Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.

Identifieur interne : 001865 ( PubMed/Corpus ); précédent : 001864; suivant : 001866

Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.

Auteurs : A. Mendola ; M J Schlögel ; A. Ghalamkarpour ; A. Irrthum ; H L Nguyen ; E. Fastré ; A. Bygum ; C. Van Der Vleuten ; C. Fagerberg ; E. Baselga ; I. Quere ; J B Mulliken ; L M Boon ; P. Brouillard ; M. Vikkula

Source :

RBID : pubmed:24167460

Abstract

Lymphedema is caused by dysfunction of lymphatic vessels, leading to disabling swelling that occurs mostly on the extremities. Lymphedema can be either primary (congenital) or secondary (acquired). Familial primary lymphedema commonly segregates in an autosomal dominant or recessive manner. It can also occur in combination with other clinical features. Nine mutated genes have been identified in different isolated or syndromic forms of lymphedema. However, the prevalence of primary lymphedema that can be explained by these genetic alterations is unknown. In this study, we investigated 7 of these putative genes. We screened 78 index patients from families with inherited lymphedema for mutations in FLT4, GJC2, FOXC2, SOX18, GATA2, CCBE1, and PTPN14. Altogether, we discovered 28 mutations explaining 36% of the cases. Additionally, 149 patients with sporadic primary lymphedema were screened for FLT4, FOXC2, SOX18, CCBE1, and PTPN14. Twelve mutations were found that explain 8% of the cases. Still unidentified is the genetic cause of primary lymphedema in 64% of patients with a family history and 92% of sporadic cases. Identification of those genes is important for understanding of etiopathogenesis, stratification of treatments and generation of disease models. Interestingly, most of the proteins that are encoded by the genes mutated in primary lymphedema seem to act in a single functional pathway involving VEGFR3 signaling. This underscores the important role this pathway plays in lymphatic development and function and suggests that the unknown genes also have a role.

