Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design and characterization of decoy oligonucleotides containing locked nucleic acids

Identifieur interne : 001D58 ( Istex/Corpus ); précédent : 001D57; suivant : 001D59

Design and characterization of decoy oligonucleotides containing locked nucleic acids

Auteurs : Rita Crinelli ; Marzia Bianchi ; Lucia Gentilini ; Mauro Magnani

Source :

RBID : ISTEX:79BD31A517319682D2019475E79F5CADA57129EF

Abstract

Transfection of cis-element double-stranded oligonucleotides, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy. However, one of the major limitations of the decoy approach is the rapid degradation of phosphodiester oligonucleotides by intracellular nucleases. To date, several DNA analogs have been employed to overcome this issue, but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this paper we have investigated the use of conformationally restricted nucleotides in the design of decoy molecules for nuclear transcription factor κB (NF-κB). Starting from a synthetic double-stranded oligonucleotide, containing the κB consensus binding sequence, we designed a panel of decoy molecules modified to various extents and at various positions with locked nucleic acids (LNAs). Our results indicate that the addition of terminal LNA bases, outside the κB sequence, to generate LNA–DNA–LNA co-polymers was sufficient to confer appreciable protection towards nuclease digestion, without interfering with transcription factor binding. Conversely, insertion of LNA substitutions in the context of the κB-binding site resulted in further increased stability, but caused a loss of affinity of NF-κB for the target sequence. However, our results also indicate that this latter effect was apparently dependent not only on the extent but also on strand positioning of the internal LNA substitutions. This observation is of great importance since it provides evidence for the possibility of tuning DNA–LNA duplexes with internal LNAs into decoy agents with improved features in terms of biological stability and inhibitory effect.

Url:
DOI: 10.1093/nar/30.11.2435

Links to Exploration step

ISTEX:79BD31A517319682D2019475E79F5CADA57129EF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
<author>
<name sortKey="Crinelli, Rita" sort="Crinelli, Rita" uniqKey="Crinelli R" first="Rita" last="Crinelli">Rita Crinelli</name>
</author>
<author>
<name sortKey="Bianchi, Marzia" sort="Bianchi, Marzia" uniqKey="Bianchi M" first="Marzia" last="Bianchi">Marzia Bianchi</name>
</author>
<author>
<name sortKey="Gentilini, Lucia" sort="Gentilini, Lucia" uniqKey="Gentilini L" first="Lucia" last="Gentilini">Lucia Gentilini</name>
</author>
<author>
<name sortKey="Magnani, Mauro" sort="Magnani, Mauro" uniqKey="Magnani M" first="Mauro" last="Magnani">Mauro Magnani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:79BD31A517319682D2019475E79F5CADA57129EF</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1093/nar/30.11.2435</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D58</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
<author>
<name sortKey="Crinelli, Rita" sort="Crinelli, Rita" uniqKey="Crinelli R" first="Rita" last="Crinelli">Rita Crinelli</name>
</author>
<author>
<name sortKey="Bianchi, Marzia" sort="Bianchi, Marzia" uniqKey="Bianchi M" first="Marzia" last="Bianchi">Marzia Bianchi</name>
</author>
<author>
<name sortKey="Gentilini, Lucia" sort="Gentilini, Lucia" uniqKey="Gentilini L" first="Lucia" last="Gentilini">Lucia Gentilini</name>
</author>
<author>
<name sortKey="Magnani, Mauro" sort="Magnani, Mauro" uniqKey="Magnani M" first="Mauro" last="Magnani">Mauro Magnani</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Nucleic Acids Research</title>
<title level="j" type="abbrev">Nucl. Acids Res.</title>
<idno type="ISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">2002</date>
<biblScope unit="vol">30</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="2435">2435</biblScope>
<biblScope unit="page" to="2443">2443</biblScope>
</imprint>
<idno type="ISSN">0305-1048</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-1048</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transfection of cis-element double-stranded oligonucleotides, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy. However, one of the major limitations of the decoy approach is the rapid degradation of phosphodiester oligonucleotides by intracellular nucleases. To date, several DNA analogs have been employed to overcome this issue, but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this paper we have investigated the use of conformationally restricted nucleotides in the design of decoy molecules for nuclear transcription factor κB (NF-κB). Starting from a synthetic double-stranded oligonucleotide, containing the κB consensus binding sequence, we designed a panel of decoy molecules modified to various extents and at various positions with locked nucleic acids (LNAs). Our results indicate that the addition of terminal LNA bases, outside the κB sequence, to generate LNA–DNA–LNA co-polymers was sufficient to confer appreciable protection towards nuclease digestion, without interfering with transcription factor binding. Conversely, insertion of LNA substitutions in the context of the κB-binding site resulted in further increased stability, but caused a loss of affinity of NF-κB for the target sequence. However, our results also indicate that this latter effect was apparently dependent not only on the extent but also on strand positioning of the internal LNA substitutions. This observation is of great importance since it provides evidence for the possibility of tuning DNA–LNA duplexes with internal LNAs into decoy agents with improved features in terms of biological stability and inhibitory effect.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>odns</json:string>
<json:string>decoy</json:string>
<json:string>lnas</json:string>
<json:string>prdii</json:string>
<json:string>oligonucleotides</json:string>
<json:string>nuclease</json:string>
<json:string>antisense</json:string>
<json:string>nucleic</json:string>
<json:string>phosphodiester</json:string>
<json:string>nucleic acid</json:string>
<json:string>transcription factor</json:string>
<json:string>decoy molecule</json:string>
<json:string>duplex</json:string>
<json:string>radiolabeled</json:string>
<json:string>edta</json:string>
<json:string>dnase</json:string>
<json:string>chem</json:string>
<json:string>pnas</json:string>
<json:string>phosphorothioate</json:string>
<json:string>digestion</json:string>
<json:string>nuclear extract</json:string>
<json:string>analog</json:string>
<json:string>transcription</json:string>
<json:string>internal lnas</json:string>
<json:string>nucleic acid research</json:string>
<json:string>prdii element</json:string>
<json:string>decoy agent</json:string>
<json:string>degradation</json:string>
<json:string>binding affinity</json:string>
<json:string>gene expression</json:string>
<json:string>solution structure</json:string>
<json:string>prdii domain</json:string>
<json:string>binding site</json:string>
<json:string>complex formation</json:string>
<json:string>terminal end</json:string>
<json:string>transcription factor decoy</json:string>
<json:string>nucleotide</json:string>
<json:string>assay</json:string>
<json:string>promoter</json:string>
<json:string>datum</json:string>
<json:string>hybrid</json:string>
<json:string>volume density</json:string>
<json:string>electrophoretic separation</json:string>
<json:string>nuclease digestion</json:string>
<json:string>transcription factor binding</json:string>
<json:string>gene therapy</json:string>
<json:string>antisense strand</json:string>
<json:string>decoy approach</json:string>
<json:string>nuclear transcription factor</json:string>
<json:string>consensus binding sequence</json:string>
<json:string>nuclease degradation</json:string>
<json:string>endonuclease digestion</json:string>
<json:string>direct binding</json:string>
<json:string>prdii probe</json:string>
<json:string>sense strand</json:string>
<json:string>particular interest</json:string>
<json:string>structural modification</json:string>
<json:string>crystallographic study</json:string>
<json:string>natl acad</json:string>
<json:string>transcriptional activation</json:string>
<json:string>relative time</json:string>
<json:string>unrelated extra sequence</json:string>
<json:string>substitution</json:string>
<json:string>modification</json:string>
<json:string>conformation</json:string>
<json:string>target sequence</json:string>
<json:string>corresponding phosphodiester</json:string>
<json:string>schematic representation</json:string>
<json:string>electrophoretic mobility shift assay</json:string>
<json:string>cold buffer</json:string>
<json:string>competition experiment</json:string>
<json:string>radiolabeled prdii probe</json:string>
<json:string>nuclease resistance</json:string>
<json:string>supershift analysis</json:string>
<json:string>radiolabeled probe</json:string>
<json:string>significant increase</json:string>
<json:string>peptide nucleic acid</json:string>
<json:string>sigma genosys</json:string>
<json:string>phosphodiester odns</json:string>
<json:string>human disease</json:string>
<json:string>recent year</json:string>
<json:string>terminal lnas</json:string>
<json:string>complementary nucleotide</json:string>
<json:string>inhibitory effect</json:string>
<json:string>extra sequence</json:string>
<json:string>minor groove</json:string>
<json:string>high mobility group protein</json:string>
<json:string>biological stability</json:string>
<json:string>corresponding phosphodiester molecule</json:string>
<json:string>experimental condition</json:string>
<json:string>prdii sequence</json:string>
<json:string>different length</json:string>
<json:string>ethidium bromide</json:string>
<json:string>molecular analyst</json:string>
<json:string>line graph</json:string>
<json:string>radiographic signal</json:string>
<json:string>consensus sequence</json:string>
<json:string>bandshift assay</json:string>
<json:string>roche diagnostics</json:string>
<json:string>less efficient</json:string>
<json:string>various extent</json:string>
<json:string>intracellular nuclease</json:string>
<json:string>crude nuclear extract</json:string>
<json:string>same efficiency</json:string>
<json:string>rapid degradation</json:string>
<json:string>molecular imager</json:string>
<json:string>human serum</json:string>
<json:string>cellular extract</json:string>
<json:string>molecular interaction</json:string>
<json:string>phosphate backbone geometry</json:string>
<json:string>form stable complex</json:string>
<json:string>antigene strategy</json:string>
<json:string>competitor concentration</json:string>
<json:string>phosphorothioate oligonucleotides</json:string>
<json:string>powerful tool</json:string>
<json:string>decoy odns</json:string>
<json:string>antisense oligonucleotides</json:string>
<json:string>decoy oligonucleotides</json:string>
<json:string>nucleic acid recognition</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Rita Crinelli</name>
</json:item>
<json:item>
<name>Marzia Bianchi</name>
</json:item>
<json:item>
<name>Lucia Gentilini</name>
</json:item>
<json:item>
<name>Mauro Magnani</name>
</json:item>
</author>
<arkIstex>ark:/67375/HXZ-V006F8QV-F</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Transfection of cis-element double-stranded oligonucleotides, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy. However, one of the major limitations of the decoy approach is the rapid degradation of phosphodiester oligonucleotides by intracellular nucleases. To date, several DNA analogs have been employed to overcome this issue, but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this paper we have investigated the use of conformationally restricted nucleotides in the design of decoy molecules for nuclear transcription factor κB (NF-κB). Starting from a synthetic double-stranded oligonucleotide, containing the κB consensus binding sequence, we designed a panel of decoy molecules modified to various extents and at various positions with locked nucleic acids (LNAs). Our results indicate that the addition of terminal LNA bases, outside the κB sequence, to generate LNA–DNA–LNA co-polymers was sufficient to confer appreciable protection towards nuclease digestion, without interfering with transcription factor binding. Conversely, insertion of LNA substitutions in the context of the κB-binding site resulted in further increased stability, but caused a loss of affinity of NF-κB for the target sequence. However, our results also indicate that this latter effect was apparently dependent not only on the extent but also on strand positioning of the internal LNA substitutions. This observation is of great importance since it provides evidence for the possibility of tuning DNA–LNA duplexes with internal LNAs into decoy agents with improved features in terms of biological stability and inhibitory effect.</abstract>
<qualityIndicators>
<score>8</score>
<pdfWordCount>6228</pdfWordCount>
<pdfCharCount>41091</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>692</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>251</abstractWordCount>
<abstractCharCount>1737</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
<pmid>
<json:string>12034831</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Nucleic Acids Research</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0305-1048</json:string>
</issn>
<eissn>
<json:string>1362-4962</json:string>
</eissn>
<publisherId>
<json:string>nar</json:string>
</publisherId>
<volume>30</volume>
<issue>11</issue>
<pages>
<first>2435</first>
<last>2443</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2002</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Italy Received</json:string>
<json:string>Roche Diagnostics, Mannheim, Germany</json:string>
<json:string>Roche Diagnostics</json:string>
<json:string>Boulder, CO</json:string>
<json:string>Bio-Rad Laboratories, Milan, Italy</json:string>
<json:string>Genosys</json:string>
<json:string>Biotech</json:string>
<json:string>Santa Cruz Biotechnology</json:string>
<json:string>Università</json:string>
<json:string>MURST-CNR</json:string>
</orgName>
<orgName_funder>
<json:string>MURST-CNR</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>B. Results</json:string>
<json:string>Mauro Magnani</json:string>
<json:string>Marzia Bianchi</json:string>
<json:string>G. Fornaini</json:string>
<json:string>Lucia Gentilini</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Urbino</json:string>
<json:string>UK</json:string>
<json:string>Mannheim</json:string>
