Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin

Identifieur interne : 002724 ( Istex/Corpus ); précédent : 002723; suivant : 002725

High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin

Auteurs : Christine Galustian ; Chae Gyu Park ; Wengang Chai ; Makato Kiso ; Sandra A. Bruening ; Young-Sun Kang ; Ralph M. Steinman ; Ten Feizi

Source :

RBID : ISTEX:1F49609352FBD3F935D8973948F93556E53CC9D1

English descriptors

Abstract

The number of receptors of the ‘C‐type’ lectin family is greater than previously thought with a considerable proportion on cells (dendritic cells and macrophages) critical for innate immunity. Establishing that they bind carbohydrates, unravelling and comparing details of their ligands is crucial for understanding the molecular basis of the cell–cell and cell–pathogen interactions that they mediate. Here we use carbohydrate arrays as a new approach to discovering the ligands of three recently described C‐type lectin‐type receptors on antigen‐presenting cells: murine SIGN‐R1, SIGN‐R3 and langerin. The arrays encompass an extensive panel including polysaccharides, glycoproteins, oligosaccharides and monosaccharides. These are probed with soluble forms of the receptors (IgG–Fc chimeras). The dominant specificities found for SIGN‐R1 and SIGN‐R3 are mannose‐ and fucose‐related, as expressed on high mannose type N‐glycans and Lewisa/b/Lewisx/y‐type sequences, respectively, with subtle differences between the receptors. The dominant specificity for langerin is unique so far: a Lewisx‐related sequence with sulfate at position 6 of the terminal galactose. The polysaccharide dextran, known from classical studies to elicit a T‐independent response, and whose cellular uptake has been shown recently to be mediated by membrane‐associated SIGN‐R1, gave no binding signals with the soluble form of the protein. We highlight here the additional need for cell‐based assays for detecting biologically relevant low affinity ligands, for we show with SIGN‐R1‐transfected cells that dextran is such a low affinity ligand for SIGN‐R1 that binding is detectable only with the cell membrane‐associated receptor. But there is a close relationship between dextran recognition and mannose/fucose recognition, with dextran‐ and mannose‐conjugates co‐localizing in intracellular compartments.

Url:
DOI: 10.1093/intimm/dxh089

Links to Exploration step

ISTEX:1F49609352FBD3F935D8973948F93556E53CC9D1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
<author>
<name sortKey="Galustian, Christine" sort="Galustian, Christine" uniqKey="Galustian C" first="Christine" last="Galustian">Christine Galustian</name>
<affiliation>
<mods:affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Park, Chae Gyu" sort="Park, Chae Gyu" uniqKey="Park C" first="Chae Gyu" last="Park">Chae Gyu Park</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chai, Wengang" sort="Chai, Wengang" uniqKey="Chai W" first="Wengang" last="Chai">Wengang Chai</name>
<affiliation>
<mods:affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiso, Makato" sort="Kiso, Makato" uniqKey="Kiso M" first="Makato" last="Kiso">Makato Kiso</name>
<affiliation>
<mods:affiliation>Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501‐11, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bruening, Sandra A" sort="Bruening, Sandra A" uniqKey="Bruening S" first="Sandra A." last="Bruening">Sandra A. Bruening</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kang, Young Un" sort="Kang, Young Un" uniqKey="Kang Y" first="Young-Sun" last="Kang">Young-Sun Kang</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steinman, Ralph M" sort="Steinman, Ralph M" uniqKey="Steinman R" first="Ralph M." last="Steinman">Ralph M. Steinman</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feizi, Ten" sort="Feizi, Ten" uniqKey="Feizi T" first="Ten" last="Feizi">Ten Feizi</name>
<affiliation>
<mods:affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1F49609352FBD3F935D8973948F93556E53CC9D1</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1093/intimm/dxh089</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002724</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002724</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
<author>
<name sortKey="Galustian, Christine" sort="Galustian, Christine" uniqKey="Galustian C" first="Christine" last="Galustian">Christine Galustian</name>
<affiliation>
<mods:affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Park, Chae Gyu" sort="Park, Chae Gyu" uniqKey="Park C" first="Chae Gyu" last="Park">Chae Gyu Park</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chai, Wengang" sort="Chai, Wengang" uniqKey="Chai W" first="Wengang" last="Chai">Wengang Chai</name>
<affiliation>
<mods:affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiso, Makato" sort="Kiso, Makato" uniqKey="Kiso M" first="Makato" last="Kiso">Makato Kiso</name>
<affiliation>
<mods:affiliation>Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501‐11, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bruening, Sandra A" sort="Bruening, Sandra A" uniqKey="Bruening S" first="Sandra A." last="Bruening">Sandra A. Bruening</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kang, Young Un" sort="Kang, Young Un" uniqKey="Kang Y" first="Young-Sun" last="Kang">Young-Sun Kang</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steinman, Ralph M" sort="Steinman, Ralph M" uniqKey="Steinman R" first="Ralph M." last="Steinman">Ralph M. Steinman</name>
<affiliation>
<mods:affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feizi, Ten" sort="Feizi, Ten" uniqKey="Feizi T" first="Ten" last="Feizi">Ten Feizi</name>
<affiliation>
<mods:affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">International Immunology</title>
<title level="j" type="abbrev">Int. Immunol.</title>
<idno type="ISSN">0953-8178</idno>
<idno type="eISSN">1460-2377</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">2004</date>
<biblScope unit="vol">16</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="853">853</biblScope>
<biblScope unit="page" to="866">866</biblScope>
</imprint>
<idno type="ISSN">0953-8178</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0953-8178</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Ambient temperature</term>
<term>Binding experiments</term>
<term>Binding signals</term>
<term>Biol</term>
<term>Biotin</term>
<term>Biotinylated</term>
<term>Biotinylated dextran</term>
<term>Blood group</term>
<term>Carbohydrate</term>
<term>Carbohydrate arrays</term>
<term>Carbohydrate ligands</term>
<term>Carbohydrate recognition</term>
<term>Cells transfected</term>
<term>Chem</term>
<term>Conglutinin</term>
<term>Control protein</term>
<term>Cytometry buffer</term>
<term>Dendritic</term>
<term>Dendritic cells</term>
<term>Dextran</term>
<term>Dextran binding</term>
<term>Dextran sulfate</term>
<term>Dissociation constants</term>
<term>Feizi</term>
<term>Ficoll</term>
<term>Fucose</term>
<term>Fusion proteins</term>
<term>Galactose</term>
<term>Geijtenbeek</term>
<term>Glycoconjugates</term>
<term>Glycoprotein</term>
<term>Immature dendritic cells</term>
<term>Immune</term>
<term>Immune system</term>
<term>Immunol</term>
<term>Immunology</term>
<term>Inhibition experiments</term>
<term>Inhibitor</term>
<term>Innate immunity</term>
<term>Kooyk</term>
<term>Langerhans cells</term>
<term>Langerin</term>
<term>Lawson</term>
<term>Lectin</term>
<term>Ligand</term>
<term>Macrophage</term>
<term>Mannan</term>
<term>Mannose</term>
<term>Mannose conjugate</term>
