Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate.

Identifieur interne : 000552 ( PubMed/Curation ); précédent : 000551; suivant : 000553

A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate.

Auteurs : Gautam Krishnan [Inde] ; Utpal Roy [Inde]

Source :

RBID : pubmed:31031872

Abstract

Mycobacterium tuberculosis Acr is an important protein expressed in latent tuberculosis which is active as an oligomer in preventing misfolding of cellular proteins. In this study, Mycobacterium alpha crystallin (acr) gene was cloned and expressed in Escherichia coli (E. coli). The recombinant Acr protein was purified by Nickel-NTA resin. The oligomeric state of Acr was confirmed by gel filtration chromatography using Sephacryl S-200 and Native-PAGE. Studies of chaperone activity were performed with insulin as a substrate at different mole ratios of Acr with 2 types of samples, His tag elutes (H) and His tag elutes with gel filtration (G). It was observed that the ratio of different sizes of oligomers (9 to 24 mers) had a significant effect on chaperone activity. Using the mole ratio of Acr for both (H) and (G) samples to insulin B chain and ratio of oligomers, we determined the number of Acr molecules binding to insulin as a model substrate. We found that if 1.5% of the insulin B chains are covered completely by the (G) samples, aggregation is completely inhibited as compared to 6% with (H) samples. Pre-heat treatment studies were carried out at 37°C, 60°C, and 70°C. Far-ultraviolet Circular Dichroism (UV-CD) analysis provided fresh insights into the role of β-sheets and α-helices in chaperone activity, particularly in (H) samples suggesting a reversible conformational transition from helices to sheets. This enabled us to formulate a functional model for binding of Acr to insulin B chains which incorporated 4 types of secondary structure molecules. This might be a useful tool for analyzing in vitro preparations of recombinant Acr and build more consensuses on the structure-activity relationship especially in terms of oligomeric ratios.