<json:string>Piscataway</json:string>
<json:string>Specificity</json:string>
<json:string>Boston</json:string>
<json:string>Santa Cruz</json:string>
<json:string>CA</json:string>
<json:string>MA</json:string>
<json:string>NJ</json:string>
<json:string>Cambridge</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Nielsen et al.</json:string>
<json:string>Romanelli et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-V006F8QV-F</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - developmental biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1093/nar/30.11.2435</json:string>
</doi>
<id>79BD31A517319682D2019475E79F5CADA57129EF</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<date type="published">2002</date>
<date type="Copyright" when="2002">2002</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
<author xml:id="author-0000">
<persName>
<surname>Crinelli</surname>
<forename type="first">Rita</forename>
</persName>
</author>
<author xml:id="author-0001">
<persName>
<surname>Bianchi</surname>
<forename type="first">Marzia</forename>
</persName>
</author>
<author xml:id="author-0002">
<persName>
<surname>Gentilini</surname>
<forename type="first">Lucia</forename>
</persName>
</author>
<author xml:id="author-0003">
<persName>
<surname>Magnani</surname>
<forename type="first">Mauro</forename>
</persName>
</author>
<idno type="istex">79BD31A517319682D2019475E79F5CADA57129EF</idno>
<idno type="ark">ark:/67375/HXZ-V006F8QV-F</idno>
<idno type="other">gkf358</idno>
<idno type="DOI">10.1093/nar/30.11.2435</idno>
</analytic>
<monogr>
<title level="j" type="main">Nucleic Acids Research</title>
<title level="j" type="abbrev">Nucl. Acids Res.</title>
<idno type="hwp">nar</idno>
<idno type="nlm-ta">Nucleic Acids Res</idno>
<idno type="publisher-id">nar</idno>
<idno type="pISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">2002</date>
<biblScope unit="vol">30</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="2435">2435</biblScope>
<biblScope unit="page" to="2443">2443</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en">
<p>Transfection of
<hi rend="italic">cis</hi>
-element double-stranded oligonucleotides, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy. However, one of the major limitations of the decoy approach is the rapid degradation of phosphodiester oligonucleotides by intracellular nucleases. To date, several DNA analogs have been employed to overcome this issue, but insufficient efficacy and/or specificity have limited their
<hi rend="italic">in vivo</hi>
usefulness. In this paper we have investigated the use of conformationally restricted nucleotides in the design of decoy molecules for nuclear transcription factor κB (NF-κB). Starting from a synthetic double-stranded oligonucleotide, containing the κB consensus binding sequence, we designed a panel of decoy molecules modified to various extents and at various positions with locked nucleic acids (LNAs). Our results indicate that the addition of terminal LNA bases, outside the κB sequence, to generate LNA–DNA–LNA co-polymers was sufficient to confer appreciable protection towards nuclease digestion, without interfering with transcription factor binding. Conversely, insertion of LNA substitutions in the context of the κB-binding site resulted in further increased stability, but caused a loss of affinity of NF-κB for the target sequence. However, our results also indicate that this latter effect was apparently dependent not only on the extent but also on strand positioning of the internal LNA substitutions. This observation is of great importance since it provides evidence for the possibility of tuning DNA–LNA duplexes with internal LNAs into decoy agents with improved features in terms of biological stability and inhibitory effect.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="heading">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="US-ASCII"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article xml:lang="en" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">nar</journal-id>
<journal-id journal-id-type="nlm-ta">Nucleic Acids Res</journal-id>
<journal-id journal-id-type="publisher-id">nar</journal-id>
<journal-title>Nucleic Acids Research</journal-title>
<abbrev-journal-title abbrev-type="publisher">Nucl. Acids Res.</abbrev-journal-title>
<issn pub-type="ppub">0305-1048</issn>
<issn pub-type="epub">1362-4962</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="other">gkf358</article-id>
<article-id pub-id-type="doi">10.1093/nar/30.11.2435</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Design and characterization of decoy oligonucleotides containing locked nucleic acids</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Crinelli</surname>
<given-names>Rita</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bianchi</surname>
<given-names>Marzia</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gentilini</surname>
<given-names>Lucia</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Magnani</surname>
<given-names>Mauro</given-names>
</name>
<xref rid="FN1">*</xref>
</contrib>
<aff id="AFF1">Istituto di Chimica Biologica ‘G. Fornaini’, Università degli Studi di Urbino, via Saffi 2, I-61029 Urbino, Italy</aff>
</contrib-group>
<pub-date pub-type="ppub">
<day>01</day>
<month>06</month>
<year>2002</year>
</pub-date>
<volume>30</volume>
<issue>11</issue>
<fpage>2435</fpage>
<lpage>2443</lpage>
<permissions>
<copyright-year>2002</copyright-year>
</permissions>
<abstract xml:lang="en">
<p>Transfection of
<italic>cis</italic>
-element double-stranded oligonucleotides, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy. However, one of the major limitations of the decoy approach is the rapid degradation of phosphodiester oligonucleotides by intracellular nucleases. To date, several DNA analogs have been employed to overcome this issue, but insufficient efficacy and/or specificity have limited their
<italic>in vivo</italic>
usefulness. In this paper we have investigated the use of conformationally restricted nucleotides in the design of decoy molecules for nuclear transcription factor κB (NF-κB). Starting from a synthetic double-stranded oligonucleotide, containing the κB consensus binding sequence, we designed a panel of decoy molecules modified to various extents and at various positions with locked nucleic acids (LNAs). Our results indicate that the addition of terminal LNA bases, outside the κB sequence, to generate LNA–DNA–LNA co-polymers was sufficient to confer appreciable protection towards nuclease digestion, without interfering with transcription factor binding. Conversely, insertion of LNA substitutions in the context of the κB-binding site resulted in further increased stability, but caused a loss of affinity of NF-κB for the target sequence. However, our results also indicate that this latter effect was apparently dependent not only on the extent but also on strand positioning of the internal LNA substitutions. This observation is of great importance since it provides evidence for the possibility of tuning DNA–LNA duplexes with internal LNAs into decoy agents with improved features in terms of biological stability and inhibitory effect.</p>
</abstract>
<custom-meta-wrap>
<custom-meta>
<meta-name>hwp-legacy-fpage</meta-name>
<meta-value>2435</meta-value>
</custom-meta>
<custom-meta>
<meta-name>hwp-legacy-dochead</meta-name>
<meta-value>Article</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
<notes>
<p content-type="arthw-misc">Received February 4, 2002; Revised and Accepted April 10, 2002. </p>
</notes>
</front>
<body>
<sec>
<title>INTRODUCTION</title>
<p>In recent years, oligonucleotides (ODNs) have received considerable attention since they provide a rational way to design sequence-specific ligands of nucleic acids or DNA‐binding regulatory proteins as tools for selective regulation of gene expression. This is of particular interest in developing new pharmaceutical interventions to treat diseases characterized by aberrant activation and expression of genes whose products are involved in the initiation and progression of pathogenesis. In particular, as altered activation of transcription factors has become a better understood component of many pathways of disease pathogenesis, including cancer, viral infection and chronic inflammatory diseases, the development of molecular strategies targeting transcription-activating proteins has emerged as an attractive field of investigation (
<xref rid="GKF358C1">1</xref>
). In this context, transfection of
<italic>cis</italic>
-element double-stranded ODNs, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy (
<xref rid="GKF358C2">2</xref>
<xref rid="GKF358C4">4</xref>
). Once delivered to cells, synthetic double-stranded ODNs bearing the consensus binding sequence of a specific transcription factor are specifically recognized and bound by the target factor. Interaction with the decoy results in both an inability of the protein to subsequently bind to the promoter regions of target genes and in the removal of bound
<italic>trans</italic>
-factor from the endogenous
<italic>cis</italic>
-element (
<xref rid="GKF358C5">5</xref>
<xref rid="GKF358C7">7</xref>
). The final result is a significant reduction in or even a blockade of transcriptional activation.</p>
<p> Although ODN-based strategies appear very simple from a theoretical point of view, their practical application to biological systems has clearly outlined several problems, including the rapid degradation of phosphodiester ODNs by serum and intracellular nucleases (both endonucleases and exonucleases) (
<xref rid="GKF358C5">5</xref>
,
<xref rid="GKF358C8">8</xref>
,
<xref rid="GKF358C9">9</xref>
). For this reason, in the past decade, significant effort has been expended by synthetic chemists to develop nuclease-resistant ODNs. The most commonly employed modification is the replacement of a non-bridging oxygen in phosphate linkages with a sulphur to form phosphorothioate-modified ODNs. These molecules are highly resistant to degradation by nucleases (
<xref rid="GKF358C10">10</xref>
), exhibit increased cellular uptake (
<xref rid="GKF358C11">11</xref>
) and retain the ability to form sequence-specific duplexes, although with reduced stability relative to unmodified ODNs (
<xref rid="GKF358C12">12</xref>
). However, largely because of their polyanionic nature, phosphorothioates cause non-specific protein binding, with consequent sequence-independent effects that limit many applications (
<xref rid="GKF358C13">13</xref>
<xref rid="GKF358C15">15</xref>
).</p>
<p> More recently, DNA analogs with a pseudo-peptide backbone composed of
<italic>N</italic>
-(2-aminoethyl)glycine units (peptide nucleic acids or PNAs) have been explored as potential agents for decoy approaches (
<xref rid="GKF358C16">16</xref>
). PNAs are, in fact, ideal candidates as decoy molecules due to their ability to form very stable duplexes with complementary DNA and PNA sequences (
<xref rid="GKF358C17">17</xref>
) and to their stability when exposed to DNases and proteinases (
<xref rid="GKF358C18">18</xref>
). Unfortunately, DNA-binding proteins, such as nuclear transcription factor κB (NF-κB), exhibit a markedly low binding efficiency to PNA oligomers.
<italic>In vitro</italic>
experiments, performed with PNA decoy molecules carrying NF-κB-specific
<italic>cis</italic>
-elements, have clearly demonstrated that NF-κB p52 is able to recognize only DNA/PNA hybrids generating, in addition, molecular complexes with very low stability (
<xref rid="GKF358C16">16</xref>
).</p>
<p> Interestingly, conformational restriction has been successfully applied in recent years to the design of high affinity ODNs. Among nucleoside analogs containing bi- and tri-cyclic carbohydrate moieties, of particular interest are the locked nucleic acids (LNAs), which contain an extra 2′-
<italic>O</italic>
,4′-
<italic>C</italic>
-methylene bridge added to the ribose ring (
<xref rid="GKF358C19">19</xref>
<xref rid="GKF358C21">21</xref>
). In fact, ODNs containing this modification have shown hitherto unprecedented helical thermal stability when hybridized to complementary DNA or RNA, as shown by the significant increase in melting temperatures compared with unmodified duplexes (
<xref rid="GKF358C19">19</xref>
,
<xref rid="GKF358C20">20</xref>
,
<xref rid="GKF358C22">22</xref>
<xref rid="GKF358C25">25</xref>
). In general, the thermal stability of a LNA/DNA duplex is increased by between 4.0 and 9.3°C per modified base in the ODN. Furthermore, LNA ODNs can be synthesized using conventional phosphoroamidite chemistry, allowing automated synthesis of pure as well as mixed ODNs containing both LNA and DNA monomers (
<xref rid="GKF358C19">19</xref>
<xref rid="GKF358C21">21</xref>
). These features, together with the demonstration that LNAs are stable towards 3′-exonucleolytic degradation (
<xref rid="GKF358C26">26</xref>
) and LNA–DNA co-polymers are not readily degraded in blood serum and cell extracts (
<xref rid="GKF358C19">19</xref>
,
<xref rid="GKF358C26">26</xref>
), prompted us to evaluate LNAs in the design of decoy molecules. In fact, while LNA ODNs have proved very efficient as antisense molecules (
<xref rid="GKF358C26">26</xref>
), no information is available to date on the possible use of LNA decoys able to interact with DNA-binding proteins such as transcription factors. Starting from a synthetic double-stranded 20mer ODN containing two copies of the κB consensus binding sequence present in the PRDII domain of the interferon-β (IFN-β) promoter, we designed a panel of decoy molecules modified to various extents with LNAs. Furthermore, LNA substitutions were positioned outside or inside and outside the PRDII elements in order to confer potential resistance towards exonuclease and endonuclease digestion. Importantly, since benefits in terms of nuclease resistance may often be negated by a decrease in the binding affinity of the transcription factor, modified ODNs were further studied for their ability to interact and form specific complexes with NF-κB proteins by electrophoretic mobility shift assay. Results presented in the present paper suggest that LNAs could really represent a step ahead in pursuing structural modifications intended to enhance biological stability and inhibitory effects of decoy agents.</p>
</sec>
<sec>
<title>MATERIALS AND METHODS</title>
<sec>
<title>Oligonucleotides and LNAs</title>
<p>Upper strand and reverse complement phosphodiester ODNs (20mers), corresponding to two copies of the NF-κB-binding sequence found in the PRDII domain of the IFN-β promoter, were purchased from Sigma Genosys (Cambridge, UK) (Fig. 
