Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†

Identifieur interne : 002232 ( Istex/Corpus ); précédent : 002231; suivant : 002233

Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†

Auteurs : Yu Lin Jiang ; James T. Stivers

Source :

RBID : ISTEX:169EFB7AE2312B134544780300F313FC2A4D6E42

Abstract

The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the “pinch, push, plug, and pull” base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952−963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.

Url:
DOI: 10.1021/bi026226r

Links to Exploration step

ISTEX:169EFB7AE2312B134544780300F313FC2A4D6E42

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†</title>
<author>
<name sortKey="Jiang, Yu Lin" sort="Jiang, Yu Lin" uniqKey="Jiang Y" first="Yu Lin" last="Jiang">Yu Lin Jiang</name>
<affiliation>
<mods:affiliation>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stivers, James T" sort="Stivers, James T" uniqKey="Stivers J" first="James T." last="Stivers">James T. Stivers</name>
<affiliation>
<mods:affiliation>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed:  Phone:  (410) 502-2758. Fax:  (410) 955-3023. E-mail:  jstivers@jhmi.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:169EFB7AE2312B134544780300F313FC2A4D6E42</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1021/bi026226r</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002232</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002232</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase
<ref type="bib" target="#bi026226rAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Jiang, Yu Lin" sort="Jiang, Yu Lin" uniqKey="Jiang Y" first="Yu Lin" last="Jiang">Yu Lin Jiang</name>
<affiliation>
<mods:affiliation>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stivers, James T" sort="Stivers, James T" uniqKey="Stivers J" first="James T." last="Stivers">James T. Stivers</name>
<affiliation>
<mods:affiliation>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed:  Phone:  (410) 502-2758. Fax:  (410) 955-3023. E-mail:  jstivers@jhmi.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2002</date>
<date type="published">2002</date>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">37</biblScope>
<biblScope unit="page" from="11236">11236</biblScope>
<biblScope unit="page" to="11247">11247</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the “pinch, push, plug, and pull” base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952−963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>tryptophan</json:string>
<json:string>uracil</json:string>
<json:string>mutant</json:string>
<json:string>wtudg</json:string>
<json:string>mutation</json:string>
<json:string>stivers</json:string>
<json:string>biochemistry</json:string>
<json:string>koff</json:string>
<json:string>extrahelical</json:string>
<json:string>kmax</json:string>
<json:string>tryptophan fluorescence</json:string>
<json:string>kobsd</json:string>
<json:string>rate constant</json:string>
<json:string>serine</json:string>
<json:string>jiang</json:string>
<json:string>conformational change</json:string>
<json:string>excitation</json:string>
<json:string>mutational effect</json:string>
<json:string>side chain</json:string>
<json:string>drohat</json:string>
<json:string>tryptophan fluorescence change</json:string>
<json:string>datum</json:string>
<json:string>microscopic rate constant</json:string>
<json:string>duplex</json:string>
<json:string>kmaxtrp</json:string>
<json:string>phosphodiester</json:string>
<json:string>tryptophan fluorescence decrease</json:string>
<json:string>mutant enzyme</json:string>
<json:string>extrahelical state</json:string>
<json:string>kflip</json:string>
<json:string>pyrene</json:string>
<json:string>mutational</json:string>
<json:string>uracil base</json:string>
<json:string>late role</json:string>
<json:string>transition state</json:string>
<json:string>ground state</json:string>
<json:string>active site</json:string>
<json:string>cutoff filter</json:string>
<json:string>damaging effect</json:string>
<json:string>conformational</json:string>
<json:string>kinetic trace</json:string>
<json:string>fluorescence increase</json:string>
<json:string>association measurement</json:string>
<json:string>enzyme</json:string>
<json:string>kinetic study</json:string>
<json:string>fluorescence change</json:string>
<json:string>binding kinetics</json:string>
<json:string>glycosidic bond cleavage</json:string>
<json:string>equilibrium constant</json:string>
<json:string>base pair</json:string>
<json:string>extrahelical base</json:string>
<json:string>fluorescence</json:string>
<json:string>nucleic acid</json:string>
<json:string>bimolecular association</json:string>
<json:string>various enzyme</json:string>
<json:string>late effect</json:string>
<json:string>hyperbolic concentration dependence</json:string>
<json:string>apparent rate constant</json:string>
<json:string>base extrusion</json:string>
<json:string>computer simulation</json:string>
<json:string>kinetic measurement</json:string>
<json:string>functional role</json:string>
<json:string>overall process</json:string>
<json:string>kinetic constant</json:string>
<json:string>kmax value</json:string>
<json:string>binding measurement</json:string>
<json:string>postflipping conformational change</json:string>
<json:string>previous study</json:string>
<json:string>phosphodiester backbone</json:string>
<json:string>transient kinetic study</json:string>
<json:string>fluorescence kinetic study</json:string>
<json:string>active site pocket</json:string>
<json:string>rate equation</json:string>
<json:string>irreversible dissociation</json:string>
<json:string>dissociation rate constant</json:string>
<json:string>kinetic</json:string>
<json:string>simulation</json:string>
<json:string>nucleotide</json:string>
<json:string>conformation</json:string>
<json:string>dissociation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>JIANG Yu Lin</name>
<affiliations>
<json:string>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</json:string>
</affiliations>
</json:item>
<json:item>
<name>STIVERS James T.</name>
<affiliations>
<json:string>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</json:string>
<json:string>To whom correspondence should be addressed:  Phone:  (410) 502-2758. Fax:  (410) 955-3023. E-mail:  jstivers@jhmi.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-1R2NQZG3-D</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the “pinch, push, plug, and pull” base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952−963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.</abstract>
<qualityIndicators>
<score>9.58</score>
<pdfWordCount>8350</pdfWordCount>
<pdfCharCount>49173</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>696</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>215</abstractWordCount>
<abstractCharCount>1406</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>41</volume>
<issue>37</issue>
<pages>
<first>11236</first>
<last>11247</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-1R2NQZG3-D</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1021/bi026226r</json:string>
</doi>
<id>169EFB7AE2312B134544780300F313FC2A4D6E42</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase
<ref type="bib" target="#bi026226rAF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2002 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">2002</date>
<date type="Copyright" when="2002">2002</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase
<ref type="bib" target="#bi026226rAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Jiang</surname>
<forename type="first">Yu Lin</forename>
</persName>
<affiliation>
<orgName type="division">Department of Pharmacology and Molecular Sciences</orgName>
<orgName type="institution">The Johns Hopkins University School of Medicine</orgName>
<address>
<addrLine>725 North Wolfe Street</addrLine>
<addrLine>Baltimore</addrLine>
<addrLine>Maryland 21205-2185</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<surname>Stivers</surname>
<forename type="first">James T.</forename>
</persName>
<affiliation>
<orgName type="division">Department of Pharmacology and Molecular Sciences</orgName>
<orgName type="institution">The Johns Hopkins University School of Medicine</orgName>
<address>
<addrLine>725 North Wolfe Street</addrLine>
<addrLine>Baltimore</addrLine>
<addrLine>Maryland 21205-2185</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> To whom correspondence should be addressed:  Phone:  (410) 502-2758. Fax:  (410) 955-3023. E-mail:  jstivers@jhmi.edu.</affiliation>
</author>
<idno type="istex">169EFB7AE2312B134544780300F313FC2A4D6E42</idno>
<idno type="ark">ark:/67375/TPS-1R2NQZG3-D</idno>
<idno type="DOI">10.1021/bi026226r</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2002</date>
<date type="published">2002</date>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">37</biblScope>
<biblScope unit="page" from="11236">11236</biblScope>
<biblScope unit="page" to="11247">11247</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone
<hi rend="italic">pinching</hi>
, base extrusion through active
<hi rend="italic">pushing</hi>
<hi rend="italic">and plugging</hi>
by a leucine side chain that inserts in the DNA minor groove, and, finally,
<hi rend="italic">pulling</hi>
by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the “pinch, push, plug, and pull” base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999)
<hi rend="italic">Biochemistry</hi>
<hi rend="italic">38</hi>
, 952−963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi026226r</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase
<xref rid="bi026226rAF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Jiang</surname>
<given-names>Yu Lin</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Stivers</surname>
<given-names>James T.</given-names>
</name>
<xref rid="bi026226rAF1">*</xref>
</contrib>
<aff>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185 </aff>
</contrib-group>
<author-notes>
<corresp id="bi026226rAF1">  To whom correspondence should be addressed:  Phone:  (410) 502-2758. Fax:  (410) 955-3023. E-mail:  jstivers@jhmi.edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>23</day>
<month>08</month>
<year>2002</year>
</pub-date>
<pub-date pub-type="ppub">
<day>17</day>
<month>09</month>
<year>2002</year>
</pub-date>
<volume>41</volume>
<issue>37</issue>
<fpage>11236</fpage>
<lpage>11247</lpage>
<supplementary-material xlink:href="bi026226r_s1.pdf" orientation="portrait" position="float"></supplementary-material>
<history>
<date date-type="received">
<day>31</day>
<month>05</month>
<year>2002</year>
</date>
<date date-type="rev-recd">
<day>15</day>
<month>07</month>
<year>2002</year>
</date>
<date date-type="asap">
<day>23</day>
<month>08</month>
<year>2002</year>
</date>
<date date-type="issue-pub">
<day>17</day>
<month>09</month>
<year>2002</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2002 American Chemical Society</copyright-statement>
<copyright-year>2002</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone
<italic toggle="yes">pinching</italic>
, base extrusion through active
<italic toggle="yes">pushing</italic>
<italic toggle="yes">and plugging</italic>
by a leucine side chain that inserts in the DNA minor groove, and, finally,
<italic toggle="yes">pulling</italic>
by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the “pinch, push, plug, and pull” base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">38</italic>
, 952−963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi026226r</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi026226rAF2">
<label></label>
<p>  Supported by NIH Grant RO1GM56834 (to J.T.S.).</p>
</notes>
</front>
<body>
<sec id="d7e131">
<title></title>
<p>Enzymes that alter the covalent structure of DNA bases must solve the general problem of gaining access to sites that are normally buried in the duplex structure of the DNA. Nearly 10 years ago the crystal structure of cytosine 5-methyltransferase bound to its DNA substrate revealed that this enzyme solved the problem by a novel base-flipping mechanism involving rotation of the entire cytidine nucleotide from the DNA and into the active site where the 5-position of the cytosine base was positioned for methylation (
<italic toggle="yes">
<xref rid="bi026226rb00001" ref-type="bibr"></xref>
</italic>
). Subsequently, it has become clear that base flipping is common in nature, and that many enzymes use similar approaches to act on DNA bases. In particular, base flipping appears to be absolutely required for damaged base recognition and glycosidic bond cleavage by DNA repair glycosylases (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00002" ref-type="bibr"></xref>
<xref rid="bi026226rb00003" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi026226rb00004" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi026226rb00005" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>Uracil DNA glycosylase (UDG)
<xref rid="bi026226rb00001" ref-type="bibr"></xref>
has taken a paradigm role in the pursuit to better understand the process of base flipping by DNA glycosylases. A crystal structure of human UDG bound to uracil-containing DNA has been reported (
<italic toggle="yes">
<xref rid="bi026226rb00006" ref-type="bibr"></xref>
</italic>
), and this structure suggests several structural requirements that may be required for flipping bases (Figure
<xref rid="bi026226rf00001"></xref>
A). First, the DNA in this structure is sharply bent by about 45°. If such bending also occurs when UDG first encounters DNA at a nonspecific site, then this distortion may serve to destabilize the duplex and promote uracil flipping when the damaged site is located in correct register with the active site pocket. Bending may be induced by the interaction of two serine side chains with the phosphodiester groups on the 3‘ and 5‘ sides of the deoxyuridine residue (Ser88 and Ser189), leading to compression of the P−P distance (“serine pinching”). Although induced DNA strain is an attractive mechanism for initiation of the base-flipping process, no direct evidence for this mechanism yet exists. The structure also shows that a completely conserved leucine residue (Leu191) is found protruding into the DNA minor groove opposite the expelled uracil, suggesting that this group acts as a mechanical wedge to “push” the uracil from the duplex (
<italic toggle="yes">
<xref rid="bi026226rb00002" ref-type="bibr"></xref>
</italic>
), and additionally as a “plug” to increase its lifetime in the active site (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). Recent biochemical studies have provided support for both roles (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00008" ref-type="bibr"></xref>
</named-content>
</italic>
). Finally, the uracil base is stabilized in the extrahelical state by a finely tuned hydrogen-bonding network that completely satisfies all of the hydrogen bond donor and acceptor groups of the base (Figure
<xref rid="bi026226rf00001"></xref>
A). These hydrogen-bonding interactions have been ascribed a “pulling” function in stabilizing the flipped base (His187 and Asn123) (
<italic toggle="yes">
<xref rid="bi026226rb00009" ref-type="bibr"></xref>
</italic>
). Collectively, this constellation of interactions has been termed the “pinch, push, plug, and pull” mechanism for base flipping (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00009" ref-type="bibr"></xref>
</named-content>
</italic>
).
