Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pop-Cola Acids and Tooth Erosion: An In Vitro, In Vivo, Electron-Microscopic, and Clinical Report

Identifieur interne : 002D37 ( Pmc/Curation ); précédent : 002D36; suivant : 002D38

Pop-Cola Acids and Tooth Erosion: An In Vitro, In Vivo, Electron-Microscopic, and Clinical Report

Auteurs : Amirfirooz Borjian [Canada] ; Claudia C. F. Ferrari [Canada] ; Antoni Anouf [Canada] ; Louis Z. G. Touyz [Canada]

Source :

RBID : PMC:2997506

Abstract

Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop “Cola beverages”, pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this.


Url:
DOI: 10.1155/2010/957842
PubMed: 21151663
PubMed Central: 2997506

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2997506

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pop-Cola Acids and Tooth Erosion: An
<italic>In Vitro</italic>
,
<italic>In Vivo</italic>
, Electron-Microscopic, and Clinical Report</title>
<author>
<name sortKey="Borjian, Amirfirooz" sort="Borjian, Amirfirooz" uniqKey="Borjian A" first="Amirfirooz" last="Borjian">Amirfirooz Borjian</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Claudia C F" sort="Ferrari, Claudia C F" uniqKey="Ferrari C" first="Claudia C. F." last="Ferrari">Claudia C. F. Ferrari</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Anouf, Antoni" sort="Anouf, Antoni" uniqKey="Anouf A" first="Antoni" last="Anouf">Antoni Anouf</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Touyz, Louis Z G" sort="Touyz, Louis Z G" uniqKey="Touyz L" first="Louis Z. G." last="Touyz">Louis Z. G. Touyz</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21151663</idno>
<idno type="pmc">2997506</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997506</idno>
<idno type="RBID">PMC:2997506</idno>
<idno type="doi">10.1155/2010/957842</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">002D37</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002D37</idno>
<idno type="wicri:Area/Pmc/Curation">002D37</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">002D37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Pop-Cola Acids and Tooth Erosion: An
<italic>In Vitro</italic>
,
<italic>In Vivo</italic>
, Electron-Microscopic, and Clinical Report</title>
<author>
<name sortKey="Borjian, Amirfirooz" sort="Borjian, Amirfirooz" uniqKey="Borjian A" first="Amirfirooz" last="Borjian">Amirfirooz Borjian</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Claudia C F" sort="Ferrari, Claudia C F" uniqKey="Ferrari C" first="Claudia C. F." last="Ferrari">Claudia C. F. Ferrari</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Anouf, Antoni" sort="Anouf, Antoni" uniqKey="Anouf A" first="Antoni" last="Anouf">Antoni Anouf</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Touyz, Louis Z G" sort="Touyz, Louis Z G" uniqKey="Touyz L" first="Louis Z. G." last="Touyz">Louis Z. G. Touyz</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Dentistry</title>
<idno type="ISSN">1687-8728</idno>
<idno type="eISSN">1687-8736</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Introduction</italic>
. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare.
<italic>Aim</italic>
. To assess (i) cola acidity and buffering capacity
<italic>in vitro</italic>
, (ii) tooth erosion after swishing with colas
<italic>in vivo</italic>
(iii) scanning electron
<italic>microscopic effects</italic>
on teeth of colas, and tooth-brush abrasion, and (iv) report a
<italic>clinical case</italic>
of erosion from cola consumption.
<italic>Materials and Methods</italic>
. (i) We measured six commercially available pop “Cola beverages”, pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one
<italic>with teeth</italic>
, the second
<italic>without teeth</italic>
rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described.
<italic>Results</italic>
. Comparisons among pop colas tested
<italic>in vitro</italic>
reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing
<italic>in vivo</italic>
with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion.
<italic>Conclusions</italic>
. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a
<italic>clinical case</italic>
of pop-cola erosion confirms this.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bawa, S" uniqKey="Bawa S">S Bawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sirimaharaj, V" uniqKey="Sirimaharaj V">V Sirimaharaj</name>
</author>
<author>
<name sortKey="Brearley Messer, L" uniqKey="Brearley Messer L">L Brearley Messer</name>
</author>
<author>
<name sortKey="Morgan, Mv" uniqKey="Morgan M">MV Morgan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Touyz, Lzg" uniqKey="Touyz L">LZG Touyz</name>
</author>
