Serveur d'exploration sur le confinement (PubMed)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities?

Identifieur interne : 000384 ( Main/Corpus ); précédent : 000383; suivant : 000385

Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities?

Auteurs : Arindam Datta ; Md Hafizur Rahman ; R. Suresh

Source :

RBID : pubmed:33410509

Abstract

To control the spread of COVID-19, the government of India imposed a nationwide lockdown on all nonessential activities from 22 Mar. to 3 May 2020. Daily ambient particulate matter ≤10 μm in diameter (PM10 ), particulate matter ≤2.5 μm in diameter (PM2.5 ), NO, NO2 , and O3 concentrations in Delhi and Kolkata from 1 March to 3 May in both 2019 and 2020 were collected from different monitoring stations along with meteorological data to study the impact of the COVID-19 lockdown on ambient pollutant concentrations. In 2020, average ambient concentrations of PM10 and PM2.5 were significantly decreased (Delhi: 59 and 43%, respectively; Kolkata: 49 and 50%, respectively) during the lockdown period compared with the same period during 2019 in both cities. Average ambient O3 concentration in Delhi was significantly lower in 2020 (38.5 μg m-3 ) compared with 2019 (44.7 μg m-3 ) during the study period. However, average ambient O3 concentration was significantly higher during 2020 (46.9 μg m-3 ) compared with 2019 (31.4 μg m-3 ) in Kolkata. Effect size analysis of different predictive variables reveals that the lockdown period explains maximum variation in ambient concentrations of PM10 and PM2.5 during 2020 in both cities. However, maximum variation in ambient O3 concentrations in both cities was explained primarily by spatial variation rather than by the lockdown period. This study suggests that major policy implementation related to the transport and industrial sectors that aims to address the ambient air pollution problem in India may reduce the ambient particulate matter concentrations, although it may not have a significant effect on other ambient air pollutants such as O3 in major Indian cities.

