Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†

Identifieur interne : 002233 ( Istex/Corpus ); précédent : 002232; suivant : 002234

Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†

Auteurs : Paul L. Nixon ; Peter V. Cornish ; Saritha V. Suram ; David P. Giedroc

Source :

RBID : ISTEX:1AC18E5B035C5DF34B8387A5362A306048727D65

Abstract

The RNA genomes of plant luteovirids beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus (PEMV RNA1; PEMV-1) contain a short mRNA pseudoknotted motif overlapping the P1 and P2 open reading frames required for programmed −1 mRNA ribosomal frameshifting. The relationship between structure, stability, and function is poorly understood in these RNA systems. A m5-C8-substituted BWYV RNA is employed to establish that the BWYV P1−P2 pseudoknot is protonated at cytidine 8 in loop L1 (δN3H+ = 12.98 ppm), which stabilizes a C+·(G−C) major groove base triple by Δ(ΔG37)protonation = 3.1 (±0.4) kcal mol-1. The stabilities of both the PLRV and PEMV-1 P1−P2 pseudoknots are also strongly pH-dependent, with Δ(ΔG37)protonation = 2.1 (±0.2) kcal mol-1 for the PEMV-1 pseudoknot despite a distinct structural context. As previously found for the BWYV pseudoknot [Nixon and Giedroc (2000) J. Mol. Biol. 296, 659], both the PLRV and PEMV-1 RNAs are stabilized by ΔH ≥ 30 kcal mol-1 in excess of secondary structure predictions, attributed to loop L2−stem S1 minor groove triplex interactions. BWYV RNAs containing single 2‘-deoxy or A → G substitutions that disrupt L2−S1 hydrogen bonding are strongly destabilized with Δ(ΔG37)folding (pH = 7.0) ranging from ≈1.8 (±0.3) to ≥4.0 kcal mol-1, relative to the wild-type BWYV RNA. These findings suggest that each member of this family of pseudoknots adopts a tightly folded structure that maximizes the cooperativity and complementarity of L1−S2 and L2−S1 loop−stem interactions required in part to offset the low intrinsic stability of the short three base pair pseudoknot stem S2.

Url:
DOI: 10.1021/bi025843c

Links to Exploration step

ISTEX:1AC18E5B035C5DF34B8387A5362A306048727D65

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†</title>
<author>
<name sortKey="Nixon, Paul L" sort="Nixon, Paul L" uniqKey="Nixon P" first="Paul L." last="Nixon">Paul L. Nixon</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Department of Biochemistry, University of TexasSouthwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas,TX 75390-9038.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornish, Peter V" sort="Cornish, Peter V" uniqKey="Cornish P" first="Peter V." last="Cornish">Peter V. Cornish</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suram, Saritha V" sort="Suram, Saritha V" uniqKey="Suram S" first="Saritha V." last="Suram">Saritha V. Suram</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P." last="Giedroc">David P. Giedroc</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Corresponding author. E-mail:  giedroc@tamu.edu. Telephone: 979-845-4231. Fax:  979-845-4946.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1AC18E5B035C5DF34B8387A5362A306048727D65</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1021/bi025843c</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002233</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002233</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant
<hi rend="italic">Luteoviridae</hi>
<ref type="bib" target="#bi025843cAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Nixon, Paul L" sort="Nixon, Paul L" uniqKey="Nixon P" first="Paul L." last="Nixon">Paul L. Nixon</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Department of Biochemistry, University of TexasSouthwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas,TX 75390-9038.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornish, Peter V" sort="Cornish, Peter V" uniqKey="Cornish P" first="Peter V." last="Cornish">Peter V. Cornish</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suram, Saritha V" sort="Suram, Saritha V" uniqKey="Suram S" first="Saritha V." last="Suram">Saritha V. Suram</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P." last="Giedroc">David P. Giedroc</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Corresponding author. E-mail:  giedroc@tamu.edu. Telephone: 979-845-4231. Fax:  979-845-4946.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2002</date>
<date type="published">2002</date>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">34</biblScope>
<biblScope unit="page" from="10665">10665</biblScope>
<biblScope unit="page" to="10674">10674</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The RNA genomes of plant luteovirids beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus (PEMV RNA1; PEMV-1) contain a short mRNA pseudoknotted motif overlapping the P1 and P2 open reading frames required for programmed −1 mRNA ribosomal frameshifting. The relationship between structure, stability, and function is poorly understood in these RNA systems. A m5-C8-substituted BWYV RNA is employed to establish that the BWYV P1−P2 pseudoknot is protonated at cytidine 8 in loop L1 (δN3H+ = 12.98 ppm), which stabilizes a C+·(G−C) major groove base triple by Δ(ΔG37)protonation = 3.1 (±0.4) kcal mol-1. The stabilities of both the PLRV and PEMV-1 P1−P2 pseudoknots are also strongly pH-dependent, with Δ(ΔG37)protonation = 2.1 (±0.2) kcal mol-1 for the PEMV-1 pseudoknot despite a distinct structural context. As previously found for the BWYV pseudoknot [Nixon and Giedroc (2000) J. Mol. Biol. 296, 659], both the PLRV and PEMV-1 RNAs are stabilized by ΔH ≥ 30 kcal mol-1 in excess of secondary structure predictions, attributed to loop L2−stem S1 minor groove triplex interactions. BWYV RNAs containing single 2‘-deoxy or A → G substitutions that disrupt L2−S1 hydrogen bonding are strongly destabilized with Δ(ΔG37)folding (pH = 7.0) ranging from ≈1.8 (±0.3) to ≥4.0 kcal mol-1, relative to the wild-type BWYV RNA. These findings suggest that each member of this family of pseudoknots adopts a tightly folded structure that maximizes the cooperativity and complementarity of L1−S2 and L2−S1 loop−stem interactions required in part to offset the low intrinsic stability of the short three base pair pseudoknot stem S2.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>pseudoknot</json:string>
<json:string>bwyv</json:string>
<json:string>kcal</json:string>
<json:string>pseudoknots</json:string>
<json:string>frameshifting</json:string>
<json:string>plrv</json:string>
<json:string>bwyv pseudoknot</json:string>
<json:string>biol</json:string>
<json:string>biochemistry</json:string>
<json:string>protonated</json:string>
<json:string>rna</json:string>
<json:string>helical</json:string>
<json:string>protonation</json:string>
<json:string>cytidine</json:string>
<json:string>base pair</json:string>
<json:string>giedroc</json:string>
<json:string>datum</json:string>
<json:string>plrv pseudoknot</json:string>
<json:string>base triple</json:string>
<json:string>helical junction</json:string>
<json:string>ribosomal</json:string>
<json:string>pseudoknotted</json:string>
<json:string>sequential</json:string>
<json:string>triplex</json:string>
<json:string>luteoviral</json:string>
<json:string>mrna</json:string>
<json:string>mutant</json:string>
<json:string>amino proton</json:string>
<json:string>solid line</json:string>
<json:string>tertiary</json:string>
<json:string>pseudoknotted conformation</json:string>
<json:string>imino proton</json:string>
<json:string>ribosomal frameshifting</json:string>
<json:string>minor groove triplex</json:string>
<json:string>bwyv rna</json:string>
<json:string>unmodified bwyv pseudoknot</json:string>
<json:string>thermodynamic</json:string>
<json:string>groove</json:string>
<json:string>exchangeable proton region</json:string>
<json:string>hydrogen bond</json:string>
<json:string>luteoviral frameshifting pseudoknots biochemistry</json:string>
<json:string>thermodynamic evidence</json:string>
<json:string>tertiary structure</json:string>
<json:string>thermodynamic parameter</json:string>
<json:string>enation mosaic virus</json:string>
<json:string>thermodynamic analysis</json:string>
<json:string>single protonatable group</json:string>
<json:string>amino</json:string>
<json:string>proton</json:string>
<json:string>hairpin</json:string>
<json:string>global stability</json:string>
<json:string>individual transition</json:string>
<json:string>entire dependence</json:string>
<json:string>potato leaf roll virus</json:string>
<json:string>triple base pair</json:string>
<json:string>buffer salt</json:string>
<json:string>nucleic acid</json:string>
<json:string>varian inova</json:string>
<json:string>free cytidine</json:string>
<json:string>complex point</json:string>
<json:string>substitution</json:string>
<json:string>triple</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>NIXON Paul L.</name>
<affiliations>
<json:string>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</json:string>
<json:string>Current address:  Department of Biochemistry, University of TexasSouthwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas,TX 75390-9038.</json:string>
</affiliations>
</json:item>
<json:item>
<name>CORNISH Peter V.</name>
<affiliations>
<json:string>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</json:string>
</affiliations>
</json:item>
<json:item>
<name>SURAM Saritha V.</name>
<affiliations>
<json:string>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</json:string>
</affiliations>
</json:item>
<json:item>
<name>GIEDROC David P.</name>
<affiliations>
<json:string>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</json:string>
<json:string>Corresponding author. E-mail:  giedroc@tamu.edu. Telephone: 979-845-4231. Fax:  979-845-4946.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-76DVCBS5-1</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The RNA genomes of plant luteovirids beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus (PEMV RNA1; PEMV-1) contain a short mRNA pseudoknotted motif overlapping the P1 and P2 open reading frames required for programmed −1 mRNA ribosomal frameshifting. The relationship between structure, stability, and function is poorly understood in these RNA systems. A m5-C8-substituted BWYV RNA is employed to establish that the BWYV P1−P2 pseudoknot is protonated at cytidine 8 in loop L1 (δN3H+ = 12.98 ppm), which stabilizes a C+·(G−C) major groove base triple by Δ(ΔG37)protonation = 3.1 (±0.4) kcal mol-1. The stabilities of both the PLRV and PEMV-1 P1−P2 pseudoknots are also strongly pH-dependent, with Δ(ΔG37)protonation = 2.1 (±0.2) kcal mol-1 for the PEMV-1 pseudoknot despite a distinct structural context. As previously found for the BWYV pseudoknot [Nixon and Giedroc (2000) J. Mol. Biol. 296, 659], both the PLRV and PEMV-1 RNAs are stabilized by ΔH ≥ 30 kcal mol-1 in excess of secondary structure predictions, attributed to loop L2−stem S1 minor groove triplex interactions. BWYV RNAs containing single 2‘-deoxy or A → G substitutions that disrupt L2−S1 hydrogen bonding are strongly destabilized with Δ(ΔG37)folding (pH = 7.0) ranging from ≈1.8 (±0.3) to ≥4.0 kcal mol-1, relative to the wild-type BWYV RNA. These findings suggest that each member of this family of pseudoknots adopts a tightly folded structure that maximizes the cooperativity and complementarity of L1−S2 and L2−S1 loop−stem interactions required in part to offset the low intrinsic stability of the short three base pair pseudoknot stem S2.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>6601</pdfWordCount>
<pdfCharCount>39263</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>660</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>257</abstractWordCount>
<abstractCharCount>1660</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>41</volume>
<issue>34</issue>
<pages>
<first>10665</first>
<last>10674</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-76DVCBS5-1</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - phytopathologie. zoologie agricole. protection des cultures et des forets</json:string>
</inist>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1021/bi025843c</json:string>
</doi>
<id>1AC18E5B035C5DF34B8387A5362A306048727D65</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant
<hi rend="italic">Luteoviridae</hi>
<ref type="bib" target="#bi025843cAF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2002 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">2002</date>
<date type="Copyright" when="2002">2002</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant
<hi rend="italic">Luteoviridae</hi>
<ref type="bib" target="#bi025843cAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Nixon</surname>
<forename type="first">Paul L.</forename>
</persName>
<affiliation>
<orgName type="division">Department of Biochemistry and Biophysics</orgName>
<orgName type="institution">Center for Advanced Biomolecular Research</orgName>
<orgName type="institution">Texas A&M University</orgName>
<orgName type="institution">College Station</orgName>
<address>
<addrLine>Texas 77843-2128</addrLine>
</address>
</affiliation>
<note place="foot" n="bi025843cAF3">
<ref></ref>
<p>  Current address:  Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9038.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Cornish</surname>
<forename type="first">Peter V.</forename>
</persName>
<affiliation>
<orgName type="division">Department of Biochemistry and Biophysics</orgName>
<orgName type="institution">Center for Advanced Biomolecular Research</orgName>
<orgName type="institution">Texas A&M University</orgName>
<orgName type="institution">College Station</orgName>
<address>
<addrLine>Texas 77843-2128</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>Suram</surname>
<forename type="first">Saritha V.</forename>
</persName>
<affiliation>
<orgName type="division">Department of Biochemistry and Biophysics</orgName>
<orgName type="institution">Center for Advanced Biomolecular Research</orgName>
<orgName type="institution">Texas A&M University</orgName>
<orgName type="institution">College Station</orgName>
<address>
<addrLine>Texas 77843-2128</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<surname>Giedroc</surname>
<forename type="first">David P.</forename>
</persName>
<affiliation>
<orgName type="division">Department of Biochemistry and Biophysics</orgName>
<orgName type="institution">Center for Advanced Biomolecular Research</orgName>
<orgName type="institution">Texas A&M University</orgName>
<orgName type="institution">College Station</orgName>
<address>
<addrLine>Texas 77843-2128</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> Corresponding author. E-mail:  giedroc@tamu.edu. Telephone:  979-845-4231. Fax:  979-845-4946.</affiliation>
</author>
<idno type="istex">1AC18E5B035C5DF34B8387A5362A306048727D65</idno>
<idno type="ark">ark:/67375/TPS-76DVCBS5-1</idno>
<idno type="DOI">10.1021/bi025843c</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2002</date>
<date type="published">2002</date>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">34</biblScope>
<biblScope unit="page" from="10665">10665</biblScope>
<biblScope unit="page" to="10674">10674</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The RNA genomes of plant luteovirids beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus (PEMV RNA1; PEMV-1) contain a short mRNA pseudoknotted motif overlapping the P1 and P2 open reading frames required for programmed −1 mRNA ribosomal frameshifting. The relationship between structure, stability, and function is poorly understood in these RNA systems. A m
<hi rend="superscript">5</hi>
-C
<hi rend="subscript">8</hi>
-substituted BWYV RNA is employed to establish that the BWYV P1−P2 pseudoknot is protonated at cytidine 8 in loop L1 (δ
<hi rend="subscript">N</hi>
<hi rend="subscript">
<hi rend="subscript">3</hi>
</hi>
<hi rend="subscript">H</hi>
<hi rend="subscript">
<hi rend="superscript">+</hi>
</hi>
= 12.98 ppm), which stabilizes a C
<hi rend="superscript">+</hi>
·(G−C) major groove base triple by Δ(Δ
<hi rend="italic">G</hi>
<hi rend="subscript">37</hi>
)
<hi rend="subscript">protonation</hi>
= 3.1 (±0.4) kcal mol
<hi rend="superscript">-1</hi>
. The stabilities of both the PLRV and PEMV-1 P1−P2 pseudoknots are also strongly pH-dependent, with Δ(Δ
<hi rend="italic">G</hi>
<hi rend="subscript">37</hi>
)
<hi rend="subscript">protonation</hi>
= 2.1 (±0.2) kcal mol
<hi rend="superscript">-1</hi>