<fig id="bi026226rf00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>(A) Arrangement of the active site groups of UDG that interact with the extrahelical uracil (
<italic toggle="yes">
<xref rid="bi026226rb00006" ref-type="bibr"></xref>
</italic>
). The Ser88 and Ser189 phosphodiester pinching residues, the Leu191 pushing and plugging side chain, and the Asn123 and His187 pulling groups are shown. The catalytic group, Asp64, that is important in transition-state stabilization but not base flipping is also shown (
<italic toggle="yes">
<xref rid="bi026226rb00024" ref-type="bibr"></xref>
</italic>
). (B) Three-step mechanism for uracil base flipping involving nonspecific DNA binding and dissociation (
<italic toggle="yes">k</italic>
<sub>1</sub>
= 220 μM
<sup>-1</sup>
s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
= 600 s
<sup>-1</sup>
), reversible uracil flipping into an extrahelical state (
<italic toggle="yes">k</italic>
<sub>flip</sub>
= 700 s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>flip</sub>
= 180 s
<sup>-1</sup>
), and conformational docking of UDG around the flipped-out base (
<italic toggle="yes">k</italic>
<sub>conf</sub>
, = 350 s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>conf</sub>
= 100 s
<sup>-1</sup>
). The microscopic rate constants were obtained from global kinetic simulations of the stopped-flow kinetic traces (see the Supporting Information and Table
<xref rid="bi026226rt00003"></xref>
).</p>
</caption>
<graphic xlink:href="bi026226rf00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Transient kinetic studies and spectroscopic measurements have built upon these structural insights to illuminate the pathway for attaining the final extrahelical state (Figure
<xref rid="bi026226rf00001"></xref>
B). One useful approach to isolate the base-flipping step was to arrest the chemical step of the reaction using a deoxyuridine analogue containing an electron-withdrawing 2‘-fluorine substituent (2‘-FU) (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). The kinetics of the base-flipping step could then be monitored in real time using stopped-flow fluorescence, taking advantage of fluorescence intensity changes of a 2-aminopurine fluorescent reporter group that was strategically positioned adjacent to the flipped uracil (
<italic toggle="yes">
<xref rid="bi026226rb00011" ref-type="bibr"></xref>
</italic>
). This work revealed that UDG follows a minimal two-step mechanism for base flipping in which a weak nonspecific encounter complex is formed before the uracil is rapidly extruded to form the extrahelical state. Raman spectroscopy measurements indicated that the structure of the nonspecific complex was perturbed, with a significant decrease in the intensities of the DNA base Raman bands, indicating a net increase in base stacking (
<italic toggle="yes">
<xref rid="bi026226rb00012" ref-type="bibr"></xref>
</italic>
). A similar hypochromic shift was observed in the specific complex with 2‘-FU DNA, suggesting that the nonspecific and specific complexes share common structural features. </p>
<p>Kinetic studies also revealed that uracil flipping is followed closely by a conformational change in UDG that could be monitored by following a decrease in the UDG tryptophan fluorescence, and that this induced fit change only occurs for DNA that contains uracil (Figure
<xref rid="bi026226rf00001"></xref>
B) (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). This step likely involves the closing of the UDG active site around the flipped uracil, because the free enzyme is found in an open state that differs appreciably from its conformation in the specific complex (
<italic toggle="yes">2</italic>
,
<italic toggle="yes"> 6</italic>
,
<italic toggle="yes">13</italic>
,
<italic toggle="yes">14</italic>
). This conformational change likely plays a significant role in the high specificity of UDG for cleavage of the uracil base, because closing of the active site is a prerequisite for formation of the specific hydrogen bonds that are essential for leaving group activation (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00015" ref-type="bibr"></xref>
<xref rid="bi026226rb00016" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi026226rb00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi026226rb00018" ref-type="bibr"></xref>
</named-content>
</italic>
). These mechanistic insights initially derived from transient kinetic studies using 2‘-FU substrate analogue DNA have been recently confirmed using natural deoxyuridine-containing DNA (
<italic toggle="yes">
<xref rid="bi026226rb00019" ref-type="bibr"></xref>
</italic>
). </p>
<p>Here we extend our studies of enzymatic base flipping by selectively deleting the enzymatic side chains that are involved in the pinch, push, plug, and pull mechanism (Figure
<xref rid="bi026226rf00001"></xref>
A). We interrogate the resultant effects on the multistep process of base flipping using both thermodynamic and transient kinetic measurements. We have found that a single deletion of either serine pinching side chain does not prevent UDG from flipping the uracil base or undergoing the conformational clamping step. However, removal of
<italic toggle="yes">both</italic>
serine pinching groups or, alternatively, deletion of the Leu191 or Asn123 side chains prevents the UDG active site from clamping around the extrahelical base. These mutations perturb the base-flipping process at discrete points along the reaction pathway, thereby allowing the temporal mapping of these interactions. In the following paper in this issue (
<italic toggle="yes">
<xref rid="bi026226rb00023" ref-type="bibr"></xref>
</italic>
), we extend our recent “substrate rescue” approach to demonstrate how these base-flipping phenotypes can be partially or fully rescued by preorganizing the uracil in an extrahelical conformation using an unnatural pyrene (Y) nucleotide wedge (i.e., a U/Y base pair) (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). </p>
</sec>
<sec id="d7e310">
<title>Experimental Procedures</title>
<p>
<italic toggle="yes">Nucleoside Phosphoramidite and Oligonucleotide Synthesis.</italic>
The nucleoside phosphoramidites were purchased from Applied Biosystems or Glen Research (Sterling, VA), except for the 2‘-β-fluoro-2‘-deoxyuridine phosphoramidite, which was synthesized as described (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). The oligonucleotides were synthesized using standard phosphoramidite chemistry with an Applied Biosystems 390 synthesizer. After synthesis and deprotection, the oligonucleotides were purified by anion exchange HPLC and desalted by C-18 reversed-phase HPLC (Phenomenex Aqua column). The size, purity, and nucleotide composition of the DNA were assessed by analytical reversed-phase HPLC, MALDI mass spectrometry, and denaturing polyacrylamide gel electrophoresis. The DNA strands were hybridized as previously described to form the duplexes used in the binding and kinetic studies as shown in Table
<xref rid="bi026226rt00001"></xref>
. In these sequences, U
<sup>F</sup>
= 2‘-β-fluoro-2‘-deoxyuridine nucleotide. The concentrations of the oligonucleotides were determined by UV absorption measurements at 260 nm, using the pairwise extinction coefficients for the constituent nucleotides.
<table-wrap id="bi026226rt00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>DNA Sequences
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="1">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">
<graphic xlink:href="bi026226ru00001a.tif" position="float" orientation="portrait"></graphic>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Thermal melting experiments were performed in TMN buffer using 3 μM concentrations of each duplex (see the Experimental Procedures). The melting temperatures for AU
<sup>F</sup>
/A and PU
<sup>F</sup>
/A were 48.8 and 45.8 °C, respectively.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<italic toggle="yes">Purification of UDG and Mutants.</italic>
As previously described, the recombinant UDG from
<italic toggle="yes">E. coli</italic>
strain B was purified to >99% homogeneity using a T7 polymerase-based overexpression system (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00013" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00020" ref-type="bibr"></xref>
</named-content>
</italic>
). The concentration of the enzyme was determined using an extinction coefficient of 38.5 mM
<sup>-1</sup>
cm
<sup>-1</sup>
. All of the mutations in this work were generated using the Quick-Change double-stranded mutagenesis kit from Stratagene (La Jolla, CA), and the mutations were confirmed by sequencing both strands of the DNA. The 6X-His-tagged mutant proteins were purified using nickel chelate chromatography as previously described (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00014" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00020" ref-type="bibr"></xref>
</named-content>
</italic>
). The His-tag was removed by cleavage using biotinylated thrombin followed by purification using strepavidin beads and nickel chelate chromatography. The purity of the mutant enzymes was greater than 95% as judged by SDS−polyacrylamide gel electrophoresis with visualization by Coomassie Blue staining. </p>
<p>
<italic toggle="yes">DNA Binding and Competitive Inhibition Studies</italic>
. The dissociation constants (
<italic toggle="yes">K</italic>
<sub>D</sub>
) for binding of the various enzymes to the DNA molecules listed in Table
<xref rid="bi026226rt00001"></xref>
were determined using two orthogonal methods. All measurements were performed in TMN buffer, 10 mM Tris−HCl (pH 8.0), 2.5 mM MgCl
<sub>2</sub>
, 25 mM NaCl, at 25 °C. In the first method, direct binding measurements were made by following the increase in 2-AP fluorescence upon titrating fixed concentrations of the 2-AP-containing DNA (Figure
<xref rid="bi026226rf00002"></xref>
) with increasing amounts of UDG. Excitation was at 320 nm, and emission spectra from 330 to 450 nm were collected using a Spex Fluoromax 3 fluorimeter. The 2-AP fluorescence intensity (
<italic toggle="yes">F</italic>
) at 370 nm was plotted against [UDG]
<sub>tot</sub>
to obtain the
<italic toggle="yes">K</italic>
<sub>D</sub>
from eqs 1 and 2.
<xref rid="bi026226re00001"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00001"><!--%@md;sys;6q@%%@ital@%F%@rsf@% = %@ital@%F%@rsf@%%@sb@%o%@sbx@% − %@fn;{;vis;full;auto@%%@fn;(;vis;full;unlock@%%@ital@%F%@rsf@%%@sb@%o%@sbx@% − %@ital@%F%@rsf@%%@sb@%f%@sbx@%%@fnx;);vis;full@%%@fn;[;vis;full;unlock@%DNA%@fnx;];vis;full@%%@sb@%tot%@sbx@%/2%@fnx;};vis;full@% × %@bf@%[S_EL2;quad]\ %@fn;{;vis;full;auto@%%@ital@%b%@rsf@% − %@fn;(;vis;full;unlock@%%@ital@%b%@rsf@%%@ex@%2%@exx@% − 4%@fn;[;vis;full;unlock@%UDG%@fnx;];vis;full@%%@sb@%tot%@sbx@%%@fn;[;vis;full;unlock@%DNA%@fnx;];vis;full@%%@sb@%tot%@sbx@%%@fnx;);vis;full@%%@ex@%1/2%@exx@%%@fnx;};vis;full@%%@id;reqid;1@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00001.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
<xref rid="bi026226re00002"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00002"><!--%@md;sys;6q@%%@ital@%b%@rsf@% = %@ital@%K%@rsf@%%@sb@%D%@sbx@% + %@fn;[;vis;full;auto@%UDG%@fnx;];vis;full@%%@sb@%tot%@sbx@% + %@fn;[;vis;full;auto@%DNA%@fnx;];vis;full@%%@sb@%tot%@sbx@%%@id;reqid;2@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00002.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
<fig id="bi026226rf00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Specific DNA Binding of S88A UDG. (A) PU
<sup>F</sup>
/A DNA (1500 nM) was titrated with increasing amounts of S88A, and the 2-AP fluorescence increase at 370 nm is plotted as a function of [S88A]. The curve is the best fit to eq 1. (B) S88A (1500 nM) was titrated with increasing amounts of AU
<sup>F</sup>
/A DNA, and the tryptophan fluorescence decrease at 335 nm is plotted as a function of [AU
<sup>F</sup>
/A]. The
<italic toggle="yes">K</italic>
<sub>D</sub>
values are reported in Table
<xref rid="bi026226rt00002"></xref>
.</p>
</caption>
<graphic xlink:href="bi026226rf00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Tryptophan Fluorescence Measurements. </italic>
Dissociation constants were also determined by following the tryptophan fluorescence decrease in UDG as DNA binds (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). For these experiments, excitation was at 290 nm and emission scans were performed over the range 305−450 nm. Corrections for dilution and inner filter effects were made using the equation
<italic toggle="yes">F</italic>
<sub>corr</sub>
(335 nm) =
<italic toggle="yes">F</italic>
<sub>obsd</sub>
× 10
<italic toggle="yes">
<sup>A</sup>
</italic>
<sup>
<sup>290</sup>
/2</sup>
, where
<italic toggle="yes">A</italic>
<sup>290</sup>
is the absorption of the DNA ligand at the excitation wavelength.
<italic toggle="yes">F</italic>
<sub>corr</sub>
was then plotted against [DNA]
<sub>tot</sub>
to obtain the
<italic toggle="yes">K</italic>
<sub>D</sub>
using eq 1. For the binding measurements using tryptophan fluorescence, the nonfluroescent AU
<sup>F</sup>
/A duplex was used (Table
<xref rid="bi026226rt00001"></xref>
). </p>
<p>
<italic toggle="yes">Fluorescence Measurements of Association and Dissociation Rate Constants.</italic>
The observed rate constants for association of 2-AP-labeled DNA molecules with the various enzymes were obtained using an Applied Photophysics 720 stopped-flow fluorescence instrument (Surrey, U.K.) using pseudo-first-order conditions in which the concentration of the enzyme was always more than 4-fold greater than the concentration of the labeled DNA. In these experiments a syringe containing a solution of enzyme was rapidly mixed with a solution of labeled DNA delivered from a second syringe. The fluorescence change as a function of time was recorded using a 360 nm cutoff filter with excitation at 320 nm. For stopped-flow measurements in which changes in UDG tryptophan fluorescence were followed, excitation was at 290 nm and emission was monitored at wavelengths greater than 320 nm. In all experiments in which tryptophan fluorescence was followed, the AU/A nonfluorescent substrate was used. The kinetic traces were fitted to a first-order rate expression (eq 3)
<xref rid="bi026226re00003"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00003"><!--%@md;sys;6q@%%@ital@%F%@rsf@%%@ital@%%@sb@%t%@rsf@%%@sbx@% = &Dgr;%@ital@%F%@rsf@% exp%@fn;(;vis;full;auto@%1 −%@ital@% k%@rsf@%%@sb@%obsd%@sbx@%%@ital@%t%@rsf@%%@fnx;);vis;full@% + %@ital@%F%@rsf@%%@sb@%o%@sbx@%%@id;reqid;3@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00003.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
to obtain the observed rate constants (
<italic toggle="yes">k</italic>
<sub>obsd</sub>
) at each concentration of enzyme or DNA. With some mutant enzymes, the
<italic toggle="yes">k</italic>
<sub>obsd</sub>
values showed a linear dependence on [E], indicating a simple one-step binding mechanism (eq 4) or, alternatively, a multistep mechanism in which bimolecular association is fully rate-limiting at all achievable concentrations of enzyme. Accordingly, the association rate was obtained from the slope of a plot of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against [E], and
<italic toggle="yes">k</italic>
<sub>on</sub>
and
<italic toggle="yes">k</italic>
<sub>off</sub>
were obtained from the slope and intercept of the linear regression best-fit line to the data (eq 5). With other mutant enzymes plots of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against [AU
<sup>F</sup>
/A] showed curvature, indicating a more complex multistep binding mechanism. In these cases the data were fitted as described below for wtUDG.
<xref rid="bi026226re00004"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00004"><!--%@md;sys;6q@%E + U %@mspx;$-$90@%%@aw;@rlhar2;;none;none@%%@sb@%%@ital@%k%@rsf@%%@sb@%on%@sbx@%%@sbx@%%@au@%%@ex@%%@ital@%k%@rsf@%%@sb@%off%@sbx@%%@exx@%%@awx@% E·DNA%@id;reqid;4@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00004.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
<xref rid="bi026226re00005"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00005"><!--%@md;sys;6q@%%@ital@%k%@rsf@%%@sb@%obsd%@sbx@% = %@ital@%k%@rsf@%%@sb@%on%@sbx@%%@fn;[;vis;full;auto@%DNA%@fnx;];vis;full@% + %@ital@%k%@rsf@%%@sb@%off%@sbx@%%@id;reqid;5@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00005.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
</p>
<p>For wild-type UDG, curvature in the plot of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against [E] or [DNA] was observed, indicating a change in rate-limiting step from bimolecular association to unimolecular isomerization of the DNA or enzyme (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00021" ref-type="bibr"></xref>
</named-content>
</italic>
). Thus, the plot of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against [E] was fitted to eq 6, which is the general analytical solution for the hyperbolic concentration dependence of a minimal two-step base-flipping mechanism (eq 7).