DOI: 10.1159/000354097
PubMed: 24167460

Links to Exploration step

pubmed:24167460

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.</title>
<author>
<name sortKey="Mendola, A" sort="Mendola, A" uniqKey="Mendola A" first="A" last="Mendola">A. Mendola</name>
</author>
<author>
<name sortKey="Schlogel, M J" sort="Schlogel, M J" uniqKey="Schlogel M" first="M J" last="Schlögel">M J Schlögel</name>
</author>
<author>
<name sortKey="Ghalamkarpour, A" sort="Ghalamkarpour, A" uniqKey="Ghalamkarpour A" first="A" last="Ghalamkarpour">A. Ghalamkarpour</name>
</author>
<author>
<name sortKey="Irrthum, A" sort="Irrthum, A" uniqKey="Irrthum A" first="A" last="Irrthum">A. Irrthum</name>
</author>
<author>
<name sortKey="Nguyen, H L" sort="Nguyen, H L" uniqKey="Nguyen H" first="H L" last="Nguyen">H L Nguyen</name>
</author>
<author>
<name sortKey="Fastre, E" sort="Fastre, E" uniqKey="Fastre E" first="E" last="Fastré">E. Fastré</name>
</author>
<author>
<name sortKey="Bygum, A" sort="Bygum, A" uniqKey="Bygum A" first="A" last="Bygum">A. Bygum</name>
</author>
<author>
<name sortKey="Van Der Vleuten, C" sort="Van Der Vleuten, C" uniqKey="Van Der Vleuten C" first="C" last="Van Der Vleuten">C. Van Der Vleuten</name>
</author>
<author>
<name sortKey="Fagerberg, C" sort="Fagerberg, C" uniqKey="Fagerberg C" first="C" last="Fagerberg">C. Fagerberg</name>
</author>
<author>
<name sortKey="Baselga, E" sort="Baselga, E" uniqKey="Baselga E" first="E" last="Baselga">E. Baselga</name>
</author>
<author>
<name sortKey="Quere, I" sort="Quere, I" uniqKey="Quere I" first="I" last="Quere">I. Quere</name>
</author>
<author>
<name sortKey="Mulliken, J B" sort="Mulliken, J B" uniqKey="Mulliken J" first="J B" last="Mulliken">J B Mulliken</name>
</author>
<author>
<name sortKey="Boon, L M" sort="Boon, L M" uniqKey="Boon L" first="L M" last="Boon">L M Boon</name>
</author>
<author>
<name sortKey="Brouillard, P" sort="Brouillard, P" uniqKey="Brouillard P" first="P" last="Brouillard">P. Brouillard</name>
</author>
<author>
<name sortKey="Vikkula, M" sort="Vikkula, M" uniqKey="Vikkula M" first="M" last="Vikkula">M. Vikkula</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24167460</idno>
<idno type="pmid">24167460</idno>
<idno type="doi">10.1159/000354097</idno>
<idno type="wicri:Area/PubMed/Corpus">001865</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001865</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.</title>
<author>
<name sortKey="Mendola, A" sort="Mendola, A" uniqKey="Mendola A" first="A" last="Mendola">A. Mendola</name>
</author>
<author>
<name sortKey="Schlogel, M J" sort="Schlogel, M J" uniqKey="Schlogel M" first="M J" last="Schlögel">M J Schlögel</name>
</author>
<author>
<name sortKey="Ghalamkarpour, A" sort="Ghalamkarpour, A" uniqKey="Ghalamkarpour A" first="A" last="Ghalamkarpour">A. Ghalamkarpour</name>
</author>
<author>
<name sortKey="Irrthum, A" sort="Irrthum, A" uniqKey="Irrthum A" first="A" last="Irrthum">A. Irrthum</name>
</author>
<author>
<name sortKey="Nguyen, H L" sort="Nguyen, H L" uniqKey="Nguyen H" first="H L" last="Nguyen">H L Nguyen</name>
</author>
<author>
<name sortKey="Fastre, E" sort="Fastre, E" uniqKey="Fastre E" first="E" last="Fastré">E. Fastré</name>
</author>
<author>
<name sortKey="Bygum, A" sort="Bygum, A" uniqKey="Bygum A" first="A" last="Bygum">A. Bygum</name>
</author>
<author>
<name sortKey="Van Der Vleuten, C" sort="Van Der Vleuten, C" uniqKey="Van Der Vleuten C" first="C" last="Van Der Vleuten">C. Van Der Vleuten</name>
</author>
<author>
<name sortKey="Fagerberg, C" sort="Fagerberg, C" uniqKey="Fagerberg C" first="C" last="Fagerberg">C. Fagerberg</name>
</author>
<author>
<name sortKey="Baselga, E" sort="Baselga, E" uniqKey="Baselga E" first="E" last="Baselga">E. Baselga</name>
</author>
<author>
<name sortKey="Quere, I" sort="Quere, I" uniqKey="Quere I" first="I" last="Quere">I. Quere</name>
</author>
<author>
<name sortKey="Mulliken, J B" sort="Mulliken, J B" uniqKey="Mulliken J" first="J B" last="Mulliken">J B Mulliken</name>
</author>
<author>
<name sortKey="Boon, L M" sort="Boon, L M" uniqKey="Boon L" first="L M" last="Boon">L M Boon</name>
</author>
<author>
<name sortKey="Brouillard, P" sort="Brouillard, P" uniqKey="Brouillard P" first="P" last="Brouillard">P. Brouillard</name>
</author>
<author>
<name sortKey="Vikkula, M" sort="Vikkula, M" uniqKey="Vikkula M" first="M" last="Vikkula">M. Vikkula</name>
</author>
</analytic>
<series>
<title level="j">Molecular syndromology</title>
<idno type="ISSN">1661-8769</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lymphedema is caused by dysfunction of lymphatic vessels, leading to disabling swelling that occurs mostly on the extremities. Lymphedema can be either primary (congenital) or secondary (acquired). Familial primary lymphedema commonly segregates in an autosomal dominant or recessive manner. It can also occur in combination with other clinical features. Nine mutated genes have been identified in different isolated or syndromic forms of lymphedema. However, the prevalence of primary lymphedema that can be explained by these genetic alterations is unknown. In this study, we investigated 7 of these putative genes. We screened 78 index patients from families with inherited lymphedema for mutations in FLT4, GJC2, FOXC2, SOX18, GATA2, CCBE1, and PTPN14. Altogether, we discovered 28 mutations explaining 36% of the cases. Additionally, 149 patients with sporadic primary lymphedema were screened for FLT4, FOXC2, SOX18, CCBE1, and PTPN14. Twelve mutations were found that explain 8% of the cases. Still unidentified is the genetic cause of primary lymphedema in 64% of patients with a family history and 92% of sporadic cases. Identification of those genes is important for understanding of etiopathogenesis, stratification of treatments and generation of disease models. Interestingly, most of the proteins that are encoded by the genes mutated in primary lymphedema seem to act in a single functional pathway involving VEGFR3 signaling. This underscores the important role this pathway plays in lymphatic development and function and suggests that the unknown genes also have a role.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24167460</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1661-8769</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular syndromology</Title>