for the PEMV-1 pseudoknot despite a distinct structural context. As previously found for the BWYV pseudoknot [Nixon and Giedroc (2000)
<hi rend="italic">J. Mol. Biol. 296</hi>
, 659], both the PLRV and PEMV-1 RNAs are stabilized by Δ
<hi rend="italic">H</hi>
≥ 30 kcal mol
<hi rend="superscript">-1</hi>
in excess of secondary structure predictions, attributed to loop L2−stem S1 minor groove triplex interactions. BWYV RNAs containing single 2‘-deoxy or A → G substitutions that disrupt L2−S1 hydrogen bonding are strongly destabilized with Δ(Δ
<hi rend="italic">G</hi>
<hi rend="subscript">37</hi>
)
<hi rend="subscript">folding</hi>
(pH = 7.0) ranging from ≈1.8 (±0.3) to ≥4.0 kcal mol
<hi rend="superscript">-1</hi>
, relative to the wild-type BWYV RNA. These findings suggest that each member of this family of pseudoknots adopts a tightly folded structure that maximizes the cooperativity and complementarity of L1−S2 and L2−S1 loop−stem interactions required in part to offset the low intrinsic stability of the short three base pair pseudoknot stem S2. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi025843c</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant
<italic toggle="yes">Luteoviridae</italic>
<xref rid="bi025843cAF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Nixon</surname>
<given-names>Paul L.</given-names>
</name>
<xref rid="bi025843cAF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Cornish</surname>
<given-names>Peter V.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Suram</surname>
<given-names>Saritha V.</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Giedroc</surname>
<given-names>David P.</given-names>
</name>
<xref rid="bi025843cAF1">*</xref>
</contrib>
<aff>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University, College Station, Texas 77843-2128 </aff>
</contrib-group>
<author-notes>
<fn id="bi025843cAF3">
<label></label>
<p>  Current address:  Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9038.</p>
</fn>
<corresp id="bi025843cAF1">  Corresponding author. E-mail:  giedroc@tamu.edu. Telephone:  979-845-4231. Fax:  979-845-4946.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>2</day>
<month>08</month>
<year>2002</year>
</pub-date>
<pub-date pub-type="ppub">
<day>27</day>
<month>08</month>
<year>2002</year>
</pub-date>
<volume>41</volume>
<issue>34</issue>
<fpage>10665</fpage>
<lpage>10674</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>03</month>
<year>2002</year>
</date>
<date date-type="rev-recd">
<day>19</day>
<month>06</month>
<year>2002</year>
</date>
<date date-type="asap">
<day>2</day>
<month>08</month>
<year>2002</year>
</date>
<date date-type="issue-pub">
<day>27</day>
<month>08</month>
<year>2002</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2002 American Chemical Society</copyright-statement>
<copyright-year>2002</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>The RNA genomes of plant luteovirids beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus (PEMV RNA1; PEMV-1) contain a short mRNA pseudoknotted motif overlapping the P1 and P2 open reading frames required for programmed −1 mRNA ribosomal frameshifting. The relationship between structure, stability, and function is poorly understood in these RNA systems. A m
<sup>5</sup>
-C
<sub>8</sub>
-substituted BWYV RNA is employed to establish that the BWYV P1−P2 pseudoknot is protonated at cytidine 8 in loop L1 (δ
<sub>N</sub>
<sub>
<sub>3</sub>
</sub>
<sub>H</sub>
<sub>
<sup>+</sup>
</sub>
= 12.98 ppm), which stabilizes a C
<sup>+</sup>
·(G−C) major groove base triple by Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>protonation</sub>
= 3.1 (±0.4) kcal mol
<sup>-1</sup>
. The stabilities of both the PLRV and PEMV-1 P1−P2 pseudoknots are also strongly pH-dependent, with Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>protonation</sub>
= 2.1 (±0.2) kcal mol
<sup>-1</sup>
for the PEMV-1 pseudoknot despite a distinct structural context. As previously found for the BWYV pseudoknot [Nixon and Giedroc (2000)
<italic toggle="yes">J. Mol. Biol. 296</italic>
, 659], both the PLRV and PEMV-1 RNAs are stabilized by Δ
<italic toggle="yes">H</italic>
≥ 30 kcal mol
<sup>-1</sup>
in excess of secondary structure predictions, attributed to loop L2−stem S1 minor groove triplex interactions. BWYV RNAs containing single 2‘-deoxy or A → G substitutions that disrupt L2−S1 hydrogen bonding are strongly destabilized with Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
(pH = 7.0) ranging from ≈1.8 (±0.3) to ≥4.0 kcal mol
<sup>-1</sup>
, relative to the wild-type BWYV RNA. These findings suggest that each member of this family of pseudoknots adopts a tightly folded structure that maximizes the cooperativity and complementarity of L1−S2 and L2−S1 loop−stem interactions required in part to offset the low intrinsic stability of the short three base pair pseudoknot stem S2. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi025843c</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi025843cAF2">
<label></label>
<p>  This work was supported by grants from the NIH (AI40187) and the Texas Higher Education Coordinating Board Advanced Research Program (010361-0278-1999). P.V.C. was supported in part by an NIH Chemistry−Biology Interface Training Grant (T32 GM08523).</p>
</notes>
</front>
<body>
<sec id="d7e204">
<title></title>
<p>Programmed −1 ribosomal mRNA frameshifting is employed by RNA viruses and retrotransposable elements to synthesize structural proteins relative to replicative enzymes encoded in overlapping open reading frames by way of a single translation initiation event (for reviews, see refs
<italic toggle="yes">1−4</italic>
). Specific sequence and structural requirements are known to be required to stimulate high levels of translational reprogramming via −1 frameshifting of the elongating ribosome. Originally proposed in the simultaneous slippage model (
<italic toggle="yes">
<xref rid="bi025843cb00005" ref-type="bibr"></xref>
</italic>
), the ribosome must encounter a “slippery site” of the general sequence X XXY YYZ which stimulates both ribosomal pausing and slippage (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00006" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00007" ref-type="bibr"></xref>
</named-content>
</italic>
). While the presence of a slip site in an mRNA imparts a low level of background −1 ribosomal frameshifting, high levels of recoding require the presence of an RNA secondary structure, typically a hairpin-type RNA pseudoknot, optimally positioned six to eight nucleotides downstream of the slip site (
<italic toggle="yes">
<xref rid="bi025843cb00004" ref-type="bibr"></xref>
</italic>
). </p>
<p>Although the mechanism by which pseudoknots stimulate −1 ribosomal frameshifting remains elusive, a range of pseudoknot topologies appear capable of stimulating recoding. These pseudoknots can be grouped into four basic classes, each characterized by distinct structural and sequence requirements for mRNA frameshifting (
<italic toggle="yes">
<xref rid="bi025843cb00004" ref-type="bibr"></xref>
</italic>
). The P1−P2 frameshifting pseudoknot from the plant luteovirus beet western yellows virus (BWYV)
<xref rid="bi025843cb00001" ref-type="bibr"></xref>
is representative of one such class (Figure
<xref rid="bi025843cf00001"></xref>
). From polymer prediction theories (
<italic toggle="yes">
<xref rid="bi025843cb00008" ref-type="bibr"></xref>
</italic>
), the BWYV pseudoknot is predicted to be weakly folded in the absence of additional stabilizing loop−stem interactions beyond that established by Watson−Crick base stacking, base pairing, and potential stacking of pseudoknot helical stems, due principally to a short helical stem S2 (Figure
<xref rid="bi025843cf00001"></xref>
). Consistent with this prediction, the crystallographic structure of the BWYV pseudoknot reveals significant loop−stem interactions previously not observed in simple H-type pseudoknots (
<italic toggle="yes">
<xref rid="bi025843cb00009" ref-type="bibr"></xref>
</italic>
). Three stacked adenosines found at the 3‘ end of loop L2 form a number of hydrogen-bonding interactions to 2‘-OH groups and the minor groove faces of a pair of conserved G-C base pairs derived from stem S1, which are expected to be strongly stabilizing (
<italic toggle="yes">
<xref rid="bi025843cb00010" ref-type="bibr"></xref>
</italic>
). A cytidine from loop L1 (C
<sub>8</sub>
) was also found to make hydrogen-bonding interactions with the major groove face of a G-C base pair in stem S2 (G
<sub>12</sub>
-C
<sub>26</sub>
) to form a protonated C
<sup>+</sup>
·(G-C) Hoogsteen-type base triple. The structure of this triple is analogous to that found in the HDV ribozyme (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00011" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00012" ref-type="bibr"></xref>
</named-content>
</italic>
), and protonation contributes ≈3.5 kcal mol
<sup>-1</sup>
to the stability of the folded RNA (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). The C
<sup>+</sup>
·(G-C) base triple as well as the minor groove adenosine triplex motif has been shown to be absolutely required to stimulate −1 frameshifting (
<italic toggle="yes">
<xref rid="bi025843cb00009" ref-type="bibr"></xref>
</italic>
).
<fig id="bi025843cf00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Secondary structural schematic representations of the plant luteoviral family of P1−P2 frameshifting pseudoknots from beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus 1 (PEMV-1). Nucleotides involved in formation of the C
<sup>+</sup>
·(G-C) base triple in the BWYV and PLRV pseudoknots are shown in bold italics; note that the nucleotide sequences of loop L1 and stem S2 are different in PEMV-1 (see text for details). The uridine at the helical junction (shaded) is unpaired and extruded from the helix in the BWYV (
<italic toggle="yes">
<xref rid="bi025843cb00009" ref-type="bibr"></xref>
</italic>
) and PEMV-1
<sup>2</sup>
pseudoknots.</p>
</caption>
<graphic xlink:href="bi025843cf00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>BWYV is a member of plant
<italic toggle="yes">Luteoviridae, </italic>
a large group of aphid-transmissible RNA viruses (for a review, see ref
<italic toggle="yes">14</italic>
). The genomes of the polerovirus potato leaf roll virus (PLRV) and the luteovirus barley yellow dwarf virus (BYDV) (
<italic toggle="yes">
<xref rid="bi025843cb00022" ref-type="bibr"></xref>
</italic>
), as well as RNA1 of pea enation mosaic virus (PEMV-1), all encode P1−P2 pseudoknots expected to be similar to that of BWYV (cf. Figure
<xref rid="bi025843cf00001"></xref>
); all have been shown to stimulate modest levels of −1 ribosomal mRNA frameshifting in vitro and in vivo (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00015" ref-type="bibr"></xref>
<xref rid="bi025843cb00016" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi025843cb00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi025843cb00018" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi025843cb00019" ref-type="bibr"></xref>
</named-content>
</italic>
).
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
Of particular interest here is the PEMV-1 RNA, which incorporates base substitutions that would be predicted to impair formation of a BWYV-like Hoogsteen C
<sup>+</sup>
·(G-C) base triple (Figure
<xref rid="bi025843cf00001"></xref>
). </p>
<p>As first pointed out by Puglisi et al. (
<italic toggle="yes">
<xref rid="bi025843cb00020" ref-type="bibr"></xref>
</italic>
), the pseudoknotted conformation is in equilibrium with the partially folded stem S1 and stem S2 stem−loop structures in a manner governed by the relative free energies of the different states (for a review, see ref
<italic toggle="yes">4</italic>
). Plant
<italic toggle="yes">Luteoviridae</italic>
pseudoknots are universally characterized by pseudoknot S2 stems that lack sufficient length (three base pairs) to easily overcome the entropic barrier to closing two pseudoknot loops (
<italic toggle="yes">
<xref rid="bi025843cb00008" ref-type="bibr"></xref>
</italic>
). In this paper, we present NMR and thermodynamic evidence supporting the proposal that all luteovirid P1−P2 pseudoknots adopt folded structures that maximize cooperativity and complementarity of pseudoknot loop−stem interactions that are required to stabilize the pseudoknotted conformation relative to partially folded and functionally inactive stem−loop structures. </p>
</sec>
<sec id="d7e336">
<title>Materials and Methods</title>
<p>
<italic toggle="yes">RNA Synthesis and Purification.</italic>
RNA transcripts corresponding to the minimal sequences of the PLRV and PEMV-1 P1−P2 frameshifting RNA pseudoknots and pseudoknot mutants (cf. Figure
<xref rid="bi025843cf00001"></xref>
) were synthesized using in vitro transcription under control of the SP6 promoter from fully double-stranded oligonucleotide templates essentially as described previously (
<italic toggle="yes">
<xref rid="bi025843cb00021" ref-type="bibr"></xref>
</italic>
). SP6 RNAP was purified from
<italic toggle="yes">Escherichia coli</italic>
BL21(DE3) transformed with pSR3 using the method described by Jorgensen et al. (
<italic toggle="yes">
<xref rid="bi025843cb00022" ref-type="bibr"></xref>
</italic>
) but with the final gel filtration column omitted. Wild-type, A23G, A24G, and A25G BWYV RNAs were obtained by in vitro transcription of partially double-stranded templates by T7 RNAP or fully double-stranded templates with SP6 RNAP as previously described (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00023" ref-type="bibr"></xref>
</named-content>
</italic>
). The m
<sup>5</sup>
-C
<sub>8</sub>
, deoxy-2‘-C
<sub>14</sub>
, and deoxy-2‘-C
<sub>15</sub>
BWYV RNAs were obtained as 28-mers (Figure
<xref rid="bi025843cf00001"></xref>
) from Dharmacon, deprotected as described by the manufacturer, and purified using denaturing PAGE, electroelution, and C18 chromatography (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00023" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>
<italic toggle="yes">Sample Preparation.</italic>
RNAs for optical denaturation studies were resuspended and dialyzed for ≈9 h against three changes of the appropriate buffer. The first buffer change contained 1 mM EDTA to remove divalent ions weakly bound to the RNAs. Samples for analysis by differential scanning calorimetry (DSC) were further dialyzed for more than 16 h against the final change of dialysis buffer. Buffers used for the calorimetry and optical denaturation studies were made 0.5 M KCl and 10 mM in buffer component as follows:  acetate, pH 4.5 and 5.0; Mes, pH 5.5 and 6.0; Mops, pH 6.5 and 7.0; Hepes, pH 7.5 and 8.0; Epps, pH 8.5; and Ches, pH 9.0 (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00024" ref-type="bibr"></xref>
</named-content>
</italic>
). NMR samples were prepared by repeated ethanol precipitation in the appropriate buffer to remove residual acrylamide prior to resuspension in a final volume of 300 μL of 100 mM KCl and 10 mM potassium phosphate, pH 6.0, lyophilized overnight, and loaded into Shigemi tubes for NMR analysis. </p>
<p>
<italic toggle="yes">Optical and Calorimetric Data Collection and Analysis.</italic>
Optical denaturation profiles were collected on a Cary 1 spectrophotometer equipped with a temperature controller (1−3 μM RNA), and the resulting melting profiles (∂
<italic toggle="yes">A</italic>
/∂
<italic toggle="yes">T</italic>
vs
<italic toggle="yes">T</italic>
) acquired at 260 and 280 nm were simultaneously fit to a multiple sequential interacting transition unfolding model using t-melt as described previously (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00025" ref-type="bibr"></xref>
</named-content>
</italic>
). Only up-melts were performed, and the temperature ramp rate was 0.3 °C/min from 5 to 95 °C. Reproducibility of melting profiles was assessed from replicate melts. Calorimetrically monitored unfolding profiles were collected on a MicroCal VP DSC from 5 to 120 °C at a ramp rate of 1 °C/min as described previously (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00025" ref-type="bibr"></xref>
</named-content>
</italic>
) and analyzed using Origin to a model corresponding to two or three sequential interacting two-state unfolding transitions assuming Δ
<italic toggle="yes">C
<sub>p</sub>
</italic>
° = 0. In these fits, the sum of the van't Hoff unfolding enthalpies (Δ