<term>Marginal zone macrophages</term>
<term>Monosaccharide</term>
<term>Monosaccharide conjugates</term>
<term>Monosaccharide residues</term>
<term>Monosaccharides mannose</term>
<term>Murine</term>
<term>Negative control</term>
<term>Nitrocellulose membranes</term>
<term>Oligosaccharide</term>
<term>Oligosaccharide probes</term>
<term>Oligosaccharide sequences</term>
<term>Polysaccharide</term>
<term>Polysaccharide dextran</term>
<term>Receptor</term>
<term>Recombinant</term>
<term>Recombinant proteins</term>
<term>Scatchard</term>
<term>Scatchard analyses</term>
<term>Scatchard type analyses</term>
<term>Selectins</term>
<term>Sialic acid</term>
<term>Sialyl</term>
<term>Soluble</term>
<term>Soluble form</term>
<term>Soluble protein</term>
<term>Soluble proteins</term>
<term>Soybean agglutinin</term>
<term>Sulfate</term>
<term>Sulfated</term>
<term>Transfected</term>
<term>Transfected cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The number of receptors of the ‘C‐type’ lectin family is greater than previously thought with a considerable proportion on cells (dendritic cells and macrophages) critical for innate immunity. Establishing that they bind carbohydrates, unravelling and comparing details of their ligands is crucial for understanding the molecular basis of the cell–cell and cell–pathogen interactions that they mediate. Here we use carbohydrate arrays as a new approach to discovering the ligands of three recently described C‐type lectin‐type receptors on antigen‐presenting cells: murine SIGN‐R1, SIGN‐R3 and langerin. The arrays encompass an extensive panel including polysaccharides, glycoproteins, oligosaccharides and monosaccharides. These are probed with soluble forms of the receptors (IgG–Fc chimeras). The dominant specificities found for SIGN‐R1 and SIGN‐R3 are mannose‐ and fucose‐related, as expressed on high mannose type N‐glycans and Lewisa/b/Lewisx/y‐type sequences, respectively, with subtle differences between the receptors. The dominant specificity for langerin is unique so far: a Lewisx‐related sequence with sulfate at position 6 of the terminal galactose. The polysaccharide dextran, known from classical studies to elicit a T‐independent response, and whose cellular uptake has been shown recently to be mediated by membrane‐associated SIGN‐R1, gave no binding signals with the soluble form of the protein. We highlight here the additional need for cell‐based assays for detecting biologically relevant low affinity ligands, for we show with SIGN‐R1‐transfected cells that dextran is such a low affinity ligand for SIGN‐R1 that binding is detectable only with the cell membrane‐associated receptor. But there is a close relationship between dextran recognition and mannose/fucose recognition, with dextran‐ and mannose‐conjugates co‐localizing in intracellular compartments.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>dextran</json:string>
<json:string>oligosaccharide</json:string>
<json:string>mannose</json:string>
<json:string>langerin</json:string>
<json:string>receptor</json:string>
<json:string>polysaccharide</json:string>
<json:string>monosaccharide</json:string>
<json:string>carbohydrate</json:string>
<json:string>galactose</json:string>
<json:string>ligand</json:string>
<json:string>lectin</json:string>
<json:string>dendritic</json:string>
<json:string>glycoprotein</json:string>
<json:string>feizi</json:string>
<json:string>biotinylated</json:string>
<json:string>fucose</json:string>
<json:string>sulfate</json:string>
<json:string>carbohydrate arrays</json:string>
<json:string>recombinant</json:string>
<json:string>immunol</json:string>
<json:string>transfected</json:string>
<json:string>biol</json:string>
<json:string>chem</json:string>
<json:string>mannan</json:string>
<json:string>immune</json:string>
<json:string>scatchard</json:string>
<json:string>macrophage</json:string>
<json:string>murine</json:string>
<json:string>kooyk</json:string>
<json:string>biotin</json:string>
<json:string>geijtenbeek</json:string>
<json:string>binding signals</json:string>
<json:string>soybean agglutinin</json:string>
<json:string>ficoll</json:string>
<json:string>selectins</json:string>
<json:string>conglutinin</json:string>
<json:string>glycoconjugates</json:string>
<json:string>immunology</json:string>
<json:string>sialyl</json:string>
<json:string>sulfated</json:string>
<json:string>lawson</json:string>
<json:string>carbohydrate ligands</json:string>
<json:string>biotinylated dextran</json:string>
<json:string>dendritic cells</json:string>
<json:string>dextran binding</json:string>
<json:string>inhibition experiments</json:string>
<json:string>marginal zone macrophages</json:string>
<json:string>oligosaccharide sequences</json:string>
<json:string>soluble form</json:string>
<json:string>innate immunity</json:string>
<json:string>mannose conjugate</json:string>
<json:string>nitrocellulose membranes</json:string>
<json:string>binding experiments</json:string>
<json:string>soluble</json:string>
<json:string>sialic acid</json:string>
<json:string>immune system</json:string>
<json:string>transfected cells</json:string>
<json:string>soluble proteins</json:string>
<json:string>dextran sulfate</json:string>
<json:string>negative control</json:string>
<json:string>scatchard analyses</json:string>
<json:string>monosaccharide residues</json:string>
<json:string>langerhans cells</json:string>
<json:string>cytometry buffer</json:string>
<json:string>inhibitor</json:string>
<json:string>monosaccharides mannose</json:string>
<json:string>scatchard type analyses</json:string>
<json:string>oligosaccharide probes</json:string>
<json:string>dissociation constants</json:string>
<json:string>cells transfected</json:string>
<json:string>soluble protein</json:string>
<json:string>fusion proteins</json:string>
<json:string>immature dendritic cells</json:string>
<json:string>polysaccharide dextran</json:string>
<json:string>ambient temperature</json:string>
<json:string>recombinant proteins</json:string>
<json:string>blood group</json:string>
<json:string>carbohydrate recognition</json:string>
<json:string>control protein</json:string>
<json:string>monosaccharide conjugates</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Christine Galustian</name>
<affiliations>
<json:string>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Chae Gyu Park</name>
<affiliations>
<json:string>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</json:string>
</affiliations>
</json:item>
<json:item>
<name>Wengang Chai</name>
<affiliations>
<json:string>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Makato Kiso</name>
<affiliations>
<json:string>Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501‐11, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sandra A. Bruening</name>
<affiliations>
<json:string>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</json:string>
</affiliations>
</json:item>
<json:item>
<name>Young‐Sun Kang</name>
<affiliations>
<json:string>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ralph M. Steinman</name>
<affiliations>
<json:string>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ten Feizi</name>
<affiliations>
<json:string>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>carbohydrate‐binding‐receptors, carbohydrate ligands, dextran‐binding, innate immunity, lectin‐type receptors</value>
</json:item>
</subject>
