Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals

Identifieur interne : 000F83 ( Istex/Corpus ); précédent : 000F82; suivant : 000F84

Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals

Auteurs : M. Vallury ; H. Zaher ; Wj Lindblad

Source :

RBID : ISTEX:220A9F083A066C5A29F655961293D6DC5E379AB7

Abstract

Type I diabetics experience significant morbidity from failure of lower extremity injuries to heal. This impaired healing response leads to chronic ulceration, infection and potential amputation of the extremity. Numerous hypotheses have been proposed to explain this impaired healing response, but little is known about intrinsic differences in the fibroblasts populating the diabetic extremity prior to wounding. Nontransformed fibroblast cell lines from type I diabetics were obtained from the NIGMS‐NIH cell repository at the Coriell Institute. Cells were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, penicillin, streptomycin and either 450 mg/dL (high) or 100 mg/dL (low) glucose. Cell migration was measured over 72 hr by movement of cells away from a circular source of cells, deposited within cloning rings, under high or low glucose conditions. The initial (0, 6, 24 and 48 hr) proliferative response of cells was measured by 3H‐thymidine incorporation into confluent cell monolayers following partial scraping of the cell layer. Growth curves were obtained by seeding 50,000 cells into 6‐well plates and counting cells at 24, 48, 72, and 168 hrs. Fibroblasts from diabetic individuals showed impaired migration compared to nondiabetic cells (34% vs. 67% increase in diameter) in high glucose over an initial 72 hrs. This difference was minimized if the cells were cultured and tested in low glucose medium. In contrast, diabetic derived cells proliferated more rapidly at early times (13.5%[24 hr], 97%[48 hr], 209%[72 hr] diabetic vs. 4%, 52.5%, 156% increase in cell number) when cultured under high glucose conditions. This trend continued under low glucose conditions, although the magnitude difference was diminished. These results suggest that the fibroblast population present in the type I diabetic connective tissue possesses a phenotype distinctly different from normal cells, characterized by a reduced capacity to migrate, but a normal or heightened proliferative response. This may indicate that injury to this connective tissue fails to produce the required influx of fibroblasts to deposit new matrix.

Url:
DOI: 10.1111/j.1067-1927.2005.130117p.x

Links to Exploration step

ISTEX:220A9F083A066C5A29F655961293D6DC5E379AB7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
<author>
<name sortKey="Vallury, M" sort="Vallury, M" uniqKey="Vallury M" first="M" last="Vallury">M. Vallury</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaher, H" sort="Zaher, H" uniqKey="Zaher H" first="H" last="Zaher">H. Zaher</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lindblad, Wj" sort="Lindblad, Wj" uniqKey="Lindblad W" first="Wj" last="Lindblad">Wj Lindblad</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:220A9F083A066C5A29F655961293D6DC5E379AB7</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1067-1927.2005.130117p.x</idno>
<idno type="url">https://api.istex.fr/document/220A9F083A066C5A29F655961293D6DC5E379AB7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
<author>
<name sortKey="Vallury, M" sort="Vallury, M" uniqKey="Vallury M" first="M" last="Vallury">M. Vallury</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaher, H" sort="Zaher, H" uniqKey="Zaher H" first="H" last="Zaher">H. Zaher</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lindblad, Wj" sort="Lindblad, Wj" uniqKey="Lindblad W" first="Wj" last="Lindblad">Wj Lindblad</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Wound Repair and Regeneration</title>
<title level="j" type="alt">WOUND REPAIR REGENERATION</title>
<idno type="ISSN">1067-1927</idno>
<idno type="eISSN">1524-475X</idno>
<imprint>
<biblScope unit="vol">13</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="A21">A21</biblScope>
<biblScope unit="page" to="A21">A21</biblScope>
<biblScope unit="page-count">1</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-01">2005-01</date>
</imprint>
