Serveur d'exploration sur le confinement (PubMed)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking.

Identifieur interne : 001A08 ( Main/Corpus ); précédent : 001A07; suivant : 001A09

Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking.

Auteurs : Marco Vinceti ; Tommaso Filippini ; Kenneth J. Rothman ; Fabrizio Ferrari ; Alessia Goffi ; Giuseppe Maffeis ; Nicola Orsini

Source :

RBID : pubmed:32838234

Abstract

Background

Italy's severe COVID-19 outbreak was addressed by a lockdown that gradually increased in space, time and intensity. The effectiveness of the lockdown has not been precisely assessed with respect to the intensity of mobility restriction and the time until the outbreak receded.

Methods

We used processed mobile phone tracking data to measure mobility restriction, and related those data to the number of new SARS-CoV-2 positive cases detected on a daily base in the three most affected Italian regions, Lombardy, Veneto and Emilia-Romagna, from February 1 through April 6, 2020, when two subsequent lockdowns with increasing intensity were implemented by the Italian government.

Findings

During the study period, mobility restriction was inversely related to the daily number of newly diagnosed SARS-CoV-2 positive cases only after the second, more effective lockdown, with a peak in the curve of diagnosed cases of infection occurring 14 to 18 days from lockdown in the three regions and 9 to 25 days in the included provinces. An effective reduction in transmission must have occurred nearly immediately after the tighter lockdown, given the lag time of around 10 days from asymptomatic infection to diagnosis. The period from lockdown to peak was shorter in the areas with the highest prevalence of the infection. This effect was seen within slightly more than one week in the most severely affected areas.

Interpretation

It appears that the less rigid lockdown led to an insufficient decrease in mobility to reverse an outbreak such as COVID-19. With a tighter lockdown, mobility decreased enough to bring down transmission promptly below the level needed to sustain the epidemic.

Funding

No funding sources have been used for this work.