<xref rid="GKF358F1">1</xref>
). ODNs containing LNAs were purchased from Proligo LLC (Boulder, CO). In this case the PRDII sequence was capped at both ends with unrelated extra sequences 5 nt long to generate a 30mer ODN (Fig.
<xref rid="GKF358F1">1</xref>
). The extra sequences were selected in order to avoid self- and inter-strand hybridization involving two complementary LNA bases, which would generate complexes with high stability. One or two nucleotides were replaced with LNAs at both the 5′- and 3′-terminal ends [NF-κB(a) and NF-κB(b)] (Fig.
<xref rid="GKF358F1">1</xref>
). Alternatively, additional nucleotides of the internal PRDII sequences were substituted with LNAs as shown in Figure
<xref rid="GKF358F1">1</xref>
[NF-κB(c)]. In this paper, all the ODNs containing LNAs are referred to as LNA ODNs. A 30mer phosphodiester ODN with the same sequence was purchased from Sigma Genosys (Cambridge, UK) and used as a control [NF-κB(d)] (Fig.
<xref rid="GKF358F1">1</xref>
).</p>
</sec>
<sec>
<title>Annealing and
<sup>32</sup>
P-labeling</title>
<p>Stock solutions of DNA and LNA ODNs were made in TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0) and stored at –80°C. Complementary DNA and LNA oligomers were hybridized in TE buffer to generate DNA/DNA [NF-κB(d) and PRDII] and LNA/LNA [NF-κB(a), NF-κB(b) and NF-κB(c)] duplexes or mixed hybrids containing two LNAs at the terminal ends of both strands and internal LNAs only in one strand [NF-κB(c+b) and NF-κB(b+c)], as shown in Figure
<xref rid="GKF358F1">1</xref>
. Annealing was performed in a thermal cycler according to the following temperature profile: 5 min at 100°C, followed by a slow decrease from 100 to 37°C over 60 min and from 37 to 4°C over 30 min.</p>
<p> Double-stranded DNA and LNA ODNs were 5′-end-labeled using T4 polynucleotide kinase (T4 PNK, EC 2.7.1.78). Briefly, 2 pmol ODN was incubated in a final volume of 20 µl with 8 U T4 PNK (Roche Diagnostics, Mannheim, Germany), 60 µCi [γ-
<sup>32</sup>
P]ATP (Perkin Elmer Life Sciences, Boston, MA), 50 mM Tris–HCl, 10 mM MgCl
<sub>2</sub>
, 0.1 mM EDTA, 5 mM dithiothreitol (DTT), 0.1 mM spermine, pH 8.2, at 37°C for 15 min. Unincorporated nucleotides were removed by chromatography through a Sephadex G-25 spin column equilibrated in TEN buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl). The efficiency of
<sup>32</sup>
P incorporation into LNA ODNs was 3-fold lower than that obtained, under the same experimental conditions, for the corresponding phosphodiester ODN NF‐κB(d) [∼5300 c.p.m./pmol for the LNA ODNs versus 16 000 c.p.m./pmol for NF-κB(d)]. Analysis of the radiolabeled products by non-denaturing polyacrylamide gel electrophoresis, followed by radiography of the gel, clearly demonstrated that most of the radioactivity counted was associated with double-stranded species, indicating that the efficiency of T4 PNK to catalyze the transfer of the phosphate group of ATP to the 5′-hydroxylated terminus of an ODN could be impaired, but not completely abrogated, by the presence of terminally positioned LNAs (not shown).</p>
</sec>
<sec>
<title>Cell culture and nuclear extract preparation</title>
<p>NIH 3T3 cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum at 37°C in a humidified 5% CO
<sub>2</sub>
incubator. Cells were plated at a density of 5 × 10
<sup>5</sup>
cells/60 mm diameter culture dish the day before stimulation.</p>
<p> Nuclear extracts were prepared from NIH 3T3 cells stimulated with 10 ng/ml tumor necrosis factor-α (TNF-α) (Boehringer Mannheim Biochemia, Mannheim, Germany) for 30 min at 37°C in the presence of 5% CO
<sub>2</sub>
. After stimulation, cells were extensively washed with cold phosphate-buffered saline and scraped from the dishes with cold buffer A [10 mM HEPES–KOH, pH 7.9, 1.5 mM MgCl
<sub>2</sub>
, 10 mM KCl, 1 mM DTT, 0.2 mM EDTA, 10 µg/ml leupeptin, 10 µg/ml pepstatin, 4 mM 4‐(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), 1 mM NaF, 1mM Na
<sub>3</sub>
VO
<sub>4</sub>
and 0.1% Nonidet-P40]. The cell suspension was then chilled on ice for 10 min before centrifugation at 10 000
<italic>g</italic>
. The resultant nuclear pellet was resuspended in cold buffer B (20 mM HEPES–KOH, pH 7.9, 25% glycerol, 0.42 M NaCl, 1.5 mM MgCl
<sub>2</sub>
, 1 mM DTT, 0.2 mM EDTA, 10 µg/ml leupeptin, 10 µg/ml pepstatin, 4 mM AEBSF, 1 mM NaF and 1 mM Na
<sub>3</sub>
VO
<sub>4</sub>
) and incubated on ice for 20 min before being centrifuged at 10 000
<italic>g</italic>
. Nuclear extract supernatant was collected, diluted 1:5 in buffer C (20 mM HEPES–KOH, pH 7.9, 20% glycerol, 50 mM KCl, 1 mM DTT, 0.2 mM EDTA and 1 mM AEBSF) and stored at –80°C.</p>
</sec>
<sec>
<title>Electrophoretic mobility shift assay (EMSA) and supershift</title>
<p>Nuclear extracts (3 µg) were preincubated with 5 µg double-stranded non-specific DNA competitor poly(dI–dC) (Amersham Pharmacia Biotech, Piscataway, NJ) for 10 min on ice in the presence of 20 mM HEPES–KOH, pH 7.9, 0.1 M KCl, 5% glycerol, 0.2 mM EDTA, 0.2 mM EGTA and 1 mM DTT. Binding activity was assessed by incubating the reaction mixture with the indicated
<sup>32</sup>
P-end-labeled probe to a final concentration of 1.2 nM for 20 min on ice. Protein–DNA complexes were then separated on 5% native polyacrylamide gels (29:1 cross-linked) in Tris–glycine buffer (25 mM Tris base, 192 mM glycine). In competition experiments, increasing concentrations of competitor ODN, either a phosphodiester or a LNA-modified duplex as specified, were incubated with the nuclear extract for 15 min before adding the radiolabeled PRDII probe. Detection and quantification of NF‐κB–DNA complex formation was performed in a GS-250 Molecular Imager (Bio-Rad Laboratories, Milan, Italy). Specificity of the NF-κB–DNA complex detected was assessed by supershift analysis, using polyclonal subunit-specific antisera against p50 and p65 (Rel A) (Santa Cruz Biotechnology, Santa Cruz, CA). In this assay, antisera (2 µg) were incubated with nuclear extract for 20 min at room temperature prior to addition of the radiolabeled probe.</p>
</sec>
<sec>
<title>Stability assays of double-stranded LNA ODNs</title>
<p>Double-stranded DNA and LNA ODNs (2.7 µM) were incubated either with 10 U/ml DNase I (EC 3.1.21.1) (Roche Diagnostics) in 50 mM Tris–HCl, pH 7.5, 1 mM MgCl
<sub>2</sub>
and 0.1 mg/ml bovine serum albumin at 20°C or with 10 U/ml BAL-31 nuclease (New England Biolabs, Hitchin, UK) in a reaction buffer consisting of 0.6 M NaCl, 20 mM Tris–HCl, pH 8.0, 12 mM CaCl
<sub>2</sub>
, 12 mM MgCl
<sub>2</sub>
and 1 mM EDTA at 30°C. Aliquots of the reaction mixture corresponding to 250 ng double-stranded ODN were removed at different incubation times, quenched in 4 mM EDTA or 20 mM EGTA in order to stop DNase I and BAL-31 activity, respectively, and submitted to non-denaturing electrophoretic separation in 2.5% (w/v) agarose gels and ethidium bromide staining. Degradation of the decoy molecules was determined by densitometric calculation using Molecular Analyst (Bio-Rad) imaging software. The volume density of the band corresponding to double-stranded molecules was calculated in each lane with correction for the background. Results are presented as percentage recovery with respect to the relative time zero value.</p>
</sec>
</sec>
<sec>
<title>RESULTS</title>
<sec>
<title>Design of decoy molecules containing LNA substitutions</title>
<p>Double-stranded decoy ODNs, corresponding to the κB site contained in the PRDII domain of the IFN-β promoter, were synthesized to selectively target NF-κB. This choice was essentially based on the widely recognized role of NF-κB in a number of human diseases (
<xref rid="GKF358C27">27</xref>
,
<xref rid="GKF358C28">28</xref>
) and on the bulk of literature describing the successful blockade of this transcription factor by decoy strategies (
<xref rid="GKF358C2">2</xref>
,
<xref rid="GKF358C4">4</xref>
,
<xref rid="GKF358C29">29</xref>
<xref rid="GKF358C33">33</xref>
). All the experiments were performed using a 30mer double-stranded ODN containing two PRDII elements in tandem (10 bp each), capped with unrelated extra sequences of 5 nt at both terminal ends (Fig.
<xref rid="GKF358F1">1</xref>
, compare NF-κB probes with PRDII probe). These extra sequences were added to the putative PRDII regions to allow insertion of LNAs at the 3′ and 5′ termini of both strands in order to confer protection from nuclease digestion and to minimize interference with the binding of NF-κB [Fig.
<xref rid="GKF358F1">1</xref>
, NF-κB(a) and NF-κB(b)]. Additional LNA modifications were introduced in the PRDII elements to generate duplexes containing, besides terminal LNAs, also internal LNA substitutions involving complementary nucleotides in both strands [Fig.
<xref rid="GKF358F1">1</xref>
, NF-κB(c)] or nucleotides in only one strand [Fig.
<xref rid="GKF358F1">1</xref>
, NF-κB(c+b) and NF-κB(b+c)]. In replacing internal nucleotides with LNAs we took into consideration the published solution structure of an ODN containing LNA bases bound to unmodified complementary DNA which provides evidence of a change in buckle so as to create a transition from B-type to A-type DNA in the neighborhood of LNA modification (
<xref rid="GKF358C34">34</xref>
<xref rid="GKF358C36">36</xref>
). This is an important observation because the ability of LNA nucleotides to affect conformation of the duplex can also be expected to heavily alter the binding affinity of the transcription factor. To minimize this effect, we decided to introduce internal LNA substitutions in the PRDII AT-rich DNA sequence. In fact, X‐ray crystallographic studies have shown that in NF-κB–DNA complexes, the protein mainly interacts with the GC-rich outer regions of the site, and all base contacts are made in the major groove (
<xref rid="GKF358C37">37</xref>
<xref rid="GKF358C39">39</xref>
). This leaves open the minor groove of the κB site, where high mobility group proteins I (HMG I) are believed to interact mostly with the AT-rich sequence of PRDII, by functioning as architectural factors able to potentiate the transcriptional activation of NF-κB (
<xref rid="GKF358C40">40</xref>
,
<xref rid="GKF358C41">41</xref>
) (Fig.