<arkIstex>ark:/67375/HXZ-KBGL9G8X-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The number of receptors of the ‘C‐type’ lectin family is greater than previously thought with a considerable proportion on cells (dendritic cells and macrophages) critical for innate immunity. Establishing that they bind carbohydrates, unravelling and comparing details of their ligands is crucial for understanding the molecular basis of the cell–cell and cell–pathogen interactions that they mediate. Here we use carbohydrate arrays as a new approach to discovering the ligands of three recently described C‐type lectin‐type receptors on antigen‐presenting cells: murine SIGN‐R1, SIGN‐R3 and langerin. The arrays encompass an extensive panel including polysaccharides, glycoproteins, oligosaccharides and monosaccharides. These are probed with soluble forms of the receptors (IgG–Fc chimeras). The dominant specificities found for SIGN‐R1 and SIGN‐R3 are mannose‐ and fucose‐related, as expressed on high mannose type N‐glycans and Lewisa/b/Lewisx/y‐type sequences, respectively, with subtle differences between the receptors. The dominant specificity for langerin is unique so far: a Lewisx‐related sequence with sulfate at position 6 of the terminal galactose. The polysaccharide dextran, known from classical studies to elicit a T‐independent response, and whose cellular uptake has been shown recently to be mediated by membrane‐associated SIGN‐R1, gave no binding signals with the soluble form of the protein. We highlight here the additional need for cell‐based assays for detecting biologically relevant low affinity ligands, for we show with SIGN‐R1‐transfected cells that dextran is such a low affinity ligand for SIGN‐R1 that binding is detectable only with the cell membrane‐associated receptor. But there is a close relationship between dextran recognition and mannose/fucose recognition, with dextran‐ and mannose‐conjugates co‐localizing in intracellular compartments.</abstract>
<qualityIndicators>
<score>8</score>
<pdfWordCount>7702</pdfWordCount>
<pdfCharCount>54879</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>14</pdfPageCount>
<pdfPageSize>611 x 791 pts</pdfPageSize>
<pdfWordsPerPage>550</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>256</abstractWordCount>
<abstractCharCount>1884</abstractCharCount>
<keywordCount>1</keywordCount>
</qualityIndicators>
<title>High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
<pmid>
<json:string>15136555</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Immunology</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0953-8178</json:string>
</issn>
<eissn>
<json:string>1460-2377</json:string>
</eissn>
<publisherId>
<json:string>intimm</json:string>
</publisherId>
<volume>16</volume>
<issue>6</issue>
<pages>
<first>853</first>
<last>866</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2004</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Uppsala University, Sweden</json:string>
<json:string>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark</json:string>
<json:string>Chris Browne Center for Immunology and Immune Diseases</json:string>
<json:string>Clontech, Palo Alto</json:string>
<json:string>Nesmeyanov Institute of Organoelement Compounds, Moscow, Russia</json:string>
<json:string>Syntesome</json:string>
<json:string>UK Medical Research Council</json:string>
<json:string>Department of Biological Sciences, Lancaster University, UK</json:string>
<json:string>Department of Biology, Johns Hopkins University, Baltimore, MD</json:string>
<json:string>Department of Chemistry, University of Orsay, France</json:string>
<json:string>Japan Keywords</json:string>
<json:string>Department of Applied Bioorganic Chemistry, Gifu University, Gifu</json:string>
<json:string>Laboratory of Cellular Physiology and Immunology</json:string>
<json:string>Department of Medical Biochemistry and Microbiology</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Andre Lubineau</json:string>
<json:string>Vladimir Piskarev</json:string>
<json:string>T. Feizi</json:string>
<json:string>Gavin Brown</json:string>
<json:string>Colin Herbert</json:string>
<json:string>Ma Maa</json:string>
<json:string>Y.C. Lee</json:string>
<json:string>Sun Kang</json:string>
<json:string>Akira Hasegawa</json:string>
<json:string>K. Inaba</json:string>
<json:string>Sandra A. Bruening</json:string>
<json:string>Ralph M. Steinman</json:string>
<json:string>Ma Gc</json:string>
<json:string>Camilla Westling</json:string>
<json:string>Yuan Chuan</json:string>
<json:string>Penelope</json:string>
<json:string>Robert Childs</json:string>
<json:string>Recent</json:string>
<json:string>Michel Nussenzweig</json:string>
<json:string>Peter Clark</json:string>
<json:string>Fisher Scienti</json:string>
</persName>
<placeName>
<json:string>Bedford</json:string>
<json:string>Leiden</json:string>
<json:string>NY</json:string>
<json:string>UK</json:string>
<json:string>Moscow</json:string>
<json:string>London</json:string>
<json:string>Reading</json:string>
<json:string>York</json:string>
<json:string>Paisley</json:string>
<json:string>Russia</json:string>
<json:string>Oxford</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Rockefeller University, 1230</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-KBGL9G8X-4</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - immunology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - immunology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - Immunology</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1093/intimm/dxh089</json:string>
</doi>
<id>1F49609352FBD3F935D8973948F93556E53CC9D1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>The Japanese Society for Immunology</licence>
</availability>
<date type="published">2004</date>
<date type="Copyright" when="2004">2004</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
<author xml:id="author-0000">
<persName>
<surname>Galustian</surname>
<forename type="first">Christine</forename>
</persName>
</author>
<author xml:id="author-0001">
<persName>
<surname>Park</surname>
<forename type="first">Chae Gyu</forename>
</persName>
</author>
<author xml:id="author-0002">
<persName>
<surname>Chai</surname>
<forename type="first">Wengang</forename>
</persName>
</author>
<author xml:id="author-0003">
<persName>
<surname>Kiso</surname>
<forename type="first">Makato</forename>
</persName>
</author>
<author xml:id="author-0004">
<persName>
<surname>Bruening</surname>
<forename type="first">Sandra A.</forename>
</persName>
</author>
<author xml:id="author-0005">
<persName>
<surname>Kang</surname>
<forename type="first">Young‐Sun</forename>
</persName>
</author>
<author xml:id="author-0006">
<persName>
<surname>Steinman</surname>
<forename type="first">Ralph M.</forename>
</persName>
</author>
<author xml:id="author-0007">
<persName>
<surname>Feizi</surname>
<forename type="first">Ten</forename>
</persName>
</author>
<idno type="istex">1F49609352FBD3F935D8973948F93556E53CC9D1</idno>
<idno type="ark">ark:/67375/HXZ-KBGL9G8X-4</idno>
<idno type="other">dxh089</idno>
<idno type="DOI">10.1093/intimm/dxh089</idno>
</analytic>
<monogr>
<title level="j" type="main">International Immunology</title>
<title level="j" type="abbrev">Int. Immunol.</title>
<idno type="hwp">intimm</idno>
<idno type="nlm-ta">Int Immunol</idno>
<idno type="publisher-id">intimm</idno>
<idno type="pISSN">0953-8178</idno>
<idno type="eISSN">1460-2377</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">2004</date>
<biblScope unit="vol">16</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="853">853</biblScope>
<biblScope unit="page" to="866">866</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en">