DOI: 10.1016/j.eclinm.2020.100457
PubMed: 32838234
PubMed Central: PMC7355328

Links to Exploration step

pubmed:32838234

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking.</title>
<author>
<name sortKey="Vinceti, Marco" sort="Vinceti, Marco" uniqKey="Vinceti M" first="Marco" last="Vinceti">Marco Vinceti</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filippini, Tommaso" sort="Filippini, Tommaso" uniqKey="Filippini T" first="Tommaso" last="Filippini">Tommaso Filippini</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Kenneth J" sort="Rothman, Kenneth J" uniqKey="Rothman K" first="Kenneth J" last="Rothman">Kenneth J. Rothman</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>RTI Health Solutions, 3040 E Cornwallis Rd, Research Triangle Park, NC 27709, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Fabrizio" sort="Ferrari, Fabrizio" uniqKey="Ferrari F" first="Fabrizio" last="Ferrari">Fabrizio Ferrari</name>
<affiliation>
<nlm:affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goffi, Alessia" sort="Goffi, Alessia" uniqKey="Goffi A" first="Alessia" last="Goffi">Alessia Goffi</name>
<affiliation>
<nlm:affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maffeis, Giuseppe" sort="Maffeis, Giuseppe" uniqKey="Maffeis G" first="Giuseppe" last="Maffeis">Giuseppe Maffeis</name>
<affiliation>
<nlm:affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orsini, Nicola" sort="Orsini, Nicola" uniqKey="Orsini N" first="Nicola" last="Orsini">Nicola Orsini</name>
<affiliation>
<nlm:affiliation>Department of Global Public Health, Karolinska Institutet, Solnavägen 1 E, 11365 Stockholm, Sweden.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32838234</idno>
<idno type="pmid">32838234</idno>
<idno type="doi">10.1016/j.eclinm.2020.100457</idno>
<idno type="pmc">PMC7355328</idno>
<idno type="wicri:Area/Main/Corpus">001A08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking.</title>
<author>
<name sortKey="Vinceti, Marco" sort="Vinceti, Marco" uniqKey="Vinceti M" first="Marco" last="Vinceti">Marco Vinceti</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filippini, Tommaso" sort="Filippini, Tommaso" uniqKey="Filippini T" first="Tommaso" last="Filippini">Tommaso Filippini</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Kenneth J" sort="Rothman, Kenneth J" uniqKey="Rothman K" first="Kenneth J" last="Rothman">Kenneth J. Rothman</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>RTI Health Solutions, 3040 E Cornwallis Rd, Research Triangle Park, NC 27709, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Fabrizio" sort="Ferrari, Fabrizio" uniqKey="Ferrari F" first="Fabrizio" last="Ferrari">Fabrizio Ferrari</name>
<affiliation>
<nlm:affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goffi, Alessia" sort="Goffi, Alessia" uniqKey="Goffi A" first="Alessia" last="Goffi">Alessia Goffi</name>
<affiliation>
<nlm:affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maffeis, Giuseppe" sort="Maffeis, Giuseppe" uniqKey="Maffeis G" first="Giuseppe" last="Maffeis">Giuseppe Maffeis</name>
<affiliation>
<nlm:affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orsini, Nicola" sort="Orsini, Nicola" uniqKey="Orsini N" first="Nicola" last="Orsini">Nicola Orsini</name>
<affiliation>
<nlm:affiliation>Department of Global Public Health, Karolinska Institutet, Solnavägen 1 E, 11365 Stockholm, Sweden.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">EClinicalMedicine</title>
<idno type="eISSN">2589-5370</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>Italy's severe COVID-19 outbreak was addressed by a lockdown that gradually increased in space, time and intensity. The effectiveness of the lockdown has not been precisely assessed with respect to the intensity of mobility restriction and the time until the outbreak receded.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Methods</b>
</p>
<p>We used processed mobile phone tracking data to measure mobility restriction, and related those data to the number of new SARS-CoV-2 positive cases detected on a daily base in the three most affected Italian regions, Lombardy, Veneto and Emilia-Romagna, from February 1 through April 6, 2020, when two subsequent lockdowns with increasing intensity were implemented by the Italian government.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Findings</b>
</p>
<p>During the study period, mobility restriction was inversely related to the daily number of newly diagnosed SARS-CoV-2 positive cases only after the second, more effective lockdown, with a peak in the curve of diagnosed cases of infection occurring 14 to 18 days from lockdown in the three regions and 9 to 25 days in the included provinces. An effective reduction in transmission must have occurred nearly immediately after the tighter lockdown, given the lag time of around 10 days from asymptomatic infection to diagnosis. The period from lockdown to peak was shorter in the areas with the highest prevalence of the infection. This effect was seen within slightly more than one week in the most severely affected areas.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Interpretation</b>
</p>
<p>It appears that the less rigid lockdown led to an insufficient decrease in mobility to reverse an outbreak such as COVID-19. With a tighter lockdown, mobility decreased enough to bring down transmission promptly below the level needed to sustain the epidemic.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Funding</b>
</p>
<p>No funding sources have been used for this work.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32838234</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2589-5370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>EClinicalMedicine</Title>
<ISOAbbreviation>EClinicalMedicine</ISOAbbreviation>
</Journal>
<ArticleTitle>Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking.</ArticleTitle>
<Pagination>
<MedlinePgn>100457</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.eclinm.2020.100457</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">Italy's severe COVID-19 outbreak was addressed by a lockdown that gradually increased in space, time and intensity. The effectiveness of the lockdown has not been precisely assessed with respect to the intensity of mobility restriction and the time until the outbreak receded.</AbstractText>
<AbstractText Label="Methods" NlmCategory="UNASSIGNED">We used processed mobile phone tracking data to measure mobility restriction, and related those data to the number of new SARS-CoV-2 positive cases detected on a daily base in the three most affected Italian regions, Lombardy, Veneto and Emilia-Romagna, from February 1 through April 6, 2020, when two subsequent lockdowns with increasing intensity were implemented by the Italian government.</AbstractText>