<author>
<name sortKey="Mehio, A" uniqKey="Mehio A">A Mehio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansson, A K" uniqKey="Johansson A">A-K Johansson</name>
</author>
<author>
<name sortKey="Lingstrom, P" uniqKey="Lingstrom P">P Lingström</name>
</author>
<author>
<name sortKey="Imfeld, T" uniqKey="Imfeld T">T Imfeld</name>
</author>
<author>
<name sortKey="Birkhed, D" uniqKey="Birkhed D">D Birkhed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dawes, C" uniqKey="Dawes C">C Dawes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Featherstone, Jd" uniqKey="Featherstone J">JD Featherstone</name>
</author>
<author>
<name sortKey="Lussi, A" uniqKey="Lussi A">A Lussi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Attin, T" uniqKey="Attin T">T Attin</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, Mj" uniqKey="Larsen M">MJ Larsen</name>
</author>
<author>
<name sortKey="Nyvad, B" uniqKey="Nyvad B">B Nyvad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morton, Dg" uniqKey="Morton D">DG Morton</name>
</author>
<author>
<name sortKey="Smith, Me" uniqKey="Smith M">ME Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schindler, B" uniqKey="Schindler B">B Schindler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartlett, D" uniqKey="Bartlett D">D Bartlett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lussi, A" uniqKey="Lussi A">A Lussi</name>
</author>
<author>
<name sortKey="Jaeggi, T" uniqKey="Jaeggi T">T Jaeggi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dawes, C" uniqKey="Dawes C">C Dawes</name>
</author>
<author>
<name sortKey="Kubieniec, K" uniqKey="Kubieniec K">K Kubieniec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imfeld, T" uniqKey="Imfeld T">T Imfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imfeld, Tn" uniqKey="Imfeld T">TN Imfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tahmassebi, Jf" uniqKey="Tahmassebi J">JF Tahmassebi</name>
</author>
<author>
<name sortKey="Duggal, Ms" uniqKey="Duggal M">MS Duggal</name>
</author>
<author>
<name sortKey="Malik Kotru, G" uniqKey="Malik Kotru G">G Malik-Kotru</name>
</author>
<author>
<name sortKey="Curzon, Mej" uniqKey="Curzon M">MEJ Curzon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hara, At" uniqKey="Hara A">AT Hara</name>
</author>
<author>
<name sortKey="Lussi, A" uniqKey="Lussi A">A Lussi</name>
</author>
<author>
<name sortKey="Zero, Dt" uniqKey="Zero D">DT Zero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valena, V" uniqKey="Valena V">V Valena</name>
</author>
<author>
<name sortKey="Young, Wg" uniqKey="Young W">WG Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jenkins, Gn" uniqKey="Jenkins G">GN Jenkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, P" uniqKey="Jain P">P Jain</name>
</author>
<author>
<name sortKey="Nihill, P" uniqKey="Nihill P">P Nihill</name>
</author>
<author>
<name sortKey="Sobkowski, J" uniqKey="Sobkowski J">J Sobkowski</name>
</author>
<author>
<name sortKey="Agustin, Mz" uniqKey="Agustin M">MZ Agustin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="West, Nx" uniqKey="West N">NX West</name>
</author>
<author>
<name sortKey="Hughes, Ja" uniqKey="Hughes J">JA Hughes</name>
</author>
<author>
<name sortKey="Addy, M" uniqKey="Addy M">M Addy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansson, A K" uniqKey="Johansson A">A-K Johansson</name>
</author>
<author>
<name sortKey="Johansson, A" uniqKey="Johansson A">A Johansson</name>
</author>
<author>
<name sortKey="Birkhed, D" uniqKey="Birkhed D">D Birkhed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lussi, A" uniqKey="Lussi A">A Lussi</name>
</author>
<author>
<name sortKey="Jaeggi, T" uniqKey="Jaeggi T">T Jaeggi</name>
</author>
<author>
<name sortKey="Zero, D" uniqKey="Zero D">D Zero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jensdottir, T" uniqKey="Jensdottir T">T Jensdottir</name>
</author>
<author>
<name sortKey="Arnadottir, Ib" uniqKey="Arnadottir I">IB Arnadottir</name>
</author>
<author>
<name sortKey="Thorsdottir, I" uniqKey="Thorsdottir I">I Thorsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaeggi, T" uniqKey="Jaeggi T">T Jaeggi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chandra, A" uniqKey="Chandra A">A Chandra</name>
</author>
<author>
<name sortKey="Moazzez, R" uniqKey="Moazzez R">R Moazzez</name>
</author>
<author>
<name sortKey="Bartlett, D" uniqKey="Bartlett D">D Bartlett</name>
</author>
<author>
<name sortKey="Anggiansah, A" uniqKey="Anggiansah A">A Anggiansah</name>
</author>
<author>
<name sortKey="Owen, Wj" uniqKey="Owen W">WJ Owen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Touyz, Lzg" uniqKey="Touyz L">LZG Touyz</name>
</author>