<italic toggle="yes">H</italic>
<sub>vH</sub>
) for each transition was constrained to equal Δ
<italic toggle="yes">H</italic>
<sub>cal</sub>
, with ∑Δ
<italic toggle="yes">H</italic>
<sub>vH</sub>
= ∑Δ
<italic toggle="yes">H</italic>
<sub>cal</sub>
. Total Δ
<italic toggle="yes">H</italic>
<sub>cal</sub>
was defined by the integrated area under the reference-subtracted melting curve, with the baseline interpolated using a linear baseline approximation method conservatively estimated from the pre- and posttransition regions, using the optical melting profiles as a guide (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">NMR Data Collection and Analysis.</italic>
NMR data on the PEMV-1 and BWYV RNA samples were acquired on either a Varian Inova 500 or Varian Inova 600 MHz spectrometer (Biomolecular NMR Laboratory, Texas A&M University) using WATERGATE water suppression. 1D spectra were collected as 256 transients of 2560 complex points over a sweep width of 12.5−15 kHz. The 2D spectra of the m
<sup>5</sup>
-C8-BWYV RNA were collected using 64 transients containing 2560 complex points in the directly detected dimension over a 15 kHz sweep width with 340 complex points in the indirectly detected dimension. Data were processed using NMRPipe and visualized using NMRDraw (
<italic toggle="yes">
<xref rid="bi025843cb00026" ref-type="bibr"></xref>
</italic>
) or with Sparky, version 3 (SPARKY 3, University of California, San Francisco). All NMR spectra were referenced to DSS. </p>
<p>
<italic toggle="yes">Analysis of the pH Dependence of Unfolding.</italic>
<italic toggle="yes">t</italic>
<sub>m,i</sub>
and Δ
<italic toggle="yes">H</italic>
<sub>vH,i</sub>
resolved for the first and second unfolding transitions from optical and calorimetric melting profiles collected as a function of pH were used to calculate Δ
<italic toggle="yes">S</italic>
<sub>i</sub>
from Δ
<italic toggle="yes">S</italic>
<sub>i</sub>
= Δ
<italic toggle="yes">H</italic>
<sub>vH,i</sub>
/
<italic toggle="yes">t</italic>
<sub>m,i</sub>
and Δ
<italic toggle="yes">G</italic>
<sub>37,i</sub>
= Δ
<italic toggle="yes">H</italic>
<sub>vH,i</sub>
<italic toggle="yes">T</italic>
Δ
<italic toggle="yes">S</italic>
<sub>i</sub>
, where
<italic toggle="yes">T</italic>
= 310 K. For a simple RNA motif like a pseudoknot, unfolding along the equilibrium coordinate is often well-ordered, with tertiary structure unfolding prior to the unfolding of the helical stems, which unfold in an order governed by their relative secondary structural stabilities (
<italic toggle="yes">
<xref rid="bi025843cb00027" ref-type="bibr"></xref>
</italic>
). Thus, tertiary structure can potentially stabilize secondary structure unfolding (
<italic toggle="yes">
<xref rid="bi025843cb00028" ref-type="bibr"></xref>
</italic>
), which can effectively increase the cooperativity of unfolding (cf. Results). Since the thermodynamic parameters for the unfolding of stem S1 were found to be independent of pH, the sum of Δ
<italic toggle="yes">G</italic>
<sub>37,i</sub>
for the first and second unfolding transitions (Δ
<italic toggle="yes">G</italic>
<sub>37,obs</sub>
= Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
) fully takes this obligatory coupling into account. The pH dependence of Δ
<italic toggle="yes">G</italic>
<sub>37,obs</sub>
was analyzed using a model in which the entire change in Δ
<italic toggle="yes">G</italic>
<sub>37,obs</sub>
as a function of pH is attributed to protonation of a single ionizable group on the RNA characterized by unique p
<italic toggle="yes">K</italic>
<sub>a</sub>
according to
<xref rid="bi025843ce00001"></xref>
<disp-formula content-type="pre-labeled" id="bi025843ce00001"><!--%@md;sys;6q@%&Dgr;%@ital@%G%@rsf@%%@sb@%37,obs%@sbx@% = &Dgr;%@ital@%G%@rsf@%%@sb@%37%@sbx@%%@ex@%unprotonated%@exx@% + %@bf@%[S_EL2;quad]\ %@fn;(;vis;full;auto@%&Dgr;%@ital@%G%@rsf@%%@sb@%37%@sbx@%%@ex@%protonated%@exx@% − &Dgr;%@ital@%G%@rsf@%%@sb@%37%@sbx@%%@ex@%unprotonated%@exx@%%@fnx;);vis;full@%%@fn;[;vis;full;auto@%10%@ex@%p%@ital@%K%@rsf@%%@sb@%a%@sbx@%$-$pH%@exx@%/%@fn;(;vis;full;unlock@%1 + 10%@ex@%p%@ital@%K%@rsf@%%@sb@%a%@sbx@%$-$pH%@exx@%%@fnx;);vis;full@%%@fnx;];vis;full@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi025843ce00001.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
where Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>protonated</sup>
is the Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
for the protonated RNA and Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>unprotonated</sup>
is the Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
for the unprotonated RNA. This analysis is analogous to that performed previously (
<italic toggle="yes">t</italic>
<sub>m,1</sub>
<sup>-1</sup>
vs [H
<sup>+</sup>
]) (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
), except that it more fully accounts for the degree to which protonation stabilizes the RNA. </p>
</sec>
<sec id="d7e612">
<title>Results</title>
<p>
<italic toggle="yes">NMR Structural and Thermodynamic Analysis of the m
<sup>5</sup>
</italic>
<sup></sup>
<italic toggle="yes">-C
<sub>8</sub>
</italic>
<italic toggle="yes">-BWYV Pseudoknot. </italic>
Previously, evidence in support of the protonation of N3 of C
<sub>8</sub>
in solution to form a C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>26</sub>
) base triple in the BWYV pseudoknot was provided by a thermodynamic analysis of the unfolding of U
<sub>8</sub>
and A
<sub>12</sub>
-U
<sub>26</sub>
substitution mutant BWYV pseudoknots (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). Direct verification of the protonation state of C
<sub>8</sub>
at pH 6.0 was obtained with a synthetic RNA containing 5-methylcytidine in place of C
<sub>8</sub>
. As described in Figure
<xref rid="bi025843cf00002"></xref>
A, analysis of a region of the short mixing time H
<sub>2</sub>
O NOESY spectrum of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV RNA (Figure
<xref rid="bi025843cf00002"></xref>
A) is fully compatible with the proposed C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>26</sub>
) base triple shown in Figure
<xref rid="bi025843cf00002"></xref>
B.
<fig id="bi025843cf00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>(A) 60 ms WATERGATE NOESY spectrum of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot (0.8 mM) acquired on a Varian Inova 600 spectrometer at 10 °C, pH 6.0. The methyl protons of m
<sup>5</sup>
-C
<sub>8</sub>
resonate at 1.73 ppm and exhibit strong cross-peaks to a pair of downfield-shifted amino protons (9.25 and 11.02 ppm) as expected for a cytidine protonated at N3. These m
<sup>5</sup>
-C
<sub>8</sub>
amino protons have strong cross-peaks to an imino proton at 12.98 ppm, assigned to m
<sup>5</sup>
-C
<sub>8</sub>
<sup>+</sup>
H3. Also highlighted are a pair of hydrogen-bonded amino protons (7.85 and 8.15 ppm) which give strong cross-peaks to two imino protons, m
<sup>5</sup>
-C
<sub>8</sub>
<sup>+</sup>
H3 (12.98) and another assigned to G
<sub>12</sub>
H1 (13.77 ppm) of the accepting C
<sub>12</sub>
-G
<sub>26</sub>
base pair. (B) Schematic representation of the m
<sup>5</sup>
-C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>26</sub>
) Hoogsteen base triple from the BWYV pseudoknot. </p>
</caption>
<graphic xlink:href="bi025843cf00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Analysis of the thermodynamics of unfolding of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot using optical spectroscopy reveals melting profiles essentially identical to those observed previously (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
) for the unmodified BWYV pseudoknot (Figure
<xref rid="bi025843cf00003"></xref>
). The unfolding of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot is modeled well by three sequential two-state unfolding transitions where transition 1 is assigned to the unfolding of the loop−stem interactions (F → PK), transition 2 to the unfolding of the less stable stem S2 (PK → S1), with transition 3 corresponding to the unfolding of the more stable stem S1 (S1 → U) (Figure
<xref rid="bi025843cf00003"></xref>
). Fitting of the optically monitored denaturation profiles using a sequential interacting three-transition unfolding model suggests little enthalpic destabilization of the loop−stem tertiary structure interactions results upon m
<sup>5</sup>
-C
<sub>8</sub>
substitution [Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK</sub>
= 33 (±5) vs 32 (±7) kcal mol
<sup>-1</sup>
for BWYV] (Figure
<xref rid="bi025843cf00003"></xref>
, legend) (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
).
<fig id="bi025843cf00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>(A) Optically monitored unfolding of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot at 260 nm (·) and 280 nm (○). The solid lines superimposed on 20% of the experimental data represent a simultaneous fit of the data to a model of three sequential, interacting unfolding transitions. The three unfolding transitions (1, 2, and 3) are attributed to the unfolding of the pseudoknot tertiary structure, stem S2, and stem S1, respectively (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). (B) Individual transitions which comprise the composite fit to the data shown in panel A dA
<sub>260</sub>
/dT (), dA
<sub>280</sub>
/dT (---). This melting profile is qualitatively similar to the unmodified BWYV pseudoknot (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). Calculated values for the fit are as follows: 
<italic toggle="yes">t</italic>
<sub>m1</sub>
= 57.3 °C, Δ
<italic toggle="yes">H</italic>
<sub>1</sub>
= 33.6 kcal mol
<sup>-1</sup>
<italic toggle="yes">H</italic>
<sub>BWYV</sub>
= 32 ± 7 kcal mol
<sup>-1</sup>
);
<italic toggle="yes">t</italic>
<sub>m2</sub>
= 81.1 °C, Δ
<italic toggle="yes">H</italic>
<sub>2</sub>
= 29 kcal mol
<sup>-1</sup>
<italic toggle="yes">H</italic>
<sub>INN</sub>
<sub>-</sub>
<sub>HB</sub>
= 26 kcal mol
<sup>-1</sup>
);
<italic toggle="yes">t</italic>
<sub>m3</sub>
= 97.3 °C, Δ
<italic toggle="yes">H</italic>
<sub>3</sub>
= 47 kcal mol
<sup>-1</sup>
<italic toggle="yes">H</italic>
<sub>INN</sub>
<sub>-</sub>
<sub>HB</sub>
= 50 kcal mol
<sup>-1</sup>
). (C) Analysis of the dependence on solution pH of unfolding of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot (○) versus the unmodified BWYV pseudoknot (·). Data shown are the average (±SD) Δ
<italic toggle="yes">G</italic>
<sub>37,obs</sub>
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
) from four independent experiments for the first two unfolding transitions (F → PK and PK → S1). The solid line through the experimental data represents a fit to a model which attributes the entire dependence of Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
on solution pH to a single protonatable group on the RNA (see Materials and Methods). The parameters derived from the fits are compiled in Table
<xref rid="bi025843ct00001"></xref>
.</p>
</caption>
<graphic xlink:href="bi025843cf00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The total change of Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
as a function of pH for unfolding of the pseudoknot including the loop−stem interactions (F → PK) and stem S2 (PK → S1) can be used to determine the macroscopic p
<italic toggle="yes">K</italic>
<sub>a</sub>
for those functional group(s) which contribute to the stability of the m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00024" ref-type="bibr"></xref>
</named-content>
</italic>
). Note that this p
<italic toggle="yes">K</italic>
<sub>a</sub>
does not necessarily correspond to the microscopic p
<italic toggle="yes">K</italic>
<sub>a</sub>
for N3 of m
<sup>5</sup>
-C
<sub>8</sub>
under these solution conditions. The p
<italic toggle="yes">K</italic>
<sub>a</sub>
of N3 for free 5-methylcytidine is 0.1−0.2 unit higher than free cytidine (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00029" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00030" ref-type="bibr"></xref>
</named-content>
</italic>
). Fitting the change of Δ
<italic toggle="yes">G</italic>
<sub>37(F</sub>
<sub></sub>
<sub>S1)</sub>
as a function of pH for this RNA to a model in which the entire change in Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
is attributed to a single protonatable group resolves an apparent p
<italic toggle="yes">K</italic>
<sub>a</sub>
= 6.7 (±0.4) for the N3 of 5-methylcytidine in the context of the BWYV pseudoknot, only slightly lower than that of the unmodified BWYV pseudoknot [p
<italic toggle="yes">K</italic>
<sub>a</sub>
= 7.3 (±0.4)]. The fully protonated m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknot is also ≈1.1 kcal mol
<sup>-1</sup>
less stable than the unmodified BWYV pseudoknot at pH 7.0, most of which is associated with the relative stabilities of the protonated forms (Table
<xref rid="bi025843ct00001"></xref>
).
<table-wrap id="bi025843ct00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Thermodynamic Parameters for the pH-Dependent Unfolding of the Luteoviral Pseudoknots
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="6">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">RNA</oasis:entry>
<oasis:entry namest="2" nameend="2">Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>protonated</sup>
(kcal mol
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="3" nameend="3">Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>unprotonated</sup>
(kcal mol
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="4" nameend="4">ΔΔ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>protonation</sup>
(kcal mol
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="5" nameend="5">p
<italic toggle="yes">K</italic>
<sub>a</sub>
</oasis:entry>
<oasis:entry namest="6" nameend="6">Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>7.0</sup>
(kcal mol
<sup>-1</sup>
)
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">BWYV </oasis:entry>
<oasis:entry colname="2">6.8 (±0.3) </oasis:entry>
<oasis:entry colname="3">3.7 (±0.3) </oasis:entry>
<oasis:entry colname="4">3.1 (±0.4) </oasis:entry>
<oasis:entry colname="5">7.3 (±0.3) </oasis:entry>
<oasis:entry colname="6">5.8 (±0.3) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dC
<sub>14 </sub>
BWYV </oasis:entry>
<oasis:entry colname="2">6.4 (±0.3) </oasis:entry>
<oasis:entry colname="3">3.8 (±0.2) </oasis:entry>
<oasis:entry colname="4">2.6 (±0.4) </oasis:entry>
<oasis:entry colname="5">5.7 (±0.3) </oasis:entry>
<oasis:entry colname="6">4.0 (±0.2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV </oasis:entry>
<oasis:entry colname="2">5.8 (±0.3) </oasis:entry>
<oasis:entry colname="3">4.0 (±0.2) </oasis:entry>
<oasis:entry colname="4">1.8 (±0.4) </oasis:entry>
<oasis:entry colname="5">6.7 (±0.4) </oasis:entry>
<oasis:entry colname="6">4.7 (±0.5) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">PLRV
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="2">3.2 (±0.2) </oasis:entry>
<oasis:entry colname="3">2.1 (±0.1) </oasis:entry>
<oasis:entry colname="4">1.1 (±0.1) </oasis:entry>
<oasis:entry colname="5">6.9 (±0.3) </oasis:entry>
<oasis:entry colname="6">2.5 (±0.5) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">PEMV-1 </oasis:entry>
<oasis:entry colname="2">4.9 (±0.2) </oasis:entry>
<oasis:entry colname="3">2.8 (±0.1) </oasis:entry>
<oasis:entry colname="4">2.1 (±0.2) </oasis:entry>
<oasis:entry colname="5">7.1 (±0.2) </oasis:entry>
<oasis:entry colname="6">3.7 (±0.4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">C
<sub>11</sub>
-G
<sub>30</sub>
 PEMV-1 </oasis:entry>
<oasis:entry colname="2">3.4 (±0.2) </oasis:entry>
<oasis:entry colname="3">1.1 (±0.3) </oasis:entry>
<oasis:entry colname="4">2.3 (±0.3) </oasis:entry>
<oasis:entry colname="5">8.0 (±0.2) </oasis:entry>
<oasis:entry colname="6">3.5 (±0.1)</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Summed from Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
derived for unfolding transitions 1 and 2. Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
for transition 3 was found to be independent of pH and was 7.7 (±0.5), 7.2 (±0.2), 7.8 (±0.3), 7.8 (±0.3), 5.6 (±0.1), and 5.7 (±0.1) kcal mol
<sup>-1</sup>
for the BWYV, dC
<sub>14</sub>
BWYV, m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV, PLRV, PEMV-1, and C
<sub>11</sub>
-G
<sub>30</sub>
PEMV RNAs.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 Experimentally determined, not fitted.