<idno type="ISSN">1067-1927</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1067-1927</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Type I diabetics experience significant morbidity from failure of lower extremity injuries to heal. This impaired healing response leads to chronic ulceration, infection and potential amputation of the extremity. Numerous hypotheses have been proposed to explain this impaired healing response, but little is known about intrinsic differences in the fibroblasts populating the diabetic extremity prior to wounding. Nontransformed fibroblast cell lines from type I diabetics were obtained from the NIGMS‐NIH cell repository at the Coriell Institute. Cells were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, penicillin, streptomycin and either 450 mg/dL (high) or 100 mg/dL (low) glucose. Cell migration was measured over 72 hr by movement of cells away from a circular source of cells, deposited within cloning rings, under high or low glucose conditions. The initial (0, 6, 24 and 48 hr) proliferative response of cells was measured by 3H‐thymidine incorporation into confluent cell monolayers following partial scraping of the cell layer. Growth curves were obtained by seeding 50,000 cells into 6‐well plates and counting cells at 24, 48, 72, and 168 hrs. Fibroblasts from diabetic individuals showed impaired migration compared to nondiabetic cells (34% vs. 67% increase in diameter) in high glucose over an initial 72 hrs. This difference was minimized if the cells were cultured and tested in low glucose medium. In contrast, diabetic derived cells proliferated more rapidly at early times (13.5%[24 hr], 97%[48 hr], 209%[72 hr] diabetic vs. 4%, 52.5%, 156% increase in cell number) when cultured under high glucose conditions. This trend continued under low glucose conditions, although the magnitude difference was diminished. These results suggest that the fibroblast population present in the type I diabetic connective tissue possesses a phenotype distinctly different from normal cells, characterized by a reduced capacity to migrate, but a normal or heightened proliferative response. This may indicate that injury to this connective tissue fails to produce the required influx of fibroblasts to deposit new matrix.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>fibroblast</json:string>
<json:string>myofibroblasts</json:string>
<json:string>actin</json:string>
<json:string>matrix</json:string>
<json:string>myofibroblast</json:string>
<json:string>extracellular</json:string>
<json:string>asma</json:string>
<json:string>apoptosis</json:string>
<json:string>fibrotic</json:string>
<json:string>tgfb1</json:string>
<json:string>stress fibers</json:string>
<json:string>suture</json:string>
<json:string>hepatocytes</json:string>
<json:string>icgn</json:string>
<json:string>thrombin</json:string>
<json:string>dermal</json:string>
<json:string>phenotype</json:string>
<json:string>extracellular matrix</json:string>
<json:string>lname</json:string>
<json:string>tumour</json:string>
<json:string>collagen</json:string>
<json:string>muscle actin</json:string>
<json:string>tgfb</json:string>
<json:string>lname group</json:string>
<json:string>control group</json:string>
<json:string>mrna</json:string>
<json:string>wound contraction</json:string>
<json:string>icgn mice</json:string>
<json:string>transdifferentiation</json:string>
<json:string>pyridinoline</json:string>
<json:string>hypertrophic</json:string>
<json:string>dermis</json:string>
<json:string>nephrotic</json:string>
<json:string>wound healing</json:string>
<json:string>important role</json:string>
<json:string>mfibs</json:string>
<json:string>lh2b</json:string>
<json:string>elastic modulus</json:string>
<json:string>collagen lattices</json:string>
<json:string>collagen organization</json:string>
<json:string>wound repair</json:string>
<json:string>lattice</json:string>
<json:string>cell proliferation</json:string>
<json:string>different types</json:string>
<json:string>hypertrophic scars</json:string>
<json:string>expression levels</json:string>
<json:string>dermal fibroblasts</json:string>
<json:string>interstitial flow</json:string>
<json:string>actin cytoskeleton</json:string>
<json:string>cell contraction</json:string>
<json:string>stable plaques</json:string>
<json:string>hepatocellular apoptosis</json:string>
<json:string>regeneration</json:string>
<json:string>lesion</json:string>
<json:string>lund</json:string>
<json:string>stiffness</json:string>
<json:string>fibrotic lesions</json:string>
<json:string>pyridinoline levels</json:string>
<json:string>collagen type</json:string>
<json:string>animal resource science center</json:string>
<json:string>lund university</json:string>
<json:string>cell migration</json:string>
<json:string>restenotic lesions</json:string>
<json:string>hypertrophic scar formation</json:string>
<json:string>cellular contraction</json:string>
<json:string>liver fibrosis</json:string>
<json:string>mrna expression</json:string>
<json:string>tgfb1 activation</json:string>
<json:string>healing process</json:string>
<json:string>lh2b expression</json:string>
<json:string>adipose tissue</json:string>
<json:string>interstitial</json:string>
<json:string>adhesion</json:string>
<json:string>collagen lattice</json:string>
<json:string>asma staining</json:string>
<json:string>asma expression</json:string>
<json:string>control fibroblasts</json:string>