<xref rid="GKF358F1">1</xref>
).</p>
</sec>
<sec>
<title>Double-stranded LNA ODNs display higher resistance to exonuclease and endonuclease digestion with respect to DNA ODNs</title>
<p>As a first step, we tested susceptibility to nuclease degradation of double-stranded LNA decoys in comparison with the corresponding phosphodiester molecule NF-κB(d). Under our experimental conditions NF-κB(d) was completely degraded after 3 h incubation with DNase I, a double-strand-specific endonuclease (Fig.
<xref rid="GKF358F2">2</xref>
). In contrast, the presence of one or two terminal LNAs [NF-κB(a) and NF-κB(b)] was sufficient to markedly increase ODN stability (Fig.
<xref rid="GKF358F2">2</xref>
). In fact, at the same incubation time, <35% of LNA ODNs were degraded (Fig.
<xref rid="GKF358F2">2</xref>
). No significant improvements in terms of resistance to endonuclease digestion were observed in the presence of internally positioned LNA modifications [NF-κB(c), Fig.
<xref rid="GKF358F2">2</xref>
]. Similar results were also obtained with the mixed hybrids NF-κB(c+b) and NF-κB(b+c), with the first being the most unstable of the LNA ODNs (Fig.
<xref rid="GKF358F2">2</xref>
).</p>
<p> Stability towards exonucleolytic degradation was assessed using BAL-31 nuclease, which degrades both the 3′ and 5′ termini of duplex DNA without generating internal scissions. The results in Figure
<xref rid="GKF358F3">3</xref>
clearly show that with the exception of NF-κB(a), which was degraded at the same rate as NF-κB(d), all the LNA ODNs displayed higher stability with respect to the corresponding phosphodiester molecule (Fig.
<xref rid="GKF358F3">3</xref>
). The most significant stabilization was achieved with internal LNAs, but only when they were present on both strands [NF‐κB(c)] (Fig. 
<xref rid="GKF358F3">3</xref>
). In contrast, the mixed hybrids NF-κB(c+b) and NF‐κB(b+c) exhibited decay kinetics more similar to those observed for NF-κB(c) and NF-κB(b), respectively (Fig.
<xref rid="GKF358F3">3</xref>
), suggesting that positioning of internal LNA bases in the sense or in the antisense strand has important effects in terms of resistance to BAL-31 nuclease action.</p>
</sec>
<sec>
<title>NF-κB specifically binds to double-stranded ODNs containing LNA modifications</title>
<p>The binding of NF-κB to
<sup>32</sup>
P-labeled DNA and LNA duplexes was analyzed by EMSA, using nuclear extracts from TNF-stimulated cells as a source of NF-κB. A single protein–DNA complex migrating with the same electrophoretic mobility was observed with all probes (Fig.
<xref rid="GKF358F4">4</xref>
A, lanes 1, 4, 10, 13, 16 and 19), with the exception of NF-κB(c), for which we could not detect any shifted complex, even after longer exposure of the gel (Fig.
<xref rid="GKF358F4">4</xref>
A, lane 7). Furthermore, addition of a 60 M excess of a DNA probe, encompassing the immunoglobulin light chain NF-κB (Ig-κB) element (5′-TCAACAGAG
<underline>GGGACTTTCC</underline>
GAGAGGCC-3′), demonstrated that the complex detected with both DNA and LNA probes was specific for the NF-κB site, as determined by the complete disappearance of the radiographic signal (Fig.
<xref rid="GKF358F4">4</xref>
A, lanes 2, 5, 11, 14, 17 and 20). In addition, mutagenesis of the Ig-κB consensus sequence (5′-TCAACAGAG
<underline>CTC</underline>
ACTTT
<underline>AT</underline>
GAGAGGCC-3′) completely prevented competition for the binding of NF-κB to the probes, confirming the specificity of complex formation (Fig.
<xref rid="GKF358F4">4</xref>
A, lanes 3, 6, 12, 15, 18 and 21). Further demonstration that the complexes detected in bandshift assays contained members of the Rel/NF-κB family of proteins was obtained by supershift experiments. As shown in Figure
<xref rid="GKF358F4">4</xref>
, preincubation of the nuclear extracts with specific antibodies against p50 and p65 resulted in complete up-shift of the retarded band (Fig.
<xref rid="GKF358F4">4</xref>
B, compare lane 1 with 2 and 3), indicating that both subunits were part of the protein–PRDII complex. The same up-shifting was observed using radiolabeled probes consisting of LNA ODNs or of the corresponding phosphodiester ODN NF-κB(d) (not shown).</p>
</sec>
<sec>
<title>Extent and positioning of LNA bases are important determinants for efficient binding of NF-κB to modified oligonucleotide duplexes</title>
<p>NF-κB binding affinity for decoy LNA ODNs was evaluated by gel shift competition experiments. Binding assays were performed by incubating crude nuclear extracts with increasing concentrations of unlabeled LNA ODNs together with a fixed amount of the [
<sup>32</sup>
P]PRDII probe, so that the radiolabeled DNA duplex was in excess over the amount of NF-κB present in the incubation mixture. Results of a typical competition experiment are shown in Figure
<xref rid="GKF358F5">5</xref>
, where a progressive reduction in the radiographic signal, corresponding to the NF-κB–PRDII complex, was observed upon addition of the indicated competitors. These data suggest that decoy LNA ODNs are recognized by NF-κB, confirming previous evidence of direct binding of NF-κB to radiolabeled LNA probes (Fig.
<xref rid="GKF358F4">4</xref>
). However, these results clearly indicated that not all the competitors had the same efficiency to compete for binding of NF-κB to the radioactive probe. For this reason, the IC
<sub>50</sub>
value of each LNA ODN was calculated from quantitation of titration experiments by fitting the data to a dose–response curve (Fig.
<xref rid="GKF358F5">5</xref>
I–VI). ODNs with LNA substitutions outside the binding consensus sequence for NF-κB [NF-κB(a) and NF‐κB(b)] displayed not significantly different IC
<sub>50</sub>
values with respect to NF-κB(d) (Fig.
<xref rid="GKF358F5">5</xref>
, compare II and III with I). Surprisingly, the duplex containing LNA modifications also in the internal PRDII elements [NF-κB(c)] acted as an inhibitor, despite being less efficient with respect to NF-κB(d), as determined by a 30-fold increase in the IC
<sub>50</sub>
value (Fig.
<xref rid="GKF358F5">5</xref>
IV versus I). This low efficiency could explain the reason why we did not observe direct binding to the radiolabeled NF-κB(c) ODN in bandshift assays (Fig.
<xref rid="GKF358F4">4</xref>
A, lane 7), where the concentration and specific activity of the probe were probably too low to allow observation and detection of NF-κB binding. Interesting results were obtained with mixed hybrids NF-κB(c+b) and NF‐κB(b+c), which exhibited IC
<sub>50</sub>
values 1.5- and 6-fold higher, respectively, than that calculated for NF-κB(d) (Fig.
<xref rid="GKF358F5">5</xref>
, compare V and VI with I). These data suggest that the presence of internal LNAs in only one strand results in a moderate interference with transcription factor binding, with the best NF-κB binding efficiency observed when LNA substitutions were positioned in the sense strand [NF-κB(c+b)] rather than in the antisense strand [NF‐κB(b+c)].</p>
</sec>
</sec>
<sec>
<title>DISCUSSION</title>
<p>A growing number of transcription factors have been identified that regulate changes in gene expression during pathogenesis of a wide range of disorders (
<xref rid="GKF358C1">1</xref>
). A recent method to antagonize the function of these proteins is the decoy approach, which involves the use of synthetic double-stranded ODNs able to compete for binding of the protein to the authentic
<italic>cis</italic>
‐elements (
<xref rid="GKF358C5">5</xref>
<xref rid="GKF358C7">7</xref>
). Although the mechanism of action of transcription factor decoy is distinct from the antisense strategy, the same critical parameters exist in that a decoy agent must be nuclease resistant, be taken up by cells and have sequence-specific effects (
<xref rid="GKF358C42">42</xref>
). Advances in the synthesis of DNA now provide an exciting new chemical approach to overcome these issues. To date, several ODNs with a modified phosphodiester backbone, such as phosphorothioates and PNAs, have been widely studied as antisense and antigene reagents, however, neither of them has yet proved able to fulfill all the requirements. For this reason, novel ODN analogs and mimics are therefore high priority goals in medicinal chemistry.</p>
<p> In this paper we have investigated the possible use of conformationally restricted nucleotides (LNA) with a 2′-
<italic>O</italic>
,4′-
<italic>C</italic>
-methylene bridge in the design of decoy agents for transcription factor κB. Results presented here demonstrate that unlike DNA duplexes, double-stranded LNA–DNA–LNA co-polymers were not readily degraded by nucleases. Numerous studies have shown that end capping of an antisense oligomer with a short stretch of nuclease-resistant derivatives increases its lifetime (
<xref rid="GKF358C43">43</xref>
<xref rid="GKF358C45">45</xref>
). However, while the degradation of single-stranded oligonucleotides and their analogs has been studied extensively because of their potential importance as antisense agents, little is known about degradation of double-stranded ODNs and their analogs. To our knowledge, only a few papers have investigated the susceptibility to nuclease degradation of modified double-stranded ODNs, although it has been demonstrated that single-stranded and double-stranded DNA molecules are differentially degraded in human serum and in cellular extracts (
<xref rid="GKF358C9">9</xref>
). Under our experimental conditions, addition of one LNA base both at the 5′ and 3′ termini of a double-stranded ODN containing the NF-κB consensus binding sequence was sufficient to confer the maximum magnitude of resistance to DNase I endonuclease degradation (Fig.
<xref rid="GKF358F2">2</xref>
). In contrast, at least two terminal LNA bases per strand were required to confer protection from exonuclease digestion, as demonstrated by a more rapid degradation of NF-κB(a) versus NF-κB(b) when they were incubated with BAL-31 (Fig.
<xref rid="GKF358F3">3</xref>
). Resistance to DNase I degradation of NF-κB(a) and NF-κB(b) is of particular interest since this nuclease is known to recognize certain helical parameters of its respective DNA substrate, such as groove width and flexibility (
<xref rid="GKF358C46">46</xref>
,
<xref rid="GKF358C47">47</xref>
). For this reason, perturbation of the molecular interactions between DNase I and the target DNA suggests that LNA–LNA base pairing at the terminal ends is probably sufficient to induce changes in the ODN phosphate backbone geometry. Interestingly, this LNA‐induced structural modification does not apparently produce effects on the interactions between transcription factor κB and LNA–DNA–LNA co-polymers. In fact, these molecules exhibited high binding specificity and affinity, being able to form stable complexes with NF-κB in NIH 3T3 nuclear extracts (Fig.
<xref rid="GKF358F4">4</xref>
), and competed for binding of NF-κB to the PRDII probe with the same efficiency as the corresponding DNA duplex NF-κB(d) (Fig.
<xref rid="GKF358F5">5</xref>
). Thus, these molecules seem to offer an attractive set of properties not exhibited by either fully or partially modified phosphorothioate ODNs or by fully modified PNA oligomers, which have been demonstrated to be poorly specific (
<xref rid="GKF358C15">15</xref>
) or insufficiently able to interact and form stable complexes with target transcription factors (
<xref rid="GKF358C16">16</xref>
), respectively.</p>
<p> During the preparation of this manuscript, Romanelli
<italic>et al</italic>
. published preliminary results indicating that a PNA–DNA–PNA chimera mimicking the κB site displays the ability to resist enzymatic degradation and to interact with NF-κB (
<xref rid="GKF358C48">48</xref>
). Our results demonstrate that the same effects can be obtained using LNAs instead of PNAs, with several advantages. In fact, while PNAs and LNAs share some similarities, there are also important differences that, in our opinion, make LNAs more suitable tools for the design of decoy molecules. First, LNAs have unprecedented binding affinities for complementary sequences, forming duplexes with greater stability compared with PNAs (
<xref rid="GKF358C49">49</xref>
). Second, PNAs are uncharged and also have low solubility, whereas LNAs have a normally charged phosphate backbone, so they are readily soluble in water (
<xref rid="GKF358C49">49</xref>
) and can be delivered into cells using standard protocols employing cationic lipids (
<xref rid="GKF358C26">26</xref>
). In addition, by virtue of their structural resemblance to natural nucleic acid monomers, LNAs are expected not to affect interactions of the transcription factor with the DNA backbone, which have been demonstrated to be important for stabilization of the protein–DNA complex and which are lost with uncharged PNAs (
<xref rid="GKF358C16">16</xref>
). In this regard, it should be noted that the binding of NF-κB to DNA, beyond base-specific interactions, is strengthened by extensive contacts with the deoxyribose phosphate backbone (
<xref rid="GKF358C37">37</xref>
<xref rid="GKF358C39">39</xref>
). Third, LNAs are assembled using standard synthesis techniques that allow LNA bases to be easily interspersed among DNA, thus permitting the properties of the LNA-containing oligomers to be fine tuned in order to optimize nuclease resistance without markedly compromising transcription factor binding (
<xref rid="GKF358C49">49</xref>
). Our results in this regard clearly indicate that a significant increase in resistance to nuclease digestion can be attained by positioning further LNA substitutions in the context of the PRDII element by modifying complementary nucleotides in both strands [NF-κB(c)] (Figs
<xref rid="GKF358F2">2</xref>
and
<xref rid="GKF358F3">3</xref>
). In fact, only slight improvements in terms of stability were obtained when internal LNAs were introduced in only one strand [NF‐κB(c+b) and NF-κB(b+c)] (Figs
<xref rid="GKF358F2">2</xref>
and
<xref rid="GKF358F3">3</xref>
). However, while LNA substitutions involving both strands resulted in a weaker affinity of NF-κB for its target sequence [NF-κB(c); Fig.