<author>
<name sortKey="Anouf, A" uniqKey="Anouf A">A Anouf</name>
</author>
<author>
<name sortKey="Borjian, A" uniqKey="Borjian A">A Borjian</name>
</author>
<author>
<name sortKey="Ferrari, C" uniqKey="Ferrari C">C Ferrari</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Dent</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Dent</journal-id>
<journal-id journal-id-type="publisher-id">IJD</journal-id>
<journal-title-group>
<journal-title>International Journal of Dentistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">1687-8728</issn>
<issn pub-type="epub">1687-8736</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21151663</article-id>
<article-id pub-id-type="pmc">2997506</article-id>
<article-id pub-id-type="doi">10.1155/2010/957842</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Pop-Cola Acids and Tooth Erosion: An
<italic>In Vitro</italic>
,
<italic>In Vivo</italic>
, Electron-Microscopic, and Clinical Report</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Borjian</surname>
<given-names>Amirfirooz</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ferrari</surname>
<given-names>Claudia C. F.</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Anouf</surname>
<given-names>Antoni</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Touyz</surname>
<given-names>Louis Z. G.</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="I1">McGill Faculty of Dentistry, Montreal, PQ, H3A 2B2, Canada</aff>
<author-notes>
<corresp id="cor1">*Louis Z. G. Touyz:
<email>louis.touyz@mcgill.ca</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Jukka H. Meurman</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>12</month>
<year>2010</year>
</pub-date>
<volume>2010</volume>
<elocation-id>957842</elocation-id>
<history>
<date date-type="received">
<day>23</day>
<month>6</month>
<year>2010</year>
</date>
<date date-type="rev-recd">
<day>29</day>
<month>8</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>8</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2010 Amirfirooz Borjian et al.</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Copyright © 2010 Amirfirooz Borjian et al.</copyright-holder>
<license xlink:href="https://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>
<italic>Introduction</italic>
. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare.
<italic>Aim</italic>
. To assess (i) cola acidity and buffering capacity
<italic>in vitro</italic>
, (ii) tooth erosion after swishing with colas
<italic>in vivo</italic>
(iii) scanning electron
<italic>microscopic effects</italic>
on teeth of colas, and tooth-brush abrasion, and (iv) report a
<italic>clinical case</italic>
of erosion from cola consumption.
<italic>Materials and Methods</italic>
. (i) We measured six commercially available pop “Cola beverages”, pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one
<italic>with teeth</italic>
, the second
<italic>without teeth</italic>
rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described.
<italic>Results</italic>
. Comparisons among pop colas tested
<italic>in vitro</italic>
reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing
<italic>in vivo</italic>
with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion.
<italic>Conclusions</italic>
. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a
<italic>clinical case</italic>
of pop-cola erosion confirms this.</p>
</abstract>
</article-meta>
</front>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>pH comparison among pop-Cola drinks. The pH levels of the six analyzed cola drinks are all significantly below the critical pH (pH 5.5) of Calcium hydroxyapatite (
<italic>P</italic>
< .001 Student-
<italic>t</italic>
). The diet colas are not necessarily more acidic; regular Pepsi Cola has the lowest pH (pH 2.53), while Diet Selection Cola is the highest pH (pH 3.40).</p>
</caption>
<graphic xlink:href="IJD2010-957842.001"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Buffering capacities of pop-Cola drinks for a single unit pH change (orange) to critical pH 5.5 (red) and pH 7 (Green). The orange bars show Pepsi Cola having the highest buffering capacity while Diet-Coke and Selection Cola share the lowest buffering capacity. The red bars show buffering capacities for change from the drink's initial pH up to the critical pH 5.5, with Diet Pepsi having the highest buffering capacity (1.9 mL of 0.5 M NaOH) while Coca Cola has the lowest buffering capacity (1.5 mL of 0.5 M NaOH). The green bars show buffering capacities for a pH change from the drink's initial pH up to neutral (pH 7.0). Diet Pepsi has the highest buffering capacity (5.38 mL of 0.5 M NaOH), regular Selection Cola (3.78 mL of 0.5 M NaOH) has the lowest buffering capacity, and Coca Cola (3.79 mL of 0.5 M NaOH) is very similar and not significantly different from Selection Cola. All the cola-drinks absorb the alkali but vary in the amount of alkali to reach pH 7.</p>