<p>The number of receptors of the ‘C‐type’ lectin family is greater than previously thought with a considerable proportion on cells (dendritic cells and macrophages) critical for innate immunity. Establishing that they bind carbohydrates, unravelling and comparing details of their ligands is crucial for understanding the molecular basis of the cell–cell and cell–pathogen interactions that they mediate. Here we use carbohydrate arrays as a new approach to discovering the ligands of three recently described C‐type lectin‐type receptors on antigen‐presenting cells: murine SIGN‐R1, SIGN‐R3 and langerin. The arrays encompass an extensive panel including polysaccharides, glycoproteins, oligosaccharides and monosaccharides. These are probed with soluble forms of the receptors (IgG–Fc chimeras). The dominant specificities found for SIGN‐R1 and SIGN‐R3 are mannose‐ and fucose‐related, as expressed on high mannose type
<hi rend="italic">N</hi>
‐glycans and Lewis
<hi rend="superscript">a/b</hi>
/Lewis
<hi rend="superscript">x/y</hi>
‐type sequences, respectively, with subtle differences between the receptors. The dominant specificity for langerin is unique so far: a Lewis
<hi rend="superscript">x</hi>
‐related sequence with sulfate at position 6 of the terminal galactose. The polysaccharide dextran, known from classical studies to elicit a T‐independent response, and whose cellular uptake has been shown recently to be mediated by membrane‐associated SIGN‐R1, gave no binding signals with the soluble form of the protein. We highlight here the additional need for cell‐based assays for detecting biologically relevant low affinity ligands, for we show with SIGN‐R1‐transfected cells that dextran is such a low affinity ligand for SIGN‐R1 that binding is detectable only with the cell membrane‐associated receptor. But there is a close relationship between dextran recognition and mannose/fucose recognition, with dextran‐ and mannose‐conjugates co‐localizing in intracellular compartments.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="heading">
<term>ORIGINAL RESEARCH PAPERS</term>
</keywords>
</textClass>
<textClass ana="keyword">
<keywords scheme="KWD" xml:lang="en">
<term>carbohydrate‐binding‐receptors, carbohydrate ligands, dextran‐binding, innate immunity, lectin‐type receptors</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="US-ASCII"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article xml:lang="en" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">intimm</journal-id>
<journal-id journal-id-type="nlm-ta">Int Immunol</journal-id>
<journal-id journal-id-type="publisher-id">intimm</journal-id>
<journal-title>International Immunology</journal-title>
<abbrev-journal-title abbrev-type="publisher">Int. Immunol.</abbrev-journal-title>
<issn pub-type="ppub">0953-8178</issn>
<issn pub-type="epub">1460-2377</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="other">dxh089</article-id>
<article-id pub-id-type="doi">10.1093/intimm/dxh089</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>ORIGINAL RESEARCH PAPERS</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Galustian</surname>
<given-names>Christine</given-names>
</name>
<xref rid="DXH089A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Park</surname>
<given-names>Chae Gyu</given-names>
</name>
<xref rid="DXH089A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chai</surname>
<given-names>Wengang</given-names>
</name>
<xref rid="DXH089A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kiso</surname>
<given-names>Makato</given-names>
</name>
<xref rid="DXH089A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bruening</surname>
<given-names>Sandra A.</given-names>
</name>
<xref rid="DXH089A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kang</surname>
<given-names>Young‐Sun</given-names>
</name>
<xref rid="DXH089A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Steinman</surname>
<given-names>Ralph M.</given-names>
</name>
<xref rid="DXH089A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Feizi</surname>
<given-names>Ten</given-names>
</name>
<xref rid="DXH089A1">1</xref>
</contrib>
<aff>
<target target-type="aff" id="DXH089A1"></target>
<label>1</label>
Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK
<target target-type="aff" id="DXH089A2"></target>
<label>2</label>
Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and
<target target-type="aff" id="DXH089A3"></target>
<label>3</label>
Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501‐11, Japan</aff>
</contrib-group>
<author-notes>
<corresp id="COR1">
<italic>Correspondence to</italic>
: T. Feizi; E‐mail:
<ext-link xlink:href="t.feizi@imperial.ac.uk" ext-link-type="email">t.feizi@imperial.ac.uk</ext-link>
<italic>Transmitting editor</italic>
: K. Inaba</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>06</month>
<year>2004</year>
</pub-date>
<volume>16</volume>
<issue>6</issue>
<fpage>853</fpage>
<lpage>866</lpage>
<permissions>
<copyright-statement>The Japanese Society for Immunology</copyright-statement>
<copyright-year>2004</copyright-year>
</permissions>
<abstract xml:lang="en">
<p>The number of receptors of the ‘C‐type’ lectin family is greater than previously thought with a considerable proportion on cells (dendritic cells and macrophages) critical for innate immunity. Establishing that they bind carbohydrates, unravelling and comparing details of their ligands is crucial for understanding the molecular basis of the cell–cell and cell–pathogen interactions that they mediate. Here we use carbohydrate arrays as a new approach to discovering the ligands of three recently described C‐type lectin‐type receptors on antigen‐presenting cells: murine SIGN‐R1, SIGN‐R3 and langerin. The arrays encompass an extensive panel including polysaccharides, glycoproteins, oligosaccharides and monosaccharides. These are probed with soluble forms of the receptors (IgG–Fc chimeras). The dominant specificities found for SIGN‐R1 and SIGN‐R3 are mannose‐ and fucose‐related, as expressed on high mannose type
<italic>N</italic>
‐glycans and Lewis
<sup>a/b</sup>
/Lewis
<sup>x/y</sup>
‐type sequences, respectively, with subtle differences between the receptors. The dominant specificity for langerin is unique so far: a Lewis
<sup>x</sup>
‐related sequence with sulfate at position 6 of the terminal galactose. The polysaccharide dextran, known from classical studies to elicit a T‐independent response, and whose cellular uptake has been shown recently to be mediated by membrane‐associated SIGN‐R1, gave no binding signals with the soluble form of the protein. We highlight here the additional need for cell‐based assays for detecting biologically relevant low affinity ligands, for we show with SIGN‐R1‐transfected cells that dextran is such a low affinity ligand for SIGN‐R1 that binding is detectable only with the cell membrane‐associated receptor. But there is a close relationship between dextran recognition and mannose/fucose recognition, with dextran‐ and mannose‐conjugates co‐localizing in intracellular compartments.</p>
</abstract>
<kwd-group kwd-group-type="KWD" xml:lang="en">
<kwd>carbohydrate‐binding‐receptors, carbohydrate ligands, dextran‐binding, innate immunity, lectin‐type receptors</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>hwp-legacy-fpage</meta-name>
<meta-value>853</meta-value>
</custom-meta>
<custom-meta>
<meta-name>hwp-legacy-dochead</meta-name>
<meta-value>Article</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Galustian</namePart>
<affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chae Gyu</namePart>
<namePart type="family">Park</namePart>
<affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wengang</namePart>
<namePart type="family">Chai</namePart>
<affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makato</namePart>
<namePart type="family">Kiso</namePart>
<affiliation>Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501‐11, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandra A.</namePart>
<namePart type="family">Bruening</namePart>
<affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Young‐Sun</namePart>
<namePart type="family">Kang</namePart>
<affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralph M.</namePart>
<namePart type="family">Steinman</namePart>
<affiliation>Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA and</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ten</namePart>
<namePart type="family">Feizi</namePart>
<affiliation>Glycosciences Laboratory, Imperial College London, Northwick Park and St Mark’s Hospital campus, Watford Road, Harrow, Middlesex HA1 3UJ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2004-06</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">The number of receptors of the ‘C‐type’ lectin family is greater than previously thought with a considerable proportion on cells (dendritic cells and macrophages) critical for innate immunity. Establishing that they bind carbohydrates, unravelling and comparing details of their ligands is crucial for understanding the molecular basis of the cell–cell and cell–pathogen interactions that they mediate. Here we use carbohydrate arrays as a new approach to discovering the ligands of three recently described C‐type lectin‐type receptors on antigen‐presenting cells: murine SIGN‐R1, SIGN‐R3 and langerin. The arrays encompass an extensive panel including polysaccharides, glycoproteins, oligosaccharides and monosaccharides. These are probed with soluble forms of the receptors (IgG–Fc chimeras). The dominant specificities found for SIGN‐R1 and SIGN‐R3 are mannose‐ and fucose‐related, as expressed on high mannose type N‐glycans and Lewisa/b/Lewisx/y‐type sequences, respectively, with subtle differences between the receptors. The dominant specificity for langerin is unique so far: a Lewisx‐related sequence with sulfate at position 6 of the terminal galactose. The polysaccharide dextran, known from classical studies to elicit a T‐independent response, and whose cellular uptake has been shown recently to be mediated by membrane‐associated SIGN‐R1, gave no binding signals with the soluble form of the protein. We highlight here the additional need for cell‐based assays for detecting biologically relevant low affinity ligands, for we show with SIGN‐R1‐transfected cells that dextran is such a low affinity ligand for SIGN‐R1 that binding is detectable only with the cell membrane‐associated receptor. But there is a close relationship between dextran recognition and mannose/fucose recognition, with dextran‐ and mannose‐conjugates co‐localizing in intracellular compartments.</abstract>
<note type="author-notes">Correspondence to: T. Feizi; E‐mail: t.feizi@imperial.ac.uk
 Transmitting editor: K. Inaba</note>
<subject lang="en">
<genre>KWD</genre>
<topic>carbohydrate‐binding‐receptors, carbohydrate ligands, dextran‐binding, innate immunity, lectin‐type receptors</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Immunology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. Immunol.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0953-8178</identifier>
<identifier type="eISSN">1460-2377</identifier>
<identifier type="PublisherID">intimm</identifier>
<identifier type="PublisherID-hwp">intimm</identifier>
<identifier type="PublisherID-nlm-ta">Int Immunol</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>853</start>
<end>866</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C1">
<titleInfo>
<title>Immunol. Rev.</title>
</titleInfo>
<note>Weis, W. I., Taylor, M. E. and Drickamer, K. 1998. The C‐type lectin superfamily in the immune system. Immunol. Rev. 163:19.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>163</number>
</detail>
<extent unit="pages">
<start>19</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C2">
<titleInfo>
<title>Biochim. Biophys Acta</title>
</titleInfo>
<note>Kawasaki, T. 1999. Structure and biology of mannan‐binding protein, MBP, an important component of innate immunity. Biochim. Biophys Acta 1473:186.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>1473</number>
</detail>
<extent unit="pages">
<start>186</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C3">
<titleInfo>
<title>Immunol. Rev.</title>
</titleInfo>
<note>Feizi, T. 2000. Carbohydrate‐mediated recognition systems in innate immunity. Immunol. Rev. 173:79.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>173</number>
</detail>
<extent unit="pages">
<start>79</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C4">
<titleInfo>
<title>Immunol. Rev.</title>
</titleInfo>
<note>Lowe, J. B. 2002. Glycosylation in the control of selectin counter‐receptor structure and function. Immunol. Rev. 186:19.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>186</number>
</detail>
<extent unit="pages">
<start>19</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C5">
<titleInfo>
<title>Curr. Opin. Struct. Biol.</title>
</titleInfo>
<note>Crocker, P. R. 2002. Siglecs: sialic‐acid‐binding immunoglobulin‐like lectins in cell–cell interactions and signalling. Curr. Opin. Struct. Biol. 12:609.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>609</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C6">
<titleInfo>
<title>Cell</title>
</titleInfo>
<note>Steinman, R. M. 2000. DC‐SIGN: a guide to some mysteries of dendritic cells. Cell 100:491.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>100</number>
</detail>
<extent unit="pages">
<start>491</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C7">
<titleInfo>
<title>APMIS</title>
</titleInfo>
<note>Geijtenbeek, T. B. H. and van Kooyk, Y. 2003. Pathogens target DC‐SIGN to influence their fate. APMIS 111:698.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>111</number>
</detail>
<extent unit="pages">
<start>698</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C8">
<titleInfo>
<title>Cell</title>
</titleInfo>
<note>Geijtenbeek, T. B. H., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y. and Figdor, C. G. 2000. Identification of DC‐SIGN, a novel dendritic cell‐specific ICAM‐3 receptor that supports primary immune responses. Cell 100:575.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>100</number>
</detail>
<extent unit="pages">
<start>575</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C9">
<titleInfo>
<title>J. Leukoc. Biol.</title>
</titleInfo>
<note>Soilleux, E. J., Morris, L. S., Leslie, G., Chehimi, J., Luo, Q., Levroney, E., Trowsdale, J., Montaner, L. J., Doms, R. W., Weissman, D., Coleman, N. and Lee, B. 2002. Constitutive and induced expression of DC‐SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71:445.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>71</number>
</detail>
<extent unit="pages">
<start>445</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C10">
<titleInfo>
<title>Immunity</title>
</titleInfo>
<note>Valladeau, J., Ravel, O., Dezutter‐Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert‐Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S. and Saeland, S. 2000. Langerin, a novel C‐type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>71</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C11">