<xref rid="GKF358F5">5</xref>
], internal LNA modifications in one strand had more limited effects on NF-κB binding [NF-κB(c+b) and NF-κB(b+c); Fig. 
<xref rid="GKF358F5">5</xref>
], with some differences related to their positioning (see below). Thus, these results suggest that LNAs might induce changes in the molecular structure of the κB-binding sequence which are proportional to the extent of modification, leading to a different degree of perturbation of the interactions with NF‐κB. This hypothesis is corroborated by NMR studies which have determined the solution structure of an ODN, containing one internal LNA, hybridized to complementary DNA (
<xref rid="GKF358C34">34</xref>
). Results presented by Nielsen
<italic>et al</italic>
. clearly indicate that by virtue of its C3′-
<italic>endo</italic>
conformation the LNA introduces a higher population of the N-type conformations of the neighboring unmodified nucleotides on the same strand, resulting in a local change in the phosphate backbone geometry (
<xref rid="GKF358C34">34</xref>
,
<xref rid="GKF358C35">35</xref>
). Based on our evidence, it might be speculated that such architectural differences apparently disturb the interaction between NF-κB and its consensus sequence. However, it is worth noting that, besides extent, positioning of the LNA modification also contributes to this effect. This is evident from the observed higher affinity of NF-κB for PRDII elements containing LNAs in the sense strand [NF-κB (c+b)] rather than in the antisense strand [NF-κB(b+c)]. This result can be explained by the observation that structural modifications conferred by the introduction of a LNA base are apparently propagated to adjacent unmodified nucleotides in the C3′ direction, with the first nucleotide following the LNA containing an appreciable fraction of N-type conformation and some of the other nucleotides with a non-negligable fraction of this conformation (
<xref rid="GKF358C34">34</xref>
). As a consequence, it could be assumed that the LNA in the sense strand of NF-κB(c+b) might affect the conformation of the AT-rich sequence of PRDII in the minor groove (Fig.
<xref rid="GKF358F1">1</xref>
). Crystallographic studies of NF-κB bound to DNA have shown that this region does not make base-specific contacts with NF-κB (
<xref rid="GKF358C37">37</xref>
<xref rid="GKF358C39">39</xref>
), thus explaining the modest decrease in the binding affinity of NF-κB to the NF-κB(c+b) probe (Fig.
<xref rid="GKF358F5">5</xref>
). Conversely, the LNA in the antisense strand of NF-κB(b+c) might modify the conformation of the GC-rich region of PRDII, which makes extensive base-specific contacts with the transcription factor (Fig.
<xref rid="GKF358F1">1</xref>
) (
<xref rid="GKF358C37">37</xref>
<xref rid="GKF358C39">39</xref>
), inducing a more evident loss of affinity of NF-κB for its binding element (Fig.
<xref rid="GKF358F5">5</xref>
).</p>
<p> In conclusion, the results reported herein suggest that LNA modification represents a valuable tool in designing decoys with improved features in terms of potential stability and activity. This has been clearly demonstrated for LNA–DNA–LNA co-polymers, encouraging further experiments focused on the possible use of these molecules as decoy agents in
<italic>in vivo</italic>
systems. In addition, the finding that internal LNA modification of both strands leads to a further improvement in ODN biostability [NF-κB(c)] appears to be of great interest. In fact, although less efficient in binding NF-κB, this decoy molecule has been shown to compete with a DNA probe in the nanomolar range of concentrations. This evidence does not necessarily exclude its possible
<italic>in vivo</italic>
decoy activity. Furthermore, data obtained with the mixed hybrids NF-κB(c+b) and NF-κB(b+c) suggest a role of the intra-strand positioning on NF-κB binding, thus opening up the possibility of minimizing perturbation of the interaction between NF-κB and LNA–DNA duplexes with internal LNAs, such as NF-κB(c), by more convenient substitutions in the κB sequence.</p>
</sec>
<sec>
<title>ACKNOWLEDGEMENTS</title>
<p>The authors would like to thank Proligo LLC for helpful suggestions in the design of the decoys. This study was supported by MURST-CNR, 1.27/12/1997 no. 449 and COFIN-MIUR PRIN 2001.</p>
</sec>
<sec>
<title></title>
<p>
<fn id="FN1" xml:lang="en">
<label>*</label>
<p>To whom correspondence should be addressed. Tel: +39 0722 305211; Fax: +39 0722 320188; Email:
<ext-link xlink:href="magnani@bib.uniurb.it" ext-link-type="email">magnani@bib.uniurb.it</ext-link>
</p>
</fn>
<fig id="GKF358F1" position="float">
<caption>
<p>
<bold>Figure 1.</bold>
Schematic representation of the PRDII κB-binding consensus sequence and of the derived LNA ODNs. Schematic representation of the PRDII κB element showing binding of the NF-κB p50/p65 heterodimer in the outer GC-rich sequence and of HMG I proteins in the core AT-rich domain. Both NF-κB and HMG I can separately bind to the PRDII sequence. In the context of the IFN-β promoter, HMG I functions as an architectural factor facilitating the assembly of transcriptionally active nucleoprotein complexes (
<xref rid="GKF358C40">40</xref>
,
<xref rid="GKF358C41">41</xref>
). Dots represent hydrogen bonds mediating base-specific contacts between p50 and p65 subunits and the κB site, according to evidence obtained in crystallographic studies (
<xref rid="GKF358C39">39</xref>
). LNA ODNs were synthesized on the basis of the κB sequence contained in the PRDII domain of the IFN-β promoter which has been extended at both terminal ends with unrelated extra sequences of 5 nt (in gray). LNA substitutions are indicated in bold upper case letters.</p>
</caption>
<graphic xlink:href="gkf35801"></graphic>
</fig>
<fig id="GKF358F2" position="float">
<caption>
<p>
<bold>Figure 2.</bold>
Susceptibility to DNase I degradation of LNA-modified ODNs. LNA-modified [NF-κB(a), (b), (c), (c+b) and (b+c)] and control phosphodiester [NF-κB(d)] decoy molecules were incubated for different lengths of time, as indicated, with 0.5 U/ml DNase I and then submitted to electrophoretic separation on 2.5% (w/v) agarose gels. Detection and quantitation of the ethidium bromide stained bands were performed in a Molecular Analyst. Volume densities of the bands are expressed as percent ODN decoy remaining with respect to the relative time zero value and are shown as line graphs.</p>
</caption>
<graphic xlink:href="gkf35802"></graphic>
</fig>
<fig id="GKF358F3" position="float">
<caption>
<p>
<bold>Figure 3.</bold>
Susceptibility to BAL-31 nuclease degradation of LNA-modified ODNs. LNA-modified [NF-κB(a), (b), (c), (c+b) and (b+c)] and control phosphodiester [NF-κB(d)] decoy molecules were incubated for different lengths of time, as indicated, with 0.5 U/ml BAL-31 and then submitted to electrophoretic separation on 2.5% (w/v) agarose gels. Detection and quantitation of the ethidium bromide stained bands were performed in a Molecular Analyst. Volume densities of the bands are expressed as percent ODN decoy remaining with respect to the relative time zero value and are shown as line graphs.</p>
</caption>
<graphic xlink:href="gkf35803"></graphic>
</fig>
<fig id="GKF358F4" position="float">
<caption>
<p>
<bold>Figure 4.</bold>
Direct binding of NF-κB to radiolabeled LNA-modified and phosphodiester probes and supershift analysis of the TNF-induced protein–PRDII complex. (
<bold>A</bold>
) Nuclear extracts obtained from TNF-stimulated NIH 3T3 cells were incubated with radiolabeled NF-κB(a) (lanes 1–3), NF-κB(b) (lanes 4–6), NF-κB(c) (lanes 7–9), NF-κB(d) (lanes 10–12), NF-κB(c+b) (lanes 13–15), NF-κB (b+c) (lanes 16–18) and PRDII (lanes 19–21) probes and analyzed by EMSA. Specificity of binding was assessed by competition with a cold wild-type Ig-κB probe (Ig-κB wt) (lanes 2, 5, 8, 11, 14, 17 and 20) or a mutated form of Ig-κB (Ig-κB mut) which ablates NF-κB binding (lanes 3, 6, 9, 12, 15, 18 and 21). Due to the different specific activities of the probes (see Materials and Methods) the data are only qualitative and not quantitative. (
<bold>B</bold>
) Nuclear extracts prepared from TNF-stimulated NIH 3T3 cells were incubated with the PRDII probe in the absence (lane 1) or presence of the indicated NF-κB subunit-specific antisera (lanes 2 and 3). The resulting complexes were resolved on a 5% non-denaturing gel and detected in a Molecular Imager.</p>
</caption>
<graphic xlink:href="gkf35804"></graphic>
</fig>
<fig id="GKF358F5" position="float">
<caption>
<p>
<bold>Figure 5.</bold>
Competition of LNA and phosphodiester ODNs for binding of NF-κB to radiolabeled PRDII probe. Competition experiments were performed by incubating crude nuclear extracts together with the [
<sup>32</sup>
P]PRDII probe (1.2 nM) and the indicated unlabeled competitor. NF-κB–PRDII complex formation in the presence of increasing competitor concentrations was analyzed by EMSA and quantitated in a Molecular Imager. Data were expressed as percent binding relative to the level of NF-κB–radioligand complex formation in the absence of the competitor. IC
<sub>50</sub>
values for each type of competitor were estimated by plotting these data as a function of log
<sub>10</sub>
of the competitor concentration (nM) and fitting to a dose-response curve. Curve fitting was performed with Origin 4.1 software. Fifty percent inhibitory concentrations (nM) ± SE are indicated.</p>
</caption>
<graphic xlink:href="gkf35805"></graphic>
</fig>
</p>
</sec>
</body>
<back>
<ref-list>
<ref id="GKF358C1">
<label>1.</label>
<citation> Papavassiliou,A.G. (
<year>1998</year>
) Transcription-factor-modulating agents: precision and selectivity in drug design.
<source>Mol. Med. Today</source>
,
<volume>4</volume>
,
<fpage>358</fpage>
–366.</citation>
</ref>
<ref id="GKF358C2">
<label>2.</label>
<citation> Morishita,R., Higaki,J., Tomita,N. and Ogihara,T. (
<year>1998</year>
) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease.
<source>Circ. Res.</source>
,
<volume>82</volume>
,
<fpage>1023</fpage>
–1028.</citation>
</ref>
<ref id="GKF358C3">
<label>3.</label>
<citation> Cho-Chung,Y.S., Park,Y.G. and Lee,Y.N. (
<year>1999</year>
) Oligonucleotides as transcription factor decoys.
<source>Curr. Opin. Mol. Ther.</source>
,
<volume>1</volume>
,
<fpage>386</fpage>
–392.</citation>
</ref>
<ref id="GKF358C4">
<label>4.</label>
<citation> Mann,M.J. and Dzau,V.J. (
<year>2000</year>
) Therapeutic applications of transcription factor decoy oligonucleotides.
<source>J. Clin. Invest.</source>
,
<volume>106</volume>
,
<fpage>1071</fpage>
–1075.</citation>
</ref>
<ref id="GKF358C5">
<label>5.</label>
<citation> Bielinska,A., Shivdasani,R.A., Zhang,L. and Nabel,G.J. (
<year>1990</year>
) Regulation of gene expression with double-stranded phosphorothioate oligonucleotides.
