Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detection and identification of human influenza viruses by the polymerase chain reaction

Identifieur interne : 000F72 ( Istex/Corpus ); précédent : 000F71; suivant : 000F73

Detection and identification of human influenza viruses by the polymerase chain reaction

Auteurs : Wandong Zhang ; David. H. Evans

Source :

RBID : ISTEX:20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6

English descriptors

Abstract

Abstract: A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in Taq polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtypespecific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this ‘mini-prep’ technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.

Url:
DOI: 10.1016/0166-0934(91)90017-T

Links to Exploration step

ISTEX:20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Detection and identification of human influenza viruses by the polymerase chain reaction</title>
<author>
<name sortKey="Zhang, Wandong" sort="Zhang, Wandong" uniqKey="Zhang W" first="Wandong" last="Zhang">Wandong Zhang</name>
<affiliation>
<mods:affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, David H" sort="Evans, David H" uniqKey="Evans D" first="David. H." last="Evans">David. H. Evans</name>
<affiliation>
<mods:affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1016/0166-0934(91)90017-T</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-2LQQLQ6R-T/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F72</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Detection and identification of human influenza viruses by the polymerase chain reaction</title>
<author>
<name sortKey="Zhang, Wandong" sort="Zhang, Wandong" uniqKey="Zhang W" first="Wandong" last="Zhang">Wandong Zhang</name>
<affiliation>
<mods:affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, David H" sort="Evans, David H" uniqKey="Evans D" first="David. H." last="Evans">David. H. Evans</name>
<affiliation>
<mods:affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Virological Methods</title>
<title level="j" type="abbrev">VIRMET</title>
<idno type="ISSN">0166-0934</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991">1991</date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="165">165</biblScope>
<biblScope unit="page" to="189">189</biblScope>
</imprint>
<idno type="ISSN">0166-0934</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0166-0934</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Agarose</term>
<term>Amniotic fluid</term>
<term>Amplification</term>
<term>Assay</term>
<term>Cdna</term>
<term>Cdna synthesis</term>
<term>Cladistic analysis</term>
<term>Complete nucleotide sequence</term>
<term>Genbank</term>
<term>Gene</term>
<term>Gene fragments</term>
<term>Haemagglutinin</term>
<term>Haemagglutinin gene</term>
<term>Hemagglutinin</term>
<term>Hemagglutinin gene</term>
<term>Heterologous</term>
<term>Heterologous cdnas</term>
<term>High frequency</term>
<term>Homology</term>
<term>Human influenza</term>
<term>Human influenza virus</term>
<term>Hybridization temperature</term>
<term>Hybridize</term>
<term>Identical strains</term>
<term>Influenza</term>
<term>Influenza virus</term>
<term>Influenza viruses</term>
<term>Matrix</term>
<term>Matrix protein</term>
<term>Mismatch</term>
<term>Mutation</term>
<term>Neuraminidase</term>
<term>Neuraminidase gene</term>
<term>Nucleic</term>
<term>Nucleic acids</term>
<term>Nucleotide</term>
<term>Nucleotide sequence</term>
<term>Nucleotide sequences</term>
<term>Polymerase</term>
<term>Polymerase chain reaction</term>
<term>Prime synthesis</term>
<term>Primer</term>
<term>Primer design</term>
<term>Primer synthesis</term>
<term>Reaction products</term>
<term>Restriction maps</term>
<term>Sequence variation</term>
<term>Sequencing</term>
<term>Serial dilutions</term>
<term>Subtype</term>
<term>Subtyping</term>
<term>Subtyping primers</term>
<term>Transcriptase</term>
<term>Viral</term>
<term>Viral cdna</term>
<term>Viral sequences</term>
<term>Virology</term>
<term>Virus</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in Taq polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtypespecific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this ‘mini-prep’ technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>primer</json:string>
<json:string>cdna</json:string>
<json:string>viral</json:string>
<json:string>influenza</json:string>
<json:string>neuraminidase</json:string>
<json:string>haemagglutinin</json:string>
<json:string>polymerase</json:string>
<json:string>heterologous</json:string>
<json:string>virology</json:string>
<json:string>influenza virus</json:string>
<json:string>homology</json:string>
<json:string>influenza viruses</json:string>
<json:string>mutation</json:string>
<json:string>genbank</json:string>
<json:string>subtyping</json:string>
<json:string>mismatch</json:string>
<json:string>hybridize</json:string>
<json:string>hemagglutinin</json:string>
<json:string>sequencing</json:string>
<json:string>transcriptase</json:string>
<json:string>agarose</json:string>
<json:string>amplification</json:string>
<json:string>viral cdna</json:string>
<json:string>gene fragments</json:string>
<json:string>neuraminidase gene</json:string>
<json:string>nucleic acids</json:string>
<json:string>nucleotide</json:string>
<json:string>viral sequences</json:string>
<json:string>human influenza virus</json:string>
<json:string>virus</json:string>
<json:string>assay</json:string>
<json:string>matrix</json:string>
<json:string>prime synthesis</json:string>
<json:string>nucleotide sequence</json:string>
