Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE

Identifieur interne : 001961 ( Istex/Corpus ); précédent : 001960; suivant : 001962

A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE

Auteurs : Jonathan Lalande ; Richard Villemur ; Louise Deschênes

Source :

RBID : ISTEX:FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A

Abstract

Abstract: Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community’s true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson’s 1/D indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson’s 1/D were accurate at ±10 %. Richness estimations were less accurate, ranging from −11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities.

Url:
DOI: 10.1007/s00248-013-0230-3

Links to Exploration step

ISTEX:FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
<author>
<name sortKey="Lalande, Jonathan" sort="Lalande, Jonathan" uniqKey="Lalande J" first="Jonathan" last="Lalande">Jonathan Lalande</name>
<affiliation>
<mods:affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jonathan.lalande@polymtl.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villemur, Richard" sort="Villemur, Richard" uniqKey="Villemur R" first="Richard" last="Villemur">Richard Villemur</name>
<affiliation>
<mods:affiliation>Environmental Microbiology Research Group, INRS–Institut Armand-Frappier Research Center, 531 boul. des Prairies, H7V 1B7, Laval, QC, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deschenes, Louise" sort="Deschenes, Louise" uniqKey="Deschenes L" first="Louise" last="Deschênes">Louise Deschênes</name>
<affiliation>
<mods:affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1007/s00248-013-0230-3</idno>
<idno type="url">https://api.istex.fr/ark:/67375/VQC-BJT08FGV-W/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001961</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001961</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
<author>
<name sortKey="Lalande, Jonathan" sort="Lalande, Jonathan" uniqKey="Lalande J" first="Jonathan" last="Lalande">Jonathan Lalande</name>
<affiliation>
<mods:affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jonathan.lalande@polymtl.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villemur, Richard" sort="Villemur, Richard" uniqKey="Villemur R" first="Richard" last="Villemur">Richard Villemur</name>
<affiliation>
<mods:affiliation>Environmental Microbiology Research Group, INRS–Institut Armand-Frappier Research Center, 531 boul. des Prairies, H7V 1B7, Laval, QC, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deschenes, Louise" sort="Deschenes, Louise" uniqKey="Deschenes L" first="Louise" last="Deschênes">Louise Deschênes</name>
<affiliation>
<mods:affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Microbial Ecology</title>
<title level="j" type="abbrev">Microb Ecol</title>
<idno type="ISSN">0095-3628</idno>
<idno type="eISSN">1432-184X</idno>
<imprint>
<publisher>Springer US; http://www.springer-ny.com</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2013-10-01">2013-10-01</date>
<biblScope unit="volume">66</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="647">647</biblScope>
<biblScope unit="page" to="658">658</biblScope>
</imprint>
<idno type="ISSN">0095-3628</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0095-3628</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community’s true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson’s 1/D indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson’s 1/D were accurate at ±10 %. Richness estimations were less accurate, ranging from −11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities.</div>
</front>
</TEI>
<istex>
<corpusName>springer-journals</corpusName>
<author>
<json:item>
<name>Jonathan Lalande</name>
<affiliations>
<json:string>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</json:string>
<json:string>E-mail: jonathan.lalande@polymtl.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>Richard Villemur</name>
<affiliations>
<json:string>Environmental Microbiology Research Group, INRS–Institut Armand-Frappier Research Center, 531 boul. des Prairies, H7V 1B7, Laval, QC, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Louise Deschênes</name>
<affiliations>
<json:string>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>230</json:string>
<json:string>s00248-013-0230-3</json:string>
</articleId>
<arkIstex>ark:/67375/VQC-BJT08FGV-W</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community’s true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson’s 1/D indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson’s 1/D were accurate at ±10 %. Richness estimations were less accurate, ranging from −11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>6876</pdfWordCount>
<pdfCharCount>44672</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>258</abstractWordCount>
