Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins

Identifieur interne : 001D57 ( Istex/Corpus ); précédent : 001D56; suivant : 001D58

Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins

Auteurs : Clare E. Pritchard ; Jane A. Grasby ; François Hamy ; Anthony M. Zacharek ; Mohinder Singh ; Jonathan Karn ; Michael J. Gait

Source :

RBID : ISTEX:C14DEE447A84C35F30C19F42ECFED28A3773A037

Abstract

The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a new method. Model RNA binding sites are constructed carrying substitutions of individual phosphodiesters by uncharged methylphosphonate derivatives isolated separately as ftp and Sp diastereoisomers and tested for protein binding by competition assays. In the binding of tat to the trans-activation response region (TAR), three phosphates, P21 and P22 which are adjacent to the U-rich bulge and P40 on the opposite strand, are essential and in each case both isomers inhibit binding. Similarly, in the interaction between the HIV-1 rev protein and the revresponsive element (RRE) both methylphosphonate isomers at P103, P104, P124 and P125 interfere with rev binding. At P106, only the Rp methylphosphonate isomer is impaired in rev binding ability and it is proposed that the Rp oxygen is hydrogen-bonded to an uncharged amino acid or to a main chain hydrogen atom. Synthetic chemistry techniques also provide evidence for the conformations of non-Watson - Crick G106:G129 and G105:A131 base-pairs in the RRE ‘bubble’ structure upon rev binding. Almost all functional groups on the 5 bulged residues in the bubble have been ruled out as sites of contact with rev but, by contrast, the N7-positions of each G residue in the flanking base-pairs are identified as sites of likely hydrogen-bonding to rev. The results show that both tat and rev recognize the major groove of distorted RNA helixes and that both proteins make specific contacts with phosphates which are displaced from the sites of base-pair contact.