<json:string>cell death</json:string>
<json:string>cytoplasmic actins</json:string>
<json:string>dressing removal</json:string>
<json:string>endothelial cells</json:string>
<json:string>immunohistochemical staining</json:string>
<json:string>circular bundles</json:string>
<json:string>smooth muscle cells</json:string>
<json:string>inhibitory effect</json:string>
<json:string>abstracts wound repair</json:string>
<json:string>myofibroblastic differentiation</json:string>
<json:string>cell biophysics</json:string>
<json:string>tubular epithelial cells</json:string>
<json:string>mechanical stress</json:string>
<json:string>flexible silicone membranes</json:string>
<json:string>universite paris</json:string>
<json:string>cellular proliferation</json:string>
<json:string>renal fibrosis</json:string>
<json:string>wound closure</json:string>
<json:string>cytoskeletal proteins</json:string>
<json:string>cutaneous biology laboratory</json:string>
<json:string>molecular biology</json:string>
<json:string>tubulointerstitial fibrosis</json:string>
<json:string>lesser extent</json:string>
<json:string>wound dressings</json:string>
<json:string>myofibroblast differentiation</json:string>
<json:string>muscle actin staining</json:string>
<json:string>healing response</json:string>
<json:string>glucose conditions</json:string>
<json:string>proliferative response</json:string>
<json:string>fibroblast population</json:string>
<json:string>connective tissue</json:string>
<json:string>achilles tendon</json:string>
<json:string>fusion peptide</json:string>
<json:string>chronic hepatitis</json:string>
<json:string>normal cells</json:string>
<json:string>fibrotic processes</json:string>
<json:string>apoptotic hepatocytes</json:string>
<json:string>skin substitutes</json:string>
<json:string>scar formation</json:string>
<json:string>dermal substitute</json:string>
<json:string>oulu university hospital</json:string>
<json:string>higher adhesion</json:string>
<json:string>myoepithelial cells</json:string>
<json:string>tampere university</json:string>
<json:string>spindle cells</json:string>
<json:string>mammary tumours</json:string>
<json:string>tumor stroma</json:string>
<json:string>same diameter</json:string>
<json:string>normal glands</json:string>
<json:string>arterial lesion</json:string>
<json:string>significant delay</json:string>
<json:string>fetal cells</json:string>
<json:string>capsule thicknesses</json:string>
<json:string>interstitial fluid flow</json:string>
<json:string>fibroblast alignment</json:string>
<json:string>biological engineering</json:string>
<json:string>blood pressure</json:string>
<json:string>interstitial fibrosis</json:string>
<json:string>pldla sutures</json:string>
<json:string>icgn strain mouse</json:string>
<json:string>deep dermis</json:string>
<json:string>contractile forces</json:string>
<json:string>human idiopathic nephrotic syndrome</json:string>
<json:string>significant role</json:string>
<json:string>matrix contraction</json:string>
<json:string>collagen matrices</json:string>
<json:string>research unit</json:string>
<json:string>muscle actin incorporation</json:string>
<json:string>mechanical properties</json:string>
<json:string>animal life sciences</json:string>
<json:string>substrate stiffness</json:string>
<json:string>asthmatic patients</json:string>
<json:string>nephrotic syndrome</json:string>
<json:string>cell growth</json:string>
<json:string>fibrotic fibroblasts</json:string>
<json:string>diabetic</json:string>
<json:string>inhibitor</json:string>
<json:string>contraction</json:string>
<json:string>migration</json:string>
<json:string>morphology</json:string>
<json:string>proliferation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>M Vallury</name>
<affiliations>
<json:string>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>H Zaher</name>
<affiliations>
<json:string>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>WJ Lindblad</name>
<affiliations>
<json:string>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>WRR130117P</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>abstract</json:string>
</originalGenre>
<abstract>Type I diabetics experience significant morbidity from failure of lower extremity injuries to heal. This impaired healing response leads to chronic ulceration, infection and potential amputation of the extremity. Numerous hypotheses have been proposed to explain this impaired healing response, but little is known about intrinsic differences in the fibroblasts populating the diabetic extremity prior to wounding. Nontransformed fibroblast cell lines from type I diabetics were obtained from the NIGMS‐NIH cell repository at the Coriell Institute. Cells were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, penicillin, streptomycin and either 450 mg/dL (high) or 100 mg/dL (low) glucose. Cell migration was measured