<json:string>primer design</json:string>
<json:string>hybridization temperature</json:string>
<json:string>human influenza</json:string>
<json:string>reaction products</json:string>
<json:string>sequence variation</json:string>
<json:string>cdna synthesis</json:string>
<json:string>gene</json:string>
<json:string>nucleic</json:string>
<json:string>complete nucleotide sequence</json:string>
<json:string>haemagglutinin gene</json:string>
<json:string>subtyping primers</json:string>
<json:string>primer synthesis</json:string>
<json:string>heterologous cdnas</json:string>
<json:string>cladistic analysis</json:string>
<json:string>polymerase chain reaction</json:string>
<json:string>restriction maps</json:string>
<json:string>nucleotide sequences</json:string>
<json:string>amniotic fluid</json:string>
<json:string>serial dilutions</json:string>
<json:string>matrix protein</json:string>
<json:string>hemagglutinin gene</json:string>
<json:string>identical strains</json:string>
<json:string>high frequency</json:string>
<json:string>subtype</json:string>
<json:string>fragment</json:string>
<json:string>subtype specificity</json:string>
<json:string>restriction digests</json:string>
<json:string>roman numeral</json:string>
<json:string>inner primers</json:string>
<json:string>outer primers</json:string>
<json:string>england biolabs</json:string>
<json:string>sequence homology</json:string>
<json:string>genbank release</json:string>
<json:string>fasta searches</json:string>
<json:string>ethidium bromide</json:string>
<json:string>cdna template</json:string>
<json:string>large amounts</json:string>
<json:string>blood cells</json:string>
<json:string>highest dilution</json:string>
<json:string>cdna preparation</json:string>
<json:string>particular advantage</json:string>
<json:string>type determination</json:string>
<json:string>primer quartets</json:string>
<json:string>influenza strains</json:string>
<json:string>embryonated chicken eggs</json:string>
<json:string>heterologous templates</json:string>
<json:string>fragment sizes</json:string>
<json:string>jersey cdna</json:string>
<json:string>cdna target</json:string>
<json:string>synthetic primers</json:string>
<json:string>genetic shift</json:string>
<json:string>genetic drift</json:string>
<json:string>jersey virus</json:string>
<json:string>annealing temperature</json:string>
<json:string>haemagglutinin subtypes</json:string>
<json:string>cdna sequences</json:string>
<json:string>american type culture collection</json:string>
<json:string>restriction mapping</json:string>
<json:string>rico virus</json:string>
<json:string>restriction sites</json:string>
<json:string>unknown sequence</json:string>
<json:string>jersey strain</json:string>
<json:string>nucleotide substitutions</json:string>
<json:string>broad type specificity</json:string>
<json:string>such viruses</json:string>
<json:string>degraded samples</json:string>
<json:string>viral particles</json:string>
<json:string>genetic variation</json:string>
<json:string>primer sets</json:string>
<json:string>subtypespecific primers</json:string>
<json:string>avian influenza</json:string>
<json:string>restriction enzymes</json:string>
<json:string>oligonucleotide primers</json:string>
<json:string>molecular biology genetics</json:string>
<json:string>influenza virus neuraminidase gene</json:string>
<json:string>variant nucleotides</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Wandong Zhang</name>
<affiliations>
<json:string>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>David.H. Evans</name>
<affiliations>
<json:string>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PCR</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Influenza</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Viral cDNA preparation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Subtyping</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ATCC : American Type Culture Collection</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ELISA : enzyme-linked immunosorbent assay</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>HA : haemagglutinin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>MP : matrix protein</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>NA : neuraminidase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PCR : polymerase chain reaction : Subtype abbreviations follow standard practice</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-2LQQLQ6R-T</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in Taq polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtypespecific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this ‘mini-prep’ technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>8882</pdfWordCount>
<pdfCharCount>57752</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>25</pdfPageCount>
<pdfPageSize>432 x 648 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>284</abstractWordCount>
<abstractCharCount>1915</abstractCharCount>
<keywordCount>10</keywordCount>
</qualityIndicators>
<title>Detection and identification of human influenza viruses by the polymerase chain reaction</title>
<pmid>
<json:string>1939505</json:string>
</pmid>
<pii>
<json:string>0166-0934(91)90017-T</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Proc. Natl. Acad. Sci. USA</title>
<language>
<json:string>unknown</json:string>
</language>
<volume>87</volume>
<pages>
<first>3884</first>
<last>3888</last>
</pages>
</serie>
<host>
<title>Journal of Virological Methods</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1991</publicationDate>
<issn>
<json:string>0166-0934</json:string>
</issn>
<pii>