<xref rid="bi026226re00006"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00006"><!--%@md;sys;6q@%%@ital@%k%@rsf@%%@sb@%obsd%@sbx@% = %@fr@%%@ital@%K%@rsf@%‘%@fn;[;vis;full;auto@%E%@fnx;];vis;full@%%@ital@%k%@rsf@%%@sb@%max%@sbx@% + %@ital@%k%@rsf@%%@sb@%off%@sbx@%%@fd@%%@fn;(;vis;full;auto@%%@ital@%K%@rsf@%‘%@fn;[;vis;full;unlock@%E%@fnx;];vis;full@% + 1%@fnx;);vis;full@%%@frx@%%@id;reqid;6@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00006.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
<xref rid="bi026226re00007"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00007"><!--%@md;sys;6q@%E + S %@mspx;$-$90@%%@aw;@rlhar2;;none;none@%%@sb@%%@ital@%k%@rsf@%%@sb@%1%@sbx@%%@sbx@%%@au@%%@ex@%%@ital@%k%@rsf@%%@sb@%$-$1%@sbx@%%@exx@%%@awx@% ES %@mspx;$-$90@%%@aw;@rlhar2;;none;none@%%@sb@%%@ital@%k%@rsf@%%@sb@%2%@sbx@%%@sbx@%%@au@%%@ex@%%@ital@%k%@rsf@%%@sb@%$-$2%@sbx@%%@exx@%%@awx@% E*F%@id;reqid;7@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00007.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
[As noted previously (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
), there are no observed kinetic lags in the binding of UDG to DNA because of the rapid rate constants
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
,
<italic toggle="yes">k</italic>
<sub>2</sub>
, and
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>2</sub>
in eq 7. Thus,
<italic toggle="yes">k</italic>
<sub>obsd</sub>
is always a single exponential with a hyperbolic dependence on DNA or enzyme concentration.] In eq 6, the initial slope of the hyperbolic concentration dependence provides the apparent second-order rate constant for association of the enzyme with the DNA [
<italic toggle="yes">k</italic>
<sub>on</sub>
=
<italic toggle="yes">K</italic>
<italic toggle="yes">k</italic>
<sub>max</sub>
, where
<italic toggle="yes"> K</italic>
‘ =
<italic toggle="yes">k</italic>
<sub>1</sub>
/(
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
+
<italic toggle="yes">k</italic>
<sub>max</sub>
)], the asymptotic value provides the observed rate constant for reversible base flipping (
<italic toggle="yes">k</italic>
<sub>max</sub>
=
<italic toggle="yes">k</italic>
<sub>2</sub>
+
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>2</sub>
), and the
<italic toggle="yes">y</italic>
intercept provides the dissociation rate constant [
<italic toggle="yes">k</italic>
<sub>off</sub>
=
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>2</sub>
/ (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
+
<italic toggle="yes">k</italic>
<sub>max</sub>
)]. In this minimal two-step mechanism, the base-flipping step (
<italic toggle="yes">k</italic>
<sub>max</sub>
=
<italic toggle="yes">k</italic>
<sub>2</sub>
+
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>2</sub>
) is a composite of the base extrusion and UDG isomerization steps shown in Figure
<xref rid="bi026226rf00001"></xref>
B (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). Depending on whether 2-AP or tryptophan fluorescence is followed,
<italic toggle="yes">k</italic>
<sub>max</sub>
is designated as
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>2-AP</sup>
or
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>trp</sup>
, respectively. An equation of form identical to that of eq 6 can result if more than two steps are involved, but the microscopic rate constants that comprise the apparent constants
<italic toggle="yes">K</italic>
‘,
<italic toggle="yes">k</italic>
<sub>max</sub>
, and
<italic toggle="yes">k</italic>
<sub>off</sub>
will differ. A three-step mechanism, such as that shown in Figure
<xref rid="bi026226rf00001"></xref>
B, is best analyzed by computer simulation of the kinetic data (see below). Regardless of whether eq 5, eq 6, or a more complex three-step binding mechanism is used to analyze the data,
<italic toggle="yes">k</italic>
<sub>off</sub>
/
<italic toggle="yes">k</italic>
<sub>on</sub>
=
<italic toggle="yes">K</italic>
<sub>D</sub>
, the overall dissociation constant for the interaction. The apparent rate constants obtained from these analytical expressions are more accurate than the microscopic rate constants obtained from computer simulations, and provide informative parameters for comparison of the kinetic properties of the wild-type and mutant enzymes. </p>
<p>To augment the approach-to-equilibrium kinetic measurements, the dissociation rate constant (
<italic toggle="yes">k</italic>
<sub>off</sub>
) of U/A from the various enzymes was also measured using irreversible conditions. When 2-AP fluorescence was followed, these experiments were carried out by rapidly mixing a preformed enzyme−DNA complex with a large excess of nonfluorescent single-stranded trapping DNA. The sequence of the trap DNA was the same as that of the AU
<sup>F</sup>
A strand of the duplex (Table
<xref rid="bi026226rt00001"></xref>
). The time-dependent decrease in 2-AP fluorescence was then followed using the stopped-flow fluorescence instrument. When tryptophan fluorescence was followed, the free enzyme was trapped using a high concentration of nonspecific DNA (50 μM). In all cases, the kinetic traces were fitted to a single-exponential decay (eq 8). Further experimental details may be found in the figure captions.
<xref rid="bi026226re00008"></xref>
<disp-formula content-type="pre-labeled" id="bi026226re00008"><!--%@md;sys;6q@%%@ital@%F%@rsf@%%@sb@%t%@sbx@% = &Dgr;%@ital@%F%@rsf@% exp%@fn;(;vis;full;auto@%−%@ital@%kt%@rsf@%%@fnx;);vis;full@% + %@ital@%F%@rsf@%%@sb@%o%@sbx@%%@id;reqid;8@%%@mx@%[S_EL2;quad] -->
<graphic xlink:href="bi026226re00008.gif" position="anchor" orientation="portrait"></graphic>
</disp-formula>
</p>
<p>
<italic toggle="yes">Computer Simulations</italic>
. The values for
<italic toggle="yes">k</italic>
<sub>on</sub>
,
<italic toggle="yes">k</italic>
<sub>off</sub>
,
<italic toggle="yes">k</italic>
<sub>max</sub>
, and
<italic toggle="yes">K</italic>
<sub>D</sub>
were used as starting values to constrain simulations in which the microscopic rate constants for a more complex three-step mechanism for base flipping were determined (Figure
<xref rid="bi026226rf00001"></xref>
B). The simulations were performed by globally fitting the kinetic traces to a single set of six microscopic rate constants as defined in the three-step mechanism depicted in Figure
<xref rid="bi026226rf00001"></xref>
B (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
,
<italic toggle="yes">k</italic>
<sub>1</sub>
,
<italic toggle="yes">k</italic>
<sub>flip</sub>
,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>flip</sub>
,
<italic toggle="yes">k</italic>
<sub>conf</sub>
,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>conf</sub>
) using the program Dynafit (
<italic toggle="yes">
<xref rid="bi026226rb00022" ref-type="bibr"></xref>
</italic>
). The requirement for a three-step mechanism in which the conformational clamping step of UDG lags behind the initial extrusion of the uracil was suggested by the observation that the
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>trp</sup>
value obtained from following the tryptophan fluorescence of UDG was about 40% less than the
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>2-AP</sup>
value obtained from following the 2-AP fluorescence of the DNA (see the Results and Discussion). </p>
</sec>
<sec id="d7e873">
<title>Results and Discussion</title>
<p>
<italic toggle="yes">Definitions. </italic>
To allow facile comparison of the mutational effects with the pyrene rescue effects reported in the following paper (
<italic toggle="yes">
<xref rid="bi026226rb00023" ref-type="bibr"></xref>
</italic>
), we have defined the mutational effect as the kinetic (or binding) parameter for the wild-type enzyme divided by that for the mutant enzyme. Thus, effects greater than unity always indicate a fold
<italic toggle="yes">damaging </italic>
effect on a rate constant (i.e., a slower on-rate or faster off-rate) or a
<italic toggle="yes">weakening</italic>
of binding affinity as a result of the mutation. To maintain consistency and simplicity in the description of the effects, we report the mutational effects on the off-rate and
<italic toggle="yes">K</italic>
<sub>D</sub>
values as (wild-type value)
<sup>-1</sup>
/(mutant value)
<sup>-1</sup>
such that ratios greater than unity still reflect the fold damaging effect of the mutation.
<xref rid="bi026226rb00002" ref-type="bibr"></xref>
</p>
<p>
<italic toggle="yes">Mutational Effects on DNA Binding</italic>
. Eight different UDG mutations are investigated in this study (Figure
<xref rid="bi026226rf00001"></xref>
A):  three serine mutations that remove the hydroxyl groups that are proposed to
<italic toggle="yes">pinch</italic>
the phosphodiester backbone (S88A, S189A, S88A:S189A), two leucine mutations that lack the bulky side chain that
<italic toggle="yes">pushes</italic>
into the minor groove (L191A, L191G), asparagine and histidine mutations (N123G, H187G) that remove hydrogen-bonding groups that
<italic toggle="yes">pull</italic>
on the uracil by bonding to O2, O4, and N3, and an aspartate mutation that removes the water activating group (D64N). These mutations probe the four components of the pinch, push, plug, and pull mechanism for base flipping (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00002" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</named-content>
</italic>
). The characterization of D64N mutation serves as a useful control for the specificity of the substrate rescue effects that are reported in the following paper (
<italic toggle="yes">
<xref rid="bi026226rb00023" ref-type="bibr"></xref>
</italic>
). This aspartate group has previously been shown to have no detrimental effect on DNA binding or base flipping, and mainly serves to stabilize the ionic transition state and intermediate for glycosidic bond cleavage by an electrostatic mechanism (
<italic toggle="yes">
<xref rid="bi026226rb00024" ref-type="bibr"></xref>
</italic>
). Thus, the preorganized substrate with the pyrene wedge would not be expected to rescue the ∼3000-fold damaging effect of removing Asp64 (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Binding of Wild-Type and Mutant Enzymes to U
<sup>F</sup>
</italic>
<sup></sup>
<italic toggle="yes">/A Analogues</italic>
. To begin the mutational analysis, we performed DNA binding measurements using the nonreactive substrate analogue constructs PU
<sup>F</sup>
/A and AU
<sup>F</sup>
/A employing the 2-AP and tryptophan fluorescence assays. The 2-AP fluorescence is very sensitive to base-stacking interactions and reports on the expulsion of the uracil from the duplex, while the tryptophan fluorescence detects the postflipping conformational change in UDG. We have employed 11-mer duplex substrates in this study because of concerns that longer DNA sequences, such as the 19-mer used in a previous study (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
), might lead to a significant amount of nonspecific DNA binding for the base-flipping mutants. Accordingly, we have truncated the DNA to a minimal length that maintains essentially full catalytic activity as observed previously for longer DNA molecules (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00025" ref-type="bibr"></xref>
</named-content>
</italic>
). Several crystal structures of human UDG productively bound to DNA duplexes of this size have been solved, indicating that these 11-mers capture all of the interactions required for base flipping and catalysis (
<italic toggle="yes">2</italic>
,
<italic toggle="yes"> 6</italic>
,
<italic toggle="yes">14</italic>
). The
<italic toggle="yes">K</italic>
<sub>D</sub>
values for wtUDG are reported in Table
<xref rid="bi026226rt00002"></xref>
for comparison with those of the mutants.
<table-wrap id="bi026226rt00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Equilibrium and Kinetic Constants for Binding of Mutant UDG Enzymes to U
<sup>F</sup>
/A DNA Analogues
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="8">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:colspec colnum="7" colname="7"></oasis:colspec>
<oasis:colspec colnum="8" colname="8"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">enzyme</oasis:entry>
<oasis:entry namest="2" nameend="2">substrate</oasis:entry>
<oasis:entry namest="3" nameend="3">
<italic toggle="yes">k</italic>
<sub>on</sub>
 (μM
<sup>-1</sup>
 s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="4" nameend="4">
<italic toggle="yes">k</italic>
<sub>off</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="5" nameend="5">
<italic toggle="yes">k</italic>
<sub>max</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="6" nameend="6">
<italic toggle="yes">K</italic>
‘ (μM
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="7" nameend="7">
<italic toggle="yes">k</italic>
<sub>off</sub>
 /
<italic toggle="yes">k</italic>
<sub>on</sub>
 (μM)</oasis:entry>
<oasis:entry namest="8" nameend="8">
<italic toggle="yes">K</italic>
<sub>D</sub>
 (μM) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wtUDG </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">160 ± 6 </oasis:entry>
<oasis:entry colname="4">21 ± 3 </oasis:entry>
<oasis:entry colname="5">650 ± 43 </oasis:entry>
<oasis:entry colname="6">0.40 ± 0.08 </oasis:entry>
<oasis:entry colname="7">0.13 ± 0.02 </oasis:entry>
<oasis:entry colname="8">0.13 ± 0.03 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">AU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">120 ± 11 </oasis:entry>
<oasis:entry colname="4">22 ± 5 </oasis:entry>
<oasis:entry colname="5">400 ± 10 </oasis:entry>
<oasis:entry colname="6">0.3 ± 0.03 </oasis:entry>
<oasis:entry colname="7">0.18 ± 0.04 </oasis:entry>
<oasis:entry colname="8">0.11 ± 0.02 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">S88A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">47 ± 15 </oasis:entry>
<oasis:entry colname="4">80 ± 15 </oasis:entry>
<oasis:entry colname="5">≥650
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="6">0.032 ± 0.002 </oasis:entry>
<oasis:entry colname="7">1.7 ± 0.5 </oasis:entry>
<oasis:entry colname="8">1.2 ± 0.3 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">AU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">34 ± 14 </oasis:entry>
<oasis:entry colname="4">88 ± 6 </oasis:entry>
<oasis:entry colname="5">680 ± 110 </oasis:entry>
<oasis:entry colname="6">0.05 ± 0.016 </oasis:entry>
<oasis:entry colname="7">2.6 ± 1.2 </oasis:entry>
<oasis:entry colname="8">1.1 ± 0.2 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">S189A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">46 ± 5 </oasis:entry>
<oasis:entry colname="4">23 ± 1 </oasis:entry>
<oasis:entry colname="5">650 ± 170 </oasis:entry>
<oasis:entry colname="6">0.09 ± 0.03 </oasis:entry>
<oasis:entry colname="7">0.47 ± 0.05 </oasis:entry>
<oasis:entry colname="8">0.62 ± 0.06 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">AU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">13 ± 5 </oasis:entry>
<oasis:entry colname="4">8 ± 3 </oasis:entry>
<oasis:entry colname="5">210 ± 40 </oasis:entry>
<oasis:entry colname="6">0.06 ± 0.02 </oasis:entry>
<oasis:entry colname="7">0.6 ± 0.2 </oasis:entry>
<oasis:entry colname="8">0.33 ± 0.03 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">S88A:S189A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">14 ± 3 </oasis:entry>
<oasis:entry colname="4">205 ± 30 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7">14 ± 4 </oasis:entry>
<oasis:entry colname="8">8.4 ± 1.4 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">L191A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">20 ± 6 </oasis:entry>
<oasis:entry colname="4">56 ± 12 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7">2.8 ± 1.0 </oasis:entry>
<oasis:entry colname="8">0.95 ± 0.05 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">L191G </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">9.9 ± 1.9 </oasis:entry>
<oasis:entry colname="4">93 ± 20 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7">9.4 ± 2.7 </oasis:entry>
<oasis:entry colname="8">5.1 ± 1.5 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N123G </oasis:entry>
<oasis:entry colname="2">PU/A </oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
<oasis:entry colname="8">2.1 ± 0.4
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">H187G </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">34 ± 5 </oasis:entry>
<oasis:entry colname="4">4.6 ± 0.5 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7">0.14 ± 0.03 </oasis:entry>
<oasis:entry colname="8">0.28 ± 0.04 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D64N </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">216 ± 9 </oasis:entry>
<oasis:entry colname="4">8.9 ± 0.5 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7">0.041 ± 0.003 </oasis:entry>
<oasis:entry colname="8">0.020 ± 0.002</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Some of the equilibrium binding parameters for wtUDG have been previously published (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). The parameters
<italic toggle="yes">k</italic>
<sub>on</sub>
,
<italic toggle="yes">k</italic>
<sub>off</sub>
,
<italic toggle="yes">k</italic>
<sub>max</sub>
, and
<italic toggle="yes">K</italic>
‘ are defined in eqs 6 and 7. The
<italic toggle="yes">k</italic>
<sub>max</sub>
values for AU
<sup>F</sup>
/A were obtained from the rates of tryptophan fluorescence changes in UDG (
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>trp</sup>
). The
<italic toggle="yes">k</italic>
<sub>max</sub>
values for PU
<sup>F</sup>
/A were obtained from the rates of 2-AP fluorescence changes of the DNA (
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>2-AP</sup>
). The parameters for PU
<sup>F</sup>
/A and AU
<sup>F</sup>
/A were determined in stopped-flow experiments by following the 2-AP fluorescence of the DNA or the tryptophan fluorescence of UDG, respectively.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 Only a lower limit value was obtained with the S88A mutant.