<AbstractText Label="Findings" NlmCategory="UNASSIGNED">During the study period, mobility restriction was inversely related to the daily number of newly diagnosed SARS-CoV-2 positive cases only after the second, more effective lockdown, with a peak in the curve of diagnosed cases of infection occurring 14 to 18 days from lockdown in the three regions and 9 to 25 days in the included provinces. An effective reduction in transmission must have occurred nearly immediately after the tighter lockdown, given the lag time of around 10 days from asymptomatic infection to diagnosis. The period from lockdown to peak was shorter in the areas with the highest prevalence of the infection. This effect was seen within slightly more than one week in the most severely affected areas.</AbstractText>
<AbstractText Label="Interpretation" NlmCategory="UNASSIGNED">It appears that the less rigid lockdown led to an insufficient decrease in mobility to reverse an outbreak such as COVID-19. With a tighter lockdown, mobility decreased enough to bring down transmission promptly below the level needed to sustain the epidemic.</AbstractText>
<AbstractText Label="Funding" NlmCategory="UNASSIGNED">No funding sources have been used for this work.</AbstractText>
<CopyrightInformation>© 2020 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vinceti</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filippini</LastName>
<ForeName>Tommaso</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rothman</LastName>
<ForeName>Kenneth J</ForeName>
<Initials>KJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>RTI Health Solutions, 3040 E Cornwallis Rd, Research Triangle Park, NC 27709, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrari</LastName>
<ForeName>Fabrizio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goffi</LastName>
<ForeName>Alessia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maffeis</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Terraria, Via Melchiorre Gioia, 132, 20125 Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Orsini</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Global Public Health, Karolinska Institutet, Solnavägen 1 E, 11365 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EClinicalMedicine</MedlineTA>
<NlmUniqueID>101733727</NlmUniqueID>
<ISSNLinking>2589-5370</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Cellphone</Keyword>
<Keyword MajorTopicYN="N">Epidemiology</Keyword>
<Keyword MajorTopicYN="N">Lockdown</Keyword>
<Keyword MajorTopicYN="N">Outbreak</Keyword>
<Keyword MajorTopicYN="N">Peak</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">Time trend</Keyword>
</KeywordList>
<CoiStatement>The authors have no conflict of interests to disclose.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32838234</ArticleId>
<ArticleId IdType="doi">10.1016/j.eclinm.2020.100457</ArticleId>
<ArticleId IdType="pii">S2589-5370(20)30201-7</ArticleId>
<ArticleId IdType="pii">100457</ArticleId>
<ArticleId IdType="pmc">PMC7355328</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Math Biosci. 2020 Jul;325:108370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32387384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2020 Aug;187:109650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32416357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Apr;26(4):463-464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32284619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Glob Health. 2020 Jun;10(1):010348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32426117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2020 Jul 15;179:115899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32361598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Jun 26;368(6498):1481-1486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32350060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2020 Jul;141:111418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32437891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 27;395(10242):1973-1987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32497510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2020 May 18;27(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32181488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 1;368(6490):493-497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32213647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2020 Apr 8;4:CD013574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32267544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Soc Bras Med Trop. 2020 Mar 23;53:e20200135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32215461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Health Econ Health Policy. 2020 Jun;18(3):329-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32249361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2020 Jun 15;192(24):E653-E656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32461324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jul;92(7):755-769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32237160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 10;729:138474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32498152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 May 5;172(9):577-582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Mar 26;368:m1251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Apr 11;395(10231):1193-1194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32224297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 10;368(6487):145-146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Sep 12;71(6):1454-1460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32255183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Mar 24;368:m1204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32209548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2020 Apr;25(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32265005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Apr;580(7801):29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32235939</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/LockdownV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    LockdownV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32838234
   |texte=   Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32838234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LockdownV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sun Jan 31 08:28:27 2021. Site generation: Sun Jan 31 08:33:49 2021