<titleInfo>
<title>J. Exp. Med.</title>
</titleInfo>
<note>Bashirova, A. A., Geijtenbeek, T. B., van Duijnhoven, G. C., van Vliet, S. J., Eilering, J. B., Martin, M. P., Wu, L., Martin, T. D., Viebig, N., Knolle, P. A., Kewal Ramani, V. N., van Kooyk, Y. and Carrington, M. 2001. A dendritic cell‐specific intercellular adhesion molecule 3‐grabbing nonintegrin (DC‐SIGN)‐related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV‐1 infection. J. Exp. Med. 193:671.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>193</number>
</detail>
<extent unit="pages">
<start>671</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C12">
<titleInfo>
<title>Science</title>
</titleInfo>
<note>Feinberg, H., Mitchell, D. A., Drickamer, K. and Weis, W. I. 2001. Structural basis for selective recognition of oligosaccharides by DC‐SIGN and DC‐SIGNR. Science 294:2163.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>294</number>
</detail>
<extent unit="pages">
<start>2163</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C13">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Mitchell, D. A., Fadden, A. J. and Drickamer, K. 2001. A novel mechanism of carbohydrate recognition by the C‐type lectins DC‐SIGN and DC‐SIGNR. Subunit organization and binding to multivalent ligands. J. Biol. Chem. 276:28939.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>276</number>
</detail>
<extent unit="pages">
<start>28939</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C14">
<titleInfo>
<title>J. Immunol.</title>
</titleInfo>
<note>Appelmelk, B. J., Van, D., I, van Vliet, S. J., Vandenbroucke‐Grauls, C. M., Geijtenbeek, T. B. and van Kooyk, Y. 2003. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell‐specific ICAM‐3‐grabbing nonintegrin on dendritic cells. J. Immunol. 170:1635.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>170</number>
</detail>
<extent unit="pages">
<start>1635</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C15">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Frison, N., Taylor, M. E., Soilleux, E., Bousser, M. T., Mayer, R., Monsigny, M., Drickamer, K. and Roche, A. C. 2003. Oligolysine‐based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell‐specific intercellular adhesion molecule 3 (ICAM‐3)‐grabbing nonintegrin. J. Biol. Chem. 278:23922.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>278</number>
</detail>
<extent unit="pages">
<start>23922</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C16">
<titleInfo>
<title>Glycobiology</title>
</titleInfo>
<note>Stambach, N. S. and Taylor, M. E. 2003. Characterization of carbohydrate recognition by langerin, a C‐type lectin of Langerhans cells. Glycobiology 13:401.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>401</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C17">
<titleInfo>
<title>Nat. Rev. Immunol.</title>
</titleInfo>
<note>Figdor, C. G., van Kooyk, Y. and Adema, G. J. 2002. C‐type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2:77.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>77</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C18">
<titleInfo>
<title>Nat. Immunol.</title>
</titleInfo>
<note>Geijtenbeek, T. B., Krooshoop, D. J., Bleijs, D. A., van Vliet, S. J., van Duijnhoven, G. C., Grabovsky, V., Alon, R., Figdor, C. G. and van Kooyk, Y. 2000. DC‐SIGN‐ICAM‐2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1:353.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>353</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C19">
<titleInfo>
<title>Trends Mol. Med.</title>
</titleInfo>
<note>van Kooyk, Y., Appelmelk, B. and Geijtenbeek, T. B. H. 2003. A fatal attraction: Mycobacterium tuberculosis and HIV‐1 target DC‐SIGN to escape immune surveillance. Trends Mol. Med. 9:153.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>153</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C20">
<titleInfo>
<title>Cell</title>
</titleInfo>
<note>Geijtenbeek, T. B. H., Kwon, D. S., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Middel, J., Cornelissen, I. L., Nottet, H. S., Kewal Ramani, V. N., Littman, D. R., Figdor, C. G. and van Kooyk, Y. 2000. DC‐SIGN, a dendritic cell‐specific HIV‐1‐binding protein that enhances trans‐infection of T cells. Cell 100:587.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>100</number>
</detail>
<extent unit="pages">
<start>587</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C21">
<titleInfo>
<title>Immunity</title>
</titleInfo>
<note>Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. and Littman, D. R. 2002. DC‐SIGN‐mediated internalization of HIV is required for trans‐enhancement of T cell infection. Immunity 16:135.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>135</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C22">
<titleInfo>
<title>J. Exp. Med.</title>
</titleInfo>
<note>Tailleux, L., Schwartz, O., Herrmann, J. L., Pivert, E., Jackson, M., Amara, A., Legres, L., Dreher, D., Nicod, L. P., Gluckman, J. C., Lagrange, P. H., Gicquel, B. and Neyrolles, O. 2003. DC‐SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197:121.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>197</number>
</detail>
<extent unit="pages">
<start>121</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C23">
<titleInfo>
<title>Int. Immunol.</title>
</titleInfo>
<note>Park, C. G., Takahara, K., Umemoto, E., Yashima, Y., Matsubara, K., Matsuda, Y., Clausen, B. E., Inaba, K. and Steinman, R. M. 2001. Five mouse homologues of the human dendritic cell C‐type lectin, DC‐SIGN. Int. Immunol. 13:1283.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1283</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C24">
<titleInfo>
<title>Int. Immunol.</title>
</titleInfo>
<note>Takahara, K., Omatsu, Y., Yashima, Y., Maeda, Y., Tanaka, S., Iyoda, T., Clausen, B. E., Matsubara, K., Letterio, J., Steinman, R. M., Matsuda, Y. and Inaba, K. 2002. Identification and expression of mouse Langerin (CD207) in dendritic cells. Int. Immunol. 14:433.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>433</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C25">
<titleInfo>
<title>Blood</title>
</titleInfo>
<note>Geijtenbeek, T. B., Groot, P. C., Nolte, M. A., van Vliet, S. J., Gangaram‐Panday, S. T., van Duijnhoven, G. C., Kraal, G., van Oosterhout, A. J. and van Kooyk, Y. 2002. Marginal zone macrophages express a murine homologue of DC‐SIGN that captures blood‐borne antigens in vivo. Blood 100:2908.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>100</number>
</detail>
<extent unit="pages">
<start>2908</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C26">
<titleInfo>
<title>Int. Immunol.</title>
</titleInfo>
<note>Kang, Y. S., Yamazaki, S., Iyoda, T., Pack, M., Bruening, S. A., Kim, J. Y., Takahara, K., Inaba, K., Steinman, R. M. and Park, C. G. 2003. SIGN‐R1, a novel C‐type lectin expressed by marginal zone macrophages in spleen, mediates uptake of the polysaccharide dextran. Int. Immunol. 15:177.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>177</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C27">
<titleInfo>
<title>Eur. J. Immunol.</title>
</titleInfo>
<note>Humphrey, J. H. 1981. Tolerogenic or immunogenic activity of hapten‐conjugated polysaccharides correlated with cellular localization. Eur. J. Immunol. 11:212.</note>
<part>