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
 This is the
<italic toggle="yes">K</italic>
<sub>m</sub>
value of N123G for the corresponding substrate. Binding measurements with PU
<sup>F</sup>
/A were complicated by apparent sigmoidicity, which was not observed in the kinetic measurements (data not shown).</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="bi026226rt00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Microscopic Rate Constants for a Three-Step Base-Flipping Mechanism by wtUDG Determined from Kinetic Simulations
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="7">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:colspec colnum="7" colname="7"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">
<italic toggle="yes">k</italic>
<sub>1</sub>
 (μM
<sup>-1</sup>
 s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="2" nameend="2">
<italic toggle="yes">k</italic>
<sub>-1</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="3" nameend="3">
<italic toggle="yes">k</italic>
<sub>flip</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="4" nameend="4">
<italic toggle="yes">k</italic>
<sub>-flip</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="5" nameend="5">
<italic toggle="yes">k</italic>
<sub>conf</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="6" nameend="6">
<italic toggle="yes">k</italic>
<sub>-conf</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="7" nameend="7">
<italic toggle="yes">K</italic>
<sub>flip</sub>
<italic toggle="yes">K</italic>
<sub>conf</sub>
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">220 ± 50 </oasis:entry>
<oasis:entry colname="2">600 ± 100 </oasis:entry>
<oasis:entry colname="3">700 ± 200 </oasis:entry>
<oasis:entry colname="4">180 ± 50 </oasis:entry>
<oasis:entry colname="5">350 ± 50 </oasis:entry>
<oasis:entry colname="6">100 ± 10 </oasis:entry>
<oasis:entry colname="7">14 ± 4</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 The rate constants were obtained from global simulations of the transient kinetic data shown in Figure
<xref rid="bi026226rf00004"></xref>
A,B,D,E using the program Dynafit (
<italic toggle="yes">
<xref rid="bi026226rb00022" ref-type="bibr"></xref>
</italic>
) and correspond to the steps in Figure
<xref rid="bi026226rf00001"></xref>
B. The simulated fits to the data and the Dynafit script files are provided in the Supporting Information. A unique fit to the data required an estimate for the equilibrium constant for the first nonspecific binding step. This estimate (
<italic toggle="yes">K</italic>
<sub>D</sub>
<sup>ns</sup>
= 3.6 ± 0.5 μM) was obtained for an 11-mer duplex using competition binding measurements as previously described (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). The off-rate of nonspecific DNA (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
= 400−750 s
<sup>-1</sup>
) has been previously estimated (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). These estimates for
<italic toggle="yes">K</italic>
<sub>D</sub>
<sup>ns</sup>
and
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
are in good agreement with fluorescence binding measurements using a nonspecific pyrene-containing 11-mer duplex (
<italic toggle="yes">K</italic>
<sub>D</sub>
<sup>ns</sup>
= 2.7 ± 0.3 μM,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
= 440 ± 40 s
<sup>-1</sup>
). The data were also constrained by the overall dissociation constant
<italic toggle="yes">K</italic>
<sub>D</sub>
= (
<italic toggle="yes">K</italic>
<sub>1</sub>
<italic toggle="yes">K</italic>
<sub>flip</sub>
<italic toggle="yes">K</italic>
<sub>conf</sub>
)
<sup>-1</sup>
= 0.15 ± 0.04 μM (average value). The estimated errors in the microscopic constants are based on systematic sweeping of the individual rate constants over a 4-fold range, and then comparing visual fits to all the rate and equilibrium data. The final optimized fits to all of the kinetic data were obtained by constrained nonlinear regression fitting using the same set of six microscopic rate constants (a ±10% deviation in the rate constants was allowed during fitting). The reported values are average values obtained from fitting all of the four data sets.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
<italic toggle="yes">K</italic>
<sub>flip</sub>
<italic toggle="yes">K</italic>
<sub>conf</sub>
is the overall equilibrium constant for base flipping on the enzyme ([E*F]/[ES]). This product of equilibrium constants is comparable to the previously reported net equilibrium constant for base flipping based on a two-step mechanism (
<italic toggle="yes">K</italic>
<sub>flip</sub>
= 19 ± 8 for a U/A base pair) (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
).</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Representative binding data for the S88A “pinching” mutant using the 2-AP and tryptophan fluorescence assays are shown in parts A and B, respectively, of Figure
<xref rid="bi026226rf00002"></xref>
. The
<italic toggle="yes">K</italic>
<sub>D</sub>
values obtained from these data are 1.2 ± 0.3 and 1.1 ± 0.2 μM (Table
<xref rid="bi026226rt00002"></xref>
), which indicates that removal of the hydroxyl group of Ser88 weakens binding by 9-fold as compared to that of wtUDG (Table
<xref rid="bi026226rt00004"></xref>
). Analogous measurements were performed for the other mutations, and the
<italic toggle="yes">K</italic>
<sub>D</sub>
values and mutational effects are reported in Tables
<xref rid="bi026226rt00002"></xref>
and
<xref rid="bi026226rt00004"></xref>
, respectively. In general, the binding defects arising from removal of the Ser88, Ser189, and L191 side chains are in the range 5−40-fold, with the largest effect being observed for the L191G “pushing” mutation. The double mutation, S88A:S189A, shows a 65-fold detrimental effect on binding, which is only modestly greater than the 44-fold damaging effect expected from multiplying the individual effects of each single mutation.
<table-wrap id="bi026226rt00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Mutational Effects on DNA Binding, Association, and Dissociation
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="6">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry namest="3" nameend="6">fold mutational effect</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry namest="1" nameend="1">enzyme</oasis:entry>
<oasis:entry namest="2" nameend="2">DNA</oasis:entry>
<oasis:entry namest="3" nameend="3">1/
<italic toggle="yes">K</italic>
<sub>D</sub>
</oasis:entry>
<oasis:entry namest="4" nameend="4">
<italic toggle="yes">k</italic>
<sub>on</sub>
</oasis:entry>
<oasis:entry namest="5" nameend="5">1/
<italic toggle="yes">k</italic>
<sub>off</sub>
</oasis:entry>
<oasis:entry namest="6" nameend="6">
<italic toggle="yes">k</italic>
<sub>max</sub>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">S88A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">9.2 </oasis:entry>
<oasis:entry colname="4">3.4 </oasis:entry>
<oasis:entry colname="5">3.8 </oasis:entry>
<oasis:entry colname="6">
<italic toggle="yes">b</italic>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">AU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">10 </oasis:entry>
<oasis:entry colname="4">3.5 </oasis:entry>
<oasis:entry colname="5">4 </oasis:entry>
<oasis:entry colname="6">0.59 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">S189A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">4.8 </oasis:entry>
<oasis:entry colname="4">3.5 </oasis:entry>
<oasis:entry colname="5">1.1 </oasis:entry>
<oasis:entry colname="6">1 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">AU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">3 </oasis:entry>
<oasis:entry colname="4">9.2 </oasis:entry>
<oasis:entry colname="5">0.36 </oasis:entry>
<oasis:entry colname="6">1.9 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">S88A:S189A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">65 </oasis:entry>
<oasis:entry colname="4">11 </oasis:entry>
<oasis:entry colname="5">9.8 </oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">L191A </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">7.3 </oasis:entry>
<oasis:entry colname="4">8 </oasis:entry>
<oasis:entry colname="5">2.7 </oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">L191G </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">39 </oasis:entry>
<oasis:entry colname="4">16 </oasis:entry>
<oasis:entry colname="5">4.4 </oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N123G </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">16 </oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">H187G </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">2.1 </oasis:entry>
<oasis:entry colname="4">4.7 </oasis:entry>
<oasis:entry colname="5">0.22 </oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D64N </oasis:entry>
<oasis:entry colname="2">PU
<sup>F</sup>
/A </oasis:entry>
<oasis:entry colname="3">0.15 </oasis:entry>
<oasis:entry colname="4">0.74 </oasis:entry>
<oasis:entry colname="5">0.42 </oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Mutational effects are defined as wild-type value/mutant value. Therefore, effects greater than unity indicate a damaging effect of the mutation (i.e., a decrease in the on-rate or an increase in the off-rate or
<italic toggle="yes">K</italic>
<sub>D</sub>
). All values are derived from measurements using the PU
<sup>F</sup>
/A analogue except for the effects on the S88A and S189A mutants, which were obtained with both the AU
<sup>F</sup>
/A and PU
<sup>F</sup>
/A analogues as indicated. The definitions of the parameters may be found in eqs 4−7. The average error for all the mutational effects is ±14%; the largest errors are less than ±30%.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 Only a lower limit value for
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>2-AP</sup>
of ∼650 s
<sup>-1</sup>
was obtained for S88A.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>We observed a large difference between the mutational effects of removing the two side chains that hydrogen bond with the flipped-out uracil (Asn123 and His187), indicating distinct roles for these two “pulling” groups (Tables
<xref rid="bi026226rt00002"></xref>
and
<xref rid="bi026226rt00004"></xref>
). The N123G mutation binds 16-fold more weakly than wtUDG as determined from its
<italic toggle="yes">K</italic>
<sub>m</sub>
= 2.1 ± 0.4 μM, which was measured using the 2-AP steady-state kinetic assay (
<italic toggle="yes">
<xref rid="bi026226rb00011" ref-type="bibr"></xref>
</italic>
). In contrast, the H187G mutation has a small 2-fold detrimental effect on DNA binding, even though this mutation has a ∼4000-fold damaging effect on the activation barrier (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00020" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00026" ref-type="bibr"></xref>
</named-content>
</italic>
). Thus, Asn123 interacts strongly with the O4 and H3 atoms of the uracil in the ground state, while the strong hydrogen bond between uracil O2 and H
<sup>ε</sup>
of His187 develops later during the transition state for glycosidic bond cleavage (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00017" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00018" ref-type="bibr"></xref>
</named-content>
</italic>
). As we have previously observed, the D64N mutation actually enhances binding by about 8-fold, which we have attributed to ablation of an unfavorable electrostatic interaction between Asp64 and the anionic phosphodiester backbone of the DNA (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Nature of the Extrahelical State for Each Mutant. </italic>
Several of the mutant enzymes that showed substantial increases in 2-AP fluorescence did not show any decrease in tryptophan fluorescence upon binding of AU
<sup>F</sup>
/A, indicating that these enzymes were defective in the postflipping conformational change in UDG (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). Shown in Figure
<xref rid="bi026226rf00003"></xref>
are the maximal 2-AP and tryptophan fluorescence changes for wtUDG and each mutant (
<italic toggle="yes">F</italic>
<sub>bound</sub>
/
<italic toggle="yes">F</italic>
<sub>free</sub>
). The S88A:S189A, L191A, H187G, and D64N enzymes show almost the same
<italic toggle="yes">F</italic>
<sub>bound</sub>
/
<italic toggle="yes">F</italic>
<sub>free</sub>
for binding PU
<sup>F</sup>
/A as the wild-type enzyme (
<italic toggle="yes">F</italic>
<sub>bound</sub>
/
<italic toggle="yes">F</italic>
<sub>free</sub>
(wtUDG) = 3.1 ± 0.2), indicating that for these enzymes the DNA adopts a conformation similar to that found in the wild-type enzyme. The ratio
<italic toggle="yes">F</italic>
<sub>bound</sub>
/
<italic toggle="yes">F</italic>
<sub>free</sub>
for the S88A, S189A, and L191G mutants is approximately 35% smaller than that for wtUDG, suggesting modest differences in the extrahelical state that is detected by 2-AP fluorescence for these enzymes.
<fig id="bi026226rf00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Maximal changes in DNA 2-AP fluorescence and UDG tryptophan fluorescence. The changes are reported as the ratio
<italic toggle="yes">F</italic>
<sub>bound</sub>
/
<italic toggle="yes">F</italic>
<sub>free</sub>
, where
<italic toggle="yes">F</italic>
<sub>bound</sub>
is the fluorescence of the PU
<sup>F</sup>
/A DNA or enzyme at saturation and
<italic toggle="yes">F</italic>
<sub>free</sub>
is the fluorescence of the free DNA or enzyme.</p>
</caption>
<graphic xlink:href="bi026226rf00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Most of the mutants show tryptophan fluorescence decreases upon DNA binding that are similar to those of wtUDG (
<italic toggle="yes">F</italic>
<sub>bound</sub>
/
<italic toggle="yes">F</italic>
<sub>free</sub>
(Trp) = 0.59 ± 0.05) (Figure
<xref rid="bi026226rf00004"></xref>
). However, neither the Leu191 deletion mutants nor the N123G and serine double mutant shows a significant decrease. These results strongly indicate that removal of these groups severely alters the internal equilibrium for the conformational docking step that is required to lock in the flipped-out uracil (
<italic toggle="yes">k</italic>
<sub>conf</sub>
/
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>conf</sub>
, Figure
<xref rid="bi026226rf00001"></xref>
B). Given that a significant 2-AP fluorescence increase was detected with these mutants, the absence of a tryptophan fluorescence decrease suggests that the reaction has been arrested at an otherwise sparsely populated intermediate in which the uracil is extrahelical, but the enzyme has not yet enveloped the base. These results support our two previous studies of base flipping where we concluded that uracil expulsion was followed closely by a conformational change in UDG (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
), and that part of the action of Leu191
<italic toggle="yes">followed</italic>
the complete or partial expulsion of the uracil from the base stack (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00008" ref-type="bibr"></xref>
</named-content>
</italic>
). Further insights into the roles of Leu191 are suggested from the binding and kinetic studies described below.