DOI: 10.1002/jeq2.20192
PubMed: 33410509

Links to Exploration step

pubmed:33410509

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities?</title>
<author>
<name sortKey="Datta, Arindam" sort="Datta, Arindam" uniqKey="Datta A" first="Arindam" last="Datta">Arindam Datta</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rahman, Md Hafizur" sort="Rahman, Md Hafizur" uniqKey="Rahman M" first="Md Hafizur" last="Rahman">Md Hafizur Rahman</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suresh, R" sort="Suresh, R" uniqKey="Suresh R" first="R" last="Suresh">R. Suresh</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33410509</idno>
<idno type="pmid">33410509</idno>
<idno type="doi">10.1002/jeq2.20192</idno>
<idno type="wicri:Area/Main/Corpus">000384</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000384</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities?</title>
<author>
<name sortKey="Datta, Arindam" sort="Datta, Arindam" uniqKey="Datta A" first="Arindam" last="Datta">Arindam Datta</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rahman, Md Hafizur" sort="Rahman, Md Hafizur" uniqKey="Rahman M" first="Md Hafizur" last="Rahman">Md Hafizur Rahman</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suresh, R" sort="Suresh, R" uniqKey="Suresh R" first="R" last="Suresh">R. Suresh</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of environmental quality</title>
<idno type="eISSN">1537-2537</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To control the spread of COVID-19, the government of India imposed a nationwide lockdown on all nonessential activities from 22 Mar. to 3 May 2020. Daily ambient particulate matter ≤10 μm in diameter (PM
<sub>10</sub>
), particulate matter ≤2.5 μm in diameter (PM
<sub>2.5</sub>
), NO, NO
<sub>2</sub>
, and O
<sub>3</sub>
concentrations in Delhi and Kolkata from 1 March to 3 May in both 2019 and 2020 were collected from different monitoring stations along with meteorological data to study the impact of the COVID-19 lockdown on ambient pollutant concentrations. In 2020, average ambient concentrations of PM
<sub>10</sub>
and PM
<sub>2.5</sub>
were significantly decreased (Delhi: 59 and 43%, respectively; Kolkata: 49 and 50%, respectively) during the lockdown period compared with the same period during 2019 in both cities. Average ambient O
<sub>3</sub>
concentration in Delhi was significantly lower in 2020 (38.5 μg m
<sup>-3</sup>
) compared with 2019 (44.7 μg m
<sup>-3</sup>
) during the study period. However, average ambient O
<sub>3</sub>
concentration was significantly higher during 2020 (46.9 μg m
<sup>-3</sup>
) compared with 2019 (31.4 μg m
<sup>-3</sup>
) in Kolkata. Effect size analysis of different predictive variables reveals that the lockdown period explains maximum variation in ambient concentrations of PM
<sub>10</sub>
and PM
<sub>2.5</sub>
during 2020 in both cities. However, maximum variation in ambient O
<sub>3</sub>
concentrations in both cities was explained primarily by spatial variation rather than by the lockdown period. This study suggests that major policy implementation related to the transport and industrial sectors that aims to address the ambient air pollution problem in India may reduce the ambient particulate matter concentrations, although it may not have a significant effect on other ambient air pollutants such as O
<sub>3</sub>
in major Indian cities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33410509</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-2537</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of environmental quality</Title>
<ISOAbbreviation>J Environ Qual</ISOAbbreviation>
</Journal>
<ArticleTitle>Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities?</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jeq2.20192</ELocationID>
<Abstract>
<AbstractText>To control the spread of COVID-19, the government of India imposed a nationwide lockdown on all nonessential activities from 22 Mar. to 3 May 2020. Daily ambient particulate matter ≤10 μm in diameter (PM
<sub>10</sub>
), particulate matter ≤2.5 μm in diameter (PM
<sub>2.5</sub>
), NO, NO
<sub>2</sub>
, and O
<sub>3</sub>
concentrations in Delhi and Kolkata from 1 March to 3 May in both 2019 and 2020 were collected from different monitoring stations along with meteorological data to study the impact of the COVID-19 lockdown on ambient pollutant concentrations. In 2020, average ambient concentrations of PM
<sub>10</sub>
and PM
<sub>2.5</sub>
were significantly decreased (Delhi: 59 and 43%, respectively; Kolkata: 49 and 50%, respectively) during the lockdown period compared with the same period during 2019 in both cities. Average ambient O
<sub>3</sub>
concentration in Delhi was significantly lower in 2020 (38.5 μg m
<sup>-3</sup>
) compared with 2019 (44.7 μg m
<sup>-3</sup>
) during the study period. However, average ambient O
<sub>3</sub>
concentration was significantly higher during 2020 (46.9 μg m
<sup>-3</sup>
) compared with 2019 (31.4 μg m
<sup>-3</sup>
) in Kolkata. Effect size analysis of different predictive variables reveals that the lockdown period explains maximum variation in ambient concentrations of PM
<sub>10</sub>
and PM
<sub>2.5</sub>
during 2020 in both cities. However, maximum variation in ambient O
<sub>3</sub>
concentrations in both cities was explained primarily by spatial variation rather than by the lockdown period. This study suggests that major policy implementation related to the transport and industrial sectors that aims to address the ambient air pollution problem in India may reduce the ambient particulate matter concentrations, although it may not have a significant effect on other ambient air pollutants such as O
<sub>3</sub>
in major Indian cities.</AbstractText>
<CopyrightInformation>© 2021 The Authors. Journal of Environmental Quality © 2021 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Datta</LastName>
<ForeName>Arindam</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3834-3722</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rahman</LastName>
<ForeName>Md Hafizur</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suresh</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Studies, Earth Sciences and Climate Change Division, The Energy and Resources Institute, New Delhi, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Environ Qual</MedlineTA>
<NlmUniqueID>0330666</NlmUniqueID>
<ISSNLinking>0047-2425</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>8</Hour>
<Minute>39</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33410509</ArticleId>
<ArticleId IdType="doi">10.1002/jeq2.20192</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>APnA (Air Pollution Knowledge Assessment City Program). (2019). Retrieved from www.urbanemissions.info</Citation>
</Reference>
<Reference>
<Citation>ARAI-TERI (Automotive Research Association of India and The Energy and Resources Institute). (2018). Source apportionment of PM2.5 & PM10 of Delhi NCR for identification of major sources. Retrieved from https://www.teriin.org/project/source-apportionment-pm25-pm10-delhi-ncr-identification-major-sources</Citation>