<ISOAbbreviation>Mol Syndromol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.</ArticleTitle>
<Pagination>
<MedlinePgn>257-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1159/000354097</ELocationID>
<Abstract>
<AbstractText>Lymphedema is caused by dysfunction of lymphatic vessels, leading to disabling swelling that occurs mostly on the extremities. Lymphedema can be either primary (congenital) or secondary (acquired). Familial primary lymphedema commonly segregates in an autosomal dominant or recessive manner. It can also occur in combination with other clinical features. Nine mutated genes have been identified in different isolated or syndromic forms of lymphedema. However, the prevalence of primary lymphedema that can be explained by these genetic alterations is unknown. In this study, we investigated 7 of these putative genes. We screened 78 index patients from families with inherited lymphedema for mutations in FLT4, GJC2, FOXC2, SOX18, GATA2, CCBE1, and PTPN14. Altogether, we discovered 28 mutations explaining 36% of the cases. Additionally, 149 patients with sporadic primary lymphedema were screened for FLT4, FOXC2, SOX18, CCBE1, and PTPN14. Twelve mutations were found that explain 8% of the cases. Still unidentified is the genetic cause of primary lymphedema in 64% of patients with a family history and 92% of sporadic cases. Identification of those genes is important for understanding of etiopathogenesis, stratification of treatments and generation of disease models. Interestingly, most of the proteins that are encoded by the genes mutated in primary lymphedema seem to act in a single functional pathway involving VEGFR3 signaling. This underscores the important role this pathway plays in lymphatic development and function and suggests that the unknown genes also have a role.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mendola</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schlögel</LastName>
<ForeName>M J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ghalamkarpour</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Irrthum</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>H L</ForeName>
<Initials>HL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fastré</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bygum</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van der Vleuten</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fagerberg</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baselga</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Quere</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mulliken</LastName>
<ForeName>J B</ForeName>
<Initials>JB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boon</LastName>
<ForeName>L M</ForeName>
<Initials>LM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brouillard</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vikkula</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<CollectiveName>Lymphedema Research Group</CollectiveName>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Mol Syndromol</MedlineTA>
<NlmUniqueID>101525192</NlmUniqueID>
<ISSNLinking>1661-8769</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2013 Mar 6;32(5):629-44</RefSource>
<PMID Version="1">23299940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pediatr Int. 2008 Feb;50(1):116-8</RefSource>
<PMID Version="1">18279219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2000 Dec;20(24):9331-6</RefSource>
<PMID Version="1">11094083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Haematol. 2012 Jul;158(2):242-8</RefSource>
<PMID Version="1">22533337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Pediatr. 2012 Aug;171(8):1273-6</RefSource>
<PMID Version="1">22430350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Mol Med. 2001 Jan;7(1):18-22</RefSource>
<PMID Version="1">11427983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med Genet. 1989 Dec;34(4):593-600</RefSource>
<PMID Version="1">2624276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2011 Sep 28;43(10):926-7</RefSource>
<PMID Version="1">21956389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2000 Aug;67(2):295-301</RefSource>
<PMID Version="1">10856194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2011 Aug 19;109(5):486-91</RefSource>
<PMID Version="1">21778431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 Sep 1;30(17):3894-900</RefSource>
<PMID Version="1">12202775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 2010 Feb;127(2):231-41</RefSource>
<PMID Version="1">19911200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 2009 Jan;124(6):625-31</RefSource>
<PMID Version="1">19002718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Aug 1;18(15):2839-50</RefSource>