<fig id="bi026226rf00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Stopped-flow fluorescence kinetic studies of DNA association and dissociation from wtUDG. (A) Approach-to-equilibrium association measurements where 100 nM PU
<sup>F</sup>
/A DNA was mixed with the indicated concentrations of UDG and the 2-AP fluorescence increase was monitored with a 360 nm cutoff filter with excitation at 320 nm. The lines are the fits to a first-order rate equation. (B) Irreversible dissociation of PU
<sup>F</sup>
/A DNA from UDG. A solution of 500 nM PU
<sup>F</sup>
/A DNA and 1 μM UDG was mixed with a 10 μM concentration of an ssAU
<sup>F</sup>
11-mer nonfluorescent DNA trap to prevent reassociation of the enzyme to PU
<sup>F</sup>
/A. The time-dependent decrease in 2-AP fluorescence was measured. (C) Observed rate constants from (A) (○) and (B) (·) against [wtUDG]. The curve is a best fit to eq 6. (D) Approach-to-equilibrium association measurements where 100 nM UDG was mixed with the indicated concentrations of AU
<sup>F</sup>
/A DNA and the tryptophan fluorescence decrease was monitored with a 320 nm cutoff filter with excitation at 290 nm. The lines are fits to a first-order decay rate equation. (E) Irreversible dissociation of AU
<sup>F</sup>
/A DNA from UDG as monitored by UDG tryptophan fluorescence. A solution of 500 nM AU
<sup>F</sup>
/A DNA and 1 μM UDG was mixed with a 50 μM concentration of a 19-mer nonfluorescent DNA to trap the enzyme as it dissociated (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). The time-dependent increase in 2-AP fluorescence was measured. (F) Observed rate constants from (D) (○) and (E) (·) against [AU
<sup>F</sup>
/A]. The curve is a best fit to eq 6. For comparison, the dashed line is the theoretical curve obtained in (C) from the 2-AP measurements. The parameters are reported in Table
<xref rid="bi026226rt00002"></xref>
.</p>
</caption>
<graphic xlink:href="bi026226rf00004.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The fluorescence studies indicate that the N123G mutation results in a highly unusual binding mode, leading to an increased unstacking of the 2-AP base (Figure
<xref rid="bi026226rf00003"></xref>
). Binding of the N123G mutant to PU
<sup>F</sup>
/A gives rise to an anomalous 21-fold increase in 2-AP fluorescence that is 7-fold
<italic toggle="yes">larger</italic>
than that of wild-type UDG. </p>
<p>
<italic toggle="yes">Transient Kinetic Studies of Base Flipping by Wild-Type UDG.</italic>
Although we have already investigated the kinetic process of base flipping by UDG using a 19-mer DNA in which the uracil was located in an A tract sequence (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
), the significantly different substrates used here required further measurements. This was especially important because of the strong DNA sequence dependence of the UDG activity (
<italic toggle="yes">25</italic>
,
<italic toggle="yes">27</italic>
,
<italic toggle="yes">28</italic>
). The approach we have taken is based on our previous findings that base flipping and the postflipping conformational change in UDG can be followed using the 2-AP fluorescence increase of the DNA, or the tryptophan fluorescence decrease of UDG, respectively (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). </p>
<p>Several stopped-flow kinetic traces for approach-to-equilibrium binding of the PU
<sup>F</sup>
/A 11-mer to wtUDG are shown in Figure
<xref rid="bi026226rf00004"></xref>
A in which the increase in 2-AP fluorescence is followed. We also measured the off-rate of PU
<sup>F</sup>
/A from wtUDG using irreversible conditions in which the dissociated enzyme was trapped by a large excess of nonfluorescent 11-mer DNA, and the dissociation of this complex was well-fitted as a single-exponential kinetic process (Figure
<xref rid="bi026226rf00004"></xref>
B). A plot of the observed association rate constants against [wtUDG] is hyperbolic (Figure
<xref rid="bi026226rf00004"></xref>
C), suggesting at least a two-step binding mechanism. Fitting these data to eq 6 yields
<italic toggle="yes">k</italic>
<sub>on</sub>
= 160 ± 6 μM
<sup>-1</sup>
s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>off</sub>
= 21 ± 3 s
<sup>-1</sup>
,
<italic toggle="yes">K</italic>
‘ = 0.40 ± 0.08 μM
<sup>-1</sup>
, and
<italic toggle="yes">k</italic>
<sub>max</sub>
= 650 ± 43 s
<sup>-1</sup>
(Table
<xref rid="bi026226rt00002"></xref>
). The measured off-rate (closed circle, Figure
<xref rid="bi026226rf00004"></xref>
C) agrees very well with the
<italic toggle="yes">y</italic>
intercept obtained from fitting the observed association rate constants to eq 6 (Figure
<xref rid="bi026226rf00004"></xref>
C), and the ratio
<italic toggle="yes">k</italic>
<sub>off</sub>
<italic toggle="yes">/k</italic>
<sub>on</sub>
= 0.13 ± 0.02 is in excellent agreement with the measured
<italic toggle="yes">K</italic>
<sub>D</sub>
= 0.13 ± 0.05 (Table
<xref rid="bi026226rt00002"></xref>
). The single-exponential off-rate of PU
<sup>F</sup>
/A from wtUDG indicates that the multistep process of DNA dissociation has
<italic toggle="yes"> one </italic>
major rate-limiting transition state. Further studies described below indicate that this transition state is for the reverse conformational change shown in Figure
<xref rid="bi026226rf00001"></xref>
B (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>conf</sub>
). </p>
<p>The hyperbolic concentration dependence of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
for wtUDG binding to PU
<sup>F</sup>
/A indicates a change in rate-limiting step from concentration-dependent association of the enzyme with the DNA to concentration-independent isomerization of the enzyme−DNA complex. These results using the PU
<sup>F</sup>
/A 11-mer are similar to those previously reported using a U
<sup>F</sup>
/A 19-mer duplex in which the uracil was located in an A-rich tract (5‘-AAPU
<sup>F</sup>
AAAAA-3‘). With the previous 19-mer,
<italic toggle="yes">k</italic>
<sub>on</sub>
= 320 ± 50 μM
<sup>-1</sup>
s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>off</sub>
= 28 ± 2 s
<sup>-1</sup>
,
<italic toggle="yes">K</italic>
<sub>D</sub>
= 0.09 ± 0.02, and
<italic toggle="yes">k</italic>
<sub>max</sub>
= 1200 ± 200 s
<sup>-1</sup>
. The 1.8-fold larger
<italic toggle="yes">k</italic>
<sub>max</sub>
value, and the 1.6-fold tighter binding of the 19-mer as compared to the 11-mer, quantitatively accounts for the observation that the 19-mer shows a 1.6-fold larger increase in 2-AP fluorescence upon UDG binding as compared to the 11-mer used here (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). These results indicate that the base-flipping rates (
<italic toggle="yes">k</italic>
<sub>flip</sub>
and
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>flip</sub>
), and the equilibrium constant for base flipping (
<italic toggle="yes">K</italic>
<sub>flip</sub>
=
<italic toggle="yes">k</italic>
<sub>flip</sub>
/
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>flip</sub>
) may be modestly affected by the sequence context in which the uracil is located. DNA sequence effects on the steady-state
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
for human (
<italic toggle="yes">
<xref rid="bi026226rb00027" ref-type="bibr"></xref>
</italic>
),
<italic toggle="yes">E. coli</italic>
(
<italic toggle="yes">
<xref rid="bi026226rb00025" ref-type="bibr"></xref>
</italic>
), and herpes virus UDG (
<italic toggle="yes">
<xref rid="bi026226rb00028" ref-type="bibr"></xref>
</italic>
) have been reported, and the results here suggest that part of the
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
effects may arise from a DNA sequence dependence of the base-flipping step. </p>
<p>We also followed the forward binding kinetics and the reverse dissociation kinetics by monitoring tryptophan fluorescence of wtUDG (Figure
<xref rid="bi026226rf00004"></xref>
D,E). The closing of the UDG clamp upon AU
<sup>F</sup>
/A binding results in a 1.7-fold decrease in tryptophan fluorescence, and the reverse clamp-opening step results in a recovery of tryptophan fluorescence of the same magnitude. The observed rate constants for AU
<sup>F</sup>
/A binding showed a hyperbolic dependence on [AU
<sup>F</sup>
/A] similar to that seen when the 2-AP fluorescence of PU
<sup>F</sup>
/A was monitored (Figure
<xref rid="bi026226rf00004"></xref>
F). Although the values
<italic toggle="yes">k</italic>
<sub>on</sub>
= 120 ± 11 μM
<sup>-1</sup>
s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>off</sub>
= 22 ± 5 s
<sup>-1</sup>
, and
<italic toggle="yes">K</italic>
‘ = 0.3 ± 0.03 μM
<sup>-1</sup>
were similar to those measured by following the 2-AP fluorescence, the
<italic toggle="yes">k</italic>
<sub>max</sub>
value was found to be 40% smaller (
<italic toggle="yes">k</italic>
<sub>max</sub>
= 400 ± 10 s
<sup>-1</sup>
). (For comparison, the best-fit curve from fitting the
<italic toggle="yes">k</italic>
<sub>obsd</sub>
values obtained using 2-AP fluorescence is shown as a dashed line in Figure
<xref rid="bi026226rf00004"></xref>
F.) An important observation from these data is that the off-rates measured using tryptophan and 2-AP fluorescence are
<italic toggle="yes">identical</italic>
(Figure
<xref rid="bi026226rf00004"></xref>
B,E). This result indicates that the same rate-limiting step is detected in both experiments, and requires that opening of the conformational clamp (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>conf</sub>
in Figure
<xref rid="bi026226rf00001"></xref>
B) is slow compared to the reverse step of base flipping (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>flip</sub>
) and DNA dissociation (
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
). </p>
<p>
<italic toggle="yes">A Three-Step Mechanism for Uracil Flipping</italic>
. The 40% higher
<italic toggle="yes">k</italic>
<sub>max</sub>
value that was measured using the 2-AP fluorescence signal strongly indicates that the UDG conformational change slightly lags behind the base-flipping step with these substrates that contain a U/A base pair. Our previous study using a 19-mer DNA with a significantly different sequence surrounding the U
<sup>F</sup>
/A base pair showed smaller rate differences for the 2-AP and tryptophan fluorescence changes (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
). These differences were hardly beyond the error limits in the measurements [
<italic toggle="yes">k</italic>
<sub>max</sub>
(2-AP) = 1200 ± 200 s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>max</sub>
(trp) = 800 ± 200 s
<sup>-1</sup>
], but we concluded that base flipping was “followed closely by a conformational change in UDG”. Because the binding kinetics and mutational effects reported below clearly reveal that the conformational change lags behind the flipping step, we have used global kinetic simulation of the data to obtain the microscopic rate constants for a three-step mechanism (Figure
<xref rid="bi026226rf00001"></xref>
B). The kinetic constants obtained from these simulations are
<italic toggle="yes">k</italic>
<sub>1</sub>
= 220 ± 50,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>1</sub>
= 600 ± 100 s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>flip</sub>
= 700 ± 200 s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>flip</sub>
= 180 ± 50 s
<sup>-1</sup>
,
<italic toggle="yes">k</italic>
<sub>conf</sub>
= 350 ± 50 s
<sup>-1</sup>
, and
<italic toggle="yes">k</italic>
<sub>-</sub>
<sub>conf</sub>
= 100 ± 10 s
<sup>-1</sup>
;
<italic toggle="yes">K</italic>
<sub>flip</sub>
<italic toggle="yes">K</italic>
<sub>conf</sub>
= 14 ± 4 (Table
<xref rid="bi026226rt00003"></xref>
). The simulated fits to the individual kinetic traces are shown in the Supporting Information. </p>
<p>
<italic toggle="yes">Kinetic Roles of the Pinch, Push, Plug, and Pull Groups</italic>
. Analogous stopped-flow fluorescence experiments were performed for each mutant to assess whether each side chain interaction was important for the forward rate of DNA association or, alternatively, served to stabilize the major extrahelical state (E*F, Figure
<xref rid="bi026226rf00001"></xref>
B). Representative kinetic experiments for binding of L191A to PU
<sup>F</sup>
/A are shown in Figure
<xref rid="bi026226rf00005"></xref>
in which changes in 2-AP fluorescence were followed. From the linear plot of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against [L191A] in Figure
<xref rid="bi026226rf00005"></xref>
C we obtained
<italic toggle="yes">k</italic>
<sub>on</sub>
= 20 ± 6 μM
<sup>-1</sup>
s
<sup>-1</sup>
and
<italic toggle="yes">k</italic>
<sub>off</sub>
= 56 ± 12 s
<sup>-1</sup>
. Thus, for L191A,
<italic toggle="yes">k</italic>
<sub>on</sub>
is decreased by 8-fold and
<italic toggle="yes">k</italic>
<sub>off</sub>
is increased by 3-fold as compared to those of wtUDG, while slightly larger effects of 16-fold and 4.4-fold were measured for the L191G mutant (Tables
<xref rid="bi026226rt00002"></xref>
and
<xref rid="bi026226rt00004"></xref>
, data not shown). L191A did not show any evidence of curvature in the plots of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against [enzyme] when the PU
<sup>F</sup>
/A substrate was used, indicating that bimolecular association was slower than any subsequent isomerization events that may be occurring. It should be reemphasized that L191A (as well as L191G and S88A:S189A) does not proceed to the conformational docking step that results in tryptophan fluorescence quenching of wtUDG (Figure
<xref rid="bi026226rf00004"></xref>
). Thus, the kinetic results for L191A binding to PU
<sup>F</sup>
/A measure the observed rate for formation of a metastable extrahelical intermediate that most likely resembles the EF complex in Figure
<xref rid="bi026226rf00001"></xref>
B.