<json:string>S0166-0934(00)X0127-9</json:string>
</pii>
<volume>33</volume>
<issue>1–2</issue>
<pages>
<first>165</first>
<last>189</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1988</json:string>
<json:string>1990</json:string>
<json:string>16s</json:string>
<json:string>23s</json:string>
<json:string>70s</json:string>
<json:string>1991</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Defense Research Establishment, Suffield</json:string>
<json:string>US Biochemicals</json:string>
<json:string>Department of National Defense</json:string>
<json:string>University of Guelph</json:string>
<json:string>Subtype University</json:string>
<json:string>National Research Council CISTI</json:string>
<json:string>American Type Culture Collection</json:string>
<json:string>Department Guelph, Ontario N I G</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Elaine Fulton</json:string>
<json:string>Hong Kong</json:string>
<json:string>Mary Hitt</json:string>
<json:string>Fred Rolufs</json:string>
<json:string>Jim Squires</json:string>
<json:string>Eva Nagy</json:string>
</persName>
<placeName>
<json:string>Miami</json:string>
<json:string>Singapore</json:string>
<json:string>CHAD</json:string>
<json:string>Port Chalmers</json:string>
<json:string>Canada</json:string>
<json:string>Puerto Rico</json:string>
<json:string>Japan</json:string>
<json:string>Tokyo</json:string>
<json:string>Puerto Rica</json:string>
<json:string>Uruguay</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Hiti et al., 1982</json:string>
<json:string>Allen et al., 1980</json:string>
<json:string>Hiti and Nayak, 1982</json:string>
<json:string>Gething et al., 1980</json:string>
<json:string>Lamb, 1983</json:string>
<json:string>Sommer and Tautz, 1989</json:string>
<json:string>Elleman et al., 1982</json:string>
<json:string>Baylor et al., 1988</json:string>
<json:string>reviewed by Kendal, 1985</json:string>
<json:string>Rajakumar et al. (1990)</json:string>
<json:string>Briedis et al., 1982</json:string>
<json:string>Yamashita et al., 1988</json:string>
<json:string>Krystal et al., 1983</json:string>
<json:string>Winter et al.</json:string>
<json:string>Markushin et al., 1988</json:string>
<json:string>Khatchikian et al., 1989</json:string>
<json:string>Blok and Air, 1980</json:string>
<json:string>Pearson and Lipman, 1988</json:string>
<json:string>Yanisch-Perron et al., 1985</json:string>
<json:string>Clewley, 1989</json:string>
<json:string>Concannon et al., 1984</json:string>
<json:string>Lamb et al., 1981</json:string>
<json:string>Ritchey et al., 1976</json:string>
<json:string>Webster and Rott, 1987</json:string>
<json:string>Fields et al.</json:string>
<json:string>Chomel et al. (1989)</json:string>
<json:string>Katz and Webster, 1988</json:string>
<json:string>Jou et al., 1980</json:string>
<json:string>Deborde et al., 1988</json:string>
<json:string>Franius, 1940</json:string>
<json:string>Evans and Linn, 1984</json:string>
<json:string>Coonrod et al., 1984</json:string>
<json:string>Deshpande et al., 1985</json:string>
<json:string>Martinez et al., 1983</json:string>
<json:string>Enami et al., 1990</json:string>
<json:string>Wiley and Skehel, 1987</json:string>
<json:string>Winter and Fields, 1980</json:string>
<json:string>Jones and Foulkes, 1989</json:string>
<json:string>Hiebert et al., 1986</json:string>
<json:string>reviewed in Lamb, 1983</json:string>
<json:string>Buonagurio et al., 1985</json:string>
<json:string>Kendal et al., 1977</json:string>
<json:string>Air et al., 1990</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-2LQQLQ6R-T</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - virology</json:string>
<json:string>2 - biotechnology & applied microbiology</json:string>
<json:string>2 - biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - virology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - Virology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1016/0166-0934(91)90017-T</json:string>
</doi>
<id>20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2LQQLQ6R-T/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2LQQLQ6R-T/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-2LQQLQ6R-T/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Detection and identification of human influenza viruses by the polymerase chain reaction</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>elsevier</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M"></p>
<date>1991</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Detection and identification of human influenza viruses by the polymerase chain reaction</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Wandong</forename>
<surname>Zhang</surname>
</persName>
<affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">David.H.</forename>
<surname>Evans</surname>
</persName>
<note type="correspondence">
<p>Correspondence to: D.H. Evans, Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.</p>
</note>
<affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</affiliation>
</author>
<idno type="istex">20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6</idno>
<idno type="ark">ark:/67375/6H6-2LQQLQ6R-T</idno>
<idno type="DOI">10.1016/0166-0934(91)90017-T</idno>
<idno type="PII">0166-0934(91)90017-T</idno>
</analytic>
<monogr>
<title level="j">Journal of Virological Methods</title>
<title level="j" type="abbrev">VIRMET</title>
<idno type="pISSN">0166-0934</idno>
<idno type="PII">S0166-0934(00)X0127-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991"></date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="165">165</biblScope>