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
 All Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
values for the PLRV pseudoknot refer to those derived from unfolding transition 1 (Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
), not the sum Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
;
<xref rid="bi025843cb00003" ref-type="bibr"></xref>
this particularly underestimates ΔΔ
<italic toggle="yes">G</italic>
<sub>37</sub>
<sup>protonation</sup>
since these unfolding transitions are obligatorily coupled (see text for details).</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<italic toggle="yes">Thermodynamic Evidence for Conservation of Structure in the PLRV Pseudoknot</italic>
. On the basis of sequence (Figure
<xref rid="bi025843cf00001"></xref>
) and functional similarities (
<italic toggle="yes">
<xref rid="bi025843cb00027" ref-type="bibr"></xref>
</italic>
) to the BWYV pseudoknot, the PLRV pseudoknot was expected to be stabilized by the presence of loop L2−stem S1 minor groove and loop L1−stem S2 major groove triplex interactions. Consistent with these expectations, the calorimetrically monitored unfolding of the PLRV pseudoknot as a function of pH (Figure
<xref rid="bi025843cf00004"></xref>
) reveals a total Δ
<italic toggle="yes">H</italic>
≈ 120 kcal mol
<sup>-1</sup>
, essentially identical to the unfolding enthalpy of the BWYV pseudoknot, and in large excess of the 63−70 kcal mol
<sup>-1</sup>
of enthalpy anticipated for unfolding of the helical stems of the PLRV pseudoknot based on INN-HB rules (
<italic toggle="yes">
<xref rid="bi025843cb00027" ref-type="bibr"></xref>
</italic>
). Deconvolution of the calorimetrically monitored unfolding of the PLRV pseudoknot upon application of the same sequential interacting model reveals that the loop−stem interactions of the PLRV pseudoknot contribute Δ
<italic toggle="yes">H</italic>
= 32 kcal mol
<sup>-1</sup>
to the stability of the folded pseudoknot, while protonation of the C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>27</sub>
) triple base pair contributes ≥2.5 kcal mol
<sup>-1</sup>
in stability at 37 °C by DSC (Figure
<xref rid="bi025843cf00004"></xref>
, legend), coupled with an elevated p
<italic toggle="yes">K</italic>
<sub>a</sub>
= 6.9 (±0.3) (Table
<xref rid="bi025843ct00001"></xref>
).
<xref rid="bi025843cb00003" ref-type="bibr"></xref>
These findings are fully compatible with detailed NMR analysis of the PLRV pseudoknot, which reveals a 2D NOE spectrum that is essentially superimposable on the BWYV pseudoknot (P. Nixon and D. Giedroc, unpublished observations).
<fig id="bi025843cf00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Calorimetrically monitored unfolding of the PLRV P1−P2 pseudoknot at pH 6.0, 7.0, and 8.0 in 0.5 M KCl and 10 mM buffer salt (see Materials and Methods). Sample concentrations were 46.0, 45.1, and 47.9 μM, respectively. For clarity, only 5% of the collected data points are shown in each panel with both the composite fit (solid line) and the individual transitions (dotted lines) superimposed on the data. Calculated thermodynamic parameters (in kcal mol
<sup>-1</sup>
) for the unfolding of the PLRV pseudoknot obtained from fitting to a model of three sequential interacting transitions are as follows:  pH 6.0, Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK</sub>
= 33.0, Δ
<italic toggle="yes">H</italic>
<sub>total</sub>
= 123, Δ
<italic toggle="yes">G</italic>
<sub>37(total)</sub>
= 14.7, Δ
<italic toggle="yes">G</italic>
<sub>37(F</sub>
<sub>-</sub>
<sub>PK)</sub>
= 3.3; pH 7.0, Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK</sub>
= 33.2, Δ
<italic toggle="yes">H</italic>
<sub>total</sub>
= 122, Δ
<italic toggle="yes">G</italic>
<sub>37(total)</sub>
= 13.1, ΔG
<sub>37(F</sub>
<sub>-</sub>
<sub>PK)</sub>
= 2.4; pH 8.0, Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK</sub>
= 30.7, Δ
<italic toggle="yes">H</italic>
<sub>total</sub>
= 121, Δ
<italic toggle="yes">G</italic>
<sub>37(total)</sub>
= 11.4, Δ
<italic toggle="yes">G</italic>
<sub>37(F</sub>
<sub>-</sub>
<sub>PK)</sub>
= 1.3.</p>
</caption>
<graphic xlink:href="bi025843cf00004.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Thermodynamic Evidence for Conservation of Structure in the PEMV-1 Pseudoknot. </italic>
The PEMV-1 pseudoknot incorporates a transversion in the sequence of loop L1 where the loop L1 cytidine (C
<sub>8</sub>
in the BWYV pseudoknot) is moved to the 3‘ loop position with a uridine in place of the conserved cytidine at the 5‘ side of loop L1. In addition, the putative accepting pair for the Hoogsteen C
<sup>+</sup>
·(G-C) triple (C
<sub>13</sub>
-G
<sub>28</sub>
) is inverted relative to the other members of the luteovirus family pseudoknots (G
<sub>12</sub>
-C
<sub>26</sub>
in the BWYV pseudoknot) (Figure
<xref rid="bi025843cf00001"></xref>
). Given the previously described functional (
<italic toggle="yes">
<xref rid="bi025843cb00016" ref-type="bibr"></xref>
</italic>
) and thermodynamic studies (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
), these sequence changes were expected to abolish the pH dependence of the unfolding of the PEMV-1 pseudoknot. </p>
<p>The calorimetrically monitored unfolding of the PEMV-1 pseudoknot (Figure
<xref rid="bi025843cf00005"></xref>
) reveals that, contrary to these expectations, the RNA is characterized by an unfolding enthalpy in excess of the INN-HB predictions (Δ
<italic toggle="yes">H </italic>
≈ 109 kcal mol
<sup>-1</sup>
) and a strongly pH-dependent stability, with Δ(Δ
<italic toggle="yes">G</italic>
)
<sub>37</sub>
for protonation of 2.1 (±0.2) kcal mol
<sup>-1</sup>
(Table
<xref rid="bi025843ct00001"></xref>
). It is interesting to note that, at pH values below 7.0, the unfolding of the tertiary structure and stem S2 of the PEMV-1 pseudoknot become coincident or so tightly coupled that they are best modeled by a single, cooperative transition. The Δ
<italic toggle="yes">H </italic>
of 52 kcal mol
<sup>-1</sup>
is near that determined for the sum of tertiary structure and S2 unfolding resolved at pH 7.0 and 8.0 (Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK+PK</sub>
<sub></sub>
<sub>S1</sub>
= 55.8 ± 1.0 kcal mol
<sup>-1</sup>
). Optically monitored melts are also characterized by significant pH dependence (melts not shown) (Table
<xref rid="bi025843ct00001"></xref>
). A simultaneous analysis of pH dependence of the optical and calorimetric data like that applied to analyze the BWYV and PLRV RNA melts reveals a macroscopic p
<italic toggle="yes">K</italic>
<sub>a</sub>
of 7.1 (±0.2) (Figure
<xref rid="bi025843cf00006"></xref>
). This likely corresponds to apparent p
<italic toggle="yes">K</italic>
<sub>a</sub>
of the N
<sub>3</sub>
H
<sup>+</sup>
imino proton of C
<sub>10</sub>
in loop L1.
<fig id="bi025843cf00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Calorimetrically monitored unfolding of the PEMV-1 pseudoknot at pH 6.0, 7.0, and 8.0 in 500 mM KCl and 10 mM buffer salt (see Materials and Methods). Sample concentrations were 85.0, 88.8, and 83.7 μM, respectively. For clarity, only 5% of the collected data points are shown in each panel with both the composite fit (solid line) and the individual transitions (dotted lines) superimposed on the data. Calculated thermodynamic parameters (in kcal mol
<sup>-1</sup>
) for the unfolding of the PEMV-1 pseudoknot obtained from fitting to a model of three sequential interacting transitions are as follows: pH 6.0, Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>S1</sub>
= 52.0, Δ
<italic toggle="yes">H</italic>
<sub>total</sub>
= 112, Δ
<italic toggle="yes">G</italic>
<sub>37(total)</sub>
= 11.9, Δ
<italic toggle="yes">G</italic>
<sub>37(F</sub>
<sub>-</sub>
<sub>S1)</sub>
= 4.7; pH 7.0, Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK</sub>
= 37.0, Δ
<italic toggle="yes">H</italic>
<sub>total</sub>
= 109, Δ
<italic toggle="yes">G</italic>
<sub>37(total)</sub>
= 10.2, ΔG
<sub>37(F</sub>
<sub>-</sub>
<sub>PK)</sub>
= 2.4; pH 8.0, Δ
<italic toggle="yes">H</italic>
<sub>F</sub>
<sub></sub>
<sub>PK</sub>
= 30.0, Δ
<italic toggle="yes">H</italic>
<sub>total</sub>
= 107, Δ
<italic toggle="yes">G</italic>
<sub>37(total)</sub>
= 9.3, Δ
<italic toggle="yes">G</italic>
<sub>37(F</sub>
<sub>-</sub>
<sub>PK)</sub>
= 1.3.</p>
</caption>
<graphic xlink:href="bi025843cf00005.tif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi025843cf00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>pH dependence on the unfolding of the wild-type (·) and mutant C
<sub>11</sub>
-G
<sub>30</sub>
(○) PEMV-1 pseudoknots. The average (±SD) Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
values derived from four independent optical melting experiments acquired at each pH value, except that Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
determined at pH 6.0, 7.0 and 8.0 for the wild-type PEMV-1 pseudoknot also incorporates results from DSC (cf. Figure
<xref rid="bi025843cf00005"></xref>
). The solid line through each set of data corresponds to a fit to an equation which describes the entire dependence as attributable to a single protonatable group (see Materials and Methods). The parameters obtained from this analysis are compiled in Table
<xref rid="bi025843ct00001"></xref>
.</p>
</caption>
<graphic xlink:href="bi025843cf00006.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">NMR and Thermodynamic Evidence for a C
<sub>10</sub>
</italic>
<italic toggle="yes">
<sup>+</sup>
</italic>
<sup></sup>
<italic toggle="yes">·(C
<sub>13</sub>
</italic>
<italic toggle="yes">-G
<sub>28</sub>
</italic>
<italic toggle="yes">) Base Triple in the PEMV-1 Pseudoknot.</italic>
Since the tertiary structure of the PEMV-1 pseudoknot is strongly dependent on solution pH, three possibilities exist for the participation of C
<sub>10</sub>
in a protonated L1−S2 triple base pair, analogous to that of the BWYV and PLRV pseudoknots (Figure
<xref rid="bi025843cf00007"></xref>
). One is a C
<sub>10</sub>
<sup>+</sup>
·(G
<sub>11</sub>
-C
<sub>30</sub>
) triple which would be isostructural with the BWYV C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>26</sub>
) base triple (Figure
<xref rid="bi025843cf00007"></xref>
A), simply moved away from the helical junction to the base of S2 (Figure
<xref rid="bi025843cf00007"></xref>
B). Two other base triple structures are possible (Figure
<xref rid="bi025843cf00007"></xref>
C,D). The C
<sub>10</sub>
<sup>+</sup>
·(A
<sub>12</sub>
-U
<sub>29</sub>
) triple (Figure
<xref rid="bi025843cf00007"></xref>
C) seems unlikely due to formation of only a single protonated C
<sub>10</sub>
N
<sub>3</sub>
H
<sup>+</sup>
···O4 U
<sub>29</sub>
hydrogen bond and no hydrogen bonds to the C
<sub>10</sub>
<sup>+</sup>
amino protons, a structure difficult to rationalize with the strongly downfield-shifted, nondegenerate chemical shifts of these two protons (cf. Figure
<xref rid="bi025843cf00008"></xref>
). The other possibility (Figure
<xref rid="bi025843cf00007"></xref>
D) is that the entire C
<sub>10</sub>
nucleotide is “flipped over”, analogous to that previously observed for the biotin-binding pseudoknot (
<italic toggle="yes">
<xref rid="bi025843cb00031" ref-type="bibr"></xref>
</italic>
), which would enforce a local change in the polarity of the polynucleotide backbone; in this arrangement, C
<sub>10</sub>
is in a position to form the same set of hydrogen bonds of the C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>26</sub>
) base pair in the BWYV pseudoknot with the Hoogsteen face of the
<italic toggle="yes">inverted</italic>
C
<sub>13</sub>
-G
<sub>28</sub>
base pair at the helical junction. NMR spectroscopy and thermodynamic analysis of the wild-type PEMV-1 pseudoknot and two variant RNAs, U
<sub>10</sub>
and C
<sub>11</sub>
-G
<sub>30</sub>
, were carried out to distinguish among these possibilities.
<fig id="bi025843cf00007" position="float" orientation="portrait">
<label>7</label>
<caption>
<p>Schematic representation of the possible protonated triple base pairs that could be formed between a protonated C
<sub>10</sub>
(L1) and the stem S2 base pairs in the PEMV-1 pseudoknot (panels B−D) compared to that of the wild-type BWYV base triple (panel A). See text for details. </p>
</caption>
<graphic xlink:href="bi025843cf00007.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Figure
<xref rid="bi025843cf00008"></xref>
(top spectrum) reveals that the wild-type PEMV-1 pseudoknot is characterized by the correct number of imino proton resonances consistent with a pseudoknotted structure;
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
furthermore, this RNA exhibits a pair of downfield-shifted amino protons indicative of the presence of a protonated cytidine, assigned to C
<sub>10</sub>
.
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
Although there are some significant chemical shift changes, the exchangeable proton region of the base pair inverted C
<sub>11</sub>
-G
<sub>30</sub>
PEMV-1 RNA yields substantially the same spectrum, including the presence of the downfield-shifted amino protons associated with protonated C
<sub>10</sub>
(Figure
<xref rid="bi025843cf00008"></xref>
, middle spectrum). Thus, it is unlikely that the closing G
<sub>11</sub>
-C
<sub>30</sub>
base pair is the triple base pair acceptor, ruling out the model in Figure
<xref rid="bi025843cf00007"></xref>
B. Consistent with this, the unfolding of the C
<sub>11</sub>
-G
<sub>30</sub>
PEMV-1 pseudoknot, while lowered as a result of the terminal base pair inversion, remains dependent on pH, with a macroscopic p
<italic toggle="yes">K</italic>
<sub>a</sub>
of 8.0 (±0.2) (Figure
<xref rid="bi025843cf00006"></xref>
, Table
<xref rid="bi025843ct00001"></xref>
). Interestingly, the stabilities of the wild-type and C
<sub>11</sub>
-G
<sub>30</sub>
PEMV-1 pseudoknots are indistinguishable at pH 7.0 (Table
<xref rid="bi025843ct00001"></xref>
).
<fig id="bi025843cf00008" position="float" orientation="portrait">
<label>8</label>
<caption>
<p>1D NMR spectra (256 transients) of the exchangeable proton region of the wild-type (1.1 mM), C
<sub>11</sub>
-G
<sub>30</sub>
(1.5 mM), and U
<sub>10</sub>
(0.5 mM) PEMV-1 RNAs at 1 °C, pH 6.0, and 0.10 M KCl. Complete proton resonance assignments for the PEMV-1 RNA pseudoknot have been deposited in the BMRB (deposition 5278).