</Reference>
<Reference>
<Citation>Beelen, R., Hoek, G., Brandt, P. A. V. D., Goldbohm, R. A., Fischer, P., & Schouten, L. J. (2008). Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR Study). Environmental Health Perspectives, 116(2), 196-202.</Citation>
</Reference>
<Reference>
<Citation>Chen, Y., Wild, O., Ryan, E., Sahu, S. K., Lowe, D., Archer-Nicholls, S., … Beig, G. (2020). Mitigation of PM2.5 and ozone pollution in Delhi: A sensitivity study during the pre-monsoon period. Atmospheric Chemistry and Physics, 20, 499-514. https://doi.org/10.5194/acp-20-499-2020</Citation>
</Reference>
<Reference>
<Citation>CPCB (Central Pollution Control Board) (2011). Air quality monitoring emission inventory and source apportionment study for Indian cities. New Delhi: Central Pollution Control Board.</Citation>
</Reference>
<Reference>
<Citation>CPCB (Central Pollution Control Board). (2019). Air quality bulletin. National Air Quality Index (January to December). Retrieved from https://cpcb.nic.in/manual-monitoring/</Citation>
</Reference>
<Reference>
<Citation>Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webstar, R. D., & Wang, X. (2015). Trace element composition of PM2.5 and PM10 from Kolkata: a heavily polluted Indian metropolis. Atmospheric Pollution Research, 6, 742-750. https://doi.org/10.5094/APR2015.083</Citation>
</Reference>
<Reference>
<Citation>Ganguly, N. D. (2009). Surface ozone pollution during the festival of Diwali, New Delhi, India. Earth Science India, 2, 224-259.</Citation>
</Reference>
<Reference>
<Citation>Ghude, S. D., Jain, S. L., Arya, B. C., Beig, G., Ahammed, Y. N., Kumar, A., & Tyagi, B. (2009). Ozone in ambient air at a tropical megacity Delhi: Characteristics, trend and cumulative ozone exposure indices. Journal of Atmospheric Chemistry, 60, 237-252. https://doi.org/10.1007/s10874-009-9119-4</Citation>
</Reference>
<Reference>
<Citation>Guttikunda, S. K., Nishadh, K. A., & Jawahar, P. (2019). Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Climate, 27, 124-141. https://doi.org/10.1016/j.uclim.2018.11.005</Citation>
</Reference>
<Reference>
<Citation>Haque, Md. S., & Singh, R. B. (2017). Air pollution and human health in Kolkata, India: A case study. Climate, 5(4), 17. https://doi.org/10.3390/cli5040077</Citation>
</Reference>
<Reference>
<Citation>Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., … Tempalski, B. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Research Report of Health Effects Institute, 140, 5-140.</Citation>
</Reference>
<Reference>
<Citation>Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of effect size in communication research. Human Communication Research, 28(4), 612-625.</Citation>
</Reference>
<Reference>
<Citation>Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. (2016). NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16, 5283-5298</Citation>
</Reference>
<Reference>
<Citation>Lu, X., Zhang, L., & Shen, L. (2019). Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Current Pollution Reports, 5, 238-260</Citation>
</Reference>
<Reference>
<Citation>Maas, R., & Grennfelt, P. (Eds.). (2016). Towards cleaner air (Scientific Assessment Report 2016). Oslo: EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution.</Citation>
</Reference>
<Reference>
<Citation>Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., … Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 15, 8889-8973. https://doi.org/10.5194/acp-15-8889-2015</Citation>
</Reference>
<Reference>
<Citation>Peake, E., & Sandhu, H. S. (1983). The formation of ozone and peroxyacetyl nitrate (PAN) in the urban atmospheres of Alberta. The Canadian Journal of Chemistry, 61, 927-935.</Citation>
</Reference>
<Reference>
<Citation>Samoli, E., Peng, R., Ramsay, T., Pipikoi, M., Touloumi, G., Burnett, R., … Katsouyanni, S. (2008). Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environmental Health Perspective, 116(11), 1480-1486.</Citation>
</Reference>
<Reference>
<Citation>Sharma, S., Zhang, M., Anshika, G. J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 728, 138-878. https://doi.org/10.1016/j.scitotenv.2020.138878</Citation>
</Reference>
<Reference>
<Citation>Sharma, S. K., Datta, A., Saud, T., Mandal, T. K., Ahmmed, Y. N., & Tiwari, M. K. (2010). Study on concentration of ambient NH3 and interactions with some other ambient trace gases. Environmental Monitoring and Assessment, 162, 225-235. https://doi.org/10.1007/s10661-009-0791-2</Citation>
</Reference>
<Reference>
<Citation>Shen, Z., Han, Y., Cao, J., Tian, J., Zhu, C., Liu, S., … Wang, Y. (2010). Characteristics of traffic-related emissions: A case study in roadside ambient air over Xi'an China. Aerosol and Air Quality Research, 10, 292-300. https://doi.org/10.4209/aaqr.2009.10.0061</Citation>
</Reference>
<Reference>
<Citation>Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845</Citation>
</Reference>
<Reference>
<Citation>Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., … Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 726, 138540. https://doi.org/10.1016/j.scitotenv.2020.138540</Citation>
</Reference>
<Reference>
<Citation>Wang, P., Chen, K., Zhu, S., Wang, P., & Zhang, H. (2020). Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resources, Conservation and Recycling, 158, 104814. https://doi.org/10.1016/j.resconrec.2020.104814</Citation>
</Reference>
<Reference>
<Citation>WHO. (2006). Air quality guidelines: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide, global update 2005. Retrieved from https://apps.who.int/iris/handle/10665/69477</Citation>
</Reference>
<Reference>
<Citation>WHO. (2014). WHO's ambient air pollution database (update 2014. https://www.who.int/phe/health_topics/outdoorair/databases/cities-2014/en/</Citation>
</Reference>
<Reference>
<Citation>WHO. (2016). Global health observatory data. Retrieved from https://apps.who.int/gho/data/</Citation>
</Reference>
<Reference>
<Citation>WHO (2018). Global ambient air quality database (update 2018). Retrieved from https://www.who.int/airpollution/data/cities</Citation>
</Reference>
<Reference>
<Citation>Yin, P., Chen, R., Wang, L., Meng, X., Liu, C., Niu, Y., … Kan, H. (2017). Ambient ozone pollution and daily mortality: A nationwide study in 272 Chinese cities. Environmental Health Perspectives, 125(11), 117006. https://doi.org/10.1289/EHP1849</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/LockdownV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000384 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000384 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    LockdownV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33410509
   |texte=   Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33410509" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LockdownV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sun Jan 31 08:28:27 2021. Site generation: Sun Jan 31 08:33:49 2021