<biblScope unit="page" to="189">189</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1991</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in Taq polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtypespecific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this ‘mini-prep’ technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>PCR</term>
</item>
<item>
<term>Influenza</term>
</item>
<item>
<term>Viral cDNA preparation</term>
</item>
<item>
<term>Subtyping</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>ATCC</term>
<term>American Type Culture Collection</term>
</item>
<item>
<term>ELISA</term>
<term>enzyme-linked immunosorbent assay</term>
</item>
<item>
<term>HA</term>
<term>haemagglutinin</term>
</item>
<item>
<term>MP</term>
<term>matrix protein</term>
</item>
<item>
<term>NA</term>
<term>neuraminidase</term>
</item>
<item>
<term>PCR</term>
<term>polymerase chain reaction : Subtype abbreviations follow standard practice</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1991">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2LQQLQ6R-T/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>VIRMET</jid>
<aid>9190017T</aid>
<ce:pii>0166-0934(91)90017-T</ce:pii>
<ce:doi>10.1016/0166-0934(91)90017-T</ce:doi>
<ce:copyright type="unknown" year="1991"></ce:copyright>
</item-info>
<head>
<ce:title>Detection and identification of human influenza viruses by the polymerase chain reaction</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Wandong</ce:given-name>
<ce:surname>Zhang</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>David.H.</ce:given-name>
<ce:surname>Evans</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Correspondence to: D.H. Evans, Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="13" month="3" year="1991"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in
<ce:italic>Taq</ce:italic>
polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtypespecific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this ‘mini-prep’ technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>PCR</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Influenza</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Viral cDNA preparation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Subtyping</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>ATCC</ce:text>
<ce:keyword>
<ce:text>American Type Culture Collection</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>ELISA</ce:text>
<ce:keyword>
<ce:text>enzyme-linked immunosorbent assay</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>HA</ce:text>
<ce:keyword>
<ce:text>haemagglutinin</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>MP</ce:text>
<ce:keyword>
<ce:text>matrix protein</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>NA</ce:text>
<ce:keyword>
<ce:text>neuraminidase</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>PCR</ce:text>
<ce:keyword>
<ce:text>polymerase chain reaction</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Subtype abbreviations follow standard practice</ce:text>
</ce:keyword>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Detection and identification of human influenza viruses by the polymerase chain reaction</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Detection and identification of human influenza viruses by the polymerase chain reaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wandong</namePart>
<namePart type="family">Zhang</namePart>
<affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David.H.</namePart>
<namePart type="family">Evans</namePart>
<affiliation>Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, Canada</affiliation>
<description>Correspondence to: D.H. Evans, Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1991</dateIssued>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in Taq polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtypespecific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this ‘mini-prep’ technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.</abstract>
<subject>
<genre>Keywords</genre>
<topic>PCR</topic>
<topic>Influenza</topic>
<topic>Viral cDNA preparation</topic>
<topic>Subtyping</topic>
</subject>
<subject>
<genre>Abbreviations</genre>
<topic>ATCC : American Type Culture Collection</topic>
<topic>ELISA : enzyme-linked immunosorbent assay</topic>
<topic>HA : haemagglutinin</topic>
<topic>MP : matrix protein</topic>
<topic>NA : neuraminidase</topic>
<topic>PCR : polymerase chain reaction : Subtype abbreviations follow standard practice</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Virological Methods</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>VIRMET</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1991</dateIssued>
</originInfo>
<identifier type="ISSN">0166-0934</identifier>
<identifier type="PII">S0166-0934(00)X0127-9</identifier>
<part>
<date>1991</date>
<detail type="volume">
<number>33</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>232</end>
</extent>
<extent unit="pages">
<start>165</start>
<end>189</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6</identifier>
<identifier type="ark">ark:/67375/6H6-2LQQLQ6R-T</identifier>
<identifier type="DOI">10.1016/0166-0934(91)90017-T</identifier>
<identifier type="PII">0166-0934(91)90017-T</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2LQQLQ6R-T/record.json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:20BAAAA7CB0C5F59958FAE72DD05D38BEF529CE6
   |texte=   Detection and identification of human influenza viruses by the polymerase chain reaction
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021