Url:
DOI: 10.1093/nar/22.13.2592

Links to Exploration step

ISTEX:C14DEE447A84C35F30C19F42ECFED28A3773A037

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
<author>
<name sortKey="Pritchard, Clare E" sort="Pritchard, Clare E" uniqKey="Pritchard C" first="Clare E." last="Pritchard">Clare E. Pritchard</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grasby, Jane A" sort="Grasby, Jane A" uniqKey="Grasby J" first="Jane A." last="Grasby">Jane A. Grasby</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hamy, Francois" sort="Hamy, Francois" uniqKey="Hamy F" first="François" last="Hamy">François Hamy</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zacharek, Anthony M" sort="Zacharek, Anthony M" uniqKey="Zacharek A" first="Anthony M." last="Zacharek">Anthony M. Zacharek</name>
<affiliation>
<mods:affiliation>Department of Biochemical Sciences, Harvard University Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Mohinder" sort="Singh, Mohinder" uniqKey="Singh M" first="Mohinder" last="Singh">Mohinder Singh</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karn, Jonathan" sort="Karn, Jonathan" uniqKey="Karn J" first="Jonathan" last="Karn">Jonathan Karn</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gait, Michael J" sort="Gait, Michael J" uniqKey="Gait M" first="Michael J." last="Gait">Michael J. Gait</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*To whom correspondence should be addressed</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C14DEE447A84C35F30C19F42ECFED28A3773A037</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1093/nar/22.13.2592</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D57</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
<author>
<name sortKey="Pritchard, Clare E" sort="Pritchard, Clare E" uniqKey="Pritchard C" first="Clare E." last="Pritchard">Clare E. Pritchard</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grasby, Jane A" sort="Grasby, Jane A" uniqKey="Grasby J" first="Jane A." last="Grasby">Jane A. Grasby</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hamy, Francois" sort="Hamy, Francois" uniqKey="Hamy F" first="François" last="Hamy">François Hamy</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zacharek, Anthony M" sort="Zacharek, Anthony M" uniqKey="Zacharek A" first="Anthony M." last="Zacharek">Anthony M. Zacharek</name>
<affiliation>
<mods:affiliation>Department of Biochemical Sciences, Harvard University Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Mohinder" sort="Singh, Mohinder" uniqKey="Singh M" first="Mohinder" last="Singh">Mohinder Singh</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karn, Jonathan" sort="Karn, Jonathan" uniqKey="Karn J" first="Jonathan" last="Karn">Jonathan Karn</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gait, Michael J" sort="Gait, Michael J" uniqKey="Gait M" first="Michael J." last="Gait">Michael J. Gait</name>
<affiliation>
<mods:affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*To whom correspondence should be addressed</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Nucleic Acids Research</title>
<idno type="eISSN">1362-4962</idno>
<idno type="ISSN">0305-1048</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">1994</date>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2592">2592</biblScope>
<biblScope unit="page" to="2600">2600</biblScope>
</imprint>
<idno type="ISSN">0305-1048</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-1048</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a new method. Model RNA binding sites are constructed carrying substitutions of individual phosphodiesters by uncharged methylphosphonate derivatives isolated separately as ftp and Sp diastereoisomers and tested for protein binding by competition assays. In the binding of tat to the trans-activation response region (TAR), three phosphates, P21 and P22 which are adjacent to the U-rich bulge and P40 on the opposite strand, are essential and in each case both isomers inhibit binding. Similarly, in the interaction between the HIV-1 rev protein and the revresponsive element (RRE) both methylphosphonate isomers at P103, P104, P124 and P125 interfere with rev binding. At P106, only the Rp methylphosphonate isomer is impaired in rev binding ability and it is proposed that the Rp oxygen is hydrogen-bonded to an uncharged amino acid or to a main chain hydrogen atom. Synthetic chemistry techniques also provide evidence for the conformations of non-Watson - Crick G106:G129 and G105:A131 base-pairs in the RRE ‘bubble’ structure upon rev binding. Almost all functional groups on the 5 bulged residues in the bubble have been ruled out as sites of contact with rev but, by contrast, the N7-positions of each G residue in the flanking base-pairs are identified as sites of likely hydrogen-bonding to rev. The results show that both tat and rev recognize the major groove of distorted RNA helixes and that both proteins make specific contacts with phosphates which are displaced from the sites of base-pair contact.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>methylphosphonate</json:string>
<json:string>isomer</json:string>
<json:string>duplex</json:string>
<json:string>oligonucleotides</json:string>
<json:string>ethylation</json:string>
<json:string>methylphosphonate isomer</json:string>
<json:string>binding site</json:string>
<json:string>karn</json:string>
<json:string>major groove</json:string>
<json:string>methylphosphonates</json:string>
<json:string>eluting</json:string>
<json:string>hplc</json:string>
<json:string>frankel</json:string>
<json:string>substitution</json:string>
<json:string>binding ability</json:string>
<json:string>datum</json:string>