<PMID Version="1">19429912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2011 Sep 04;43(10):1012-7</RefSource>
<PMID Version="1">21892162</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2001 Jan 1;29(1):308-11</RefSource>
<PMID Version="1">11125122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2013 Apr 18;121(16):3228-36</RefSource>
<PMID Version="1">23426945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2009 May 4;185(3):439-57</RefSource>
<PMID Version="1">19398761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Dec;41(12):1272-4</RefSource>
<PMID Version="1">19935664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Cancer Res. 2012 Apr 15;18(8):2382-90</RefSource>
<PMID Version="1">22351697</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2000 Nov 20;19(49):5598-605</RefSource>
<PMID Version="1">11114740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2000 Dec;67(6):1382-8</RefSource>
<PMID Version="1">11078474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2011 Sep 04;43(10):929-31</RefSource>
<PMID Version="1">21892158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2009 Jun;46(6):399-404</RefSource>
<PMID Version="1">19289394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2010 Aug;7(8):575-6</RefSource>
<PMID Version="1">20676075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2003 Sep;40(9):697-703</RefSource>
<PMID Version="1">12960217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2012 Feb 2;119(5):1283-91</RefSource>
<PMID Version="1">22147895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene Expr Patterns. 2004 Oct;4(6):611-9</RefSource>
<PMID Version="1">15465483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 2001 Jun;108(6):546-51</RefSource>
<PMID Version="1">11499682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Birth Defects Res C Embryo Today. 2009 Sep;87(3):222-31</RefSource>
<PMID Version="1">19750516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2010 Apr;7(4):248-9</RefSource>
<PMID Version="1">20354512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2005 Feb;42(2):98-102</RefSource>
<PMID Version="1">15689446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Histochem Cell Biol. 2011 Jun;135(6):603-13</RefSource>
<PMID Version="1">21614587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Apr;24(4):434-7</RefSource>
<PMID Version="1">10742113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2003 Jun;72(6):1470-8</RefSource>
<PMID Version="1">12740761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng. 1999 May;12(5):387-94</RefSource>
<PMID Version="1">10360979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2004 Aug;75(2):251-60</RefSource>
<PMID Version="1">15192806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2010 Sep 10;87(3):436-44</RefSource>
<PMID Version="1">20826270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Dec 4;456(7222):643-7</RefSource>
<PMID Version="1">18931657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2009 Dec;30(12 ):E1002-9</RefSource>
<PMID Version="1">19760751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2008 Jan;29(1):6-13</RefSource>
<PMID Version="1">18000842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2011 Apr;48(4):251-5</RefSource>
<PMID Version="1">21266381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2013 Mar 15;112(6):956-60</RefSource>
<PMID Version="1">23410910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med Genet A. 2007 Jun 1;143A(11):1212-7</RefSource>
<PMID Version="1">17458866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2012 Feb 10;90(2):356-62</RefSource>
<PMID Version="1">22284827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arterioscler Thromb Vasc Biol. 2013 Jun;33(6):1238-47</RefSource>
<PMID Version="1">23520166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Genet. 2006 Oct;70(4):330-5</RefSource>
<PMID Version="1">16965327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pediatr. 2009 Jul;155(1):90-3</RefSource>
<PMID Version="1">19394045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2010 Jun 11;86(6):943-8</RefSource>
<PMID Version="1">20537300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2000 Sep;113 ( Pt 17):3117-23</RefSource>
<PMID Version="1">10934049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2012 Jan 10;3:616</RefSource>
<PMID Version="1">22233626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Apr;41(4):396-8</RefSource>
<PMID Version="1">19287381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Syndromol. 2013 Mar;4(3):107-13</RefSource>
<PMID Version="1">23653581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R140-9</RefSource>
<PMID Version="1">17670762</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3776465</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Functional pathway</Keyword>
<Keyword MajorTopicYN="N">Genetic</Keyword>
<Keyword MajorTopicYN="N">Mutation</Keyword>
<Keyword MajorTopicYN="N">Phenotype</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24167460</ArticleId>
<ArticleId IdType="doi">10.1159/000354097</ArticleId>
<ArticleId IdType="pii">msy-0004-0257</ArticleId>
<ArticleId IdType="pmc">PMC3776465</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001865 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001865 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24167460
   |texte=   Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24167460" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024