism (UV-CD) analysis provided fresh insights into the role of β-sheets and α-helices in chaperone activity, particularly in (H) samples suggesting a reversible conformational transition from helices to sheets. This enabled us to formulate a functional model for binding of Acr to insulin B chains which incorporated 4 types of secondary structure molecules. This might be a useful tool for analyzing in vitro preparations of recombinant Acr and build more consensuses on the structure-activity relationship especially in terms of oligomeric ratios.


Url:
DOI: 10.1155/2019/2532045
PubMed: 31031872
PubMed Central: 6387734


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A New Functional Model for Prediction of Chaperone Activity of the Recombinant
<italic>M. tb</italic>
Acr (
<italic>α</italic>
-Crystallin) Using Insulin as Substrate</title>
<author>
<name sortKey="Krishnan, Gautam" sort="Krishnan, Gautam" uniqKey="Krishnan G" first="Gautam" last="Krishnan">Gautam Krishnan</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
<wicri:noRegion>Goa 403726</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roy, Utpal" sort="Roy, Utpal" uniqKey="Roy U" first="Utpal" last="Roy">Utpal Roy</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
<wicri:noRegion>Goa 403726</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31031872</idno>
<idno type="pmc">6387734</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387734</idno>
<idno type="RBID">PMC:6387734</idno>
<idno type="doi">10.1155/2019/2532045</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000B52</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B52</idno>
<idno type="wicri:Area/Pmc/Curation">000B52</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000B52</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000433</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000433</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:31031872</idno>
<idno type="wicri:Area/PubMed/Corpus">000552</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000552</idno>
<idno type="wicri:Area/PubMed/Curation">000552</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000552</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000706</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000706</idno>
<idno type="wicri:Area/Ncbi/Merge">002205</idno>
<idno type="wicri:Area/Ncbi/Curation">002205</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002205</idno>
<idno type="wicri:doubleKey">1712-9532:2019:Krishnan G:a:new:functional</idno>
<idno type="wicri:Area/Main/Merge">000744</idno>
<idno type="wicri:Area/Main/Curation">000741</idno>
<idno type="wicri:Area/Main/Exploration">000741</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A New Functional Model for Prediction of Chaperone Activity of the Recombinant
<italic>M. tb</italic>
Acr (
<italic>α</italic>
-Crystallin) Using Insulin as Substrate</title>
<author>
<name sortKey="Krishnan, Gautam" sort="Krishnan, Gautam" uniqKey="Krishnan G" first="Gautam" last="Krishnan">Gautam Krishnan</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
<wicri:noRegion>Goa 403726</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roy, Utpal" sort="Roy, Utpal" uniqKey="Roy U" first="Utpal" last="Roy">Utpal Roy</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
<wicri:noRegion>Goa 403726</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien des Maladies Infectieuses et de la Microbiologie Médicale</title>
<idno type="ISSN">1712-9532</idno>
<idno type="eISSN">1918-1493</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Mycobacterium tuberculosis</italic>
Acr is an important protein expressed in latent tuberculosis which is active as an oligomer in preventing misfolding of cellular proteins. In this study,
<italic>Mycobacterium alpha crystallin</italic>
(acr) gene was cloned and expressed in
<italic>Escherichia coli (E. coli)</italic>
. The recombinant Acr protein was purified by Nickel-NTA resin. The oligomeric state of Acr was confirmed by gel filtration chromatography using Sephacryl S-200 and Native-PAGE. Studies of chaperone activity were performed with insulin as a substrate at different mole ratios of Acr with 2 types of samples, His tag elutes (H) and His tag elutes with gel filtration (G). It was observed that the ratio of different sizes of oligomers (9 to 24 mers) had a significant effect on chaperone activity. Using the mole ratio of Acr for both (H) and (G) samples to insulin B chain and ratio of oligomers, we determined the number of Acr molecules binding to insulin as a model substrate. We found that if 1.5% of the insulin B chains are covered completely by the (G) samples, aggregation is completely inhibited as compared to 6% with (H) samples. Pre-heat treatment studies were carried out at 37°C, 60°C, and 70°C. Far-ultraviolet Circular Dichroism (UV-CD) analysis provided fresh insights into the role of
<italic>β</italic>
-sheets and
<italic>α</italic>