<json:string>puglisi</json:string>
<json:string>arginine</json:string>
<json:string>acad</json:string>
<json:string>nucleoside</json:string>
<json:string>hydrogen bond</json:string>
<json:string>natl</json:string>
<json:string>proc</json:string>
<json:string>amino</json:string>
<json:string>methylphosphonate substitution</json:string>
<json:string>phosphate residue</json:string>
<json:string>nucleic acid research</json:string>
<json:string>assay</json:string>
<json:string>unmodified</json:string>
<json:string>nucleic</json:string>
<json:string>peptide</json:string>
<json:string>phosphate contact</json:string>
<json:string>high affinity site</json:string>
<json:string>unmodified duplex</json:string>
<json:string>functional group</json:string>
<json:string>competition assay</json:string>
<json:string>protein binding</json:string>
<json:string>high affinity</json:string>
<json:string>ethylation interference analysis</json:string>
<json:string>specific contact</json:string>
<json:string>previous study</json:string>
<json:string>groove</json:string>
<json:string>phosphate</json:string>
<json:string>binding assay</json:string>
<json:string>opposite strand</json:string>
<json:string>ethylation interference study</json:string>
<json:string>local distortion</json:string>
<json:string>binding reaction</json:string>
<json:string>model duplex</json:string>
<json:string>result show</json:string>
<json:string>binding protein</json:string>
<json:string>binding datum</json:string>
<json:string>high affinity binding site</json:string>
<json:string>duplex competitor</json:string>
<json:string>exocyclic amino group</json:string>
<json:string>ethylation interference mapping</json:string>
<json:string>oxygen atom</json:string>
<json:string>amino acid side chain</json:string>
<json:string>methylphosphonate mapping</json:string>
<json:string>competitor</json:string>
<json:string>binding</json:string>
<json:string>uncharged amino acid</json:string>
<json:string>various concentration</json:string>
<json:string>responsive region</json:string>
<json:string>unlabelled competitor duplex</json:string>
<json:string>tris base</json:string>
<json:string>boric acid</json:string>
<json:string>functional group substitution experiment</json:string>
<json:string>nanda sinha</json:string>
<json:string>millipore corporation</json:string>
<json:string>eluting oligonucleotide product</json:string>
<json:string>room temperature</json:string>
<json:string>methylphosphonate diastereoisomers</json:string>
<json:string>synthetic oligoribonucleotides</json:string>
<json:string>arrow head</json:string>
<json:string>interference study</json:string>
<json:string>possible site</json:string>
<json:string>open circle</json:string>
<json:string>short basic peptide</json:string>
<json:string>shallow gradient</json:string>
<json:string>other strand</json:string>
<json:string>elution time</json:string>
<json:string>elution buffer</json:string>
<json:string>alkaline phosphatase</json:string>
<json:string>control duplex</json:string>
<json:string>snake venom phosphodiesterase</json:string>
<json:string>unlabelled competitor</json:string>
<json:string>bottom panel</json:string>
<json:string>chemical substitution experiment</json:string>
<json:string>individual phosphodiesters</json:string>
<json:string>secondary structure</json:string>
<json:string>major groove recognition</json:string>
<json:string>more distant purine</json:string>
<json:string>severe loss</json:string>
<json:string>ethylation interference</json:string>
<json:string>steric clash</json:string>
<json:string>polynucleotide kinase</json:string>
<json:string>uncharged amino acid side chain</json:string>
<json:string>partial alkaline hydrolysis</json:string>
<json:string>base triple</json:string>
<json:string>basic region</json:string>
<json:string>radioactive band</json:string>
<json:string>human immunodeficiency virus</json:string>
<json:string>amino acid</json:string>
<json:string>methylphosphonate linkage</json:string>
<json:string>electrostatic contact</json:string>
<json:string>single methylphosphonate isomer</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Clare E. Pritchard</name>
<affiliations>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jane A. Grasby</name>
<affiliations>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>François Hamy</name>
<affiliations>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Anthony M. Zacharek</name>
<affiliations>
<json:string>Department of Biochemical Sciences, Harvard University Cambridge, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mohinder Singh</name>
<affiliations>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jonathan Karn</name>
<affiliations>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael J. Gait</name>
<affiliations>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</json:string>
<json:string>*To whom correspondence should be addressed</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>22.13.2592</json:string>
</articleId>