<source>Science</source>
,
<volume>250</volume>
,
<fpage>997</fpage>
–1000.</citation>
</ref>
<ref id="GKF358C6">
<label>6.</label>
<citation> Morishita,R., Gibbons,G.H., Horiuchi,M., Ellison,K.E., Nakajima,M., Zhang,L., Kaneda,Y., Ogihara,T. and Dzau,V.J. (
<year>1995</year>
) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation
<italic>in vivo</italic>
.
<source>Proc. Natl Acad. Sci. USA</source>
,
<volume>92</volume>
,
<fpage>5855</fpage>
–5859.</citation>
</ref>
<ref id="GKF358C7">
<label>7.</label>
<citation> Morishita,R., Sugimoto,T., Aoki,M., Kida,I., Tomita,N., Moriguchi,A., Maeda,K., Sawa,Y., Kaneda,Y., Higaki,J. and Ogihara,T. (
<year>1997</year>
)
<italic>In vivo</italic>
transfection of
<italic>cis</italic>
element “decoy” against nuclear factor -kB binding site prevents myocardial infarction.
<source>Nature Med.</source>
,
<volume>3</volume>
,
<fpage>894</fpage>
–899.</citation>
</ref>
<ref id="GKF358C8">
<label>8.</label>
<citation> Uhlmann,E. and Peyman,A. (
<year>1990</year>
) Antisense oligonucleotides: a new therapeutic principle.
<source>Chem. Rev.</source>
,
<volume>90</volume>
,
<fpage>543</fpage>
–584.</citation>
</ref>
<ref id="GKF358C9">
<label>9.</label>
<citation> Chu,B.C.F. and Orgel,L.E. (
<year>1992</year>
) The stability of different forms of double-stranded decoy DNA in serum and nuclear extracts.
<source>Nucleic Acids Res.</source>
,
<volume>20</volume>
,
<fpage>5857</fpage>
–5858.</citation>
</ref>
<ref id="GKF358C10">
<label>10.</label>
<citation> Stein,C.A., Subasinghe,C., Shinozuka,K. and Cohen,J.S. (
<year>1988</year>
) Physicochemical properties of phosphorothioate oligodeoxynucleotides.
<source>Nucleic Acids Res.</source>
,
<volume>16</volume>
,
<fpage>3209</fpage>
–3221.</citation>
</ref>
<ref id="GKF358C11">
<label>11.</label>
<citation> Zhao,Q., Matson,S., Herrera,C.J., Fisher,E., Yu,H. and Krieg,A.M. (
<year>1993</year>
) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate and mixed phosphorothioate and methylphosphonate oligonucleotides.
<source>Antisense Res. Dev.</source>
,
<volume>3</volume>
,
<fpage>53</fpage>
–66.</citation>
</ref>
<ref id="GKF358C12">
<label>12.</label>
<citation> Kibler-Herzog,L., Zon,G., Uznanski,B., Whittier,G. and Wilson,W.D. (
<year>1991</year>
) Duplex stabilities of phosphorothioate, methylphosphonate and RNA analogs of two DNA 14-mers.
<source>Nucleic Acids Res.</source>
,
<volume>19</volume>
,
<fpage>2979</fpage>
–2986.</citation>
</ref>
<ref id="GKF358C13">
<label>13.</label>
<citation> Gao,W.Y., Han,F.S., Storm,C., Egan,W. and Cheng,Y.C. (
<year>1992</year>
) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology.
<source> Mol. Pharmacol.</source>
,
<volume>41</volume>
,
<fpage>223</fpage>
–229.</citation>
</ref>
<ref id="GKF358C14">
<label>14.</label>
<citation> Yaswen,P., Stampfer,M.R., Ghosh,K. and Cohen,J.S. (
<year>1993</year>
) Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells.
<source>Antisense Res. Dev.</source>
,
<volume>3</volume>
,
<fpage>67</fpage>
–77.</citation>
</ref>
<ref id="GKF358C15">
<label>15.</label>
<citation> Brown,D.A., Kang,S.H., Gryaznov,S.M., DeDionisio,L., Heidenreich,O., Sullivan,S., Xu,X. and Nerenberg,M.I. (
<year>1994</year>
) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding.
<source> J. Biol. Chem.</source>
,
<volume>269</volume>
,
<fpage>26801</fpage>
–26805.</citation>
</ref>
<ref id="GKF358C16">
<label>16.</label>
<citation> Mischiati,C., Borgatti,M., Bianchi,N., Rutigliano,C., Tomassetti,M., Feriotto,G. and Gambari,R. (
<year>1999</year>
) Interaction of the human NF-kB p52 transcription factor with DNA–PNA hybrids mimicking the NF-kB binding sites of the human immunodeficiency virus type 1 promoter.
<source> J. Biol. Chem.</source>
,
<volume>274</volume>
,
<fpage>33114</fpage>
–33122.</citation>
</ref>
<ref id="GKF358C17">
<label>17.</label>
<citation> Egholm,M., Buchardt,O., Christensen,L., Behrens,C., Freier,S.M., Driver,D.A., Berg,R.H., Kim,S.K., Norden,B. and Nielsen,P.E. (
<year>1993</year>
) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules.
<source>Nature</source>
,
<volume>365</volume>
,
<fpage>566</fpage>
–568.</citation>
</ref>
<ref id="GKF358C18">
<label>18.</label>
<citation> Demidov,V.V., Potaman,V.N., Frank-Kamenetsk,M.D., Egholm,M., Buchard,O., Sonnichsen,S.H. and Nielsen,P.E. (
<year>1994</year>
) Stability of peptide nucleic acids in human serum and cellular extracts.
<source>Biochem. Pharmacol.</source>
,
<volume>48</volume>
,
<fpage>1310</fpage>
–1313.</citation>
</ref>
<ref id="GKF358C19">
<label>19.</label>
<citation> Singh,S.K., Nielsen,P., Koshkin,A. and Wengel,J. (
<year>1998</year>
) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition.
<source> Chem. Commun.</source>
,
<fpage>455</fpage>
–456.</citation>
</ref>
<ref id="GKF358C20">
<label>20.</label>
<citation> Koshkin,A., Singh,S.K., Nielsen,P., Rajwanshi,V.K., Kumar,R., Meldgaard,M., Olsen,C.E. and Wengel,J. (
<year>1998</year>
) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition.
<source>Tetrahedron</source>
,
<volume>54</volume>
,
<fpage>3607</fpage>
–3630.</citation>
</ref>
<ref id="GKF358C21">
<label>21.</label>
<citation> Wengel,J. (
<year>1999</year>
) Synthesis of 3′-C-and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA).
<source>Acc. Chem. Res.</source>
,
<volume>32</volume>
,
<fpage>301</fpage>
–310.</citation>
</ref>
<ref id="GKF358C22">
<label>22.</label>
<citation> Singh,S.K. and Wengel,J. (
<year>1998</year>
) Universality of LNA-mediated high-affinity nucleic acid recognition.
<source>Chem. Commun.</source>
,
<fpage>1247</fpage>
–1248.</citation>
</ref>
<ref id="GKF358C23">
<label>23.</label>
<citation> Obika,S., Nanbu,D., Hari,Y., Morio,J.A.K., Doi,T. and Imanishi,T. (
<year>1998</year>
) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides.
<source>Tetrahedron Lett.</source>
,
<volume>39</volume>
,
<fpage>5401</fpage>
–5404.</citation>
</ref>
<ref id="GKF358C24">
<label>24.</label>
<citation> Pfundheller,H.M. and Wengel,J. (
<year>1999</year>
) Oligonucleotides containing 4′-C-aminomethyl-2′-modified thymidines show increased binding affinity towards DNA and RNA.
<source>Bioorg. Med. Chem. Lett.</source>
,
<volume>9</volume>
,
<fpage>2667</fpage>
–2672.</citation>
</ref>
<ref id="GKF358C25">
<label>25.</label>
<citation> Christensen,U., Jacobsen,N., Rajwanshi,V.K., Wengel,J. and Koch,T. (
<year>2001</year>
) Stopped-flow kinetics of locked nucleic acid (LNA)–oligonucleotide duplex formation: studies of LNA–DNA and DNA–DNA interactions.
<source>Biochem. J.</source>
,
<volume>354</volume>
,
<fpage>481</fpage>
–484.</citation>
</ref>
<ref id="GKF358C26">
<label>26.</label>
<citation> Wahlestedt,C., Salmi,P., Good,L., Kela,J., Johnsson,T., Hokfelt,T., Broberger,C., Porreca,F., Lai,J., Ren,K., Ossipov,M., Koshkin,A., Jakobsen,N., Skouv,J., Oerum,H., Jacobsen,M.H. and Wengel,J. (
<year>2000</year>
) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids.
<source>Proc. Natl Acad. Sci. USA</source>
,
<volume>97</volume>
,
<fpage>5633</fpage>
–5638.</citation>
</ref>
<ref id="GKF358C27">
<label>27.</label>
<citation> Perkins,N.D. (
<year>2000</year>
) The Rel/NF-kB family: friend and foe.
<source>Trends Biochem. Sci.</source>
,
<volume>25</volume>
,
<fpage>434</fpage>
–440.</citation>
</ref>
<ref id="GKF358C28">
<label>28.</label>
<citation> Baldwin,A.S. (
<year>2001</year>
) Series introduction: the transcription factor NF-kB and human diseases.
<source>J. Clin. Invest.</source>
,
<volume>107</volume>
,
<fpage>3</fpage>
–6.</citation>
</ref>
<ref id="GKF358C29">
<label>29.</label>
<citation> Sharma,H.W., Perez,J.R., Higgins-Sochaski,K., Hsiao,R. and Narayanan,R. (
<year>1996</year>
) Transcription factor decoy approach to decifer the role of NF-kB in oncogenesis.
<source>Anticancer Res.</source>
,
<volume>16</volume>
,
<fpage>61</fpage>
–69.</citation>
</ref>
<ref id="GKF358C30">
<label>30.</label>
<citation> Miagkov,A.V., Kovalenko,D.V., Brown,C.E., Didsbury,J.R., Cogswell,J.P., Stimpson,S.A., Baldwin,A.S. and Makarov,S.S. (
<year>1998</year>
) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint.
<source>Proc. Natl Acad. Sci. USA</source>
,
<volume>95</volume>
,
<fpage>13859</fpage>
–13864.</citation>
</ref>
<ref id="GKF358C31">
<label>31.</label>
<citation> Matsushita,H., Morishita,R., Nata,T., Aoki,M., Nakagami,H., Taniyama,Y., Yamamoto,K., Higaki,J., Yasufumi,K. and Ogihara,T. (
<year>2000</year>
) Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression:
<italic>in vivo</italic>
evidence of the importance of NF-kappaB in endothelial cell regulation.
<source>Circ. Res.</source>
,
<volume>86</volume>
,
<fpage>974</fpage>
–981.</citation>
</ref>
<ref id="GKF358C32">
<label>32.</label>
<citation> Cooper,J.A., Parks,J.M., Carcelen,R., Kahlon,S.S., Sheffield,M. and Culbreth,R. (
<year>2000</year>
) Attenuation of interleukin-8 production by inhibiting nuclear factor-kappaB translocation using decoy oligonucleotides.
<source>Biochem. Pharmacol.</source>
,
<volume>59</volume>
,
<fpage>605</fpage>
–613.</citation>
</ref>
<ref id="GKF358C33">
<label>33.</label>
<citation> Tomita,N., Morishita,R., Tomita,S., Gibbons,G.H., Zhang,L., Horiuchi,M., Kaneda,Y., Higaki,J., Ogihara,T. and Dzau,V.J. (
<year>2000</year>
) Transcription factor decoy for NFkappaB inhibits TNF-alpha-induced cytokine and adhesion molecule expression
<italic>in vivo</italic>
.
<source>Gene Ther.</source>
,
<volume>7</volume>
,
<fpage>1326</fpage>
–1332.</citation>
</ref>
<ref id="GKF358C34">
<label>34.</label>
<citation> Nielsen,C.B., Singh,S.K., Wengel,J. and Jacobsen,J.P. (
<year>1999</year>
) The solution structure of a locked nucleic acid (LNA) hybridized to DNA.