<abstractCharCount>1826</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Microbial Ecology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<issn>
<json:string>0095-3628</json:string>
</issn>
<eissn>
<json:string>1432-184X</json:string>
</eissn>
<journalId>
<json:string>248</json:string>
</journalId>
<volume>66</volume>
<issue>3</issue>
<pages>
<first>647</first>
<last>658</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Biomedical and Life Sciences</value>
</json:item>
<json:item>
<value>Life Sciences</value>
</json:item>
<json:item>
<value>Microbiology</value>
</json:item>
<json:item>
<value>Ecology</value>
</json:item>
<json:item>
<value>Microbial Ecology</value>
</json:item>
<json:item>
<value>Geoecology/Natural Processes</value>
</json:item>
<json:item>
<value>Nature Conservation</value>
</json:item>
<json:item>
<value>Water Quality/Water Pollution</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/VQC-BJT08FGV-W</json:string>
</ark>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1007/s00248-013-0230-3</json:string>
</doi>
<id>FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-BJT08FGV-W/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-BJT08FGV-W/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/VQC-BJT08FGV-W/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">Springer US; http://www.springer-ny.com</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>
<p>Springer Science+Business Media New York, 2013</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>2012-12-19</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>Methods</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">Jonathan</forename>
<surname>Lalande</surname>
</persName>
<email>jonathan.lalande@polymtl.ca</email>
<affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Richard</forename>
<surname>Villemur</surname>
</persName>
<affiliation>Environmental Microbiology Research Group, INRS–Institut Armand-Frappier Research Center, 531 boul. des Prairies, H7V 1B7, Laval, QC, Canada</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Louise</forename>
<surname>Deschênes</surname>
</persName>
<affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</affiliation>
</author>
<idno type="istex">FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A</idno>
<idno type="ark">ark:/67375/VQC-BJT08FGV-W</idno>
<idno type="DOI">10.1007/s00248-013-0230-3</idno>
<idno type="article-id">230</idno>
<idno type="article-id">s00248-013-0230-3</idno>
</analytic>
<monogr>
<title level="j">Microbial Ecology</title>
<title level="j" type="abbrev">Microb Ecol</title>
<idno type="pISSN">0095-3628</idno>
<idno type="eISSN">1432-184X</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">23</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>Springer US; http://www.springer-ny.com</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2013-10-01"></date>
<biblScope unit="volume">66</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="647">647</biblScope>
<biblScope unit="page" to="658">658</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-12-19</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community’s true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson’s 1/D indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson’s 1/D were accurate at ±10 %. Richness estimations were less accurate, ranging from −11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities.</p>
</abstract>
<textClass>
<keywords scheme="Journal-Subject-Collection">
<list>
<label>SC3</label>
<item>
<term>Biomedical and Life Sciences</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal-Subject-Group">
<list>
<label>SCL</label>
<item>
<term>Life Sciences</term>
</item>
<label>SCL23004</label>
<item>
<term>Microbiology</term>
</item>
<label>SCL19007</label>
<item>
<term>Ecology</term>
</item>
<label>SCL19082</label>
<item>
<term>Microbial Ecology</term>
</item>
<label>SCU21006</label>
<item>
<term>Geoecology/Natural Processes</term>
</item>
<label>SCU26008</label>
<item>
<term>Nature Conservation</term>
</item>
<label>SC212000</label>
<item>
<term>Water Quality/Water Pollution</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-12-19">Created</change>
<change when="2013-10-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-BJT08FGV-W/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer US</PublisherName>
<PublisherLocation>New York</PublisherLocation>
<PublisherImprintName>Springer</PublisherImprintName>
<PublisherURL>http://www.springer-ny.com</PublisherURL>
</PublisherInfo>
<Journal OutputMedium="All">
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>248</JournalID>
<JournalDOI>10.1007/248.1432-184X</JournalDOI>
<JournalPrintISSN>0095-3628</JournalPrintISSN>
<JournalElectronicISSN>1432-184X</JournalElectronicISSN>
<JournalTitle>Microbial Ecology</JournalTitle>