</caption>
<graphic xlink:href="IJD2010-957842.002"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Calcium measures of swishes. Initial swishes were done for all groups with the same water (Aquafina) as controls. Subsequently, test standard-cola swishes were obtained; 2 hours later, diet equivalent swishes were secured. Calcium measures were done directly from source (bottled water or can) and the swished expectorates. Measures were assessed using ICP-OES. The Ca
<sup>2+</sup>
content of control (water) remains constant for each group, but the Ca
<sup>2+</sup>
content of swished water probes obtained from 3 separate cohorts (six volunteers for each group) vary slightly. Calcium was expressed as mg/L from the source and for test colas
<italic>after swishing with and without teeth</italic>
. There is a significant increase (
<italic>P</italic>
< .01 Student-
<italic>t</italic>
) in calcium, found in all the colas tested, when swishes with cola from subjects
<italic>with teeth</italic>
are compared to swishes of colas from subjects
<italic>without teeth</italic>
. The calcium content in the water controls is negligible.</p>
</caption>
<graphic xlink:href="IJD2010-957842.003"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Phosphorous concentrations were expressed as mg/L from the source (bottled water or can) and swished test drinks. Aquafina water was used as control for all groups. Measures were assessed using ICP-OES. The phosphorus content of control (water) remains constant for each group, but the phosphorus content of swished water probes obtained from 3 separate cohorts (six volunteers for each group) vary. There is wide variation of phosphorous concentrations when swishes with cola from subjects
<italic>with teeth</italic>
are compared to swishes of cola from subjects
<italic>without teeth</italic>
. This is because there are variable amounts of phosphoric acid in the colas and phosphates in subjects' saliva; some reactive calcium-binding phosphorous is in stimulated saliva.</p>
</caption>
<graphic xlink:href="IJD2010-957842.004"></graphic>
</fig>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Fluoride concentration in pop colas with samples (
<italic>n</italic>
= 24) directly from the cans. The above graph shows the fluoride concentration (mg/L or ppm) in the six Cola drinks tested. Pepsi has the highest concentration (6.31 ppm) while Diet Coke has the lowest concentration (1.96 ppm).</p>
</caption>
<graphic xlink:href="IJD2010-957842.005"></graphic>
</fig>
<fig id="fig6" position="float">
<label>Figure 6</label>
<caption>
<p>Coca Cola (×700). (a–c) The red arrows show developing erosive effects on smear layer over the surface of enamel; there is enamel erosion and minor abrasion as enamel is dense and hard. (d–f) show developing cracks and crevices over the ECJ surface which become aggravated due to loss of calcium. Also abrasion as loss of material after brushing, with the softened surface reflecting loss of detail going down to deeper more calcified layers, is seen in (f) compared to (e). Red arrow in (g) shows closed dentine tubules which are markedly opened in (h) after exposure to the cola. (i) shows loss of surface material, removed by abrasion, with some tubules (circled) becoming smaller, while others (red arrow) expose deeper levels of the tubes. These results correlate well with the calcium measured in expectorates from swishes with Coca cola in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
.</p>
</caption>
<graphic xlink:href="IJD2010-957842.006"></graphic>
</fig>
<fig id="fig7" position="float">
<label>Figure 7</label>
<caption>
<p>Coca Cola (×700). (a–i) White ovoid outlines show erosion in the same areas for enamel, ECJ, and dentine. Red arrows indicate obvious locations of change. There is minimal abrasion in (c), as enamel is dense, hard, and resistant to the brushing. But white outline in (e) shows erosion, and red arrows show loss of surface material from brush abrasion in (f). These SEM results are consistent with the calcium dissolution from swishes in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
.</p>
</caption>
<graphic xlink:href="IJD2010-957842.007"></graphic>
</fig>
<fig id="fig8" position="float">
<label>Figure 8</label>
<caption>