<source> J. Biomol. Struct. Dyn.</source>
,
<volume>17</volume>
,
<fpage>175</fpage>
–191.</citation>
</ref>
<ref id="GKF358C35">
<label>35.</label>
<citation> Nielsen,K.E., Singh,S.K., Wengel,J. and Jacobsen,J.P. (
<year>2000</year>
) Solution structure of an LNA hybridized to DNA: NMR study of the d(CT(L)GCT(L)T(L)CT(L)GC):d(GCAGAAGCAG) duplex containing four locked nucleotides.
<source>Bioconjug. Chem.</source>
,
<volume>11</volume>
,
<fpage>228</fpage>
–238.</citation>
</ref>
<ref id="GKF358C36">
<label>36.</label>
<citation> Petersen,M., Nielsen,C.B., Nielsen,K.E., Jensen,G.A., Bondensgaard,K., Singh,S.K., Rajwanshi,V.K., Koshkin,A.A., Dahl,B.M., Wengel,J. and Jacobsen,J.P. (
<year>2000</year>
) The conformations of locked nucleic acids (LNA).
<source>J. Mol. Recognit.</source>
,
<volume>13</volume>
,
<fpage>44</fpage>
–53.</citation>
</ref>
<ref id="GKF358C37">
<label>37.</label>
<citation> Ghosh,G., van Duyne,G., Ghosh,S. and Sigler,P.B. (
<year>1995</year>
) Structure of NF-kappa B p50 homodimer bound to a kB site.
<source>Nature</source>
,
<volume>373</volume>
,
<fpage>303</fpage>
–310.</citation>
</ref>
<ref id="GKF358C38">
<label>38.</label>
<citation> Muller,C.W., Rey,F.A., Sodeoka,M., Verdine,G.L. and Harrison,S.C. (
<year>1995</year>
) Structure of the NF-kappa B p50 homodimer bound to DNA.
<source>Nature</source>
,
<volume>373</volume>
,
<fpage>311</fpage>
–317.</citation>
</ref>
<ref id="GKF358C39">
<label>39.</label>
<citation> Chen,F.E., Huang,D.B., Chen,Y.Q. and Ghosh,G. (
<year>1998</year>
) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA.
<source>Nature</source>
,
<volume>391</volume>
,
<fpage>410</fpage>
–413.</citation>
</ref>
<ref id="GKF358C40">
<label>40.</label>
<citation> Thanos,D. and Maniatis,T. (
<year>1992</year>
) The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene.
<source>Cell</source>
,
<volume>71</volume>
,
<fpage>777</fpage>
–789.</citation>
</ref>
<ref id="GKF358C41">
<label>41.</label>
<citation> Mantovani,F., Covaceuszach,S., Rustighi,A., Sgarra,R., Heath,C., Goodwin,G.H. and Manfioletti,G. (
<year>1998</year>
) NF-κB mediated transcriptional activation is enhanced by the architectural factor HMGI-C.
<source>Nucleic Acids Res.</source>
,
<volume>26</volume>
,
<fpage>1433</fpage>
–1439.</citation>
</ref>
<ref id="GKF358C42">
<label>42.</label>
<citation> Stein,C.A. and Cheng,Y.-C. (
<year>1993</year>
) Antisense oligonucleotides as therapeutic agents. Is the bullet really magical?
<source>Science</source>
,
<volume>261</volume>
,
<fpage>1004</fpage>
–1011.</citation>
</ref>
<ref id="GKF358C43">
<label>43.</label>
<citation> Shaw,J.P., Kent,K., Bird,J., Fishback,J. and Froehler,B. (
<year>1991</year>
) Modified deoxyoligonucleotides stable to exonuclease degradation in serum.
<source>Nucleic Acids Res.</source>
,
<volume>19</volume>
,
<fpage>747</fpage>
–750.</citation>
</ref>
<ref id="GKF358C44">
<label>44.</label>
<citation> Uhlman,E., Ryte,A. and Peyman,A. (
<year>1997</year>
) Studies on the mechanism of stabilization of partially phosphorothioated oligonucleotides against nucleolytic degradation.
<source>Antisense Nucleic Acid Drug Dev.</source>
,
<volume>7</volume>
,
<fpage>345</fpage>
–350.</citation>
</ref>
<ref id="GKF358C45">
<label>45.</label>
<citation> Pandolfi,D., Rauzi,F. and Capobianco,M.L. (
<year>1999</year>
) Evaluation of different types of end-capping modifications on the stability of oligonucleotides towards 3′- and 5′-exonucleases.
<source>Nucl. Nucl.</source>
,
<volume>18</volume>
,
<fpage>2051</fpage>
–2069.</citation>
</ref>
<ref id="GKF358C46">
<label>46.</label>
<citation> Suck,D. and Oefner,C. (
<year>1986</year>
) Structure of Dnase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA.
<source>Nature</source>
,
<volume>321</volume>
,
<fpage>620</fpage>
–625.</citation>
</ref>
<ref id="GKF358C47">
<label>47.</label>
<citation> Suck,D. (
<year>1997</year>
) DNA recognition by structure-selective nucleases.
<source>Biopolymers</source>
,
<volume>44</volume>
,
<fpage>405</fpage>
–421.</citation>
</ref>
<ref id="GKF358C48">
<label>48.</label>
<citation> Romanelli,A., Pedone,C., Saviano,M., Bianchi,N., Borgatti,M., Mischiati,C. and Gambari R. (
<year>2001</year>
) Molecular interactions between nuclear factor-kB (NF-kB) transcription factors and PNA-DNA chimera mimicking NF-kB binding sites.
<source>Eur. J. Biochem.</source>
,
<volume>268</volume>
,
<fpage>6066</fpage>
–6075.</citation>
</ref>
<ref id="GKF358C49">
<label>49.</label>
<citation> Braasch,D.A. and Corey,D.R. (
<year>2000</year>
) Locked nucleic acids (LNA): fine-tuning the recognition of DNA and RNA.
<source>Chem. Biol.</source>
,
<volume>55</volume>
,
<fpage>1</fpage>
–7.</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Design and characterization of decoy oligonucleotides containing locked nucleic acids</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rita</namePart>
<namePart type="family">Crinelli</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marzia</namePart>
<namePart type="family">Bianchi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Gentilini</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mauro</namePart>
<namePart type="family">Magnani</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2002-06-01</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Transfection of cis-element double-stranded oligonucleotides, referred to as decoy ODNs, has been reported to be a powerful tool that provides a new class of antigene strategies for gene therapy. However, one of the major limitations of the decoy approach is the rapid degradation of phosphodiester oligonucleotides by intracellular nucleases. To date, several DNA analogs have been employed to overcome this issue, but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this paper we have investigated the use of conformationally restricted nucleotides in the design of decoy molecules for nuclear transcription factor κB (NF-κB). Starting from a synthetic double-stranded oligonucleotide, containing the κB consensus binding sequence, we designed a panel of decoy molecules modified to various extents and at various positions with locked nucleic acids (LNAs). Our results indicate that the addition of terminal LNA bases, outside the κB sequence, to generate LNA–DNA–LNA co-polymers was sufficient to confer appreciable protection towards nuclease digestion, without interfering with transcription factor binding. Conversely, insertion of LNA substitutions in the context of the κB-binding site resulted in further increased stability, but caused a loss of affinity of NF-κB for the target sequence. However, our results also indicate that this latter effect was apparently dependent not only on the extent but also on strand positioning of the internal LNA substitutions. This observation is of great importance since it provides evidence for the possibility of tuning DNA–LNA duplexes with internal LNAs into decoy agents with improved features in terms of biological stability and inhibitory effect.</abstract>
<note>Received February 4, 2002; Revised and Accepted April 10, 2002.</note>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Nucl. Acids Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0305-1048</identifier>
<identifier type="eISSN">1362-4962</identifier>
<identifier type="PublisherID">nar</identifier>
<identifier type="PublisherID-hwp">nar</identifier>
<identifier type="PublisherID-nlm-ta">Nucleic Acids Res</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>2435</start>
<end>2443</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C1">
<titleInfo>
<title>Mol. Med. Today</title>
</titleInfo>
<note>Papavassiliou,A.G. (1998) Transcription-factor-modulating agents: precision and selectivity in drug design. Mol. Med. Today, 4, 358–366.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>358</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C2">
<titleInfo>
<title>Circ. Res.</title>
</titleInfo>
<note>Morishita,R., Higaki,J., Tomita,N. and Ogihara,T. (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ. Res., 82, 1023–1028.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>82</number>
</detail>
<extent unit="pages">
<start>1023</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C3">
<titleInfo>
<title>Curr. Opin. Mol. Ther.</title>
</titleInfo>
<note>Cho-Chung,Y.S., Park,Y.G. and Lee,Y.N. (1999) Oligonucleotides as transcription factor decoys. Curr. Opin. Mol. Ther., 1, 386–392.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>386</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C4">
<titleInfo>
<title>J. Clin. Invest.</title>
</titleInfo>
<note>Mann,M.J. and Dzau,V.J. (2000) Therapeutic applications of transcription factor decoy oligonucleotides. J. Clin. Invest., 106, 1071–1075.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<extent unit="pages">
<start>1071</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C5">
<titleInfo>
<title>Science</title>
</titleInfo>
<note>Bielinska,A., Shivdasani,R.A., Zhang,L. and Nabel,G.J. (1990) Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science, 250, 997–1000.</note>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>250</number>
</detail>
<extent unit="pages">
<start>997</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C6">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<note>Morishita,R., Gibbons,G.H., Horiuchi,M., Ellison,K.E., Nakajima,M., Zhang,L., Kaneda,Y., Ogihara,T. and Dzau,V.J. (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc. Natl Acad. Sci. USA, 92, 5855–5859.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>92</number>
</detail>
<extent unit="pages">
<start>5855</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C7">
<titleInfo>
<title>Nature Med.</title>
</titleInfo>
<note>Morishita,R., Sugimoto,T., Aoki,M., Kida,I., Tomita,N., Moriguchi,A., Maeda,K., Sawa,Y., Kaneda,Y., Higaki,J. and Ogihara,T. (1997) In vivo transfection of cis element “decoy” against nuclear factor -kB binding site prevents myocardial infarction. Nature Med., 3, 894–899.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>894</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C8">
<titleInfo>
<title>Chem. Rev.</title>
</titleInfo>
<note>Uhlmann,E. and Peyman,A. (1990) Antisense oligonucleotides: a new therapeutic principle. Chem. Rev., 90, 543–584.</note>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<extent unit="pages">
<start>543</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C9">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<note>Chu,B.C.F. and Orgel,L.E. (1992) The stability of different forms of double-stranded decoy DNA in serum and nuclear extracts. Nucleic Acids Res., 20, 5857–5858.</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>5857</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C10">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<note>Stein,C.A., Subasinghe,C., Shinozuka,K. and Cohen,J.S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res., 16, 3209–3221.</note>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>3209</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C11">
<titleInfo>
<title>Antisense Res. Dev.</title>
</titleInfo>
<note>Zhao,Q., Matson,S., Herrera,C.J., Fisher,E., Yu,H. and Krieg,A.M. (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev., 3, 53–66.</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>53</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C12">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<note>Kibler-Herzog,L., Zon,G., Uznanski,B., Whittier,G. and Wilson,W.D. (1991) Duplex stabilities of phosphorothioate, methylphosphonate and RNA analogs of two DNA 14-mers. Nucleic Acids Res., 19, 2979–2986.</note>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>2979</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C13">
<titleInfo>
<title>Mol. Pharmacol.</title>
</titleInfo>
<note>Gao,W.Y., Han,F.S., Storm,C., Egan,W. and Cheng,Y.C. (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol. Pharmacol., 41, 223–229.</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<extent unit="pages">
<start>223</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C14">
<titleInfo>
<title>Antisense Res. Dev.</title>
</titleInfo>
<note>Yaswen,P., Stampfer,M.R., Ghosh,K. and Cohen,J.S. (1993) Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. Antisense Res. Dev., 3, 67–77.</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>67</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C15">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Brown,D.A., Kang,S.H., Gryaznov,S.M., DeDionisio,L., Heidenreich,O., Sullivan,S., Xu,X. and Nerenberg,M.I. (1994) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J. Biol. Chem., 269, 26801–26805.</note>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>269</number>
</detail>
<extent unit="pages">
<start>26801</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C16">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note>Mischiati,C., Borgatti,M., Bianchi,N., Rutigliano,C., Tomassetti,M., Feriotto,G. and Gambari,R. (1999) Interaction of the human NF-kB p52 transcription factor with DNA–PNA hybrids mimicking the NF-kB binding sites of the human immunodeficiency virus type 1 promoter. J. Biol. Chem., 274, 33114–33122.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>274</number>
</detail>
<extent unit="pages">
<start>33114</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C17">