<JournalAbbreviatedTitle>Microb Ecol</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Code="SCL" Type="Primary">Life Sciences</JournalSubject>
<JournalSubject Code="SCL23004" Priority="1" Type="Secondary">Microbiology</JournalSubject>
<JournalSubject Code="SCL19007" Priority="2" Type="Secondary">Ecology</JournalSubject>
<JournalSubject Code="SCL19082" Priority="3" Type="Secondary">Microbial Ecology</JournalSubject>
<JournalSubject Code="SCU21006" Priority="4" Type="Secondary">Geoecology/Natural Processes</JournalSubject>
<JournalSubject Code="SCU26008" Priority="5" Type="Secondary">Nature Conservation</JournalSubject>
<JournalSubject Code="SC212000" Priority="6" Type="Secondary">Water Quality/Water Pollution</JournalSubject>
<SubjectCollection Code="SC3">Biomedical and Life Sciences</SubjectCollection>
</JournalSubjectGroup>
</JournalInfo>
<Volume OutputMedium="All">
<VolumeInfo TocLevels="0" VolumeType="Regular">
<VolumeIDStart>66</VolumeIDStart>
<VolumeIDEnd>66</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular" OutputMedium="All">
<IssueInfo IssueType="Regular" TocLevels="0">
<IssueIDStart>3</IssueIDStart>
<IssueIDEnd>3</IssueIDEnd>
<IssueArticleCount>23</IssueArticleCount>
<IssueHistory>
<OnlineDate>
<Year>2013</Year>
<Month>9</Month>
<Day>18</Day>
</OnlineDate>
<PrintDate>
<Year>2013</Year>
<Month>9</Month>
<Day>17</Day>
</PrintDate>
<CoverDate>
<Year>2013</Year>
<Month>10</Month>
</CoverDate>
<PricelistYear>2013</PricelistYear>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer Science+Business Media New York</CopyrightHolderName>
<CopyrightYear>2013</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="s00248-013-0230-3" OutputMedium="All">
<ArticleInfo ArticleType="OriginalPaper" ContainsESM="Yes" Language="En" NumberingStyle="Unnumbered" TocLevels="0">
<ArticleID>230</ArticleID>
<ArticleDOI>10.1007/s00248-013-0230-3</ArticleDOI>
<ArticleSequenceNumber>16</ArticleSequenceNumber>
<ArticleTitle Language="En">A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</ArticleTitle>
<ArticleCategory>Methods</ArticleCategory>
<ArticleFirstPage>647</ArticleFirstPage>
<ArticleLastPage>658</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2013</Year>
<Month>4</Month>
<Day>12</Day>
</RegistrationDate>
<Received>
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
</Received>
<Accepted>
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
</Accepted>
<OnlineDate>
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
</OnlineDate>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer Science+Business Media New York</CopyrightHolderName>
<CopyrightYear>2013</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Jonathan</GivenName>
<FamilyName>Lalande</FamilyName>
</AuthorName>
<Contact>
<Phone>+1-514-3404711</Phone>
<Fax>+1-514-3405913</Fax>
<Email>jonathan.lalande@polymtl.ca</Email>
</Contact>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Richard</GivenName>
<FamilyName>Villemur</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Louise</GivenName>
<FamilyName>Deschênes</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>École Polytechnique de Montréal, Chemical Engineering Department</OrgDivision>
<OrgName>CIRAIG</OrgName>
<OrgAddress>
<Street>2500 chemin de Polytechnique</Street>
<City>Montréal</City>
<State>QC</State>
<Country Code="CA">Canada</Country>
<Postcode>H3T 1J4</Postcode>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Environmental Microbiology Research Group</OrgDivision>
<OrgName>INRS–Institut Armand-Frappier Research Center</OrgName>
<OrgAddress>
<Street>531 boul. des Prairies</Street>
<City>Laval</City>
<State>QC</State>
<Country Code="CA">Canada</Country>
<Postcode>H7V 1B7</Postcode>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En" OutputMedium="All">
<Heading>Abstract</Heading>
<Para>Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community’s true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson’s 1/
<Emphasis Type="Italic">D</Emphasis>
indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson’s 1/
<Emphasis Type="Italic">D</Emphasis>
were accurate at ±10 %. Richness estimations were less accurate, ranging from −11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities.</Para>
</Abstract>
<ArticleNote Type="ESMHint">
<Heading>Electronic supplementary material</Heading>
<SimplePara>The online version of this article (doi:
<ExternalRef>
<RefSource>10.1007/s00248-013-0230-3</RefSource>
<RefTarget Address="10.1007/s00248-013-0230-3" TargetType="DOI"></RefTarget>
</ExternalRef>
) contains supplementary material, which is available to authorized users.</SimplePara>
</ArticleNote>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Lalande</namePart>
<affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</affiliation>
<affiliation>E-mail: jonathan.lalande@polymtl.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Villemur</namePart>