-helices in chaperone activity, particularly in (H) samples suggesting a reversible conformational transition from helices to sheets. This enabled us to formulate a functional model for binding of Acr to insulin B chains which incorporated 4 types of secondary structure molecules. This might be a useful tool for analyzing
<italic>in vitro</italic>
preparations of recombinant Acr and build more consensuses on the structure-activity relationship especially in terms of oligomeric ratios.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, I" uniqKey="Smith I">I. Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, Y" uniqKey="Yuan Y">Y. Yuan</name>
</author>
<author>
<name sortKey="Crane, D" uniqKey="Crane D">D. Crane</name>
</author>
<author>
<name sortKey="Barry, C E" uniqKey="Barry C">C. E. Barry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherman, D" uniqKey="Sherman D">D. Sherman</name>
</author>
<author>
<name sortKey="Voskuil, M" uniqKey="Voskuil M">M. Voskuil</name>
</author>
<author>
<name sortKey="Schnappinger, D" uniqKey="Schnappinger D">D. Schnappinger</name>
</author>
<author>
<name sortKey="Liao, R" uniqKey="Liao R">R. Liao</name>
</author>
<author>
<name sortKey="Harrel, M I" uniqKey="Harrel M">M. I. Harrel</name>
</author>
<author>
<name sortKey="Schoolnik, G" uniqKey="Schoolnik G">G. Schoolnik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
<author>
<name sortKey="Primm, T P" uniqKey="Primm T">T. P. Primm</name>
</author>
<author>
<name sortKey="Jakana, J" uniqKey="Jakana J">J. Jakana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Dai, H" uniqKey="Dai H">H. Dai</name>
</author>
<author>
<name sortKey="Gong, Y" uniqKey="Gong Y">Y. Gong</name>
</author>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C. Zheng</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, L" uniqKey="Gu L">L. Gu</name>
</author>
<author>
<name sortKey="Abulimiti, A" uniqKey="Abulimiti A">A. Abulimiti</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borzova, V A" uniqKey="Borzova V">V. A. Borzova</name>
</author>
<author>
<name sortKey="Markossian, K A" uniqKey="Markossian K">K. A. Markossian</name>
</author>
<author>
<name sortKey="Kara, D A" uniqKey="Kara D">D. A. Kara</name>
</author>
<author>
<name sortKey="Chebotareva, N A" uniqKey="Chebotareva N">N. A. Chebotareva</name>
</author>
<author>
<name sortKey="Makeeva, V F" uniqKey="Makeeva V">V. F. Makeeva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panda, A K" uniqKey="Panda A">A. K. Panda</name>
</author>
<author>
<name sortKey="Chakraborty, A" uniqKey="Chakraborty A">A. Chakraborty</name>
</author>
<author>
<name sortKey="Nandi, S K" uniqKey="Nandi S">S. K. Nandi</name>
</author>
<author>
<name sortKey="Kaushik, A" uniqKey="Kaushik A">A. Kaushik</name>
</author>
<author>
<name sortKey="Biswas, A" uniqKey="Biswas A">A. Biswas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, X" uniqKey="Fu X">X. Fu</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennaway, C K" uniqKey="Kennaway C">C. K. Kennaway</name>
</author>
<author>
<name sortKey="Benesch, J L P" uniqKey="Benesch J">J. L. P. Benesch</name>
</author>
<author>
<name sortKey="Gohlke, U" uniqKey="Gohlke U">U. Gohlke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, X" uniqKey="Feng X">X. Feng</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Fu, X" uniqKey="Fu X">X. Fu</name>
</author>
<author>
<name sortKey="Abulimiti, A" uniqKey="Abulimiti A">A. Abulimiti</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abulimiti, A" uniqKey="Abulimiti A">A. Abulimiti</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montfort, R L E" uniqKey="Montfort R">R. L. E. Montfort</name>
</author>
<author>
<name sortKey="Basha, K L" uniqKey="Basha K">K. L. Basha</name>
</author>
<author>
<name sortKey="Friedrich, C S" uniqKey="Friedrich C">C. S. Friedrich</name>
</author>
<author>
<name sortKey="Vierling, E" uniqKey="Vierling E">E. Vierling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, X" uniqKey="Fu X">X. Fu</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Mao, Q" uniqKey="Mao Q">Q. Mao</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mao, Q" uniqKey="Mao Q">Q. Mao</name>
</author>
<author>
<name sortKey="Ke, D" uniqKey="Ke D">D. Ke</name>
</author>
<author>
<name sortKey="Feng, X" uniqKey="Feng X">X. Feng</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Fu, X" uniqKey="Fu X">X. Fu</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Chang, Z" uniqKey="Chang Z">Z. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, H Y" uniqKey="Hu H">H. Y. Hu</name>
</author>
<author>
<name sortKey="Du, H N" uniqKey="Du H">H. N. Du</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Krishnan, Gautam" sort="Krishnan, Gautam" uniqKey="Krishnan G" first="Gautam" last="Krishnan">Gautam Krishnan</name>
</noRegion>
<name sortKey="Roy, Utpal" sort="Roy, Utpal" uniqKey="Roy U" first="Utpal" last="Roy">Utpal Roy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000741 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000741 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:6387734
   |texte=   A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31031872" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021