<date>1981</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>212</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C28">
<titleInfo>
<title>Eur. J. Immunol.</title>
</titleInfo>
<note>Amlot, P. L., Grennan, D. and Humphrey, J. H. 1985. Splenic dependence of the antibody response to thymus‐independent (TI‐2) antigens. Eur. J. Immunol. 15:508.</note>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>508</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C29">
<titleInfo>
<title>Eur. J. Immunol.</title>
</titleInfo>
<note>Kraal, G., Ter Hart, H., Meelhuizen, C., Venneker, G. and Claassen, E. 1989. Marginal zone macrophages and their role in the immune response against T‐independent type 2 antigens: modulation of the cells with specific antibody. Eur. J. Immunol. 19:675.</note>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>675</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C30">
<titleInfo>
<title>Eur. J. Immunol.</title>
</titleInfo>
<note>Chao, D. and MacPherson, G. G. 1990. Analysis of thymus‐independent type 2 antigen uptake by marginal zone macrophages in thin slices of viable lymphoid tissue in vitro. Eur. J. Immunol. 20:1451.</note>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1451</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C31">
<titleInfo>
<title>Glycoconj. J.</title>
</titleInfo>
<note>Feizi, T. 2000. Progress in deciphering the information content of the ‘glycome’—a crescendo in the closing years of the millennium. Glycoconj. J. 17:553.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>553</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C32">
<titleInfo>
<title>Science</title>
</titleInfo>
<note>Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>270</number>
</detail>
<extent unit="pages">
<start>467</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C33">
<titleInfo>
<title>Nat. Biotechnol.</title>
</titleInfo>
<note>Mitchell, P. 2002. A perspective on protein microarrays. Nat. Biotechnol. 20:225.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>225</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C34">
<titleInfo>
<title>Curr. Opin. Struct. Biol.</title>
</titleInfo>
<note>Feizi, T., Fazio, F., Chai, W. and Wong, C.‐H. 2003. Carbohydrate microarrays – a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13:637.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>637</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C35">
<titleInfo>
<title>Nat. Biotechnol.</title>
</titleInfo>
<note>Wang, D., Liu, S., Trummer, B. J., Deng, C. and Wang, A. 2002. Carbohydrate microarrays for the recognition of cross‐reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20:275.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>275</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C36">
<titleInfo>
<title>Nat. Biotechnol.</title>
</titleInfo>
<note>Fukui, S., Feizi, T., Galustian, C., Lawson, A. M. and Chai, W. 2002. Oligosaccharide microarrays for high‐throughput detection and specificity assignments of carbohydrate‐protein interactions. Nat. Biotechnol. 20:1011.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1011</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C37">
<titleInfo>
<title>Proteomics</title>
</titleInfo>
<note>Willats, W. G., Rasmussen, S. E., Kristensen, T., Mikkelsen, J. D. and Knox, J. P. 2002. Sugar‐coated microarrays: A novel slide surface for the high‐throughput analysis of glycans. Proteomics 2:1666.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>1666</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C38">
<titleInfo>
<title>Chem. Biol.</title>
</titleInfo>
<note>Houseman, B. T. and Mrksich, M. 2002. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9:443.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>443</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C39">
<titleInfo>
<title>Angew. Chem. Int. Ed. Engl.</title>
</titleInfo>
<note>Park, S. and Shin, I. 2002. Fabrication of carbohydrate chips for studying protein–carbohydrate interactions. Angew. Chem. Int. Ed. Engl. 41:3180.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<extent unit="pages">
<start>3180</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C40">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<note>Fazio, F., Bryan, M. C., Blixt, O., Paulson, J. C. and Wong, C. H. 2002. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124:14397.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>124</number>
</detail>
<extent unit="pages">
<start>14397</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C41">
<titleInfo>
<title>J. Carbohydr. Chem.</title>
</titleInfo>
<note>Kameyama, A., Ishida, H., Kiso, M. and Hasegawa, A. 1991. Synthetic studies on sialoglycoconjugates 22: total synthesis of tumor‐associated ganglioside, sialyl Lewis X. J. Carbohydr. Chem. 10:549.</note>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>549</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C42">
<titleInfo>
<title>Methods Enzymol.</title>
</titleInfo>
<note>Feizi, T., Stoll, M. S., Yuen, C.‐T., Chai, W. and Lawson, A. M. 1994. Neoglycolipids: probes of oligosaccharide structure, antigenicity and function. Methods Enzymol. 230:484.</note>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>230</number>
</detail>
<extent unit="pages">
<start>484</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C43">
<titleInfo>
<title>J. Exp. Med.</title>
</titleInfo>
<note>Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Ravetch, J. V., Steinman, R. M. and Nussenzweig, M. C. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194:769.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>194</number>
</detail>
<extent unit="pages">
<start>769</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C44">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note>Galustian, C., Childs, R. A., Yuen, C.‐T., Hasegawa, A., Kiso, M., Lubineau, A., Shaw, G. and Feizi, T. 1997. Valency dependent patterns of reactivity of human L‐selectin towards sialyl and sulfated oligosaccharides of Lea and Lex types: Relevance to anti‐adhesion therapeutics. Biochemistry 36:5260.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<extent unit="pages">
<start>5260</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C45">
<titleInfo>
<title>Immunology</title>
</titleInfo>
<note>Galustian, C., Childs, R. A., Stoll, M., Ishida, H., Kiso, M. and Feizi, T. 2002. Synergistic interactions of the two classes of ligand, sialyl‐Lewisa/x fuco‐oligosaccharides and short sulpho‐motifs, with the P‐ and L‐selectins: implications for therapeutic inhibitor designs. Immunology 105:350.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>350</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C46">
<titleInfo>
<title>J. Biochem. Biophys Methods</title>
</titleInfo>
<note>Gan, Z. and Marquardt, R. R. 1999. Colorimetric competitive inhibition method for the quantification of avidin, streptavidin and biotin. J. Biochem. Biophys Methods 39:1.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>1</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C47">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C. and Magnani, J. L. 1991. A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM‐1. J. Biol. Chem. 266:14869.</note>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>266</number>
</detail>
<extent unit="pages">