<affiliation>Environmental Microbiology Research Group, INRS–Institut Armand-Frappier Research Center, 531 boul. des Prairies, H7V 1B7, Laval, QC, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louise</namePart>
<namePart type="family">Deschênes</namePart>
<affiliation>École Polytechnique de Montréal, Chemical Engineering Department, CIRAIG, 2500 chemin de Polytechnique, H3T 1J4, Montréal, QC, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Springer US; http://www.springer-ny.com</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateCreated encoding="w3cdtf">2012-12-19</dateCreated>
<dateIssued encoding="w3cdtf">2013-10-01</dateIssued>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: Denaturing gradient gel electrophoresis (DGGE) has been and remains extensively used to assess and monitor the effects of various treatments on soil bacterial communities. Considering only abundant phylotypes, the diversity estimates produced by this technique have been proven to be uncorrelated to true community diversity. The aim of this paper was to develop a framework to estimate a community’s true diversity from DGGE. Developed using in silico DGGE profiles generated from published pyrosequencing datasets, this framework elongates the rank-abundance distributions (RADs) drawn by band quantification using the peak-to-signal ratio (PSR) parameter, which was proven to be related to bacterial richness. The ability to compare DGGE-based diversity estimates to the true diversity of communities led to a unique opportunity to identify potential pitfalls when analyzing DGGE gels with commercial analysis software programs and gain insight into the process of DNA band clustering in the profiles. Bacterial diversity was compared through richness, Shannon, and Simpson’s 1/D indices. Intermediate results demonstrated that, even though commercial gel analysis software programs were unable to produce consistent results throughout all samples, a newly developed Matlab-based framework unraveled the dominance profiles of communities from band quantification. Elongating these partial RADs using the PSRs extracted from the DGGE profiles chiefly made it possible to accurately estimate the true diversity of communities. For all the samples analyzed, the estimated Shannon and Simpson’s 1/D were accurate at ±10 %. Richness estimations were less accurate, ranging from −11 to 31 % of the expected values. The framework showed great potential to study the structure and diversity of soil bacterial communities.</abstract>
<note>Methods</note>
<relatedItem type="host">
<titleInfo>
<title>Microbial Ecology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Microb Ecol</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">2013-09-18</dateIssued>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<subject>
<genre>Journal-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SC3">Biomedical and Life Sciences</topic>
</subject>
<subject>
<genre>Journal-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SCL">Life Sciences</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCL23004">Microbiology</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCL19007">Ecology</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCL19082">Microbial Ecology</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCU21006">Geoecology/Natural Processes</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCU26008">Nature Conservation</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SC212000">Water Quality/Water Pollution</topic>
</subject>
<identifier type="ISSN">0095-3628</identifier>
<identifier type="eISSN">1432-184X</identifier>
<identifier type="JournalID">248</identifier>
<identifier type="IssueArticleCount">23</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>2013</date>
<detail type="volume">
<number>66</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>647</start>
<end>658</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer Science+Business Media New York, 2013</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A</identifier>
<identifier type="ark">ark:/67375/VQC-BJT08FGV-W</identifier>
<identifier type="DOI">10.1007/s00248-013-0230-3</identifier>
<identifier type="ArticleID">230</identifier>
<identifier type="ArticleID">s00248-013-0230-3</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer Science+Business Media New York, 2013</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Springer Science+Business Media New York, 2013</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-BJT08FGV-W/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001961 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001961 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FDE1E3D19BE7B1CCF3197B6A24B752CB80E8AA6A
   |texte=   A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021