<fig id="bi026226rf00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Stopped-flow fluorescence kinetic studies of DNA association and dissociation from L191A. (A) Approach-to-equilibrium association measurements where 1 μM PU
<sup>F</sup>
/A DNA was mixed with the indicated concentrations of L191A and the 2-AP fluorescence increase was monitored with a 360 nm cutoff filter with excitation at 320 nm. The lines are the fits to a first-order rate equation. (B) Irreversible dissociation of PU
<sup>F</sup>
/A DNA from L191A. A solution of 500 nM PU
<sup>F</sup>
/A DNA and 1 μM L191A was mixed with a 10 μM concentration of an ssAU
<sup>F</sup>
11-mer nonfluorescent DNA trap to prevent reassociation of the enzyme to PU
<sup>F</sup>
/A. The time-dependent decrease in 2-AP fluorescence was measured. (C) Observed rate constants from (A) (○) and (B) (·) against [L191A]. The curve is a best fit to eq 5. The parameters are reported in Table
<xref rid="bi026226rt00002"></xref>
.</p>
</caption>
<graphic xlink:href="bi026226rf00005.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Since the S88A and S189A serine pinching mutants both showed tryptophan fluorescence decreases upon binding AU
<sup>F</sup>
/A (Figure
<xref rid="bi026226rf00003"></xref>
), it was possible to probe the binding kinetics by following 2-AP fluorescence and tryptophan fluorescence. Both of these enzymes bind DNA weakly, and show a lesser increase in 2-AP fluorescence than the wild-type enzyme, which led to very weak signal changes when using the 2-AP assay (Figure
<xref rid="bi026226rf00006"></xref>
A). Nevertheless, the results were reproducible on different days, with different batches of enzyme and DNA, and the approach-to-equilibrium kinetic results were in good or excellent agreement with both the thermodynamic measurements and the irreversible off-rate measurements (Table
<xref rid="bi026226rt00002"></xref>
). In addition, the tryptophan fluorescence measurements were more robust than the 2-AP measurements (compare parts A and B of Figure
<xref rid="bi026226rf00006"></xref>
), and yielded results that were consistent with those obtained using the 2-AP probe. For both the S88A and S189A mutants (Figure
<xref rid="bi026226rf00006"></xref>
C,D), the plots of
<italic toggle="yes">k</italic>
<sub>obsd</sub>
against enzyme concentration were slightly curved when 2-AP fluorescence was followed, but were distinctly hyperbolic when tryptophan fluorescence was monitored. In addition, the observed rate constants were always faster for the 2-AP fluorescence changes as compared to the tryptophan fluorescence changes. These results are reminiscent of wtUDG where the formation of the extrahelical base was more rapid than the conformational change (Figure
<xref rid="bi026226rf00004"></xref>
F), and indicate that the conformational change remains the rate-limiting step for the S88A and S189A mutants. These mutants have 3.5−9-fold slower association rates as compared to wtUDG, showing that these groups play a modest role in facilitating the formation of the extrahelical states (EF and E*F in Figure
<xref rid="bi026226rf00001"></xref>
B). However, the rate of the conformational change that is detected by tryptophan fluorescence with these mutants is not significantly impaired as compared to the wild-type enzyme (Table
<xref rid="bi026226rt00002"></xref>
). Thus, removal of these individual serine side chains does not prevent attainment of the closed conformation as judged by the similar tryptophan fluorescence decreases with wtUDG, nor does it dramatically slow its rate of formation. However, as noted above, removal of
<italic toggle="yes">both</italic>
side chains in the S88A:S189A double mutant abrogates the conformational change entirely, suggesting cooperative action of these groups in the overall process of attaining this final state that immediately precedes glycosidic bond cleavage. Although these data suggest that the serine mutants follow a three-step mechanism for base flipping like wtUDG, the data do not constrain the modeling sufficiently to allow unambiguous assignment of microscopic rate constants. Therefore, in the analysis of these results below we merely compare the apparent rate constants for the 2-AP and tryptophan fluorescence changes with those of wtUDG.
<fig id="bi026226rf00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>Stopped-flow fluorescence kinetic studies of DNA association and dissociation from S189A and S88A. (A) Approach-to-equilibrium association measurements where 200 nM PU
<sup>F</sup>
/A DNA was mixed with the indicated concentrations of S189A and the 2-AP fluorescence increase was monitored with a 360 nm cutoff filter with excitation at 320 nm. The lines are the fits to a first-order rate equation. (B) Approach-to-equilibrium association measurements where 100 nM S189A was mixed with the indicated concentrations of AU
<sup>F</sup>
/A DNA and the tryptophan fluorescence decrease was monitored with a 320 nm cutoff filter with excitation at 290 nm. The lines are fits to a first-order decay rate equation. (C) Observed rate constants from (A) (▵) and (B) (○) against [S189A]. The curve is a best fit to eq 6. The kinetic parameters are reported in Table
<xref rid="bi026226rt00002"></xref>
. (D) Observed rate constants for S88A binding to PU
<sup>F</sup>
/A (▵) and against [AU
<sup>F</sup>
/A] (○). The curve is a best fit to eq 6. </p>
</caption>
<graphic xlink:href="bi026226rf00006.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The N123G and H187G pulling mutations and the D64N control were also investigated using the same kinetic approaches (Tables
<xref rid="bi026226rt00002"></xref>
and
<xref rid="bi026226rt00004"></xref>
). Due to the weak DNA binding by N123G, and the total lack of a tryptophan fluorescence change upon DNA binding, we were unable to determine any kinetic constants for this enzyme. Surprisingly, the kinetic measurements with H187G revealed compensating effects on
<italic toggle="yes">k</italic>
<sub>on</sub>
and
<italic toggle="yes">k</italic>
<sub>off</sub>
(Table
<xref rid="bi026226rt00002"></xref>
). That is, the 5-fold decrease in
<italic toggle="yes">k</italic>
<sub>on</sub>
is offset by a nearly equal decrease in
<italic toggle="yes">k</italic>
<sub>off</sub>
, such that the ratio
<italic toggle="yes">k</italic>
<sub>off</sub>
/
<italic toggle="yes">k</italic>
<sub>on</sub>
is unchanged from that of the wild-type enzyme (Table
<xref rid="bi026226rt00002"></xref>
). Finally, the kinetic studies of D64N indicate that the ∼3-fold smaller
<italic toggle="yes">k</italic>
<sub>off</sub>
/
<italic toggle="yes">k</italic>
<sub>on</sub>
ratio for D64N as compared to wtUDG arises from a 1.3-fold increase in
<italic toggle="yes">k</italic>
<sub>on</sub>
and a 2-fold smaller
<italic toggle="yes">k</italic>
<sub>off</sub>
. These small effects on DNA binding and base flipping are consistent with the primary function of Asp64 in transition-state stabilization. </p>
</sec>
<sec id="d7e2638">
<title>Conclusions</title>
<p>These results allow construction of a temporal pathway for base flipping, and suggest functional roles for the conserved serine, leucine, and asparagine side chains at several steps in the overall process of base flipping (Figure
<xref rid="bi026226rf00007"></xref>
). In this model, which is depicted as a free energy reaction coordinate diagram in Figure
<xref rid="bi026226rf00007"></xref>
, we assign the temporal formation of these interactions as “early” or “late” in the overall process of forming the final extrahelical state (E*F). The early classification includes all ground states and transition states leading to the metastable state where the uracil is extrahelical and the enzyme is in the open conformation (EF). The late classification includes the transition state and ground state for formation of the closed conformation, which can be monitored by tryptophan fluorescence (E*F). The functional implications suggested here by mutagenesis are further supported by the pyrene substrate rescue studies in the following paper (
<italic toggle="yes">
<xref rid="bi026226rb00023" ref-type="bibr"></xref>
</italic>
).
<fig id="bi026226rf00007" position="float" orientation="portrait">
<label>7</label>
<caption>
<p>Free energy reaction coordinate diagram for the temporal action of the serine, leucine, and asparagine groups that are involved in the three-step pinch, push, plug, and pull base-flipping mechanism. The interactions are described loosely as “early” if they are important in the ground states or transition states that precede the formation of the EF intermediate and “late” if they are important in the formation or stabilization of the final docked complex (E*F). The first step involves formation of a weak nonspecific encounter complex (ES), which is rapidly isomerized in the second transition state to the extrahelical state detected by 2-AP fluorescence (EF). Removal of Leu191, Ser88, or Ser189 diminishes the rate of formation of the EF species. The E*F complex is severely destabilized (a late effect) when Leu191 or Asn123 is removed or when
<italic toggle="yes">both</italic>
Ser88 and Ser189 are removed (the long vertical arrow depicts this large destabilization). In addition, the S189A mutation destabilizes the transition state for formation of the E*F state, while the S88A mutation increases the energy of the ground state of the complex. These modest effects are depicted as short vertical arrows. To emphasize the energetic features of the pathway, the diagram is drawn on a roughly linear scale to correspond with the rate constants reported in Table
<xref rid="bi026226rt00003"></xref>
. </p>
</caption>
<graphic xlink:href="bi026226rf00007.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Serine Pinching</italic>
. Deletion of Ser88 or Ser189, which interact with the 5‘ and 3‘ phosphodiester groups of the deoxyuridine nucleotide (Figure
<xref rid="bi026226rf00001"></xref>
A), results in less than a +1.8 kcal/mol effect on the overall binding equilibrium (Table
<xref rid="bi026226rt00004"></xref>
), reflecting perturbations both at early and late steps in the base-flipping pathway (Figure
<xref rid="bi026226rf00007"></xref>
). An early and late role for these pinching interactions is suggested by the effect of the S88A:S189A double mutation, which shows an 11-fold decrease in the rate of formation of the metastable intermediate (an early effect), and a strong destabilization of the closed state reflected in the absence of a tryptophan fluorescence change and a large
<italic toggle="yes">k</italic>
<sub>off</sub>
(late effects). Serine 88 does not appear to form a strong interaction in the apparent transition state for formation of the closed conformation, because its
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>trp</sup>
is similar to that of wtUDG (Table
<xref rid="bi026226rt00002"></xref>
). However, a modest interaction of Ser88 in the ground-state E*F complex is indicated by the 4-fold faster off-rate of S88A as compared to wtUDG, suggesting that E*F is destabilized when the Ser88 side chain is removed (Figure
<xref rid="bi026226rf00007"></xref>
). In contrast, the 2-fold slower
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>trp</sup>
resulting from the removal of Ser189 is most simply accounted for by a transition-state effect rather than a ground-state effect. This conclusion is supported by the observation that the same ∼2-fold damaging effect is seen both in the forward rate of formation of E*F by Ser189A (i.e.,
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>trp</sup>
) and in the reverse direction (i.e.,
<italic toggle="yes">k</italic>
<sub>off</sub>
) (Figure
<xref rid="bi026226rf00007"></xref>
). Most importantly, for both S88A and S189A, the off-rates measured using tryptophan fluorescence are equal to or slower than the values measured using the 2-AP probe. Thus, as observed for wtUDG, the reverse conformational change is still the rate-limiting step, and not the reverse flipping or DNA dissociation steps. </p>
<p>
<italic toggle="yes">Leucine Pushing and Plugging</italic>
. An early and late role for Leu191 is also suggested. Removal of this side chain destabilizes the closed conformation such that no tryptophan fluorescence changes can be detected, requiring a late role for Leu191 in stabilizing the E*F complex and perhaps in accelerating its formation. Since the major bound DNA form with the Leu191 mutants is the open EF complex, the 8- and 16-fold smaller
<italic toggle="yes">k</italic>
<sub>on</sub>
values for these enzymes must reflect the removal of important interactions of this side chain that occur in the early steps of the base-flipping reaction. An early and late role is also consistent with our previous pyrene rescue studies where we suggested that Leu191 pushed the uracil base in the early stages of the base-flipping process, and later served a plugging role to increase the lifetime of the base in the active site pocket (
<italic toggle="yes">
<xref rid="bi026226rb00007" ref-type="bibr"></xref>
</italic>
). The pyrene rescue results reported in the following paper (
<italic toggle="yes">
<xref rid="bi026226rb00023" ref-type="bibr"></xref>
</italic>
) further support an early and late role for Leu191. </p>
<p>
<italic toggle="yes">Pulling by Asn123 and His187</italic>
. Of these two putative pulling groups, only the removal of Asn123 shows a strong damaging effect on base flipping. Although we were not able to measure the binding kinetics with N123G, the weak binding and the absence of a tryptophan fluorescence change suggest that this Asn123 interacts late in the base-flipping process, although an additional early role cannot be excluded. The enormous 2-AP fluorescence increase upon N123G binding is so large it suggests that the removal of Asn123 may have carved out a hole in the base binding pocket that is large enough to allow partial or complete flipping of the 2-AP probe or, alternatively, that the DNA conformation is perturbed such that the 2-AP base becomes significantly more unstacked with its neighboring bases in the complex with N123G. The former explanation is intriguing because it implies that UDG could flip other bases, if the active site were sterically compatible. This is clearly possible because UDG mutants that act on cytidine and thymidine nucleotides have been reported. However, there is no evidence that wtUDG can flip any other base into the active site pocket due to the strict steric constraints and optimized hydrogen-bonding groups that are specific for uracil (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi026226rb00002" ref-type="bibr"></xref>
,
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>The 5-fold smaller
<italic toggle="yes">k</italic>
<sub>on</sub>
for the H187G mutant may indicate an early or late role for this group, but removal of His187 has no large effect on the stability of the flipped-out base or that of the closed conformation. The observed effects of His187 on base flipping may arise from its interaction with uracil O2, and/or the short hydrogen bond between its backbone amide and the DNA phosphodiester backbone. These small effects on base flipping further highlight the primary role of His187 in transition-state stabilization (
<italic toggle="yes">
<xref rid="bi026226rb00029" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Summary</italic>
. The mutational studies performed here provide strong support for the stepwise nature of the base-flipping process by UDG that involves both an early destabilization of the DNA duplex, resulting in a metastable extrahelical state (EF, Figure
<xref rid="bi026226rf00007"></xref>
), and a late conformational change in the enzyme that allows positioning of active site groups around the extrahelical base (E*F). This gating step is not detected with nonspecific DNA (
<italic toggle="yes">
<xref rid="bi026226rb00010" ref-type="bibr"></xref>
</italic>
), and is abrogated by the removal of the Leu191 pushing and plugging group or the Asn123 pulling residue or when both of the hydroxyl side chains of the serine pinching groups are deleted (Figure
<xref rid="bi026226rf00007"></xref>
). The uncoupling of the early and late steps in base flipping by mutagenesis has allowed assignment of the interactions of these side chains in the apparent transition states and ground states in both steps of the reaction. Remarkably, the substrate rescue studies that are described in the following paper show how the early and late effects can be fully rescued by a substrate that contains a pyrene nucleotide wedge (
<italic toggle="yes">
<xref rid="bi026226rb00023" ref-type="bibr"></xref>
</italic>
). </p>
</sec>
</body>
<back>
<notes notes-type="si">
<sec id="d7e2745">
<title>
<ext-link xlink:href="/doi/suppl/10.1021%2Fbi026226r">Supporting Information Available</ext-link>
</title>
<p>Kinetic simulations of the stopped-flow kinetic traces in Figure
<xref rid="bi026226rf00004"></xref>
A,B,E,F and the associated Dynafit script files. This material is available free of charge via the Internet at
<uri xlink:href="http://pubs.acs.org">http://pubs.acs.org</uri>
. </p>
</sec>
</notes>
<ref-list>
<title>References</title>
<ref id="bi026226rb00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Klimasauskas</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Roberts</surname>
<given-names>R. J.</given-names>
</name>
<name name-style="western">
<surname>Cheng</surname>
<given-names>X.</given-names>
</name>
<source>Cell</source>
<year>1994</year>
<volume>76</volume>
<fpage>357</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90342-5</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Parikh</surname>
<given-names>S. S.</given-names>
</name>
<name name-style="western">
<surname>Mol</surname>
<given-names>C. D.</given-names>
</name>
<name name-style="western">
<surname>Slupphaug</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Bharati</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Krokan</surname>