over 72 hr by movement of cells away from a circular source of cells, deposited within cloning rings, under high or low glucose conditions. The initial (0, 6, 24 and 48 hr) proliferative response of cells was measured by 3H‐thymidine incorporation into confluent cell monolayers following partial scraping of the cell layer. Growth curves were obtained by seeding 50,000 cells into 6‐well plates and counting cells at 24, 48, 72, and 168 hrs. Fibroblasts from diabetic individuals showed impaired migration compared to nondiabetic cells (34% vs. 67% increase in diameter) in high glucose over an initial 72 hrs. This difference was minimized if the cells were cultured and tested in low glucose medium. In contrast, diabetic derived cells proliferated more rapidly at early times (13.5%[24 hr], 97%[48 hr], 209%[72 hr] diabetic vs. 4%, 52.5%, 156% increase in cell number) when cultured under high glucose conditions. This trend continued under low glucose conditions, although the magnitude difference was diminished. These results suggest that the fibroblast population present in the type I diabetic connective tissue possesses a phenotype distinctly different from normal cells, characterized by a reduced capacity to migrate, but a normal or heightened proliferative response. This may indicate that injury to this connective tissue fails to produce the required influx of fibroblasts to deposit new matrix.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>2163</abstractCharCount>
<pdfWordCount>8613</pdfWordCount>
<pdfCharCount>55105</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>312</abstractWordCount>
</qualityIndicators>
<title>Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
<genre>
<json:string>abstract</json:string>
</genre>
<host>
<title>Wound Repair and Regeneration</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1524-475X</json:string>
</doi>
<issn>
<json:string>1067-1927</json:string>
</issn>
<eissn>
<json:string>1524-475X</json:string>
</eissn>
<publisherId>
<json:string>WRR</json:string>
</publisherId>
<volume>13</volume>
<issue>1</issue>
<pages>
<first>A21</first>
<last>A21</last>
<total>1</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>surgery</json:string>
<json:string>medicine, research & experimental</json:string>
<json:string>dermatology</json:string>
<json:string>cell biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>dermatology & venereal diseases</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1111/j.1067-1927.2005.130117p.x</json:string>
</doi>
<id>220A9F083A066C5A29F655961293D6DC5E379AB7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/220A9F083A066C5A29F655961293D6DC5E379AB7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/220A9F083A066C5A29F655961293D6DC5E379AB7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/220A9F083A066C5A29F655961293D6DC5E379AB7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="abstract" source="abstract" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-HPN7T1Q2-R">abstract</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="abstract">
<analytic>
<title level="a" type="main">Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
<author xml:id="author-0000">
<persName>
<forename type="first">M</forename>
<surname>Vallury</surname>
</persName>
<affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">H</forename>
<surname>Zaher</surname>
</persName>
<affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">WJ</forename>
<surname>Lindblad</surname>
</persName>
<affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<idno type="istex">220A9F083A066C5A29F655961293D6DC5E379AB7</idno>
<idno type="DOI">10.1111/j.1067-1927.2005.130117p.x</idno>
<idno type="unit">WRR130117P</idno>
<idno type="toTypesetVersion">file:WRR.WRR130117P.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Wound Repair and Regeneration</title>
<title level="j" type="alt">WOUND REPAIR REGENERATION</title>
<idno type="pISSN">1067-1927</idno>
<idno type="eISSN">1524-475X</idno>
<idno type="book-DOI">10.1111/(ISSN)1524-475X</idno>
<idno type="book-part-DOI">10.1111/wrr.2005.13.issue-1</idno>
<idno type="product">WRR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">13</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="A21">A21</biblScope>
<biblScope unit="page" to="A21">A21</biblScope>
<biblScope unit="page-count">1</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>Type I diabetics experience significant morbidity from failure of lower extremity injuries to heal. This impaired healing response leads to chronic ulceration, infection and potential amputation of the extremity. Numerous hypotheses have been proposed to explain this impaired healing response, but little is known about intrinsic differences in the fibroblasts populating the diabetic extremity prior to wounding.</p>