DOI: 10.1155/2019/2532045
PubMed: 31031872

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31031872

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A New Functional Model for Prediction of Chaperone Activity of the Recombinant
<i>M. tb</i>
Acr (
<i>α</i>
-Crystallin) Using Insulin as Substrate.</title>
<author>
<name sortKey="Krishnan, Gautam" sort="Krishnan, Gautam" uniqKey="Krishnan G" first="Gautam" last="Krishnan">Gautam Krishnan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roy, Utpal" sort="Roy, Utpal" uniqKey="Roy U" first="Utpal" last="Roy">Utpal Roy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31031872</idno>
<idno type="pmid">31031872</idno>
<idno type="doi">10.1155/2019/2532045</idno>
<idno type="wicri:Area/PubMed/Corpus">000552</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000552</idno>
<idno type="wicri:Area/PubMed/Curation">000552</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000552</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A New Functional Model for Prediction of Chaperone Activity of the Recombinant
<i>M. tb</i>
Acr (
<i>α</i>
-Crystallin) Using Insulin as Substrate.</title>
<author>
<name sortKey="Krishnan, Gautam" sort="Krishnan, Gautam" uniqKey="Krishnan G" first="Gautam" last="Krishnan">Gautam Krishnan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roy, Utpal" sort="Roy, Utpal" uniqKey="Roy U" first="Utpal" last="Roy">Utpal Roy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale</title>
<idno type="ISSN">1712-9532</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Mycobacterium tuberculosis</i>
Acr is an important protein expressed in latent tuberculosis which is active as an oligomer in preventing misfolding of cellular proteins. In this study,
<i>Mycobacterium alpha crystallin</i>
(acr) gene was cloned and expressed in
<i>Escherichia coli (E. coli)</i>
. The recombinant Acr protein was purified by Nickel-NTA resin. The oligomeric state of Acr was confirmed by gel filtration chromatography using Sephacryl S-200 and Native-PAGE. Studies of chaperone activity were performed with insulin as a substrate at different mole ratios of Acr with 2 types of samples, His tag elutes (H) and His tag elutes with gel filtration (G). It was observed that the ratio of different sizes of oligomers (9 to 24 mers) had a significant effect on chaperone activity. Using the mole ratio of Acr for both (H) and (G) samples to insulin B chain and ratio of oligomers, we determined the number of Acr molecules binding to insulin as a model substrate. We found that if 1.5% of the insulin B chains are covered completely by the (G) samples, aggregation is completely inhibited as compared to 6% with (H) samples. Pre-heat treatment studies were carried out at 37°C, 60°C, and 70°C. Far-ultraviolet Circular Dichroism (UV-CD) analysis provided fresh insights into the role of
<i>β</i>
-sheets and
<i>α</i>
-helices in chaperone activity, particularly in (H) samples suggesting a reversible conformational transition from helices to sheets. This enabled us to formulate a functional model for binding of Acr to insulin B chains which incorporated 4 types of secondary structure molecules. This might be a useful tool for analyzing
<i>in vitro</i>
preparations of recombinant Acr and build more consensuses on the structure-activity relationship especially in terms of oligomeric ratios.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31031872</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1712-9532</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2019</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale</Title>
<ISOAbbreviation>Can J Infect Dis Med Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A New Functional Model for Prediction of Chaperone Activity of the Recombinant
<i>M. tb</i>
Acr (
<i>α</i>
-Crystallin) Using Insulin as Substrate.</ArticleTitle>
<Pagination>
<MedlinePgn>2532045</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1155/2019/2532045</ELocationID>
<Abstract>
<AbstractText>
<i>Mycobacterium tuberculosis</i>
Acr is an important protein expressed in latent tuberculosis which is active as an oligomer in preventing misfolding of cellular proteins. In this study,
<i>Mycobacterium alpha crystallin</i>
(acr) gene was cloned and expressed in
<i>Escherichia coli (E. coli)</i>
. The recombinant Acr protein was purified by Nickel-NTA resin. The oligomeric state of Acr was confirmed by gel filtration chromatography using Sephacryl S-200 and Native-PAGE. Studies of chaperone activity were performed with insulin as a substrate at different mole ratios of Acr with 2 types of samples, His tag elutes (H) and His tag elutes with gel filtration (G). It was observed that the ratio of different sizes of oligomers (9 to 24 mers) had a significant effect on chaperone activity. Using the mole ratio of Acr for both (H) and (G) samples to insulin B chain and ratio of oligomers, we determined the number of Acr molecules binding to insulin as a model substrate. We found that if 1.5% of the insulin B chains are covered completely by the (G) samples, aggregation is completely inhibited as compared to 6% with (H) samples. Pre-heat treatment studies were carried out at 37°C, 60°C, and 70°C. Far-ultraviolet Circular Dichroism (UV-CD) analysis provided fresh insights into the role of
<i>β</i>
-sheets and
<i>α</i>
-helices in chaperone activity, particularly in (H) samples suggesting a reversible conformational transition from helices to sheets. This enabled us to formulate a functional model for binding of Acr to insulin B chains which incorporated 4 types of secondary structure molecules. This might be a useful tool for analyzing
<i>in vitro</i>
preparations of recombinant Acr and build more consensuses on the structure-activity relationship especially in terms of oligomeric ratios.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Krishnan</LastName>
<ForeName>Gautam</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>Utpal</ForeName>
<Initials>U</Initials>
<Identifier Source="ORCID">0000-0001-6315-4523</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, BITS Pilani-K.K. Birla Goa Campus, NH 17B Bypass, Zuari Nagar, Goa 403726, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Egypt</Country>
<MedlineTA>Can J Infect Dis Med Microbiol</MedlineTA>
<NlmUniqueID>101226876</NlmUniqueID>
<ISSNLinking>1712-9532</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31031872</ArticleId>
<ArticleId IdType="doi">10.1155/2019/2532045</ArticleId>
<ArticleId IdType="pmc">PMC6387734</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1999 Jan;8(1):174-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10210195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protein Chem. 2000 Apr;19(3):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10981809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Jun 22;284(4):942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Dec;8(12):1025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11702068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Apr 15;363(Pt 2):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 May 31;319(2):517-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2003 Mar;68(3):269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12733968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2003 Jul;16(3):463-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Aug 29;308(3):627-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12914797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 25;280(8):6337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 30;280(39):33419-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16046399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2005 Aug;70(8):913-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 10;8(9):e74367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2017 Jan;284(2):277-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27885799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):7218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755875</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000552 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000552 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31031872
   |texte=   A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31031872" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021