<given-names>H. E.</given-names>
</name>
<name name-style="western">
<surname>Tainer</surname>
<given-names>J. A.</given-names>
</name>
<source>EMBO. J.</source>
<year>1998</year>
<volume>17</volume>
<fpage>5214</fpage>
<lpage>5226</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/17.17.5214</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lau</surname>
<given-names>A. Y.</given-names>
</name>
<name name-style="western">
<surname>Wyatt</surname>
<given-names>M. D.</given-names>
</name>
<name name-style="western">
<surname>Glassner</surname>
<given-names>B. J.</given-names>
</name>
<name name-style="western">
<surname>Samson</surname>
<given-names>L. D.</given-names>
</name>
<name name-style="western">
<surname>Ellenberger</surname>
<given-names>T.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>2000</year>
<volume>97</volume>
<fpage>13573</fpage>
<lpage>13578</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.97.25.13573</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Barrett</surname>
<given-names>T. E.</given-names>
</name>
<name name-style="western">
<surname>Scharer</surname>
<given-names>O. D.</given-names>
</name>
<name name-style="western">
<surname>Savva</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Brown</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Jiricny</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Verdine</surname>
<given-names>G. L.</given-names>
</name>
<name name-style="western">
<surname>Pearl</surname>
<given-names>L. H.</given-names>
</name>
<source>Embo J.</source>
<year>1999</year>
<volume>18</volume>
<fpage>6599</fpage>
<lpage>6609</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/18.23.6599</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bruner</surname>
<given-names>S. D.</given-names>
</name>
<name name-style="western">
<surname>Norman</surname>
<given-names>D. P.</given-names>
</name>
<name name-style="western">
<surname>Verdine</surname>
<given-names>G. L.</given-names>
</name>
<source>Nature</source>
<year>2000</year>
<volume>403</volume>
<fpage>859</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="doi">10.1038/35002510</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Parikh</surname>
<given-names>S. S.</given-names>
</name>
<name name-style="western">
<surname>Walcher</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Jones</surname>
<given-names>G. D.</given-names>
</name>
<name name-style="western">
<surname>Slupphaug</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Krokan</surname>
<given-names>H. E.</given-names>
</name>
<name name-style="western">
<surname>Blackburn</surname>
<given-names>G. M.</given-names>
</name>
<name name-style="western">
<surname>Tainer</surname>
<given-names>J. A.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>2000</year>
<volume>97</volume>
<fpage>5083</fpage>
<lpage>5088</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.97.10.5083</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jiang</surname>
<given-names>Y. L.</given-names>
</name>
<name name-style="western">
<surname>Kwon</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>42347</fpage>
<lpage>42354</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M106594200</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Handa</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Roy</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Varshney</surname>
<given-names>U.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>17324</fpage>
<lpage>17331</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M011166200</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Slupphaug</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Mol</surname>
<given-names>C. D.</given-names>
</name>
<name name-style="western">
<surname>Kavli</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Arvai</surname>
<given-names>A. S.</given-names>
</name>
<name name-style="western">
<surname>Krokan</surname>
<given-names>H. E.</given-names>
</name>
<name name-style="western">
<surname>Tainer</surname>
<given-names>J. A.</given-names>
</name>
<source>Nature</source>
<year>1996</year>
<volume>384</volume>
<fpage>87</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1038/384087a0</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Pankiewicz</surname>
<given-names>K. W.</given-names>
</name>
<name name-style="western">
<surname>Watanabe</surname>
<given-names>K. A.</given-names>
</name>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>952</fpage>
<lpage>963</lpage>
<pub-id pub-id-type="doi">10.1021/bi9818669</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1998</year>
<volume>26</volume>
<fpage>3837</fpage>
<lpage>3844</lpage>
<pub-id pub-id-type="doi">10.1093/nar/26.16.3837</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Dong</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Pankiewicz</surname>
<given-names>K. W.</given-names>
</name>
<name name-style="western">
<surname>Carey</surname>
<given-names>P. R.</given-names>
</name>
<source>Biochemistry</source>
<year>2000</year>
<volume>39</volume>
<fpage>13241</fpage>
<pub-id pub-id-type="doi">10.1021/bi001437m</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Xiao</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Tordova</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Jagadeesh</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Gilliland</surname>
<given-names>G. L.</given-names>
</name>
<source>Proteins</source>
<year>1999</year>
<volume>35</volume>
<fpage>13</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0134(19990401)35:1%3C13::AID-PROT2%3E3.0.CO;2-2</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Werner</surname>
<given-names>R. M.</given-names>
</name>
<name name-style="western">
<surname>Jiang</surname>
<given-names>Y. L.</given-names>
</name>
<name name-style="western">
<surname>Gordley</surname>
<given-names>R. G.</given-names>
</name>
<name name-style="western">
<surname>Jagadeesh</surname>
<given-names>G. J.</given-names>
</name>
<name name-style="western">
<surname>Ladner</surname>
<given-names>J. E.</given-names>
</name>
<name name-style="western">
<surname>Xiao</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Tordova</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Gilliland</surname>
<given-names>G. L.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>2000</year>
<volume>39</volume>
<fpage>12585</fpage>
<lpage>12594</lpage>
<pub-id pub-id-type="doi">10.1021/bi001532v</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Jagadeesh</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Ferguson</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>11866</fpage>
<lpage>11875</lpage>
<pub-id pub-id-type="doi">10.1021/bi9910878</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Xiao</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Tordova</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Jagadeesh</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Pankiewicz</surname>
<given-names>K. W.</given-names>
</name>
<name name-style="western">
<surname>Watanabe</surname>
<given-names>K. A.</given-names>
</name>
<name name-style="western">
<surname>Gilliland</surname>
<given-names>G. L.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>11876</fpage>
<lpage>11886</lpage>
<pub-id pub-id-type="doi">10.1021/bi9910880</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>2000</year>
<volume>39</volume>
<fpage>11865</fpage>
<lpage>11875</lpage>
<pub-id pub-id-type="doi">10.1021/bi000922e</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>J. Am. Chem. Soc.</source>
<year>2000</year>
<fpage>1840</fpage>
<lpage>1841</lpage>
<pub-id pub-id-type="doi">10.1021/ja993254x</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wong</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Lundquist</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Bernards</surname>
<given-names>A. S.</given-names>
</name>
<name name-style="western">
<surname>Mosbaugh</surname>
<given-names>D. W.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>20</volume>
<fpage>20</fpage>
</element-citation>
</ref>
<ref id="bi026226rb00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Jagadeesh</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Ferguson</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>11866</fpage>
<lpage>11875</lpage>
<pub-id pub-id-type="doi">10.1021/bi9910878</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
<source>Enzymes</source>
<year>1992</year>
<volume>20</volume>
<fpage>1</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/S1874-6047(08)60019-0</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kuzmic</surname>
<given-names>P.</given-names>
</name>
<source>Anal. Biochem.</source>
<year>1996</year>
<volume>237</volume>
<fpage>260</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="doi">10.1006/abio.1996.0238</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jiang</surname>
<given-names>Y. L.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Song</surname>
<given-names>F.</given-names>
</name>
<source>Biochemistry</source>
<year>2002</year>
<volume>41</volume>
<fpage>11248</fpage>
<lpage>11254</lpage>
<pub-id pub-id-type="doi">10.1021/bi026227j</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jiang</surname>
<given-names>Y. L.</given-names>
</name>
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Ichikawa</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>15385</fpage>
<lpage>15392</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M200634200</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jiang</surname>
<given-names>Y. L.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>2001</year>
<volume>40</volume>
<fpage>7710</fpage>
<lpage>7719</lpage>
<pub-id pub-id-type="doi">10.1021/bi010622c</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Xiao</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Tordova</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Jagadeesh</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Pankiewicz</surname>
<given-names>K. W.</given-names>
</name>
<name name-style="western">
<surname>Watanabe</surname>
<given-names>K. A.</given-names>
</name>
<name name-style="western">
<surname>Gilliland</surname>
<given-names>G. L.</given-names>
</name>
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>11876</fpage>
<lpage>11886</lpage>
<pub-id pub-id-type="doi">10.1021/bi9910880</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Eftedal</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Guddal</surname>
<given-names>P. H.</given-names>
</name>
<name name-style="western">
<surname>Slupphaug</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Volden</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Krokan</surname>
<given-names>H. E.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1993</year>
<volume>21</volume>
<fpage>2095</fpage>
<lpage>2101</lpage>
<pub-id pub-id-type="doi">10.1093/nar/21.9.2095</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bellamy</surname>
<given-names>S. R.</given-names>
</name>
<name name-style="western">
<surname>Baldwin</surname>
<given-names>G. S.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>2001</year>
<volume>29</volume>
<fpage>3857</fpage>
<lpage>3863</lpage>
<pub-id pub-id-type="doi">10.1093/nar/29.18.3857</pub-id>
</element-citation>
</ref>
<ref id="bi026226rb00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stivers</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Drohat</surname>
<given-names>A. C.</given-names>
</name>
<source>Arch. Biochem. Biophys.</source>
<year>2001</year>
<volume>396</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1006/abbi.2001.2605</pub-id>
</element-citation>
</ref>
<ref id="bi026226rn00001">
<mixed-citation>
<comment>Abbreviations:  wtUDG, wild-type uracil DNA glycosylase; 2‘-FU, 2‘-fluoro-2‘-deoxyuridine; 2-AP, 2-aminopurine;
<italic toggle="yes"> k</italic>
<sub>max</sub>
<sup>trp</sup>
, the maximal rate constant in eq 6 for the tryptophan fluorescence change of UDG;
<italic toggle="yes">k</italic>
<sub>max</sub>
<sup>2-AP</sup>
, the maximal rate constant in eq 6 for the 2-AP fluorescence change of the DNA.</comment>
</mixed-citation>
</ref>
<ref id="bi026226rn00002">
<mixed-citation>
<comment>The effects of these mutations on the steady-state kinetic parameters of UDG have also been measured and will be reported elsewhere (Jiang and Stivers, manuscript in preparation).</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†</title>
</titleInfo>
<name type="personal">
<namePart type="family">JIANG</namePart>
<namePart type="given">Yu Lin</namePart>
<affiliation>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">STIVERS</namePart>
<namePart type="given">James T.</namePart>
<affiliation>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine,725 North Wolfe Street, Baltimore, Maryland 21205-2185</affiliation>
<affiliation> To whom correspondence should be addressed:  Phone:  (410) 502-2758. Fax:  (410) 955-3023. E-mail:  jstivers@jhmi.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2002-08-23</dateCreated>
<dateIssued encoding="w3cdtf">2002-09-17</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<note type="footnote" ID="bi026226rAF2"> Supported by NIH Grant RO1GM56834 (to J.T.S.).</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the “pinch, push, plug, and pull” base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952−963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.</abstract>
<note type="footnote" ID="bi026226rAF2"> Supported by NIH Grant RO1GM56834 (to J.T.S.).</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>11236</start>
<end>11247</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00001" displayLabel="bibbi026226rb00001">
<name type="personal">
<namePart type="family">KLIMASAUSKAS</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KUMAR</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">ROBERTS</namePart>
<namePart type="given">R. J.</namePart>
</name>
<name type="personal">
<namePart type="family">CHENG</namePart>
<namePart type="given">X.</namePart>
</name>
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Klimasauskas S. Kumar S. Roberts R. J. Cheng X. Cell 1994 76 357 369 10.1016/0092-8674(94)90342-5</note>
<identifier type="doi">10.1016/0092-8674(94)90342-5</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>76</number>
</detail>
<extent unit="pages">
<start>357</start>
<end>369</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00002" displayLabel="bibbi026226rb00002">
<name type="personal">
<namePart type="family">PARIKH</namePart>
<namePart type="given">S. S.</namePart>
</name>
<name type="personal">
<namePart type="family">MOL</namePart>
<namePart type="given">C. D.</namePart>
</name>
<name type="personal">
<namePart type="family">SLUPPHAUG</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">BHARATI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KROKAN</namePart>
<namePart type="given">H. E.</namePart>
</name>
<name type="personal">
<namePart type="family">TAINER</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>EMBO. J.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Parikh S. S. Mol C. D. Slupphaug G. Bharati S. Krokan H. E. Tainer J. A. EMBO. J. 1998 17 5214 5226 10.1093/emboj/17.17.5214</note>
<identifier type="doi">10.1093/emboj/17.17.5214</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>5214</start>
<end>5226</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00003" displayLabel="bibbi026226rb00003">
<name type="personal">
<namePart type="family">LAU</namePart>
<namePart type="given">A. Y.</namePart>
</name>
<name type="personal">
<namePart type="family">WYATT</namePart>
<namePart type="given">M. D.</namePart>
</name>
<name type="personal">
<namePart type="family">GLASSNER</namePart>
<namePart type="given">B. J.</namePart>
</name>
<name type="personal">
<namePart type="family">SAMSON</namePart>
<namePart type="given">L. D.</namePart>
</name>
<name type="personal">
<namePart type="family">ELLENBERGER</namePart>
<namePart type="given">T.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Lau A. Y. Wyatt M. D. Glassner B. J. Samson L. D. Ellenberger T. Proc. Natl. Acad. Sci. U.S.A. 2000 97 13573 13578 10.1073/pnas.97.25.13573</note>
<identifier type="doi">10.1073/pnas.97.25.13573</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>97</number>
</detail>
<extent unit="pages">
<start>13573</start>
<end>13578</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00004" displayLabel="bibbi026226rb00004">
<name type="personal">
<namePart type="family">BARRETT</namePart>
<namePart type="given">T. E.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHARER</namePart>
<namePart type="given">O. D.</namePart>
</name>
<name type="personal">
<namePart type="family">SAVVA</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">JIRICNY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">VERDINE</namePart>
<namePart type="given">G. L.</namePart>
</name>
<name type="personal">
<namePart type="family">PEARL</namePart>
<namePart type="given">L. H.</namePart>
</name>
<titleInfo>
<title>Embo J.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Barrett T. E. Scharer O. D. Savva R. Brown T. Jiricny J. Verdine G. L. Pearl L. H. Embo J. 1999 18 6599 6609 10.1093/emboj/18.23.6599</note>
<identifier type="doi">10.1093/emboj/18.23.6599</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>6599</start>
<end>6609</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00005" displayLabel="bibbi026226rb00005">
<name type="personal">
<namePart type="family">BRUNER</namePart>
<namePart type="given">S. D.</namePart>
</name>
<name type="personal">
<namePart type="family">NORMAN</namePart>
<namePart type="given">D. P.</namePart>
</name>
<name type="personal">
<namePart type="family">VERDINE</namePart>
<namePart type="given">G. L.</namePart>
</name>