<p>Coca Selection (×700). Outlined areas clearly show erosion with surface crenellations and profusion of shrinkage cracks from calcium loss when comparing (a), (d), and (g) to (b), (e), and (h). Minimal abrasion is present on the enamel, but red arrows from brush abrasion are clearly visible in (f); the surface cracks while enlarged from erosion appear narrower and less numerous, as the soft superficial material is lost to the action of the brush. These SEM results are also consistent with the calcium dissolution from swishes in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
.</p>
</caption>
<graphic xlink:href="IJD2010-957842.008"></graphic>
</fig>
<fig id="fig9" position="float">
<label>Figure 9</label>
<caption>
<p>Diet Coke (×700). Outlined areas show erosion with minor surface changes from calcium loss when comparing (a), (d), and (g) to (b), (e), and (h). Minimal abrasionis is present on the enamel, but red arrows from brush abrasion are clearly (i). Red arrows show dentine tubules exposed from erosion appear clearer, wider, and more open as the soft surface material is lost to brush abrasion. These SEM results are also consistent with the calcium dissolution from swishes in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
.</p>
</caption>
<graphic xlink:href="IJD2010-957842.009"></graphic>
</fig>
<fig id="fig10" position="float">
<label>Figure 10</label>
<caption>
<p>Diet Pepsi (×700). Outlined areas clearly show erosion with surface crenellations and profusion of shrinkage cracks from calcium loss when comparing (a), (d), and (g) to (b), (e), and (h). Minimal abrasion are present on the enamel, but red arrows from brush abrasion is clearly visible in (f); the surface cracks while enlarged from erosion appear narrower and less numerous, as the soft superficial material is lost to the action of the brush. Red arrows show that dentine tubules exposed from erosion appear clearer, wider, and more open as the soft surface material is lost to brush abrasion. These SEM results are also consistent with the calcium dissolution from swishes in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
.</p>
</caption>
<graphic xlink:href="IJD2010-957842.010"></graphic>
</fig>
<fig id="fig11" position="float">
<label>Figure 11</label>
<caption>
<p>Diet Cola Selection (×700). White outlined areas clearly show erosion with surface crenellations and profusion of shrinkage cracks from calcium loss when comparing (a), (d), and (g) to (b), (e), and (h). Minimal abrasion is present on the enamel, but loss (red arrows) from brush abrasion is clearly visible in (f); the surface cracks while enlarged from erosion, appear narrower and less numerous, as the soft superficial material is lost to abrasion. Red arrows, (g)–(i), show that dentine tubules exposed from erosion appear clearer, wider, and more open as the soft surface material is lost to brush abrasion. These SEM results are also consistent with the calcium dissolution from swishes in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
.</p>
</caption>
<graphic xlink:href="IJD2010-957842.011"></graphic>
</fig>
<fig id="fig12" position="float">
<label>Figure 12</label>
<caption>
<p>In (a–e), the teeth are smaller, with shiny surfaces. The full intercuspal occlusion shows spaces from reduction of cuspal height; the incisors, canines, and premolars are eroded palatally and worn down with attrition. (f, g) are occlusal views of Upper and Lower arches. Loss of occlusal tables from attrition and erosion is evident on the premolars and molars; there is occlusal saucerisation of cusps on the first and second molars.
<xref ref-type="fig" rid="fig12">Figure 12(h)</xref>
is a pre-op view of upper anteriors. Note short vertical height of incisors and loss of buccal enamel on all upper teeth. Figures (i, j, k) are healing post-op views after clinical crown lengthening. The central incisors are longer, the premolar palatal cusps are lost, and the palatal aspects show a clear palatal step where enamel has eroded away. This erosive pattern involves the buccal surfaces of the upper teeth and is decidedly different when compared to the erosive patterns encountered with GORD [
<xref rid="B16" ref-type="bibr">17</xref>
]. </p>
</caption>
<graphic xlink:href="IJD2010-957842.012"></graphic>
</fig>
<fig id="fig13" position="float">
<label>Figure 13</label>
<caption>
<p>IC output for multi-standard solution. The concentration of the different ions can be obtained from the ion chromatograph.</p>
</caption>
<graphic xlink:href="IJD2010-957842.013"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 002D37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2997506
   |texte=   Pop-Cola Acids and Tooth Erosion: An In Vitro, In Vivo, Electron-Microscopic, and Clinical Report
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:21151663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022