<p>Nontransformed fibroblast cell lines from type I diabetics were obtained from the NIGMS‐NIH cell repository at the Coriell Institute. Cells were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, penicillin, streptomycin and either 450 mg/dL (high) or 100 mg/dL (low) glucose. Cell migration was measured over 72 hr by movement of cells away from a circular source of cells, deposited within cloning rings, under high or low glucose conditions. The initial (0, 6, 24 and 48 hr) proliferative response of cells was measured by
<hi rend="superscript">3</hi>
H‐thymidine incorporation into confluent cell monolayers following partial scraping of the cell layer. Growth curves were obtained by seeding 50,000 cells into 6‐well plates and counting cells at 24, 48, 72, and 168 hrs.</p>
<p>Fibroblasts from diabetic individuals showed impaired migration compared to nondiabetic cells (34% vs. 67% increase in diameter) in high glucose over an initial 72 hrs. This difference was minimized if the cells were cultured and tested in low glucose medium. In contrast, diabetic derived cells proliferated more rapidly at early times (13.5%[24 hr], 97%[48 hr], 209%[72 hr] diabetic vs. 4%, 52.5%, 156% increase in cell number) when cultured under high glucose conditions. This trend continued under low glucose conditions, although the magnitude difference was diminished. These results suggest that the fibroblast population present in the type I diabetic connective tissue possesses a phenotype distinctly different from normal cells, characterized by a reduced capacity to migrate, but a normal or heightened proliferative response. This may indicate that injury to this connective tissue fails to produce the required influx of fibroblasts to deposit new matrix.</p>
</abstract>
<textClass>
<classCode scheme="tocHeading1">Abstracts ‐ European Tissue Repair Society Focus Meeting</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/220A9F083A066C5A29F655961293D6DC5E379AB7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Inc</publisherName>
<publisherLoc>Oxford, UK; Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1524-475X</doi>
<issn type="print">1067-1927</issn>
<issn type="electronic">1524-475X</issn>
<idGroup>
<id type="product" value="WRR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="WOUND REPAIR REGENERATION">Wound Repair and Regeneration</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="01101">
<doi origin="wiley">10.1111/wrr.2005.13.issue-1</doi>
<numberingGroup>
<numbering type="journalVolume" number="13">13</numbering>
<numbering type="journalIssue" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="2005-01">January 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="abstract" position="0002100" status="forIssue">
<doi origin="wiley">10.1111/j.1067-1927.2005.130117p.x</doi>
<idGroup>
<id type="unit" value="WRR130117P"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Abstracts ‐ European Tissue Repair Society Focus Meeting</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2005-01-17"></event>
<event type="publishedOnlineFinalForm" date="2005-01-17"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.17 mode:FullText" date="2010-09-08"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">A21</numbering>
<numbering type="pageLast">A21</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRR.WRR130117P.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="0"></count>
<count type="wordTotal" number="4249"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>M</givenNames>
<familyName>Vallury</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>H</givenNames>
<familyName>Zaher</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>WJ</givenNames>
<familyName>Lindblad</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>Type I diabetics experience significant morbidity from failure of lower extremity injuries to heal. This impaired healing response leads to chronic ulceration, infection and potential amputation of the extremity. Numerous hypotheses have been proposed to explain this impaired healing response, but little is known about intrinsic differences in the fibroblasts populating the diabetic extremity prior to wounding.</p>
<p>Nontransformed fibroblast cell lines from type I diabetics were obtained from the NIGMS‐NIH cell repository at the Coriell Institute. Cells were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, penicillin, streptomycin and either 450 mg/dL (high) or 100 mg/dL (low) glucose. Cell migration was measured over 72 hr by movement of cells away from a circular source of cells, deposited within cloning rings, under high or low glucose conditions. The initial (0, 6, 24 and 48 hr) proliferative response of cells was measured by
<sup>3</sup>