<arkIstex>ark:/67375/HXZ-SCD9CQ9K-G</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a new method. Model RNA binding sites are constructed carrying substitutions of individual phosphodiesters by uncharged methylphosphonate derivatives isolated separately as ftp and Sp diastereoisomers and tested for protein binding by competition assays. In the binding of tat to the trans-activation response region (TAR), three phosphates, P21 and P22 which are adjacent to the U-rich bulge and P40 on the opposite strand, are essential and in each case both isomers inhibit binding. Similarly, in the interaction between the HIV-1 rev protein and the revresponsive element (RRE) both methylphosphonate isomers at P103, P104, P124 and P125 interfere with rev binding. At P106, only the Rp methylphosphonate isomer is impaired in rev binding ability and it is proposed that the Rp oxygen is hydrogen-bonded to an uncharged amino acid or to a main chain hydrogen atom. Synthetic chemistry techniques also provide evidence for the conformations of non-Watson - Crick G106:G129 and G105:A131 base-pairs in the RRE ‘bubble’ structure upon rev binding. Almost all functional groups on the 5 bulged residues in the bubble have been ruled out as sites of contact with rev but, by contrast, the N7-positions of each G residue in the flanking base-pairs are identified as sites of likely hydrogen-bonding to rev. The results show that both tat and rev recognize the major groove of distorted RNA helixes and that both proteins make specific contacts with phosphates which are displaced from the sites of base-pair contact.</abstract>
<qualityIndicators>
<score>9.333</score>
<pdfWordCount>6813</pdfWordCount>
<pdfCharCount>43141</pdfCharCount>
<pdfVersion>1.5</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>595.44 x 841.68 pts</pdfPageSize>
<pdfWordsPerPage>757</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>false</refBibsNative>
<abstractWordCount>276</abstractWordCount>
<abstractCharCount>1760</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
<pmid>
<json:string>8041622</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Nucleic Acids Research</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0305-1048</json:string>
</issn>
<eissn>
<json:string>1362-4962</json:string>
</eissn>
<publisherId>
<json:string>nar</json:string>
</publisherId>
<volume>22</volume>
<issue>13</issue>
<pages>
<first>2592</first>
<last>2600</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>RNA</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1994</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB</json:string>
<json:string>UK</json:string>
<json:string>Cruachem</json:string>
<json:string>Millipore Corporation</json:string>
<json:string>Applied Biosystems Ltd</json:string>
<json:string>Department of Biochemistry, University of Oxford, Oxford OX</json:string>
<json:string>Millipore Corporation, Bedford</json:string>
<json:string>UK Received</json:string>
<json:string>MRC AIDS Directed Programme</json:string>
</orgName>
<orgName_funder>
<json:string>MRC AIDS Directed Programme</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Anne Kelley</json:string>
<json:string>Gabriele Varani</json:string>
<json:string>Jo Butler</json:string>
<json:string>Anthony M.Zacharek</json:string>
<json:string>Terry Smith</json:string>
<json:string>Michael J.Gait</json:string>
<json:string>Jonathan Karn</json:string>
<json:string>Jan Fogg</json:string>
<json:string>Nanda Sinha</json:string>
<json:string>Glen Research</json:string>
<json:string>G.Varani</json:string>
<json:string>Richard Grenfell</json:string>
<json:string>Professor Fritz</json:string>
<json:string>F.Eckstein</json:string>
<json:string>Jane A.Grasby</json:string>
<json:string>Sheila Green</json:string>
<json:string>Mohinder Singh</json:string>
<json:string>Christina Lamont</json:string>
</persName>
<placeName>
<json:string>Switzerland</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Department of Biochemical Sciences, Harvard University, Cambridge, MA, USA Nucleic Acids Research, 1994</json:string>
<json:string>Bartel et al.</json:string>
<json:string>Noble et al.</json:string>
<json:string>Puglisi et al.</json:string>
<json:string>Tan et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-SCD9CQ9K-G</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - developmental biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1093/nar/22.13.2592</json:string>
</doi>
<id>C14DEE447A84C35F30C19F42ECFED28A3773A037</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>© 1994 Oxford University Press</licence>
</availability>
<date type="Copyright" when="1994">1994</date>
<date type="published">1994</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
<author xml:id="author-0000">
<persName>
<surname>Pritchard</surname>
<forename type="first">Clare E.</forename>
</persName>
<affiliation>
<orgName type="institution">MRC Laboratory of Molecular Biology</orgName>
<address>
<addrLine>Hills Road, Cambridge CB2 2QH, UK</addrLine>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Department of Biochemical Sciences, Harvard University</orgName>
<address>
<addrLine>Cambridge, MA, USA</addrLine>
</address>
</affiliation>
<note place="foot" n="fn1">
<p>+Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Grasby</surname>
<forename type="first">Jane A.</forename>
</persName>
</author>
<author xml:id="author-0002">
<persName>
<surname>Hamy</surname>
<forename type="first">François</forename>
</persName>
<affiliation>
<orgName type="institution">MRC Laboratory of Molecular Biology</orgName>
<address>
<addrLine>Hills Road, Cambridge CB2 2QH, UK</addrLine>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Department of Biochemical Sciences, Harvard University</orgName>
<address>
<addrLine>Cambridge, MA, USA</addrLine>
</address>
</affiliation>
<note place="foot" n="fn2">
<p>§Ciba-Geigy AG, CH-4002 Basel, Switzerland</p>
</note>
</author>
<author xml:id="author-0003">
<persName>
<surname>Zacharek</surname>
<forename type="first">Anthony M.</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Biochemical Sciences, Harvard University</orgName>
<address>
<addrLine>Cambridge, MA, USA</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<surname>Singh</surname>
<forename type="first">Mohinder</forename>
</persName>
</author>
<author xml:id="author-0005">
<persName>
<surname>Karn</surname>
<forename type="first">Jonathan</forename>