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
The minor resonances at ≈12.2 and ≈13.4 ppm in the PEMV-1 spectrum derive from a small amount of contaminating 3‘ truncated RNA which only folds into an S1 hairpin (cf. the U
<sub>10</sub>
spectrum). The downfield shoulder on the peak labeled G11 (≈11.8 ppm) apparently derives from a distinct environment around the base of stem S2 in a minor conformation (data not shown), also observed in the analogous region of the phage T2 pseudoknot (
<italic toggle="yes">
<xref rid="bi025843cb00038" ref-type="bibr"></xref>
</italic>
).</p>
</caption>
<graphic xlink:href="bi025843cf00008.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>In contrast, the U
<sub>10</sub>
PEMV-1 RNA does not adopt a folded RNA pseudoknot since only three imino protons are observed under these conditions, the expected number if the five base pair stem S1 is folded with the imino protons of the two terminal base pairs exchanging rapidly with solvent (Figure
<xref rid="bi025843cf00008"></xref>
, bottom spectrum). The surprising conclusion is that the PEMV-1 pseudoknot conserves the stabilizing features of the BWYV/PLRV C
<sup>+</sup>
·(G-C) triple base pair (Figure
<xref rid="bi025843cf00007"></xref>
D) in a distinct structural context. Formation of this base triple appears to play a key role in nucleating other loop−stem interactions, e.g., a minor groove triplex, since substitution of C
<sub>10</sub>
lowers the stability of the pseudoknot to a extent below that of the S1 hairpin (Figure
<xref rid="bi025843cf00008"></xref>
, bottom spectrum). </p>
<p>
<italic toggle="yes">Characterization of Loop L2 Substitution Mutants of the BWYV Pseudoknot.</italic>
The other prominent structural feature of
<italic toggle="yes">Luteoviridae</italic>
P1−P2 pseudoknots is a minor groove triplex motif, in which loop L2 adenosines, particularly those at the 3‘ end of loop L2, make functionally important (
<italic toggle="yes">
<xref rid="bi025843cb00016" ref-type="bibr"></xref>
</italic>
) hydrogen-bonding interactions into the minor groove side of the G-C base pairs at the base of stem S1, near the helical junction (
<italic toggle="yes">9). </italic>
Structural and thermodynamic characterizations of A
<sub>23</sub>
→ G
<sub>23</sub>
, A
<sub>24</sub>
→ G
<sub>24</sub>
, and A
<sub>25</sub>
→ G
<sub>25</sub>
and two 2‘-deoxy BWYV substitution mutants, 2‘-dC
<sub>14</sub>
and 2‘-dC
<sub>15</sub>
, were undertaken to quantify the extent to which individual hydrogen-bonding interactions contribute to the stability of the BWYV pseudoknot. </p>
<p>1D NMR spectra of the exchangeable proton region for each of these RNAs are shown in Figure
<xref rid="bi025843cf00009"></xref>
, compared to the spectrum of the wild-type BWYV pseudoknot (pH 6.0, 0.10 M K
<sup>+</sup>
, 10 °C). Although only limited resonance assignments are available for the BWYV RNA, the presence or absence of the C
<sub>8</sub>
<sup>+</sup>
amino protons (see also Figure
<xref rid="bi025843cf00002"></xref>
), coupled with the presence of the slowly exchanging 2‘-OH of C
<sub>14</sub>
, provides a qualitative indication of the extent to which the folded pseudoknotted conformation is the primary conformer under these conditions. These data reveal that substitution of A
<sub>25</sub>
with G
<sub>25</sub>
and replacement of the 2‘-OH of C
<sub>14</sub>
with a proton, i.e., the stabilizing elements closest to the helical junction, are tolerated by the pseudoknotted conformation. Consistent with this, thermal melting profiles of the 2‘-dC
<sub>14</sub>
RNA are well described by three unfolding transitions (Figure
<xref rid="bi025843cf00010"></xref>
A); however, the RNA is destabilized by a Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
) ≈ 1.8 kcal mol
<sup>-1</sup>
(pH 7.0, 0.5 M K
<sup>+</sup>
) (Table
<xref rid="bi025843ct00001"></xref>
) and is characterized by a downward-shifted p
<italic toggle="yes">K</italic>
<sub>a</sub>
of 5.7 (±0.4) relative to the wild-type RNA (Figure
<xref rid="bi025843cf00010"></xref>
B). Thermal melts of the G
<sub>25</sub>
RNA also show the presence of three unfolding transitions (data not shown). In contrast, the G
<sub>24</sub>
and G
<sub>23</sub>
BWYV RNAs give nearly identical NMR spectra and appear to be largely unfolded, with the G
<sub>24</sub>
and the 2‘-dC
<sub>15</sub>
RNA best described as a mixture of folded and S1 hairpin conformers. Thus, disruption of minor groove interactions one S1 base pair or one L2 nucleotide removed from the helical junction is comparatively more destabilizing than are identical substitutions nearer the helical junction (see Discussion).
<fig id="bi025843cf00009" position="float" orientation="portrait">
<label>9</label>
<caption>
<p>1D NMR spectra (2048 transients) of the exchangeable proton region of the wild-type BWYV (0.6 mM), dC
<sub>14</sub>
(0.7 mM), dC
<sub>15</sub>
(1.1 mM), A
<sub>25</sub>
G (0.9 mM), A
<sub>24</sub>
G (1.1 mM), and A
<sub>23</sub>
G (1.2 mM) RNAs at 10 °C, pH 6.0, and 0.1 M KCl.</p>
</caption>
<graphic xlink:href="bi025843cf00009.tif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi025843cf00010" position="float" orientation="portrait">
<label>10</label>
<caption>
<p>(A) Representative thermal melting profiles (dA
<sub>260</sub>
/dT) obtained for dC
<sub>14</sub>
BWYV RNA at pH 6.0 (·) and pH 8.0 (○) in 0.5 M KCl and 10 mM buffer salt (see Materials and Methods). The smooth curves superimposed on the data represent a simultaneous fit (both dA
<sub>260</sub>
/dT and dA
<sub>280</sub>
/dT were used; dA
<sub>280</sub>
/dT is not shown for clarity) to a model of three sequential, interacting unfolding transitions (transitions 1−3) assigned to the unfolding of the pseudoknot tertiary structure, stem S2, and stem S1, respectively (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). (B) pH dependence on the unfolding of the dC
<sub>14</sub>
BWYV pseudoknot. The average (±SD) Δ
<italic toggle="yes">G</italic>
<sub>1</sub>
+ Δ
<italic toggle="yes">G</italic>
<sub>2</sub>
values (37 °C) derived from four independent optical melting experiments acquired at each pH value are shown. The solid line through the data corresponds to a fit to an equation which describes the entire dependence as attributable to a single protonatable group. The apparent p
<italic toggle="yes">K</italic>
<sub>a</sub>
determined from this analysis is 5.7 (±0.3) (Table
<xref rid="bi025843ct00001"></xref>
). The pH dependence of the unfolding of the wild-type BWYV pseudoknot is shown (dashed line; cf. Figure
<xref rid="bi025843cf00002"></xref>
) for comparison.</p>
</caption>
<graphic xlink:href="bi025843cf00010.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
</sec>
<sec id="d7e2029">
<title>Discussion</title>
<p>In the work described here, we provide thermodynamic and structural evidence that all members of the
<italic toggle="yes">Luteoviridae</italic>
P1−P2 mRNA frameshifting pseudoknots contain a common collection of loop−stem tertiary structural interactions that make integral contributions to the stability of the pseudoknotted conformation relative to the partially unfolded S1 hairpin. This conclusion is fully compatible with functional studies of mutant BWYV (
<italic toggle="yes">
<xref rid="bi025843cb00016" ref-type="bibr"></xref>
</italic>
), PLRV (
<italic toggle="yes">
<xref rid="bi025843cb00017" ref-type="bibr"></xref>
</italic>
), and PEMV-1
<sup>2</sup>
pseudoknots; any disruption of these stabilizing tertiary structural interactions was found to be generally deleterious to function. </p>
<p>
<italic toggle="yes">The C
<sup>+</sup>
</italic>
<sup></sup>
<italic toggle="yes">·(G-C) Base Triple.</italic>
The C
<sup>+</sup>
·(G-C) major groove base triple motif is a common feature of all luteoviral pseudoknots, despite nucleotide sequence changes in the PEMV-1 RNA which would be expected to abolish this interaction. In all cases, the global stability of the pseudoknot is markedly pH-dependent with a p
<italic toggle="yes">K</italic>
<sub>a</sub>
of unfolding markedly elevated relative to that of free cytidine, such that significant protonation of the loop L2 cytidine N3 occurs at neutral pH. The thermodynamic driving force for the elevated p
<italic toggle="yes">K</italic>
<sub>a</sub>
is not known with certainty although the structures of the BWYV (
<italic toggle="yes">
<xref rid="bi025843cb00009" ref-type="bibr"></xref>
</italic>
) and PEMV-1
<sup>2</sup>
pseudoknots reveal that while one face of the protonated cytidine is largely exposed to solvent, the other is nearby a patch of significant negative electrostatic potential deep in the major groove of S2. The same is true of the C
<sup>+</sup>
·(G-C) base triple in the genomic HDV ribozyme (
<italic toggle="yes">
<xref rid="bi025843cb00011" ref-type="bibr"></xref>
</italic>
). Protonation may therefore be important for enhancing electrostatic complementarity in the major groove of S2. Regardless of the molecular origin, protonation of the loop L1 cytidine makes a significant contribution to the global stability with a Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
of 3.1 (±0.3) and ≥2.5 kcal mol
<sup>-1</sup>
for the BWYV and PLRV
<sup>3</sup>
pseudoknots, respectively, and slightly less, 2.1 (±0.3) kcal mol
<sup>-1</sup>
, to the stability of the PEMV-1 RNA. </p>
<p>As anticipated, replacement of C
<sub>8</sub>
with m
<sup>5</sup>
-C
<sub>8</sub>
in the BWYV pseudoknot is fully compatible with formation of the pseudoknot (Figure
<xref rid="bi025843cf00002"></xref>
), with Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
of ≈1.1 (±0.5) kcal mol
<sup>-1</sup>
at pH 7.0 (Table
<xref rid="bi025843ct00001"></xref>
) relative to that of the unmethylated RNA. Although the effect is small (Figure
<xref rid="bi025843cf00003"></xref>
), at least some of the difference in stability between the BWYV and m
<sup>5</sup>
-C
<sub>8</sub>
-BWYV pseudoknots at pH 7.0 is due to a small downward shift in the macroscopic p
<italic toggle="yes">K</italic>
<sub>a</sub>
for pseudoknot unfolding (Table
<xref rid="bi025843ct00001"></xref>
), in a direction opposite to expectations based on the relative p
<italic toggle="yes">K</italic>
<sub>a</sub>
's of free cytidine (p
<italic toggle="yes">K</italic>
<sub>a</sub>
≈ 4.2) and free 5-methylcytidine (p
<italic toggle="yes">K</italic>
<sub>a</sub>
≈ 4.4) (
<italic toggle="yes">
<xref rid="bi025843cb00030" ref-type="bibr"></xref>
</italic>
). It is important to recognize that the p
<italic toggle="yes">K</italic>
<sub>a</sub>
for (un)folding is an apparent p
<italic toggle="yes">K</italic>
<sub>a</sub>
that measures the microscopic p
<italic toggle="yes">K</italic>
<sub>a</sub>
superimposed on changes in base stacking and hydrophobicity and electrostatics (
<italic toggle="yes">
<xref rid="bi025843cb00032" ref-type="bibr"></xref>
</italic>
), as well as other coupled protonation/deprotonation equilibria, which might influence the global unfolding equilibrium. </p>
<p>
<italic toggle="yes">Thermodynamic and Structural Analysis of Loop L2 Mutants in the BWYV Pseudoknot:  Cooperativity of Weak Interactions. </italic>
From the thermodynamic data alone, both the PLRV and PEMV-1 pseudoknots were expected to contain a comprehensive collection of loop−stem minor groove interactions; the solution structure of the PEMV-1 pseudoknot is consistent with this expectation.
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
In addition, the NMR spectra of both the BWYV (Figure
<xref rid="bi025843cf00009"></xref>
) and the PEMV-1 (Figure
<xref rid="bi025843cf00008"></xref>
) pseudoknots reveal that the 2‘-hydroxyl protons of C
<sub>14</sub>
in BWYV and the analogous nucleotide (C
<sub>15</sub>
) in PEMV-1 are significantly downfield-shifted and exchange very slowly with solvent,
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
evidence that they are involved in donating hydrogen bonds to L2 adenosines in solution. In an effort to define the extent to which each of these interactions contributes to the stability of the pseudoknotted conformation, A
<sub>23</sub>
G, A
<sub>24</sub>
G, and A
<sub>25</sub>
G BWYV RNAs, as well as two 2‘-deoxy RNAs, dC
<sub>14</sub>
and dC
<sub>15</sub>
, were characterized. </p>
<p>We find that the dC
<sub>14</sub>
BWYV RNA is indeed folded and destabilized to an extent compatible with previous studies of the
<italic toggle="yes">T. thermophilus</italic>
P4−P6 group I intron domain (
<italic toggle="yes">
<xref rid="bi025843cb00010" ref-type="bibr"></xref>
</italic>
) [Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
≈ 1.2 kcal mol
<sup>-1</sup>
], with Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
≈ 1.8 (±0.5) kcal mol
<sup>-1</sup>
at pH 7.0, coupled with a significant reduction in the apparent p
<italic toggle="yes">K</italic>
<sub>a</sub>
of C
<sub>8</sub>
(Figure
<xref rid="bi025843cf00010"></xref>
, Table
<xref rid="bi025843ct00001"></xref>
). In strong contrast, the dC
<sub>15</sub>
RNA is substantially unfolded under these conditions, with only a minor population of molecules adopting a pseudoknotted conformation as defined by the intensity of the protonated C
<sub>8</sub>
<sup>+</sup>
amino protons (Figure
<xref rid="bi025843cf00009"></xref>
). The same is true of the A
<sub>25</sub>
G RNA. In contrast, the structure of the A
<sub>24</sub>
G and A
<sub>23</sub>
G RNAs are significantly perturbed with little evidence of a stable folded pseudoknot. Knowledge of the relative stabilities of the pseudoknot and partially folded S1 hairpin reveals a Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
of ≈7 kcal mol
<sup>-1</sup>
at low pH vs ≈4 kcal mol
<sup>-1</sup>
at elevated pH (Table
<xref rid="bi025843ct00001"></xref>
). Thus, a lower limit for Δ(Δ
<italic toggle="yes">G</italic>
<sub>37</sub>
)
<sub>folding</sub>
which characterizes these A → G base substitutions as well as the replacement of a single 2‘-OH with a 2‘-H group in C
<sub>15</sub>
is ≥4 kcal mol
<sup>-1</sup>
under these solution conditions, compatible with previous findings for globally stabilizing A → G substitutions the P4−P6 domain of the group I intron (
<italic toggle="yes">
<xref rid="bi025843cb00010" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Implications for RNA Folding.</italic>
In the absence of stabilizing interactions associated specifically with A
<sub>23</sub>
, A
<sub>24</sub>
, and the G
<sub>6</sub>
-C
<sub>15</sub>
S1 base pair, a large-scale perturbation of complementarity of loop−stem interactions results, which, when not allowed to form, subsequently abolishes the formation of other stabilizing interactions nearer the helical junction and perhaps through stem S2. This has the effect of coupling the formation of the minor groove triplex with the formation of the relatively weak three base pair stem S2, which itself is further stabilized by protonation of an L1 nucleotide. Molecular dynamics simulations carried out at elevated temperature (400 K) provide additional evidence for strong
<italic toggle="yes">temporal</italic>
coupling of disruption of the C
<sub>8</sub>
<sup>+</sup>
·G
<sub>12</sub>
Hoogsteen pair with that of the minor groove triplex (
<italic toggle="yes">
<xref rid="bi025843cb00033" ref-type="bibr"></xref>
</italic>
); along the folding coordinate, this would obligatorily couple formation of the minor groove triplex with the C
<sub>8</sub>
<sup>+</sup>
·(G
<sub>12</sub>
-C
<sub>26</sub>
) base triple. Thus, A
<sub>23</sub>
and A
<sub>24</sub>
may therefore play important roles in nucleating a strong cooperativity of subsequent interactions along the kinetic folding reaction coordinate as well. </p>
<p>
<italic toggle="yes">Functional Implications. </italic>
These and previous studies reveal a strong correlation between the formation of the major C
<sup>+</sup>
·(G-C) triple base pair and a minor groove triplex and the ability of
<italic toggle="yes">Luteoviridae</italic>
P1−P2 pseudoknots to stimulate programmed −1 ribosomal frameshifting in vitro (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00016" ref-type="bibr"></xref>
,
<xref rid="bi025843cb00017" ref-type="bibr"></xref>
</named-content>
</italic>
).