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Bruner S. D. Norman D. P. Verdine G. L. Nature 2000 403 859 866 10.1038/35002510</note>
<identifier type="doi">10.1038/35002510</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>403</number>
</detail>
<extent unit="pages">
<start>859</start>
<end>866</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00006" displayLabel="bibbi026226rb00006">
<name type="personal">
<namePart type="family">PARIKH</namePart>
<namePart type="given">S. S.</namePart>
</name>
<name type="personal">
<namePart type="family">WALCHER</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">JONES</namePart>
<namePart type="given">G. D.</namePart>
</name>
<name type="personal">
<namePart type="family">SLUPPHAUG</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">KROKAN</namePart>
<namePart type="given">H. E.</namePart>
</name>
<name type="personal">
<namePart type="family">BLACKBURN</namePart>
<namePart type="given">G. M.</namePart>
</name>
<name type="personal">
<namePart type="family">TAINER</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Parikh S. S. Walcher G. Jones G. D. Slupphaug G. Krokan H. E. Blackburn G. M. Tainer J. A. Proc. Natl. Acad. Sci. U.S.A. 2000 97 5083 5088 10.1073/pnas.97.10.5083</note>
<identifier type="doi">10.1073/pnas.97.10.5083</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>97</number>
</detail>
<extent unit="pages">
<start>5083</start>
<end>5088</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00007" displayLabel="bibbi026226rb00007">
<name type="personal">
<namePart type="family">JIANG</namePart>
<namePart type="given">Y. L.</namePart>
</name>
<name type="personal">
<namePart type="family">KWON</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Jiang Y. L. Kwon K. Stivers J. T. J. Biol. Chem. 2001 276 42347 42354 10.1074/jbc.M106594200</note>
<identifier type="doi">10.1074/jbc.M106594200</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>276</number>
</detail>
<extent unit="pages">
<start>42347</start>
<end>42354</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00008" displayLabel="bibbi026226rb00008">
<name type="personal">
<namePart type="family">HANDA</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">ROY</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">VARSHNEY</namePart>
<namePart type="given">U.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Handa P. Roy S. Varshney U. J. Biol. Chem. 2001 276 17324 17331 10.1074/jbc.M011166200</note>
<identifier type="doi">10.1074/jbc.M011166200</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>276</number>
</detail>
<extent unit="pages">
<start>17324</start>
<end>17331</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00009" displayLabel="bibbi026226rb00009">
<name type="personal">
<namePart type="family">SLUPPHAUG</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">MOL</namePart>
<namePart type="given">C. D.</namePart>
</name>
<name type="personal">
<namePart type="family">KAVLI</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">ARVAI</namePart>
<namePart type="given">A. S.</namePart>
</name>
<name type="personal">
<namePart type="family">KROKAN</namePart>
<namePart type="given">H. E.</namePart>
</name>
<name type="personal">
<namePart type="family">TAINER</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Slupphaug G. Mol C. D. Kavli B. Arvai A. S. Krokan H. E. Tainer J. A. Nature 1996 384 87 92 10.1038/384087a0</note>
<identifier type="doi">10.1038/384087a0</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>384</number>
</detail>
<extent unit="pages">
<start>87</start>
<end>92</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00010" displayLabel="bibbi026226rb00010">
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">PANKIEWICZ</namePart>
<namePart type="given">K. W.</namePart>
</name>
<name type="personal">
<namePart type="family">WATANABE</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Stivers J. T. Pankiewicz K. W. Watanabe K. A. Biochemistry 1999 38 952 963 10.1021/bi9818669</note>
<identifier type="doi">10.1021/bi9818669</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>952</start>
<end>963</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00011" displayLabel="bibbi026226rb00011">
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Stivers J. T. Nucleic Acids Res. 1998 26 3837 3844 10.1093/nar/26.16.3837</note>
<identifier type="doi">10.1093/nar/26.16.3837</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>26</number>
</detail>
<extent unit="pages">
<start>3837</start>
<end>3844</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00012" displayLabel="bibbi026226rb00012">
<name type="personal">
<namePart type="family">DONG</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">PANKIEWICZ</namePart>
<namePart type="given">K. W.</namePart>
</name>
<name type="personal">
<namePart type="family">CAREY</namePart>
<namePart type="given">P. R.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Dong J. Drohat A. C. Stivers J. T. Pankiewicz K. W. Carey P. R. Biochemistry 2000 39 13241 10.1021/bi001437m</note>
<identifier type="doi">10.1021/bi001437m</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>13241</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00013" displayLabel="bibbi026226rb00013">
<name type="personal">
<namePart type="family">XIAO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">TORDOVA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGADEESH</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">GILLILAND</namePart>
<namePart type="given">G. L.</namePart>
</name>
<titleInfo>
<title>Proteins</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Xiao G. Tordova M. Jagadeesh J. Drohat A. C. Stivers J. T. Gilliland G. L. Proteins 1999 35 13 24 10.1002/(SICI)1097-0134(19990401)35:1%3C13::AID-PROT2%3E3.0.CO;2-2</note>
<identifier type="doi">10.1002/(SICI)1097-0134(19990401)35:1%3C13::AID-PROT2%3E3.0.CO;2-2</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>13</start>
<end>24</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00014" displayLabel="bibbi026226rb00014">
<name type="personal">
<namePart type="family">WERNER</namePart>
<namePart type="given">R. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JIANG</namePart>
<namePart type="given">Y. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GORDLEY</namePart>
<namePart type="given">R. G.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGADEESH</namePart>
<namePart type="given">G. J.</namePart>
</name>
<name type="personal">
<namePart type="family">LADNER</namePart>
<namePart type="given">J. E.</namePart>
</name>
<name type="personal">
<namePart type="family">XIAO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">TORDOVA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GILLILAND</namePart>
<namePart type="given">G. L.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Werner R. M. Jiang Y. L. Gordley R. G. Jagadeesh G. J. Ladner J. E. Xiao G. Tordova M. Gilliland G. L. Stivers J. T. Biochemistry 2000 39 12585 12594 10.1021/bi001532v</note>
<identifier type="doi">10.1021/bi001532v</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>12585</start>
<end>12594</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00015" displayLabel="bibbi026226rb00015">
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGADEESH</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">FERGUSON</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Drohat A. C. Jagadeesh J. Ferguson E. Stivers J. T. Biochemistry 1999 38 11866 11875 10.1021/bi9910878</note>
<identifier type="doi">10.1021/bi9910878</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>11866</start>
<end>11875</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00016" displayLabel="bibbi026226rb00016">
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">XIAO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">TORDOVA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGADEESH</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">PANKIEWICZ</namePart>
<namePart type="given">K. W.</namePart>
</name>
<name type="personal">
<namePart type="family">WATANABE</namePart>
<namePart type="given">K. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GILLILAND</namePart>
<namePart type="given">G. L.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Drohat A. C. Xiao G. Tordova M. Jagadeesh J. Pankiewicz K. W. Watanabe K. A. Gilliland G. L. Stivers J. T. Biochemistry 1999 38 11876 11886 10.1021/bi9910880</note>
<identifier type="doi">10.1021/bi9910880</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>11876</start>
<end>11886</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00017" displayLabel="bibbi026226rb00017">
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Drohat A. C. Stivers J. T. Biochemistry 2000 39 11865 11875 10.1021/bi000922e</note>
<identifier type="doi">10.1021/bi000922e</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>11865</start>
<end>11875</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00018" displayLabel="bibbi026226rb00018">
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Drohat A. C. Stivers J. T. J. Am. Chem. Soc. 2000 1840 1841 10.1021/ja993254x</note>
<identifier type="doi">10.1021/ja993254x</identifier>
<part>
<date>2000</date>
<extent unit="pages">
<start>1840</start>
<end>1841</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00019" displayLabel="bibbi026226rb00019">
<name type="personal">
<namePart type="family">WONG</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">LUNDQUIST</namePart>
<namePart type="given">A. J.</namePart>
</name>
<name type="personal">
<namePart type="family">BERNARDS</namePart>
<namePart type="given">A. S.</namePart>
</name>
<name type="personal">
<namePart type="family">MOSBAUGH</namePart>
<namePart type="given">D. W.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wong I. Lundquist A. J. Bernards A. S. Mosbaugh D. W. J. Biol. Chem. 2002 20 20</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>20</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00020" displayLabel="bibbi026226rb00020">
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGADEESH</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">FERGUSON</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Drohat A. C. Jagadeesh J. Ferguson E. Stivers J. T. Biochemistry 1999 38 11866 11875 10.1021/bi9910878</note>
<identifier type="doi">10.1021/bi9910878</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>11866</start>
<end>11875</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00021" displayLabel="bibbi026226rb00021">
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Enzymes</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Johnson K. A. Enzymes 1992 20 1 61 10.1016/S1874-6047(08)60019-0</note>
<identifier type="doi">10.1016/S1874-6047(08)60019-0</identifier>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>61</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00022" displayLabel="bibbi026226rb00022">
<name type="personal">
<namePart type="family">KUZMIC</namePart>
<namePart type="given">P.</namePart>
</name>
<titleInfo>
<title>Anal. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Kuzmic P. Anal. Biochem. 1996 237 260 273 10.1006/abio.1996.0238</note>
<identifier type="doi">10.1006/abio.1996.0238</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>237</number>
</detail>
<extent unit="pages">
<start>260</start>
<end>273</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00023" displayLabel="bibbi026226rb00023">
<name type="personal">
<namePart type="family">JIANG</namePart>
<namePart type="given">Y. L.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">SONG</namePart>
<namePart type="given">F.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Jiang Y. L. Stivers J. T. Song F. Biochemistry 2002 41 11248 11254 10.1021/bi026227j</note>
<identifier type="doi">10.1021/bi026227j</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<extent unit="pages">
<start>11248</start>
<end>11254</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00024" displayLabel="bibbi026226rb00024">
<name type="personal">
<namePart type="family">JIANG</namePart>
<namePart type="given">Y. L.</namePart>
</name>
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">ICHIKAWA</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Jiang Y. L. Drohat A. C. Ichikawa Y. Stivers J. T. J. Biol. Chem. 2002 277 15385 15392 10.1074/jbc.M200634200</note>
<identifier type="doi">10.1074/jbc.M200634200</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>277</number>
</detail>
<extent unit="pages">
<start>15385</start>
<end>15392</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00025" displayLabel="bibbi026226rb00025">
<name type="personal">
<namePart type="family">JIANG</namePart>
<namePart type="given">Y. L.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Jiang Y. L. Stivers J. T. Biochemistry 2001 40 7710 7719 10.1021/bi010622c</note>
<identifier type="doi">10.1021/bi010622c</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>40</number>
</detail>
<extent unit="pages">
<start>7710</start>
<end>7719</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00026" displayLabel="bibbi026226rb00026">
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">XIAO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">TORDOVA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGADEESH</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">PANKIEWICZ</namePart>
<namePart type="given">K. W.</namePart>
</name>
<name type="personal">
<namePart type="family">WATANABE</namePart>
<namePart type="given">K. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GILLILAND</namePart>
<namePart type="given">G. L.</namePart>
</name>
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Drohat A. C. Xiao G. Tordova M. Jagadeesh J. Pankiewicz K. W. Watanabe K. A. Gilliland G. L. Stivers J. T. Biochemistry 1999 38 11876 11886 10.1021/bi9910880</note>
<identifier type="doi">10.1021/bi9910880</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>11876</start>
<end>11886</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00027" displayLabel="bibbi026226rb00027">
<name type="personal">
<namePart type="family">EFTEDAL</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">GUDDAL</namePart>
<namePart type="given">P. H.</namePart>
</name>
<name type="personal">
<namePart type="family">SLUPPHAUG</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">VOLDEN</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">KROKAN</namePart>
<namePart type="given">H. E.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Eftedal I. Guddal P. H. Slupphaug G. Volden G. Krokan H. E. Nucleic Acids Res. 1993 21 2095 2101 10.1093/nar/21.9.2095</note>
<identifier type="doi">10.1093/nar/21.9.2095</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>2095</start>
<end>2101</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00028" displayLabel="bibbi026226rb00028">
<name type="personal">
<namePart type="family">BELLAMY</namePart>
<namePart type="given">S. R.</namePart>
</name>
<name type="personal">
<namePart type="family">BALDWIN</namePart>
<namePart type="given">G. S.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Bellamy S. R. Baldwin G. S. Nucleic Acids Res. 2001 29 3857 3863 10.1093/nar/29.18.3857</note>
<identifier type="doi">10.1093/nar/29.18.3857</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>3857</start>
<end>3863</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rb00029" displayLabel="bibbi026226rb00029">
<name type="personal">
<namePart type="family">STIVERS</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">DROHAT</namePart>
<namePart type="given">A. C.</namePart>
</name>
<titleInfo>
<title>Arch. Biochem. Biophys.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Stivers J. T. Drohat A. C. Arch. Biochem. Biophys. 2001 396 1 9 10.1006/abbi.2001.2605</note>
<identifier type="doi">10.1006/abbi.2001.2605</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>396</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>9</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi026226rn00001" displayLabel="bibbi026226rn00001">
<titleInfo>
<title>Abbreviations:  wtUDG, wild-type uracil DNA glycosylase; 2‘-FU, 2‘-fluoro-2‘-deoxyuridine; 2-AP, 2-aminopurine;kmaxtrp, the maximal rate constant in eq 6 for the tryptophan fluorescence change of UDG;kmax2-AP, the maximal rate constant in eq 6 for the 2-AP fluorescence change of the DNA.</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  wtUDG, wild-type uracil DNA glycosylase; 2‘-FU, 2‘-fluoro-2‘-deoxyuridine; 2-AP, 2-aminopurine; kmaxtrp, the maximal rate constant in eq 6 for the tryptophan fluorescence change of UDG; kmax2-AP, the maximal rate constant in eq 6 for the 2-AP fluorescence change of the DNA.</note>
</relatedItem>
<relatedItem type="references" ID="bi026226rn00002" displayLabel="bibbi026226rn00002">
<titleInfo>
<title>The effects of these mutations on the steady-state kinetic parameters of UDG have also been measured and will be reported elsewhere (Jiang and Stivers, manuscript in preparation).</title>
</titleInfo>
<note type="content-in-line">The effects of these mutations on the steady-state kinetic parameters of UDG have also been measured and will be reported elsewhere (Jiang and Stivers, manuscript in preparation).</note>
</relatedItem>
<identifier type="istex">169EFB7AE2312B134544780300F313FC2A4D6E42</identifier>
<identifier type="ark">ark:/67375/TPS-1R2NQZG3-D</identifier>
<identifier type="DOI">10.1021/bi026226r</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2002 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-1R2NQZG3-D/annexes.gif</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/169EFB7AE2312B134544780300F313FC2A4D6E42/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:169EFB7AE2312B134544780300F313FC2A4D6E42
   |texte=   Mutational Analysis of the Base-Flipping Mechanism of Uracil DNA Glycosylase†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021