H‐thymidine incorporation into confluent cell monolayers following partial scraping of the cell layer. Growth curves were obtained by seeding 50,000 cells into 6‐well plates and counting cells at 24, 48, 72, and 168 hrs.</p>
<p>Fibroblasts from diabetic individuals showed impaired migration compared to nondiabetic cells (34% vs. 67% increase in diameter) in high glucose over an initial 72 hrs. This difference was minimized if the cells were cultured and tested in low glucose medium. In contrast, diabetic derived cells proliferated more rapidly at early times (13.5%[24 hr], 97%[48 hr], 209%[72 hr] diabetic vs. 4%, 52.5%, 156% increase in cell number) when cultured under high glucose conditions. This trend continued under low glucose conditions, although the magnitude difference was diminished. These results suggest that the fibroblast population present in the type I diabetic connective tissue possesses a phenotype distinctly different from normal cells, characterized by a reduced capacity to migrate, but a normal or heightened proliferative response. This may indicate that injury to this connective tissue fails to produce the required influx of fibroblasts to deposit new matrix.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Vallury</namePart>
<affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Zaher</namePart>
<affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WJ</namePart>
<namePart type="family">Lindblad</namePart>
<affiliation>Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="abstract" displayLabel="abstract"></genre>
<originInfo>
<publisher>Blackwell Science Inc</publisher>
<place>
<placeTerm type="text">Oxford, UK; Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-01</dateIssued>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="words">4249</extent>
</physicalDescription>
<abstract lang="en">Type I diabetics experience significant morbidity from failure of lower extremity injuries to heal. This impaired healing response leads to chronic ulceration, infection and potential amputation of the extremity. Numerous hypotheses have been proposed to explain this impaired healing response, but little is known about intrinsic differences in the fibroblasts populating the diabetic extremity prior to wounding. Nontransformed fibroblast cell lines from type I diabetics were obtained from the NIGMS‐NIH cell repository at the Coriell Institute. Cells were maintained in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, penicillin, streptomycin and either 450 mg/dL (high) or 100 mg/dL (low) glucose. Cell migration was measured over 72 hr by movement of cells away from a circular source of cells, deposited within cloning rings, under high or low glucose conditions. The initial (0, 6, 24 and 48 hr) proliferative response of cells was measured by 3H‐thymidine incorporation into confluent cell monolayers following partial scraping of the cell layer. Growth curves were obtained by seeding 50,000 cells into 6‐well plates and counting cells at 24, 48, 72, and 168 hrs. Fibroblasts from diabetic individuals showed impaired migration compared to nondiabetic cells (34% vs. 67% increase in diameter) in high glucose over an initial 72 hrs. This difference was minimized if the cells were cultured and tested in low glucose medium. In contrast, diabetic derived cells proliferated more rapidly at early times (13.5%[24 hr], 97%[48 hr], 209%[72 hr] diabetic vs. 4%, 52.5%, 156% increase in cell number) when cultured under high glucose conditions. This trend continued under low glucose conditions, although the magnitude difference was diminished. These results suggest that the fibroblast population present in the type I diabetic connective tissue possesses a phenotype distinctly different from normal cells, characterized by a reduced capacity to migrate, but a normal or heightened proliferative response. This may indicate that injury to this connective tissue fails to produce the required influx of fibroblasts to deposit new matrix.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Wound Repair and Regeneration</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1067-1927</identifier>
<identifier type="eISSN">1524-475X</identifier>
<identifier type="DOI">10.1111/(ISSN)1524-475X</identifier>
<identifier type="PublisherID">WRR</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>A21</start>
<end>A21</end>
<total>1</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">220A9F083A066C5A29F655961293D6DC5E379AB7</identifier>
<identifier type="DOI">10.1111/j.1067-1927.2005.130117p.x</identifier>
<identifier type="ArticleID">WRR130117P</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Inc</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:220A9F083A066C5A29F655961293D6DC5E379AB7
   |texte=   Differential Response of Fibroblasts from Type I Diabetics to Proliferative and Migratory Signals
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024