<xref rid="bi025843cb00002" ref-type="bibr"></xref>
Indeed, it is not difficult to understand how mutations that shift the folding equilibrium toward the S1 hairpin would abolish stimulation of frameshifting activity. However, what is not so clear is how small changes in the stability of a loop−stem tertiary structural motif nearer the helical junction, for example, could account for the large reductions in frameshifting efficiency. The role of the protonated C
<sup>+</sup>
·(G-C) triple in stimulating ribosomal frameshifting is a case in point. If it were simply the protonation state or stability derived from this interaction which were responsible for stimulation of frameshifting efficiencies, in vitro frameshifting assays would not likely have detected this, since these experiments are typically carried out at pH 7.8,
<xref rid="bi025843cb00004" ref-type="bibr"></xref>
a pH at which the luteoviral pseudoknots are predicted to be near minimal stability (Table
<xref rid="bi025843ct00001"></xref>
). Despite this, mutations which disrupt the pH dependence of the C
<sup>+</sup>
·(G-C) base triple but do not abolish pseudoknot formation, e.g., U
<sub>8</sub>
BWYV pseudoknot, result in an apparently complete loss in the ability to stimulate frameshifting (
<italic toggle="yes">
<xref rid="bi025843cb00016" ref-type="bibr"></xref>
</italic>
) with a relatively small loss of thermodynamic stability at elevated pH (
<italic toggle="yes">
<xref rid="bi025843cb00013" ref-type="bibr"></xref>
</italic>
). A similar argument could also be made for the A
<sub>25</sub>
G substitution, which is also functionally completely inactive (
<italic toggle="yes">
<xref rid="bi025843cb00016" ref-type="bibr"></xref>
</italic>
). </p>
<p>Other studies suggest that there is unlikely to be simple relationship between the stability of the pseudoknot relative to the partially folded hairpin conformation and efficiency of stimulating −1 frameshifting, beyond that which is required to ensure that the pseudoknotted structure dominates the population ensemble (
<italic toggle="yes">
<xref rid="bi025843cb00004" ref-type="bibr"></xref>
</italic>
).
<xref rid="bi025843cb00005" ref-type="bibr"></xref>
Similar conclusions have been reached from studies of the HIV-1
<italic toggle="yes">gag-pol</italic>
and HTLV-II
<italic toggle="yes">gag-pro</italic>
stem−loop structures, which showed little to no correlation between functional activity and predicted RNA stem−loop stability (
<italic toggle="yes">
<xref rid="bi025843cb00034" ref-type="bibr"></xref>
</italic>
). On the other hand, recent evidence from the MMTV
<italic toggle="yes">gag-pro</italic>
, IBV-MMTV chimeric, and SRV-1
<italic toggle="yes">gag-pro</italic>
pseudoknot systems suggests that weakly stabilizing structural determinants positioned at the helical junction may play a far more significant role in stimulation of frameshifting activity as the pseudoknot abuts the elongating ribosome than will global stability (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi025843cb00035" ref-type="bibr"></xref>
<xref rid="bi025843cb00036" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi025843cb00037" ref-type="bibr"></xref>
</named-content>
</italic>
).
<xref rid="bi025843cb00005" ref-type="bibr"></xref>
It will be necessary to elucidate the kinetics of pseudoknot unfolding and refolding, as well as the structural nature of the transient interactions of the pseudoknot with the ribosome, before a detailed understanding of the mechanism of translational regulation of gene expression by programmed −1 ribosomal frameshifting can be obtained. </p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bi025843cb00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Farabaugh</surname>
<given-names>P. J.</given-names>
</name>
<source>Cell</source>
<year>1993</year>
<volume>74</volume>
<fpage>591</fpage>
<lpage>596</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(93)90507-M</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Matsufuji</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Matsufuji</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Wills</surname>
<given-names>N. M.</given-names>
</name>
<name name-style="western">
<surname>Gesteland</surname>
<given-names>R. F.</given-names>
</name>
<name name-style="western">
<surname>Atkins</surname>
<given-names>J. F.</given-names>
</name>
<source>EMBO J.</source>
<year>1996</year>
<volume>15</volume>
<fpage>1360</fpage>
<lpage>1370</lpage>
</element-citation>
</ref>
<ref id="bi025843cb00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gesteland</surname>
<given-names>R. F.</given-names>
</name>
<name name-style="western">
<surname>Atkins</surname>
<given-names>J. F.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1996</year>
<volume>65</volume>
<fpage>741</fpage>
<lpage>768</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.65.070196.003521</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Giedroc</surname>
<given-names>D. P.</given-names>
</name>
<name name-style="western">
<surname>Theimer</surname>
<given-names>C. A.</given-names>
</name>
<name name-style="western">
<surname>Nixon</surname>
<given-names>P. L.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2000</year>
<volume>298</volume>
<fpage>167</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2000.3668</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jacks</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Madhani</surname>
<given-names>H. D.</given-names>
</name>
<name name-style="western">
<surname>Masiarz</surname>
<given-names>F. R.</given-names>
</name>
<name name-style="western">
<surname>Varmus</surname>
<given-names>H. E.</given-names>
</name>
<source>Cell</source>
<year>1988</year>
<volume>55</volume>
<fpage>44</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(88)90031-1</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lopinski</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Dinman</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Bruenn</surname>
<given-names>J. A.</given-names>
</name>
<source>Mol. Cell. Biol.</source>
<year>2000</year>
<volume>20</volume>
<fpage>1095</fpage>
<lpage>1103</lpage>
<pub-id pub-id-type="doi">10.1128/MCB.20.4.1095-1103.2000</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Somogyi</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Jenner</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Brierley</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Inglis</surname>
<given-names>S. C.</given-names>
</name>
<source>Mol. Cell. Biol.</source>
<year>1993</year>
<volume>13</volume>
<fpage>6931</fpage>
<lpage>6940</lpage>
</element-citation>
</ref>
<ref id="bi025843cb00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gultyaev</surname>
<given-names>A. P.</given-names>
</name>
<name name-style="western">
<surname>van Batenburg</surname>
<given-names>F. H.</given-names>
</name>
<name name-style="western">
<surname>Pleij</surname>
<given-names>C. W.</given-names>
</name>
<source>RNA</source>
<year>1999</year>
<volume>5</volume>
<fpage>609</fpage>
<lpage>617</lpage>
<pub-id pub-id-type="doi">10.1017/S135583829998189X</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Su</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Egli</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Berger</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Rich</surname>
<given-names>A.</given-names>
</name>
<source>Nat. Struct. Biol.</source>
<year>1999</year>
<volume>6</volume>
<fpage>285</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1038/6722</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Doherty</surname>
<given-names>E. A.</given-names>
</name>
<name name-style="western">
<surname>Batey</surname>
<given-names>R. T.</given-names>
</name>
<name name-style="western">
<surname>Masquida</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Doudna</surname>
<given-names>J. A.</given-names>
</name>
<source>Nat. Struct. Biol.</source>
<year>2001</year>
<volume>8</volume>
<fpage>339</fpage>
<lpage>343</lpage>
<pub-id pub-id-type="doi">10.1038/86221</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ferre-D'Amare</surname>
<given-names>A. R.</given-names>
</name>
<name name-style="western">
<surname>Doudna</surname>
<given-names>J. A.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2000</year>
<volume>295</volume>
<fpage>541</fpage>
<lpage>556</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.1999.3398</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wadkins</surname>
<given-names>T. S.</given-names>
</name>
<name name-style="western">
<surname>Shih</surname>
<given-names>I.-h.</given-names>
</name>
<name name-style="western">
<surname>Perrotta</surname>
<given-names>A. T.</given-names>
</name>
<name name-style="western">
<surname>Been</surname>
<given-names>M. D.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2001</year>
<volume>305</volume>
<fpage>1045</fpage>
<lpage>1055</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2000.4368</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nixon</surname>
<given-names>P. L.</given-names>
</name>
<name name-style="western">
<surname>Giedroc</surname>
<given-names>D. P.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2000</year>
<volume>296</volume>
<fpage>659</fpage>
<lpage>671</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.1999.3464</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Miller</surname>
<given-names>A. W.</given-names>
</name>
<name name-style="western">
<surname>Dinesh-Kumar</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Paul</surname>
<given-names>C. P.</given-names>
</name>
<source>Crit. Rev. Plant Sci.</source>
<year>1995</year>
<volume>13</volume>
<fpage>179</fpage>
<lpage>211</lpage>
<pub-id pub-id-type="doi">10.1080/713608119</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wobus</surname>
<given-names>C. E.</given-names>
</name>
<name name-style="western">
<surname>Skaf</surname>
<given-names>J. S.</given-names>
</name>
<name name-style="western">
<surname>Schultz</surname>
<given-names>M. H.</given-names>
</name>
<name name-style="western">
<surname>de Zoeten</surname>
<given-names>G.</given-names>
</name>
<source>J. Gen. Virol.</source>
<year>1998</year>
<volume>79</volume>
<fpage>2023</fpage>
<lpage>2025</lpage>
</element-citation>
</ref>
<ref id="bi025843cb00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kim</surname>
<given-names>Y.-G.</given-names>
</name>
<name name-style="western">
<surname>Su</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Maas</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>O'Neill</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Rich</surname>
<given-names>A.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1999</year>
<volume>96</volume>
<fpage>14234</fpage>
<lpage>14239</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.25.14234</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kim</surname>
<given-names>Y.-G.</given-names>
</name>
<name name-style="western">
<surname>Maas</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>S. C.</given-names>
</name>
<name name-style="western">
<surname>Rich</surname>
<given-names>A.</given-names>
</name>
<source>RNA</source>
<year>2000</year>
<volume>6</volume>
<fpage>1157</fpage>
<lpage>1165</lpage>
<pub-id pub-id-type="doi">10.1017/S1355838200000510</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Paul</surname>
<given-names>C. P.</given-names>
</name>
<name name-style="western">
<surname>Barry</surname>
<given-names>J. K.</given-names>
</name>
<name name-style="western">
<surname>Dinesh-Kumar</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Brault</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>W. A.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2001</year>
<volume>310</volume>
<fpage>987</fpage>
<lpage>999</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2001.4801</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brault</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>W. A.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1992</year>
<volume>89</volume>
<fpage>2262</fpage>
<lpage>2266</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.89.6.2262</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Puglisi</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Wyatt</surname>
<given-names>J. R.</given-names>
</name>
<name name-style="western">
<surname>Tinoco</surname>
<given-names>I.</given-names>
<suffix>Jr.</suffix>
</name>
<source>J. Mol. Biol.</source>
<year>1990</year>
<volume>214</volume>
<fpage>437</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(90)90192-O</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stump</surname>
<given-names>W. T.</given-names>
</name>
<name name-style="western">
<surname>Hall</surname>
<given-names>K. B.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1993</year>
<volume>21</volume>
<fpage>5480</fpage>
<lpage>5484</lpage>
<pub-id pub-id-type="doi">10.1093/nar/21.23.5480</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jorgensen</surname>
<given-names>E. D.</given-names>
</name>
<name name-style="western">
<surname>Durbin</surname>
<given-names>R. K.</given-names>
</name>
<name name-style="western">
<surname>Risman</surname>
<given-names>S. S.</given-names>
</name>
<name name-style="western">
<surname>McAllister</surname>
<given-names>W. T.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1991</year>
<volume>266</volume>
<fpage>645</fpage>
<lpage>651</lpage>
</element-citation>
</ref>
<ref id="bi025843cb00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nixon</surname>
<given-names>P. L.</given-names>
</name>
<name name-style="western">
<surname>Giedroc</surname>
<given-names>D. P.</given-names>
</name>
<source>Biochemistry</source>
<year>1998</year>
<volume>37</volume>
<fpage>16116</fpage>
<lpage>16129</lpage>
<pub-id pub-id-type="doi">10.1021/bi981726z</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Conn</surname>
<given-names>G. L.</given-names>
</name>
<name name-style="western">
<surname>Gutell</surname>
<given-names>R. R.</given-names>
</name>
<name name-style="western">
<surname>Draper</surname>
<given-names>D. E.</given-names>
</name>
<source>Biochemistry</source>
<year>1998</year>
<volume>37</volume>
<fpage>11980</fpage>
<lpage>11988</lpage>
<pub-id pub-id-type="doi">10.1021/bi980825+</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Theimer</surname>
<given-names>C. A.</given-names>
</name>
<name name-style="western">
<surname>Giedroc</surname>
<given-names>D. P.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1999</year>
<volume>289</volume>
<fpage>1283</fpage>
<lpage>1299</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.1999.2850</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Delaglio</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Grzesiek</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Vuister</surname>
<given-names>G. W.</given-names>
</name>
<name name-style="western">
<surname>Zhu</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Pfeifer</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Bax</surname>
<given-names>A.</given-names>
</name>
<source>J. Biomol. NMR</source>
<year>1995</year>
<volume>6</volume>
<fpage>277</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="doi">10.1007/BF00197809</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Xia</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>SantaLucia</surname>
<given-names>J.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Burkard</surname>
<given-names>M. E.</given-names>
</name>
<name name-style="western">
<surname>Kierzek</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Schroeder</surname>
<given-names>S. J.</given-names>
</name>
<name name-style="western">
<surname>Jiao</surname>
<given-names>X.</given-names>
</name>
<name name-style="western">
<surname>Cox</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Turner</surname>
<given-names>D. H.</given-names>
</name>
<source>Biochemistry</source>
<year>1998</year>
<volume>37</volume>
<fpage>14719</fpage>
<lpage>14735</lpage>
<pub-id pub-id-type="doi">10.1021/bi9809425</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Draper</surname>
<given-names>D. E.</given-names>
</name>
<source>Trends Biochem. Sci.</source>
<year>1996</year>
<volume>21</volume>
<fpage>145</fpage>
<lpage>149</lpage>
</element-citation>
</ref>
<ref id="bi025843cb00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wijmenga</surname>
<given-names>S. S.</given-names>
</name>
<name name-style="western">
<surname>Van Buuren</surname>
<given-names>B. N. M.</given-names>
</name>
<source>Prog. Nucl. Magn. Reson. Spectrosc.</source>
<year>1998</year>
<volume>32</volume>
<fpage>287</fpage>
<lpage>387</lpage>
<pub-id pub-id-type="doi">10.1016/S0079-6565(97)00023-X</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00030">
<mixed-citation>
<name name-style="western">
<surname>Hall</surname>
<given-names>R. H.</given-names>
</name>
(1971) in
<italic toggle="yes">The Modified Nucleosides in Nucleic Acids</italic>
, Columbia University Press, New York.</mixed-citation>
</ref>
<ref id="bi025843cb00031">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nix</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Sussman</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Wilson</surname>
<given-names>C.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2000</year>
<volume>296</volume>
<fpage>1235</fpage>
<lpage>1244</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2000.3539</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Leitner</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Schröder</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Weisz</surname>
<given-names>K.</given-names>
</name>
<source>Biochemistry</source>
<year>2000</year>
<volume>39</volume>
<fpage>5886</fpage>
<lpage>5892</lpage>
<pub-id pub-id-type="doi">10.1021/bi992630n</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00033">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Csaszar</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Spackova</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Stefl</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Sponer</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Leontis</surname>
<given-names>N. B.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2001</year>
<volume>313</volume>
<fpage>1073</fpage>
<lpage>1091</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2001.5100</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00034">
<mixed-citation>Kim, Y-.G.,
<name name-style="western">
<surname>Maas</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>and Rich</surname>
<given-names>A.</given-names>
</name>
(2001)
<italic toggle="yes">Nucleic Acids Res. 29</italic>
, 1125−1131.