</persName>
</author>
<author xml:id="author-0006">
<persName>
<surname>Gait</surname>
<forename type="first">Michael J.</forename>
</persName>
<affiliation role="corresp">*To whom correspondence should be addressed</affiliation>
</author>
<idno type="istex">C14DEE447A84C35F30C19F42ECFED28A3773A037</idno>
<idno type="ark">ark:/67375/HXZ-SCD9CQ9K-G</idno>
<idno type="publisher-id">22.13.2592</idno>
<idno type="DOI">10.1093/nar/22.13.2592</idno>
</analytic>
<monogr>
<title level="j" type="main">Nucleic Acids Research</title>
<idno type="hwp">nar</idno>
<idno type="publisher-id">nar</idno>
<idno type="pmc">nar</idno>
<idno type="eISSN">1362-4962</idno>
<idno type="pISSN">0305-1048</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">1994</date>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2592">2592</biblScope>
<biblScope unit="page" to="2600">2600</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a new method. Model RNA binding sites are constructed carrying substitutions of individual phosphodiesters by uncharged methylphosphonate derivatives isolated separately as ftp and Sp diastereoisomers and tested for protein binding by competition assays. In the binding of tat to the
<hi rend="italic">trans</hi>
-activation response region (TAR), three phosphates, P21 and P22 which are adjacent to the U-rich bulge and P40 on the opposite strand, are essential and in each case both isomers inhibit binding. Similarly, in the interaction between the HIV-1 rev protein and the revresponsive element (RRE) both methylphosphonate isomers at P103, P104, P124 and P125 interfere with rev binding. At P106, only the
<hi rend="italic">R</hi>
p methylphosphonate isomer is impaired in rev binding ability and it is proposed that the
<hi rend="italic">R</hi>
p oxygen is hydrogen-bonded to an uncharged amino acid or to a main chain hydrogen atom. Synthetic chemistry techniques also provide evidence for the conformations of non-Watson - Crick G
<hi rend="subscript">106</hi>
:G
<hi rend="subscript">129</hi>
and G
<hi rend="subscript">105</hi>
:A
<hi rend="subscript">131</hi>
base-pairs in the RRE ‘bubble’ structure upon rev binding. Almost all functional groups on the 5 bulged residues in the bubble have been ruled out as sites of contact with rev but, by contrast, the
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-positions of each G residue in the flanking base-pairs are identified as sites of likely hydrogen-bonding to rev. The results show that both tat and rev recognize the major groove of distorted RNA helixes and that both proteins make specific contacts with phosphates which are displaced from the sites of base-pair contact.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="subject">
<term>RNA</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">nar</journal-id>
<journal-id journal-id-type="publisher-id">nar</journal-id>
<journal-id journal-id-type="pmc">nar</journal-id>
<journal-title>Nucleic Acids Research</journal-title>
<issn pub-type="epub">1362-4962</issn>
<issn pub-type="ppub">0305-1048</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">22.13.2592</article-id>
<article-id pub-id-type="doi">10.1093/nar/22.13.2592</article-id>
<article-categories>
<subj-group>
<subject>RNA</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Pritchard</surname>
<given-names>Clare E.</given-names>
</name>
<xref ref-type="fn" rid="fn1">
<sup>+</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grasby</surname>
<given-names>Jane A.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hamy</surname>
<given-names>François</given-names>
</name>
<xref ref-type="fn" rid="fn2">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zacharek</surname>
<given-names>Anthony M.</given-names>
</name>
<xref ref-type="aff" rid="au1">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Singh</surname>
<given-names>Mohinder</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Karn</surname>
<given-names>Jonathan</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gait</surname>
<given-names>Michael J.</given-names>
</name>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<aff>
<institution>MRC Laboratory of Molecular Biology</institution>
<addr-line>Hills Road, Cambridge CB2 2QH, UK</addr-line>
</aff>
<aff id="au1">
<sup></sup>
<institution>Department of Biochemical Sciences, Harvard University</institution>
<addr-line>Cambridge, MA, USA</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<sup>*</sup>
To whom correspondence should be addressed</corresp>
<fn id="fn1">
<p>
<sup>+</sup>
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK</p>
</fn>
<fn id="fn2">
<p>
<sup>§</sup>
Ciba-Geigy AG, CH-4002 Basel, Switzerland</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>11</day>
<month>7</month>
<year>1994</year>
</pub-date>
<volume>22</volume>
<issue>13</issue>
<fpage>2592</fpage>
<lpage>2600</lpage>
<history>
<date date-type="received">
<day>22</day>
<month>3</month>
<year>1994</year>
</date>
<date date-type="rev-recd">
<day>25</day>
<month>5</month>
<year>1994</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>5</month>
<year>1994</year>
</date>
</history>
<copyright-statement>© 1994 Oxford University Press</copyright-statement>
<copyright-year>1994</copyright-year>
<abstract>
<p>The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a new method. Model RNA binding sites are constructed carrying substitutions of individual phosphodiesters by uncharged methylphosphonate derivatives isolated separately as ftp and Sp diastereoisomers and tested for protein binding by competition assays. In the binding of tat to the
<italic>trans</italic>