<titleInfo>
<title>Nature</title>
</titleInfo>
<note>Egholm,M., Buchardt,O., Christensen,L., Behrens,C., Freier,S.M., Driver,D.A., Berg,R.H., Kim,S.K., Norden,B. and Nielsen,P.E. (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 365, 566–568.</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>365</number>
</detail>
<extent unit="pages">
<start>566</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C18">
<titleInfo>
<title>Biochem. Pharmacol.</title>
</titleInfo>
<note>Demidov,V.V., Potaman,V.N., Frank-Kamenetsk,M.D., Egholm,M., Buchard,O., Sonnichsen,S.H. and Nielsen,P.E. (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol., 48, 1310–1313.</note>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>48</number>
</detail>
<extent unit="pages">
<start>1310</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C19">
<titleInfo>
<title>Chem. Commun.</title>
</titleInfo>
<note>Singh,S.K., Nielsen,P., Koshkin,A. and Wengel,J. (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem. Commun., 455–456.</note>
<part>
<date>1998</date>
<extent unit="pages">
<start>455</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C20">
<titleInfo>
<title>Tetrahedron</title>
</titleInfo>
<note>Koshkin,A., Singh,S.K., Nielsen,P., Rajwanshi,V.K., Kumar,R., Meldgaard,M., Olsen,C.E. and Wengel,J. (1998) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition. Tetrahedron, 54, 3607–3630.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>54</number>
</detail>
<extent unit="pages">
<start>3607</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C21">
<titleInfo>
<title>Acc. Chem. Res.</title>
</titleInfo>
<note>Wengel,J. (1999) Synthesis of 3′-C-and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res., 32, 301–310.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>301</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C22">
<titleInfo>
<title>Chem. Commun.</title>
</titleInfo>
<note>Singh,S.K. and Wengel,J. (1998) Universality of LNA-mediated high-affinity nucleic acid recognition. Chem. Commun., 1247–1248.</note>
<part>
<date>1998</date>
<extent unit="pages">
<start>1247</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C23">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<note>Obika,S., Nanbu,D., Hari,Y., Morio,J.A.K., Doi,T. and Imanishi,T. (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett., 39, 5401–5404.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>5401</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C24">
<titleInfo>
<title>Bioorg. Med. Chem. Lett.</title>
</titleInfo>
<note>Pfundheller,H.M. and Wengel,J. (1999) Oligonucleotides containing 4′-C-aminomethyl-2′-modified thymidines show increased binding affinity towards DNA and RNA. Bioorg. Med. Chem. Lett., 9, 2667–2672.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>2667</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C25">
<titleInfo>
<title>Biochem. J.</title>
</titleInfo>
<note>Christensen,U., Jacobsen,N., Rajwanshi,V.K., Wengel,J. and Koch,T. (2001) Stopped-flow kinetics of locked nucleic acid (LNA)–oligonucleotide duplex formation: studies of LNA–DNA and DNA–DNA interactions. Biochem. J., 354, 481–484.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>354</number>
</detail>
<extent unit="pages">
<start>481</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C26">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<note>Wahlestedt,C., Salmi,P., Good,L., Kela,J., Johnsson,T., Hokfelt,T., Broberger,C., Porreca,F., Lai,J., Ren,K., Ossipov,M., Koshkin,A., Jakobsen,N., Skouv,J., Oerum,H., Jacobsen,M.H. and Wengel,J. (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl Acad. Sci. USA, 97, 5633–5638.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>97</number>
</detail>
<extent unit="pages">
<start>5633</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C27">
<titleInfo>
<title>Trends Biochem. Sci.</title>
</titleInfo>
<note>Perkins,N.D. (2000) The Rel/NF-kB family: friend and foe. Trends Biochem. Sci., 25, 434–440.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<extent unit="pages">
<start>434</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C28">
<titleInfo>
<title>J. Clin. Invest.</title>
</titleInfo>
<note>Baldwin,A.S. (2001) Series introduction: the transcription factor NF-kB and human diseases. J. Clin. Invest., 107, 3–6.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>107</number>
</detail>
<extent unit="pages">
<start>3</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C29">
<titleInfo>
<title>Anticancer Res.</title>
</titleInfo>
<note>Sharma,H.W., Perez,J.R., Higgins-Sochaski,K., Hsiao,R. and Narayanan,R. (1996) Transcription factor decoy approach to decifer the role of NF-kB in oncogenesis. Anticancer Res., 16, 61–69.</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>61</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C30">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<note>Miagkov,A.V., Kovalenko,D.V., Brown,C.E., Didsbury,J.R., Cogswell,J.P., Stimpson,S.A., Baldwin,A.S. and Makarov,S.S. (1998) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc. Natl Acad. Sci. USA, 95, 13859–13864.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>95</number>
</detail>
<extent unit="pages">
<start>13859</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C31">
<titleInfo>
<title>Circ. Res.</title>
</titleInfo>
<note>Matsushita,H., Morishita,R., Nata,T., Aoki,M., Nakagami,H., Taniyama,Y., Yamamoto,K., Higaki,J., Yasufumi,K. and Ogihara,T. (2000) Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circ. Res., 86, 974–981.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>86</number>
</detail>
<extent unit="pages">
<start>974</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C32">
<titleInfo>
<title>Biochem. Pharmacol.</title>
</titleInfo>
<note>Cooper,J.A., Parks,J.M., Carcelen,R., Kahlon,S.S., Sheffield,M. and Culbreth,R. (2000) Attenuation of interleukin-8 production by inhibiting nuclear factor-kappaB translocation using decoy oligonucleotides. Biochem. Pharmacol., 59, 605–613.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>59</number>
</detail>
<extent unit="pages">
<start>605</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C33">
<titleInfo>
<title>Gene Ther.</title>
</titleInfo>
<note>Tomita,N., Morishita,R., Tomita,S., Gibbons,G.H., Zhang,L., Horiuchi,M., Kaneda,Y., Higaki,J., Ogihara,T. and Dzau,V.J. (2000) Transcription factor decoy for NFkappaB inhibits TNF-alpha-induced cytokine and adhesion molecule expression in vivo. Gene Ther., 7, 1326–1332.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>1326</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C34">
<titleInfo>
<title>J. Biomol. Struct. Dyn.</title>
</titleInfo>
<note>Nielsen,C.B., Singh,S.K., Wengel,J. and Jacobsen,J.P. (1999) The solution structure of a locked nucleic acid (LNA) hybridized to DNA. J. Biomol. Struct. Dyn., 17, 175–191.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>175</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C35">
<titleInfo>
<title>Bioconjug. Chem.</title>
</titleInfo>
<note>Nielsen,K.E., Singh,S.K., Wengel,J. and Jacobsen,J.P. (2000) Solution structure of an LNA hybridized to DNA: NMR study of the d(CT(L)GCT(L)T(L)CT(L)GC):d(GCAGAAGCAG) duplex containing four locked nucleotides. Bioconjug. Chem., 11, 228–238.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>228</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C36">
<titleInfo>
<title>J. Mol. Recognit.</title>
</titleInfo>
<note>Petersen,M., Nielsen,C.B., Nielsen,K.E., Jensen,G.A., Bondensgaard,K., Singh,S.K., Rajwanshi,V.K., Koshkin,A.A., Dahl,B.M., Wengel,J. and Jacobsen,J.P. (2000) The conformations of locked nucleic acids (LNA). J. Mol. Recognit., 13, 44–53.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>44</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C37">
<titleInfo>
<title>Nature</title>
</titleInfo>
<note>Ghosh,G., van Duyne,G., Ghosh,S. and Sigler,P.B. (1995) Structure of NF-kappa B p50 homodimer bound to a kB site. Nature, 373, 303–310.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>373</number>
</detail>
<extent unit="pages">
<start>303</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C38">
<titleInfo>
<title>Nature</title>
</titleInfo>
<note>Muller,C.W., Rey,F.A., Sodeoka,M., Verdine,G.L. and Harrison,S.C. (1995) Structure of the NF-kappa B p50 homodimer bound to DNA. Nature, 373, 311–317.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>373</number>
</detail>
<extent unit="pages">
<start>311</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C39">
<titleInfo>
<title>Nature</title>
</titleInfo>
<note>Chen,F.E., Huang,D.B., Chen,Y.Q. and Ghosh,G. (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature, 391, 410–413.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>391</number>
</detail>
<extent unit="pages">
<start>410</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C40">
<titleInfo>
<title>Cell</title>
</titleInfo>
<note>Thanos,D. and Maniatis,T. (1992) The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell, 71, 777–789.</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>71</number>
</detail>
<extent unit="pages">
<start>777</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C41">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<note>Mantovani,F., Covaceuszach,S., Rustighi,A., Sgarra,R., Heath,C., Goodwin,G.H. and Manfioletti,G. (1998) NF-κB mediated transcriptional activation is enhanced by the architectural factor HMGI-C. Nucleic Acids Res., 26, 1433–1439.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>26</number>
</detail>
<extent unit="pages">
<start>1433</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C42">
<titleInfo>
<title>Science</title>
</titleInfo>
<note>Stein,C.A. and Cheng,Y.-C. (1993) Antisense oligonucleotides as therapeutic agents. Is the bullet really magical? Science, 261, 1004–1011.</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>261</number>
</detail>
<extent unit="pages">
<start>1004</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C43">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<note>Shaw,J.P., Kent,K., Bird,J., Fishback,J. and Froehler,B. (1991) Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res., 19, 747–750.</note>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>747</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C44">
<titleInfo>
<title>Antisense Nucleic Acid Drug Dev.</title>
</titleInfo>
<note>Uhlman,E., Ryte,A. and Peyman,A. (1997) Studies on the mechanism of stabilization of partially phosphorothioated oligonucleotides against nucleolytic degradation. Antisense Nucleic Acid Drug Dev., 7, 345–350.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>345</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C45">
<titleInfo>
<title>Nucl. Nucl.</title>
</titleInfo>
<note>Pandolfi,D., Rauzi,F. and Capobianco,M.L. (1999) Evaluation of different types of end-capping modifications on the stability of oligonucleotides towards 3′- and 5′-exonucleases. Nucl. Nucl., 18, 2051–2069.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>2051</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C46">
<titleInfo>
<title>Nature</title>
</titleInfo>
<note>Suck,D. and Oefner,C. (1986) Structure of Dnase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA. Nature, 321, 620–625.</note>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>321</number>
</detail>
<extent unit="pages">
<start>620</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C47">
<titleInfo>
<title>Biopolymers</title>
</titleInfo>
<note>Suck,D. (1997) DNA recognition by structure-selective nucleases. Biopolymers, 44, 405–421.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>44</number>
</detail>
<extent unit="pages">
<start>405</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C48">
<titleInfo>
<title>Eur. J. Biochem.</title>
</titleInfo>
<note>Romanelli,A., Pedone,C., Saviano,M., Bianchi,N., Borgatti,M., Mischiati,C. and Gambari R. (2001) Molecular interactions between nuclear factor-kB (NF-kB) transcription factors and PNA-DNA chimera mimicking NF-kB binding sites. Eur. J. Biochem., 268, 6066–6075.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>268</number>
</detail>
<extent unit="pages">
<start>6066</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="GKF358C49">
<titleInfo>
<title>Chem. Biol.</title>
</titleInfo>
<note>Braasch,D.A. and Corey,D.R. (2000) Locked nucleic acids (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol., 55, 1–7.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>55</number>
</detail>
<extent unit="pages">
<start>1</start>
</extent>
</part>
</relatedItem>
<identifier type="istex">79BD31A517319682D2019475E79F5CADA57129EF</identifier>
<identifier type="ark">ark:/67375/HXZ-V006F8QV-F</identifier>
<identifier type="DOI">10.1093/nar/30.11.2435</identifier>
<identifier type="local">gkf358</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© Oxford University Press. All rights reserved.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-17</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/annexes.gif</uri>
</json:item>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-V006F8QV-F/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:79BD31A517319682D2019475E79F5CADA57129EF
   |texte=   Design and characterization of decoy oligonucleotides containing locked nucleic acids
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021