<pub-id pub-id-type="doi">10.1093/nar/29.5.1125</pub-id>
</mixed-citation>
</ref>
<ref id="bi025843cb00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Theimer</surname>
<given-names>C. A.</given-names>
</name>
<name name-style="western">
<surname>Giedroc</surname>
<given-names>D. P.</given-names>
</name>
<source>RNA</source>
<year>2000</year>
<volume>6</volume>
<fpage>409</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="doi">10.1017/S1355838200992057</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Michiels</surname>
<given-names>P. J. A.</given-names>
</name>
<name name-style="western">
<surname>Versleijen</surname>
<given-names>A. A. M.</given-names>
</name>
<name name-style="western">
<surname>Verlaan</surname>
<given-names>P. A.</given-names>
</name>
<name name-style="western">
<surname>Pleij</surname>
<given-names>C. W. A.</given-names>
</name>
<name name-style="western">
<surname>Hilbers</surname>
<given-names>C. W.</given-names>
</name>
<name name-style="western">
<surname>Heus</surname>
<given-names>H. A.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2001</year>
<volume>305</volume>
<fpage>1109</fpage>
<lpage>1123</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2001.4823</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00037">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Liphardt</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Napthine</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Kontos</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Brierley</surname>
<given-names>I.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1999</year>
<volume>288</volume>
<fpage>321</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.1999.2689</pub-id>
</element-citation>
</ref>
<ref id="bi025843cb00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Du</surname>
<given-names>Z.</given-names>
</name>
<name name-style="western">
<surname>Giedroc</surname>
<given-names>D. P.</given-names>
</name>
<name name-style="western">
<surname>Hoffman</surname>
<given-names>D. W.</given-names>
</name>
<source>Biochemistry</source>
<year>1996</year>
<volume>35</volume>
<fpage>4187</fpage>
<lpage>4198</lpage>
<pub-id pub-id-type="doi">10.1021/bi9527350</pub-id>
</element-citation>
</ref>
<ref id="bi025843cn00001">
<mixed-citation>
<comment>Abbreviations:  BWYV, beet western yellows virus; DSC, differential scanning calorimetry; PEMV, pea enation mosaic virus; PEMV-1, genomic RNA1 of PEMV; PLRV, potato leaf roll virus.</comment>
</mixed-citation>
</ref>
<ref id="bi025843cn00002">
<mixed-citation>The solution structure of the PEMV-1 pseudoknot will be reported in a separate communication [P. L.
<name name-style="western">
<surname>Nixon</surname>
<given-names>A.</given-names>
</name>
Rangan, Y-. G.
<name name-style="western">
<surname>Kim</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Rich</surname>
<given-names>D. W.</given-names>
</name>
<name name-style="western">
<surname>Hoffman</surname>
<given-names>M.</given-names>
</name>
Hennig, and D. P. Giedroc (2002)
<italic toggle="yes">J. Mol. Biol.</italic>
(in press)].</mixed-citation>
</ref>
<ref id="bi025843cn00003">
<mixed-citation>
<comment>It proved impossible to deconvolute the first and second unfolding transitions from optical melts of the PLRV pseudoknot, precluding a thorough thermodynamic analysis of these data.</comment>
</mixed-citation>
</ref>
<ref id="bi025843cn00004">
<mixed-citation>
<comment>Promega Technical Support, personal communication.</comment>
</mixed-citation>
</ref>
<ref id="bi025843cn00005">
<mixed-citation>
<comment>E. Sulistijo, B. Cannon, C. Theimer, and D. Giedroc, unpublished observations.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†</title>
</titleInfo>
<name type="personal">
<namePart type="family">NIXON</namePart>
<namePart type="given">Paul L.</namePart>
<affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</affiliation>
<affiliation> Current address:  Department of Biochemistry, University of TexasSouthwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas,TX 75390-9038.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">CORNISH</namePart>
<namePart type="given">Peter V.</namePart>
<affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">SURAM</namePart>
<namePart type="given">Saritha V.</namePart>
<affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">David P.</namePart>
<affiliation>Department of Biochemistry and Biophysics, Center for Advanced Biomolecular Research, Texas A&M University,College Station, Texas 77843-2128</affiliation>
<affiliation> Corresponding author. E-mail:  giedroc@tamu.edu. Telephone: 979-845-4231. Fax:  979-845-4946.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2002-08-02</dateCreated>
<dateIssued encoding="w3cdtf">2002-08-27</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<note type="footnote" ID="bi025843cAF2"> This work was supported by grants from the NIH (AI40187) and the Texas Higher Education Coordinating Board Advanced Research Program (010361-0278-1999). P.V.C. was supported in part by an NIH Chemistry−Biology Interface Training Grant (T32 GM08523).</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The RNA genomes of plant luteovirids beet western yellows virus (BWYV), potato leaf roll virus (PLRV), and pea enation mosaic virus (PEMV RNA1; PEMV-1) contain a short mRNA pseudoknotted motif overlapping the P1 and P2 open reading frames required for programmed −1 mRNA ribosomal frameshifting. The relationship between structure, stability, and function is poorly understood in these RNA systems. A m5-C8-substituted BWYV RNA is employed to establish that the BWYV P1−P2 pseudoknot is protonated at cytidine 8 in loop L1 (δN3H+ = 12.98 ppm), which stabilizes a C+·(G−C) major groove base triple by Δ(ΔG37)protonation = 3.1 (±0.4) kcal mol-1. The stabilities of both the PLRV and PEMV-1 P1−P2 pseudoknots are also strongly pH-dependent, with Δ(ΔG37)protonation = 2.1 (±0.2) kcal mol-1 for the PEMV-1 pseudoknot despite a distinct structural context. As previously found for the BWYV pseudoknot [Nixon and Giedroc (2000) J. Mol. Biol. 296, 659], both the PLRV and PEMV-1 RNAs are stabilized by ΔH ≥ 30 kcal mol-1 in excess of secondary structure predictions, attributed to loop L2−stem S1 minor groove triplex interactions. BWYV RNAs containing single 2‘-deoxy or A → G substitutions that disrupt L2−S1 hydrogen bonding are strongly destabilized with Δ(ΔG37)folding (pH = 7.0) ranging from ≈1.8 (±0.3) to ≥4.0 kcal mol-1, relative to the wild-type BWYV RNA. These findings suggest that each member of this family of pseudoknots adopts a tightly folded structure that maximizes the cooperativity and complementarity of L1−S2 and L2−S1 loop−stem interactions required in part to offset the low intrinsic stability of the short three base pair pseudoknot stem S2.</abstract>
<note type="footnote" ID="bi025843cAF2"> This work was supported by grants from the NIH (AI40187) and the Texas Higher Education Coordinating Board Advanced Research Program (010361-0278-1999). P.V.C. was supported in part by an NIH Chemistry−Biology Interface Training Grant (T32 GM08523).</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>10665</start>
<end>10674</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00001" displayLabel="bibbi025843cb00001">
<name type="personal">
<namePart type="family">FARABAUGH</namePart>
<namePart type="given">P. J.</namePart>
</name>
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Farabaugh P. J. Cell 1993 74 591 596 10.1016/0092-8674(93)90507-M</note>
<identifier type="doi">10.1016/0092-8674(93)90507-M</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>591</start>
<end>596</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00002" displayLabel="bibbi025843cb00002">
<name type="personal">
<namePart type="family">MATSUFUJI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">MATSUFUJI</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLS</namePart>
<namePart type="given">N. M.</namePart>
</name>
<name type="personal">
<namePart type="family">GESTELAND</namePart>
<namePart type="given">R. F.</namePart>
</name>
<name type="personal">
<namePart type="family">ATKINS</namePart>
<namePart type="given">J. F.</namePart>
</name>
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Matsufuji S. Matsufuji T. Wills N. M. Gesteland R. F. Atkins J. F. EMBO J. 1996 15 1360 1370</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>1360</start>
<end>1370</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00003" displayLabel="bibbi025843cb00003">
<name type="personal">
<namePart type="family">GESTELAND</namePart>
<namePart type="given">R. F.</namePart>
</name>
<name type="personal">
<namePart type="family">ATKINS</namePart>
<namePart type="given">J. F.</namePart>
</name>
<titleInfo>
<title>Annu. Rev. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Gesteland R. F. Atkins J. F. Annu. Rev. Biochem. 1996 65 741 768 10.1146/annurev.bi.65.070196.003521</note>
<identifier type="doi">10.1146/annurev.bi.65.070196.003521</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>65</number>
</detail>
<extent unit="pages">
<start>741</start>
<end>768</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00004" displayLabel="bibbi025843cb00004">
<name type="personal">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">D. P.</namePart>
</name>
<name type="personal">
<namePart type="family">THEIMER</namePart>
<namePart type="given">C. A.</namePart>
</name>
<name type="personal">
<namePart type="family">NIXON</namePart>
<namePart type="given">P. L.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Giedroc D. P. Theimer C. A. Nixon P. L. J. Mol. Biol. 2000 298 167 185 10.1006/jmbi.2000.3668</note>
<identifier type="doi">10.1006/jmbi.2000.3668</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>298</number>
</detail>
<extent unit="pages">
<start>167</start>
<end>185</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00005" displayLabel="bibbi025843cb00005">
<name type="personal">
<namePart type="family">JACKS</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">MADHANI</namePart>
<namePart type="given">H. D.</namePart>
</name>
<name type="personal">
<namePart type="family">MASIARZ</namePart>
<namePart type="given">F. R.</namePart>
</name>
<name type="personal">
<namePart type="family">VARMUS</namePart>
<namePart type="given">H. E.</namePart>
</name>
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Jacks T. Madhani H. D. Masiarz F. R. Varmus H. E. Cell 1988 55 44 58 10.1016/0092-8674(88)90031-1</note>
<identifier type="doi">10.1016/0092-8674(88)90031-1</identifier>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>55</number>
</detail>
<extent unit="pages">
<start>44</start>
<end>58</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00006" displayLabel="bibbi025843cb00006">
<name type="personal">
<namePart type="family">LOPINSKI</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">DINMAN</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">BRUENN</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Lopinski J. D. Dinman J. D. Bruenn J. A. Mol. Cell. Biol. 2000 20 1095 1103 10.1128/MCB.20.4.1095-1103.2000</note>
<identifier type="doi">10.1128/MCB.20.4.1095-1103.2000</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1095</start>
<end>1103</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00007" displayLabel="bibbi025843cb00007">
<name type="personal">
<namePart type="family">SOMOGYI</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">JENNER</namePart>
<namePart type="given">A. J.</namePart>
</name>
<name type="personal">
<namePart type="family">BRIERLEY</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">INGLIS</namePart>
<namePart type="given">S. C.</namePart>
</name>
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Somogyi P. Jenner A. J. Brierley I. Inglis S. C. Mol. Cell. Biol. 1993 13 6931 6940</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>6931</start>
<end>6940</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00008" displayLabel="bibbi025843cb00008">
<name type="personal">
<namePart type="family">GULTYAEV</namePart>
<namePart type="given">A. P.</namePart>
</name>
<name type="personal">
<namePart type="family">VAN BATENBURG</namePart>
<namePart type="given">F. H.</namePart>
</name>
<name type="personal">
<namePart type="family">PLEIJ</namePart>
<namePart type="given">C. W.</namePart>
</name>
<titleInfo>
<title>RNA</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Gultyaev A. P. van Batenburg F. H. Pleij C. W. RNA 1999 5 609 617 10.1017/S135583829998189X</note>
<identifier type="doi">10.1017/S135583829998189X</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>609</start>
<end>617</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00009" displayLabel="bibbi025843cb00009">
<name type="personal">
<namePart type="family">SU</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">CHEN</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">EGLI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">BERGER</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">RICH</namePart>
<namePart type="given">A.</namePart>
</name>
<titleInfo>
<title>Nat. Struct. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Su L. Chen L. Egli M. Berger J. M. Rich A. Nat. Struct. Biol. 1999 6 285 292 10.1038/6722</note>
<identifier type="doi">10.1038/6722</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>285</start>
<end>292</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00010" displayLabel="bibbi025843cb00010">
<name type="personal">
<namePart type="family">DOHERTY</namePart>
<namePart type="given">E. A.</namePart>
</name>
<name type="personal">
<namePart type="family">BATEY</namePart>
<namePart type="given">R. T.</namePart>
</name>
<name type="personal">
<namePart type="family">MASQUIDA</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">DOUDNA</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>Nat. Struct. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Doherty E. A. Batey R. T. Masquida B. Doudna J. A. Nat. Struct. Biol. 2001 8 339 343 10.1038/86221</note>
<identifier type="doi">10.1038/86221</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>339</start>
<end>343</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00011" displayLabel="bibbi025843cb00011">
<name type="personal">
<namePart type="family">FERRE-D'AMARE</namePart>
<namePart type="given">A. R.</namePart>
</name>
<name type="personal">
<namePart type="family">DOUDNA</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Ferre-D'Amare A. R. Doudna J. A. J. Mol. Biol. 2000 295 541 556 10.1006/jmbi.1999.3398</note>
<identifier type="doi">10.1006/jmbi.1999.3398</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>295</number>
</detail>
<extent unit="pages">
<start>541</start>
<end>556</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00012" displayLabel="bibbi025843cb00012">
<name type="personal">
<namePart type="family">WADKINS</namePart>
<namePart type="given">T. S.</namePart>
</name>
<name type="personal">
<namePart type="family">SHIH</namePart>
<namePart type="given">I.-h.</namePart>
</name>
<name type="personal">
<namePart type="family">PERROTTA</namePart>
<namePart type="given">A. T.</namePart>
</name>
<name type="personal">
<namePart type="family">BEEN</namePart>
<namePart type="given">M. D.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wadkins T. S. Shih I.-h. Perrotta A. T. Been M. D. J. Mol. Biol. 2001 305 1045 1055 10.1006/jmbi.2000.4368</note>
<identifier type="doi">10.1006/jmbi.2000.4368</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>305</number>
</detail>
<extent unit="pages">
<start>1045</start>
<end>1055</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00013" displayLabel="bibbi025843cb00013">
<name type="personal">
<namePart type="family">NIXON</namePart>
<namePart type="given">P. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">D. P.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Nixon P. L. Giedroc D. P. J. Mol. Biol. 2000 296 659 671 10.1006/jmbi.1999.3464</note>
<identifier type="doi">10.1006/jmbi.1999.3464</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>296</number>
</detail>
<extent unit="pages">
<start>659</start>
<end>671</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00014" displayLabel="bibbi025843cb00014">
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">A. W.</namePart>
</name>
<name type="personal">
<namePart type="family">DINESH-KUMAR</namePart>
<namePart type="given">S. P.</namePart>
</name>
<name type="personal">
<namePart type="family">PAUL</namePart>
<namePart type="given">C. P.</namePart>
</name>
<titleInfo>
<title>Crit. Rev. Plant Sci.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Miller A. W. Dinesh-Kumar S. P. Paul C. P. Crit. Rev. Plant Sci. 1995 13 179 211 10.1080/713608119</note>
<identifier type="doi">10.1080/713608119</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>179</start>
<end>211</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00015" displayLabel="bibbi025843cb00015">
<name type="personal">
<namePart type="family">WOBUS</namePart>
<namePart type="given">C. E.</namePart>
</name>
<name type="personal">
<namePart type="family">SKAF</namePart>
<namePart type="given">J. S.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHULTZ</namePart>
<namePart type="given">M. H.</namePart>
</name>
<name type="personal">
<namePart type="family">DE ZOETEN</namePart>
<namePart type="given">G.</namePart>
</name>
<titleInfo>
<title>J. Gen. Virol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wobus C. E. Skaf J. S. Schultz M. H. de Zoeten G. J. Gen. Virol. 1998 79 2023 2025</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>79</number>
</detail>
<extent unit="pages">
<start>2023</start>
<end>2025</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00016" displayLabel="bibbi025843cb00016">
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">Y.-G.</namePart>
</name>
<name type="personal">
<namePart type="family">SU</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">MAAS</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">O'NEILL</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">RICH</namePart>
<namePart type="given">A.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Kim Y.-G. Su L. Maas S. O'Neill A. Rich A. Proc. Natl. Acad. Sci. U.S.A. 1999 96 14234 14239 10.1073/pnas.96.25.14234</note>