<start>14869</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C48">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Larkin, M., Ahern, T. J., Stoll, M. S., Shaffer, M., Sako, D., O’Brien, J., Lawson, A. M., Childs, R. A., Barone, K. M., Langer‐Safer, P. R., Hasegawa, A., Kiso, M., Larsen, G. R. and Feizi, T. 1992. Spectrum of sialylated and non‐sialylated fuco‐oligosaccharides bound by the endothelial‐leukocyte adhesion molecule E‐selectin. Dependence of the carbohydrate binding activity on E‐selectin density. J. Biol. Chem. 267:13661.</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>267</number>
</detail>
<extent unit="pages">
<start>13661</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C49">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note>Yuen, C.‐T., Lawson, A. M., Chai, W., Larkin, M., Stoll, M. S., Stuart, A. C., Sullivan, F. X., Ahern, T. J. and Feizi, T. 1992. Novel sulfated ligands for the cell adhesion molecule E‐selectin revealed by the neoglycolipid technology among O‐linked oligosaccharides on an ovarian cystadenoma glycoprotein. Biochemistry 31:9126.</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>9126</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C50">
<titleInfo>
<title>Curr. Biol.</title>
</titleInfo>
<note>Rosen, S. D. and Bertozzi, C. R. 1996. Leukocyte adhesion: Two selectins converge on sulphate. Curr. Biol. 6:261.</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>261</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C51">
<titleInfo>
<title>Mammalian Carbohydrate Recognition Systems. Results and Problems in Cell Differentiation</title>
</titleInfo>
<note>Feizi, T. 2001. Carbohydrate ligands for the leukocyte‐endothelium adhesion molecules, selectins. In Paul R.Crocker ed., Mammalian Carbohydrate Recognition Systems. Results and Problems in Cell Differentiation, pp. 201–223. Springer‐Verlag, Berlin, Germany.</note>
<part>
<date>2001</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C52">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Higashi, N., Fujioka, K., Denda‐Nagai, K., Hashimoto, S., Nagai, S., Sato, T., Fujita, Y., Morikawa, A., Tsuiji, M., Miyata‐Takeuchi, M. et al. 2002. The macrophage C‐type lectin specific for galactose/N‐acetylgalactosamine is an endocytic receptor expressed on monocyte‐derived immature dendritic cells. J. Biol. Chem. 277:20686.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>277</number>
</detail>
<extent unit="pages">
<start>20686</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C53">
<titleInfo>
<title>Immunology</title>
</titleInfo>
<note>Loveless, R. W., Holmskov, U. and Feizi, T. 1995. Collectin‐43 is a serum lectin with a distinct pattern of carbohydrate recognition. Immunology 85:651.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>85</number>
</detail>
<extent unit="pages">
<start>651</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C54">
<titleInfo>
<title>Biochem. Biophys. Res. Commun.</title>
</titleInfo>
<note>Galustian, C., Lawson, A. M., Komba, S., Ishida, H., Kiso, M. and Feizi, T. 1997. Sialyl‐Lewisx sequence 6‐O‐sulfated at N‐acetylglucosamine rather than at galactose is the preferred ligand for L‐selectin and de‐N‐acetylation of the sialic acid enhances the binding strength. Biochem. Biophys. Res. Commun. 240:748.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>240</number>
</detail>
<extent unit="pages">
<start>748</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C55">
<titleInfo>
<title>J. Cell Biol.</title>
</titleInfo>
<note>Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., Hasegawa, A., Asa, D. and Brandley, B. K. 1992. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewisx oligosaccharide. J. Cell Biol. 117:895.</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>895</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C56">
<titleInfo>
<title>Int. Immunol.</title>
</titleInfo>
<note>Takahara, K., Yashima, Y., Omatsu, Y., Yoshida, H., Kimura, Y., Kang, Y.‐S., Steinman, R. M., Park, C. G. and Inaba, K. 2004. Functional comparison of the mouse DC‐SIGN, SIGNR1, SIGNR3 and Langerin, C‐type lectins. Int. Immunol. Advance Access published April 19, 2004.</note>
<part>
<date>2004</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C57">
<titleInfo>
<title>Science</title>
</titleInfo>
<note>Lee, S. J., Evers, S., Roeder, D., Parlow, A. F., Risteli, J., Risteli, L., Lee, Y. C., Feizi, T., Langen, H. and Nussenzweig, M. C. 2002. Mannose receptor‐mediated regulation of serum glycoprotein homeostasis. Science 295:1898.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>295</number>
</detail>
<extent unit="pages">
<start>1898</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C58">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Solis, D., Feizi, T., Yuen, C. T., Lawson, A. M., Harrison, R. A. and Loveless, R. W. 1994. Differential recognition by conglutinin and mannan‐binding protein of N‐glycans presented on neoglycolipids and glycoproteins with special reference to complement glycoprotein C3 and ribonuclease B. J. Biol. Chem. 269:11555.</note>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>269</number>
</detail>
<extent unit="pages">
<start>11555</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C59">
<titleInfo>
<title>Glycobiology</title>
</titleInfo>
<note>Solis, D., Bruix, M., Gonzalez, L., Diaz‐Maurino, T., Rico, M., Jimenez‐Barbero, J. and Feizi, T. 2001. Carrier protein‐modulated presentation and recognition of an N‐glycan: observations on the interactions of Man(8) glycoform of ribonuclease B with conglutinin. Glycobiology 11:31.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>31</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C60">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Mizuochi, T., Loveless, R. W., Lawson, A. M., Chai, W., Lachmann, P. J., Childs, R. A., Thiel, S. and Feizi, T. 1989. A library of oligosaccharide probes (neoglycolipids) from N‐glycosylated proteins reveals that conglutinin binds to certain complex type as well as high‐mannose type oligosaccharide chains. J. Biol. Chem. 264:13834.</note>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>264</number>
</detail>
<extent unit="pages">
<start>13834</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="DXH089C61">
<titleInfo>
<title>Biochem. J.</title>
</titleInfo>
<note>Childs, R. A., Drickamer, K., Kawasaki, T., Thiel, S., Mizuochi, T. and Feizi, T. 1989. Neoglycolipids as probes of oligosaccharide recognition by recombinant and natural mannose‐binding proteins of the rat and man. Biochem. J. 262:131.</note>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>262</number>
</detail>
<extent unit="pages">
<start>131</start>
</extent>
</part>
</relatedItem>
<identifier type="istex">1F49609352FBD3F935D8973948F93556E53CC9D1</identifier>
<identifier type="ark">ark:/67375/HXZ-KBGL9G8X-4</identifier>
<identifier type="DOI">10.1093/intimm/dxh089</identifier>
<identifier type="local">dxh089</identifier>
<accessCondition type="use and reproduction" contentType="copyright">The Japanese Society for Immunology</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-17</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/annexes.gif</uri>
</json:item>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-KBGL9G8X-4/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002724 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002724 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1F49609352FBD3F935D8973948F93556E53CC9D1
   |texte=   High and low affinity carbohydrate ligands revealed for murine SIGN‐R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN‐R3 and langerin
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021