-activation response region (TAR), three phosphates, P21 and P22 which are adjacent to the U-rich bulge and P40 on the opposite strand, are essential and in each case both isomers inhibit binding. Similarly, in the interaction between the HIV-1 rev protein and the revresponsive element (RRE) both methylphosphonate isomers at P103, P104, P124 and P125 interfere with rev binding. At P106, only the
<italic>R</italic>
p methylphosphonate isomer is impaired in rev binding ability and it is proposed that the
<italic>R</italic>
p oxygen is hydrogen-bonded to an uncharged amino acid or to a main chain hydrogen atom. Synthetic chemistry techniques also provide evidence for the conformations of non-Watson - Crick G
<sub>106</sub>
:G
<sub>129</sub>
and G
<sub>105</sub>
:A
<sub>131</sub>
base-pairs in the RRE ‘bubble’ structure upon rev binding. Almost all functional groups on the 5 bulged residues in the bubble have been ruled out as sites of contact with rev but, by contrast, the
<italic>N</italic>
<sup>7</sup>
-positions of each G residue in the flanking base-pairs are identified as sites of likely hydrogen-bonding to rev. The results show that both tat and rev recognize the major groove of distorted RNA helixes and that both proteins make specific contacts with phosphates which are displaced from the sites of base-pair contact.</p>
</abstract>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins</title>
</titleInfo>
<name type="personal">
<namePart type="given">Clare E.</namePart>
<namePart type="family">Pritchard</namePart>
<affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</affiliation>
<description>+Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jane A.</namePart>
<namePart type="family">Grasby</namePart>
<affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Hamy</namePart>
<affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</affiliation>
<description>§Ciba-Geigy AG, CH-4002 Basel, Switzerland</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony M.</namePart>
<namePart type="family">Zacharek</namePart>
<affiliation>Department of Biochemical Sciences, Harvard University Cambridge, MA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohinder</namePart>
<namePart type="family">Singh</namePart>
<affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Karn</namePart>
<affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael J.</namePart>
<namePart type="family">Gait</namePart>
<affiliation>MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, Cambridge, MA, USA</affiliation>
<affiliation>*To whom correspondence should be addressed</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">1994-07-11</dateIssued>
<dateCreated encoding="w3cdtf">1994-05-25</dateCreated>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<abstract>The HIV-1 regulatory proteins tat and rev are both RNA binding proteins which recognize sequences in duplex RNA which are close to structural distortions. Here we identify phosphate contacts which are critical for each binding reaction by use of a new method. Model RNA binding sites are constructed carrying substitutions of individual phosphodiesters by uncharged methylphosphonate derivatives isolated separately as ftp and Sp diastereoisomers and tested for protein binding by competition assays. In the binding of tat to the trans-activation response region (TAR), three phosphates, P21 and P22 which are adjacent to the U-rich bulge and P40 on the opposite strand, are essential and in each case both isomers inhibit binding. Similarly, in the interaction between the HIV-1 rev protein and the revresponsive element (RRE) both methylphosphonate isomers at P103, P104, P124 and P125 interfere with rev binding. At P106, only the Rp methylphosphonate isomer is impaired in rev binding ability and it is proposed that the Rp oxygen is hydrogen-bonded to an uncharged amino acid or to a main chain hydrogen atom. Synthetic chemistry techniques also provide evidence for the conformations of non-Watson - Crick G106:G129 and G105:A131 base-pairs in the RRE ‘bubble’ structure upon rev binding. Almost all functional groups on the 5 bulged residues in the bubble have been ruled out as sites of contact with rev but, by contrast, the N7-positions of each G residue in the flanking base-pairs are identified as sites of likely hydrogen-bonding to rev. The results show that both tat and rev recognize the major groove of distorted RNA helixes and that both proteins make specific contacts with phosphates which are displaced from the sites of base-pair contact.</abstract>
<note type="footnotes">+Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK</note>
<note type="author-notes">*To whom correspondence should be addressed</note>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Research</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<topic>RNA</topic>
</subject>
<identifier type="ISSN">0305-1048</identifier>
<identifier type="eISSN">1362-4962</identifier>
<identifier type="PublisherID">nar</identifier>
<identifier type="PublisherID-hwp">nar</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>2592</start>
<end>2600</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C14DEE447A84C35F30C19F42ECFED28A3773A037</identifier>
<identifier type="ark">ark:/67375/HXZ-SCD9CQ9K-G</identifier>
<identifier type="DOI">10.1093/nar/22.13.2592</identifier>
<identifier type="ArticleID">22.13.2592</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 1994 Oxford University Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-16</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-SCD9CQ9K-G/annexes.pdf</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C14DEE447A84C35F30C19F42ECFED28A3773A037
   |texte=   Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021