<identifier type="doi">10.1073/pnas.96.25.14234</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>96</number>
</detail>
<extent unit="pages">
<start>14234</start>
<end>14239</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00017" displayLabel="bibbi025843cb00017">
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">Y.-G.</namePart>
</name>
<name type="personal">
<namePart type="family">MAAS</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">S. C.</namePart>
</name>
<name type="personal">
<namePart type="family">RICH</namePart>
<namePart type="given">A.</namePart>
</name>
<titleInfo>
<title>RNA</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Kim Y.-G. Maas S. Wang S. C. Rich A. RNA 2000 6 1157 1165 10.1017/S1355838200000510</note>
<identifier type="doi">10.1017/S1355838200000510</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1157</start>
<end>1165</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00018" displayLabel="bibbi025843cb00018">
<name type="personal">
<namePart type="family">PAUL</namePart>
<namePart type="given">C. P.</namePart>
</name>
<name type="personal">
<namePart type="family">BARRY</namePart>
<namePart type="given">J. K.</namePart>
</name>
<name type="personal">
<namePart type="family">DINESH-KUMAR</namePart>
<namePart type="given">S. P.</namePart>
</name>
<name type="personal">
<namePart type="family">BRAULT</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">W. A.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Paul C. P. Barry J. K. Dinesh-Kumar S. P. Brault V. Miller W. A. J. Mol. Biol. 2001 310 987 999 10.1006/jmbi.2001.4801</note>
<identifier type="doi">10.1006/jmbi.2001.4801</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>310</number>
</detail>
<extent unit="pages">
<start>987</start>
<end>999</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00019" displayLabel="bibbi025843cb00019">
<name type="personal">
<namePart type="family">BRAULT</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">W. A.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Brault V. Miller W. A. Proc. Natl. Acad. Sci. U.S.A. 1992 89 2262 2266 10.1073/pnas.89.6.2262</note>
<identifier type="doi">10.1073/pnas.89.6.2262</identifier>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>89</number>
</detail>
<extent unit="pages">
<start>2262</start>
<end>2266</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00020" displayLabel="bibbi025843cb00020">
<name type="personal">
<namePart type="family">PUGLISI</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">WYATT</namePart>
<namePart type="given">J. R.</namePart>
</name>
<name type="personal">
<namePart type="family">TINOCO</namePart>
<namePart type="given">I.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Puglisi J. D. Wyatt J. R. Tinoco I. Jr. J. Mol. Biol. 1990 214 437 453 10.1016/0022-2836(90)90192-O</note>
<identifier type="doi">10.1016/0022-2836(90)90192-O</identifier>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>214</number>
</detail>
<extent unit="pages">
<start>437</start>
<end>453</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00021" displayLabel="bibbi025843cb00021">
<name type="personal">
<namePart type="family">STUMP</namePart>
<namePart type="given">W. T.</namePart>
</name>
<name type="personal">
<namePart type="family">HALL</namePart>
<namePart type="given">K. B.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Stump W. T. Hall K. B. Nucleic Acids Res. 1993 21 5480 5484 10.1093/nar/21.23.5480</note>
<identifier type="doi">10.1093/nar/21.23.5480</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>5480</start>
<end>5484</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00022" displayLabel="bibbi025843cb00022">
<name type="personal">
<namePart type="family">JORGENSEN</namePart>
<namePart type="given">E. D.</namePart>
</name>
<name type="personal">
<namePart type="family">DURBIN</namePart>
<namePart type="given">R. K.</namePart>
</name>
<name type="personal">
<namePart type="family">RISMAN</namePart>
<namePart type="given">S. S.</namePart>
</name>
<name type="personal">
<namePart type="family">MCALLISTER</namePart>
<namePart type="given">W. T.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Jorgensen E. D. Durbin R. K. Risman S. S. McAllister W. T. J. Biol. Chem. 1991 266 645 651</note>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>266</number>
</detail>
<extent unit="pages">
<start>645</start>
<end>651</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00023" displayLabel="bibbi025843cb00023">
<name type="personal">
<namePart type="family">NIXON</namePart>
<namePart type="given">P. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">D. P.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Nixon P. L. Giedroc D. P. Biochemistry 1998 37 16116 16129 10.1021/bi981726z</note>
<identifier type="doi">10.1021/bi981726z</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>16116</start>
<end>16129</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00024" displayLabel="bibbi025843cb00024">
<name type="personal">
<namePart type="family">CONN</namePart>
<namePart type="given">G. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GUTELL</namePart>
<namePart type="given">R. R.</namePart>
</name>
<name type="personal">
<namePart type="family">DRAPER</namePart>
<namePart type="given">D. E.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Conn G. L. Gutell R. R. Draper D. E. Biochemistry 1998 37 11980 11988 10.1021/bi980825+</note>
<identifier type="doi">10.1021/bi980825+</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>11980</start>
<end>11988</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00025" displayLabel="bibbi025843cb00025">
<name type="personal">
<namePart type="family">THEIMER</namePart>
<namePart type="given">C. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">D. P.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Theimer C. A. Giedroc D. P. J. Mol. Biol. 1999 289 1283 1299 10.1006/jmbi.1999.2850</note>
<identifier type="doi">10.1006/jmbi.1999.2850</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>289</number>
</detail>
<extent unit="pages">
<start>1283</start>
<end>1299</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00026" displayLabel="bibbi025843cb00026">
<name type="personal">
<namePart type="family">DELAGLIO</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">GRZESIEK</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">VUISTER</namePart>
<namePart type="given">G. W.</namePart>
</name>
<name type="personal">
<namePart type="family">ZHU</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">PFEIFER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BAX</namePart>
<namePart type="given">A.</namePart>
</name>
<titleInfo>
<title>J. Biomol. NMR</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Delaglio F. Grzesiek S. Vuister G. W. Zhu G. Pfeifer J. Bax A. J. Biomol. NMR 1995 6 277 293 10.1007/BF00197809</note>
<identifier type="doi">10.1007/BF00197809</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>277</start>
<end>293</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00027" displayLabel="bibbi025843cb00027">
<name type="personal">
<namePart type="family">XIA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">SANTALUCIA</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BURKARD</namePart>
<namePart type="given">M. E.</namePart>
</name>
<name type="personal">
<namePart type="family">KIERZEK</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHROEDER</namePart>
<namePart type="given">S. J.</namePart>
</name>
<name type="personal">
<namePart type="family">JIAO</namePart>
<namePart type="given">X.</namePart>
</name>
<name type="personal">
<namePart type="family">COX</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">TURNER</namePart>
<namePart type="given">D. H.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Xia T. SantaLucia J. Jr. Burkard M. E. Kierzek R. Schroeder S. J. Jiao X. Cox C. Turner D. H. Biochemistry 1998 37 14719 14735 10.1021/bi9809425</note>
<identifier type="doi">10.1021/bi9809425</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>14719</start>
<end>14735</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00028" displayLabel="bibbi025843cb00028">
<name type="personal">
<namePart type="family">DRAPER</namePart>
<namePart type="given">D. E.</namePart>
</name>
<titleInfo>
<title>Trends Biochem. Sci.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Draper D. E. Trends Biochem. Sci. 1996 21 145 149</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>145</start>
<end>149</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00029" displayLabel="bibbi025843cb00029">
<name type="personal">
<namePart type="family">WIJMENGA</namePart>
<namePart type="given">S. S.</namePart>
</name>
<name type="personal">
<namePart type="family">VAN BUUREN</namePart>
<namePart type="given">B. N. M.</namePart>
</name>
<titleInfo>
<title>Prog. Nucl. Magn. Reson. Spectrosc.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wijmenga S. S. Van Buuren B. N. M. Prog. Nucl. Magn. Reson. Spectrosc. 1998 32 287 387 10.1016/S0079-6565(97)00023-X</note>
<identifier type="doi">10.1016/S0079-6565(97)00023-X</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>287</start>
<end>387</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00030" displayLabel="bibbi025843cb00030">
<name type="personal">
<namePart type="family">HALL</namePart>
<namePart type="given">R. H.</namePart>
</name>
<titleInfo>
<title>The Modified Nucleosides in Nucleic Acids</title>
</titleInfo>
<note type="content-in-line">HallR. H. (1971) in The Modified Nucleosides in Nucleic Acids, Columbia University Press, New York.</note>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00031" displayLabel="bibbi025843cb00031">
<name type="personal">
<namePart type="family">NIX</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">SUSSMAN</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">WILSON</namePart>
<namePart type="given">C.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Nix J. Sussman D. Wilson C. J. Mol. Biol. 2000 296 1235 1244 10.1006/jmbi.2000.3539</note>
<identifier type="doi">10.1006/jmbi.2000.3539</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>296</number>
</detail>
<extent unit="pages">
<start>1235</start>
<end>1244</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00032" displayLabel="bibbi025843cb00032">
<name type="personal">
<namePart type="family">LEITNER</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHRöDER</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">WEISZ</namePart>
<namePart type="given">K.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Leitner D. Schröder W. Weisz K. Biochemistry 2000 39 5886 5892 10.1021/bi992630n</note>
<identifier type="doi">10.1021/bi992630n</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>5886</start>
<end>5892</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00033" displayLabel="bibbi025843cb00033">
<name type="personal">
<namePart type="family">CSASZAR</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">SPACKOVA</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">STEFL</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">SPONER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">LEONTIS</namePart>
<namePart type="given">N. B.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Csaszar K. Spackova N. Stefl R. Sponer J. Leontis N. B. J. Mol. Biol. 2001 313 1073 1091 10.1006/jmbi.2001.5100</note>
<identifier type="doi">10.1006/jmbi.2001.5100</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>313</number>
</detail>
<extent unit="pages">
<start>1073</start>
<end>1091</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00034" displayLabel="bibbi025843cb00034">
<name type="personal">
<namePart type="family">MAAS</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">AND RICH</namePart>
<namePart type="given">A.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res. 29</title>
</titleInfo>
<note type="content-in-line">Kim, Y-.G., MaasS., and RichA. (2001) Nucleic Acids Res. 29, 1125−1131.10.1093/nar/29.5.1125</note>
<identifier type="doi">10.1093/nar/29.5.1125</identifier>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00035" displayLabel="bibbi025843cb00035">
<name type="personal">
<namePart type="family">THEIMER</namePart>
<namePart type="given">C. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">D. P.</namePart>
</name>
<titleInfo>
<title>RNA</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Theimer C. A. Giedroc D. P. RNA 2000 6 409 421 10.1017/S1355838200992057</note>
<identifier type="doi">10.1017/S1355838200992057</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>409</start>
<end>421</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00036" displayLabel="bibbi025843cb00036">
<name type="personal">
<namePart type="family">MICHIELS</namePart>
<namePart type="given">P. J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">VERSLEIJEN</namePart>
<namePart type="given">A. A. M.</namePart>
</name>
<name type="personal">
<namePart type="family">VERLAAN</namePart>
<namePart type="given">P. A.</namePart>
</name>
<name type="personal">
<namePart type="family">PLEIJ</namePart>
<namePart type="given">C. W. A.</namePart>
</name>
<name type="personal">
<namePart type="family">HILBERS</namePart>
<namePart type="given">C. W.</namePart>
</name>
<name type="personal">
<namePart type="family">HEUS</namePart>
<namePart type="given">H. A.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Michiels P. J. A. Versleijen A. A. M. Verlaan P. A. Pleij C. W. A. Hilbers C. W. Heus H. A. J. Mol. Biol. 2001 305 1109 1123 10.1006/jmbi.2001.4823</note>
<identifier type="doi">10.1006/jmbi.2001.4823</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>305</number>
</detail>
<extent unit="pages">
<start>1109</start>
<end>1123</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00037" displayLabel="bibbi025843cb00037">
<name type="personal">
<namePart type="family">LIPHARDT</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">NAPTHINE</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KONTOS</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">BRIERLEY</namePart>
<namePart type="given">I.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Liphardt J. Napthine S. Kontos H. Brierley I. J. Mol. Biol. 1999 288 321 335 10.1006/jmbi.1999.2689</note>
<identifier type="doi">10.1006/jmbi.1999.2689</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>288</number>
</detail>
<extent unit="pages">
<start>321</start>
<end>335</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cb00038" displayLabel="bibbi025843cb00038">
<name type="personal">
<namePart type="family">DU</namePart>
<namePart type="given">Z.</namePart>
</name>
<name type="personal">
<namePart type="family">GIEDROC</namePart>
<namePart type="given">D. P.</namePart>
</name>
<name type="personal">
<namePart type="family">HOFFMAN</namePart>
<namePart type="given">D. W.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Du Z. Giedroc D. P. Hoffman D. W. Biochemistry 1996 35 4187 4198 10.1021/bi9527350</note>
<identifier type="doi">10.1021/bi9527350</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>4187</start>
<end>4198</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi025843cn00001" displayLabel="bibbi025843cn00001">
<titleInfo>
<title>Abbreviations:  BWYV, beet western yellows virus; DSC, differential scanning calorimetry; PEMV, pea enation mosaic virus; PEMV-1, genomic RNA1 of PEMV; PLRV, potato leaf roll virus.</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  BWYV, beet western yellows virus; DSC, differential scanning calorimetry; PEMV, pea enation mosaic virus; PEMV-1, genomic RNA1 of PEMV; PLRV, potato leaf roll virus.</note>
</relatedItem>
<relatedItem type="references" ID="bi025843cn00002" displayLabel="bibbi025843cn00002">
<name type="personal">
<namePart type="family">NIXON</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">RICH</namePart>
<namePart type="given">D. W.</namePart>
</name>
<name type="personal">
<namePart type="family">HOFFMAN</namePart>
<namePart type="given">M.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<note type="content-in-line">The solution structure of the PEMV-1 pseudoknot will be reported in a separate communication [P. L. NixonA. Rangan, Y-. G. KimA. RichD. W. HoffmanM. Hennig, and D. P. Giedroc (2002) J. Mol. Biol. (in press)].</note>
</relatedItem>
<relatedItem type="references" ID="bi025843cn00003" displayLabel="bibbi025843cn00003">
<titleInfo>
<title>It proved impossible to deconvolute the first and second unfolding transitions from optical melts of the PLRV pseudoknot, precluding a thorough thermodynamic analysis of these data.</title>
</titleInfo>
<note type="content-in-line">It proved impossible to deconvolute the first and second unfolding transitions from optical melts of the PLRV pseudoknot, precluding a thorough thermodynamic analysis of these data.</note>
</relatedItem>
<relatedItem type="references" ID="bi025843cn00004" displayLabel="bibbi025843cn00004">
<titleInfo>
<title>Promega Technical Support, personal communication.</title>
</titleInfo>
<note type="content-in-line">Promega Technical Support, personal communication.</note>
</relatedItem>
<relatedItem type="references" ID="bi025843cn00005" displayLabel="bibbi025843cn00005">
<titleInfo>
<title>E. Sulistijo, B. Cannon, C. Theimer, and D. Giedroc, unpublished observations.</title>
</titleInfo>
<note type="content-in-line">E. Sulistijo, B. Cannon, C. Theimer, and D. Giedroc, unpublished observations.</note>
</relatedItem>
<identifier type="istex">1AC18E5B035C5DF34B8387A5362A306048727D65</identifier>
<identifier type="ark">ark:/67375/TPS-76DVCBS5-1</identifier>
<identifier type="DOI">10.1021/bi025843c</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2002 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-76DVCBS5-1/annexes.gif</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/1AC18E5B035C5DF34B8387A5362A306048727D65/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002233 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002233 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1AC18E5B035C5DF34B8387A5362A306048727D65
   |texte=   Thermodynamic Analysis of Conserved Loop−Stem Interactions in P1−P2 Frameshifting RNA Pseudoknots from Plant Luteoviridae†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021