Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Material Properties of the Mandibular Trabecular Bone

Identifieur interne : 003232 ( Pmc/Corpus ); précédent : 003231; suivant : 003233

Material Properties of the Mandibular Trabecular Bone

Auteurs : Éva Lakatos ; L Ránt Magyar ; Imre Bojtár

Source :

RBID : PMC:4782746

Abstract

The present paper introduces a numerical simulation aided, experimental method for the measurement of Young's modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa.


Url:
DOI: 10.1155/2014/470539
PubMed: 27006933
PubMed Central: 4782746

Links to Exploration step

PMC:4782746

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Material Properties of the Mandibular Trabecular Bone</title>
<author>
<name sortKey="Lakatos, Eva" sort="Lakatos, Eva" uniqKey="Lakatos E" first="Éva" last="Lakatos">Éva Lakatos</name>
<affiliation>
<nlm:aff id="I1">Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem Rakpart 3, Budapest 1111, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Magyar, L Rant" sort="Magyar, L Rant" uniqKey="Magyar L" first="L Ránt" last="Magyar">L Ránt Magyar</name>
<affiliation>
<nlm:aff id="I2">Department of Forensic Medicine, Semmelweis University, Üllői út 93, Budapest 1091, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bojtar, Imre" sort="Bojtar, Imre" uniqKey="Bojtar I" first="Imre" last="Bojtár">Imre Bojtár</name>
<affiliation>
<nlm:aff id="I1">Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem Rakpart 3, Budapest 1111, Hungary</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27006933</idno>
<idno type="pmc">4782746</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782746</idno>
<idno type="RBID">PMC:4782746</idno>
<idno type="doi">10.1155/2014/470539</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">003232</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">003232</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Material Properties of the Mandibular Trabecular Bone</title>
<author>
<name sortKey="Lakatos, Eva" sort="Lakatos, Eva" uniqKey="Lakatos E" first="Éva" last="Lakatos">Éva Lakatos</name>
<affiliation>
<nlm:aff id="I1">Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem Rakpart 3, Budapest 1111, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Magyar, L Rant" sort="Magyar, L Rant" uniqKey="Magyar L" first="L Ránt" last="Magyar">L Ránt Magyar</name>
<affiliation>
<nlm:aff id="I2">Department of Forensic Medicine, Semmelweis University, Üllői út 93, Budapest 1091, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bojtar, Imre" sort="Bojtar, Imre" uniqKey="Bojtar I" first="Imre" last="Bojtár">Imre Bojtár</name>
<affiliation>
<nlm:aff id="I1">Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem Rakpart 3, Budapest 1111, Hungary</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Medical Engineering</title>
<idno type="eISSN">2314-5137</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The present paper introduces a numerical simulation aided, experimental method for the measurement of Young's modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Lemaitre, J" uniqKey="Lemaitre J">J. Lemaitre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, Y H" uniqKey="An Y">Y. H. An</name>
</author>
<author>
<name sortKey="Draughn, R A" uniqKey="Draughn R">R. A. Draughn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linde, F" uniqKey="Linde F">F. Linde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Odgaard, A" uniqKey="Odgaard A">A. Odgaard</name>
</author>
<author>
<name sortKey="Linde, F" uniqKey="Linde F">F. Linde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashman, R B" uniqKey="Ashman R">R. B. Ashman</name>
</author>
<author>
<name sortKey="Rho, J Y" uniqKey="Rho J">J. Y. Rho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carter, D R" uniqKey="Carter D">D. R. Carter</name>
</author>
<author>
<name sortKey="Hayes, W C" uniqKey="Hayes W">W. C. Hayes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soncini, M" uniqKey="Soncini M">M. Soncini</name>
</author>
<author>
<name sortKey="Rodriguez Y Baena, R" uniqKey="Rodriguez Y Baena R">R. Rodriguez Y Baena</name>
</author>
<author>
<name sortKey="Pietrabissa, R" uniqKey="Pietrabissa R">R. Pietrabissa</name>
</author>
<author>
<name sortKey="Quaglini, V" uniqKey="Quaglini V">V. Quaglini</name>
</author>
<author>
<name sortKey="Rizzo, S" uniqKey="Rizzo S">S. Rizzo</name>
</author>
<author>
<name sortKey="Zaffe, D" uniqKey="Zaffe D">D. Zaffe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Q" uniqKey="Kang Q">Q. Kang</name>
</author>
<author>
<name sortKey="An, Y H" uniqKey="An Y">Y. H. An</name>
</author>
<author>
<name sortKey="Friedman, R F" uniqKey="Friedman R">R. F. Friedman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldstein, S A" uniqKey="Goldstein S">S. A. Goldstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chevalier, Y" uniqKey="Chevalier Y">Y. Chevalier</name>
</author>
<author>
<name sortKey="Pahr, D" uniqKey="Pahr D">D. Pahr</name>
</author>
<author>
<name sortKey="Allmer, H" uniqKey="Allmer H">H. Allmer</name>
</author>
<author>
<name sortKey="Charlebois, M" uniqKey="Charlebois M">M. Charlebois</name>
</author>
<author>
<name sortKey="Zysset, P" uniqKey="Zysset P">P. Zysset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, E F" uniqKey="Morgan E">E. F. Morgan</name>
</author>
<author>
<name sortKey="Bayraktar, H H" uniqKey="Bayraktar H">H. H. Bayraktar</name>
</author>
<author>
<name sortKey="Keaveny, T M" uniqKey="Keaveny T">T. M. Keaveny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Eijden, T M G J" uniqKey="Van Eijden T">T. M. G. J. van Eijden</name>
</author>
<author>
<name sortKey="Van Ruijven, L J" uniqKey="Van Ruijven L">L. J. van Ruijven</name>
</author>
<author>
<name sortKey="Giesen, E B W" uniqKey="Giesen E">E. B. W. Giesen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Mahony, A M" uniqKey="O Mahony A">A. M. O'Mahony</name>
</author>
<author>
<name sortKey="Williams, J L" uniqKey="Williams J">J. L. Williams</name>
</author>
<author>
<name sortKey="Katz, J O" uniqKey="Katz J">J. O. Katz</name>
</author>
<author>
<name sortKey="Spencer, P" uniqKey="Spencer P">P. Spencer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misch, C E" uniqKey="Misch C">C. E. Misch</name>
</author>
<author>
<name sortKey="Qu, Z" uniqKey="Qu Z">Z. Qu</name>
</author>
<author>
<name sortKey="Bidez, M W" uniqKey="Bidez M">M. W. Bidez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, F G" uniqKey="Evans F">F. G. Evans</name>
</author>
<author>
<name sortKey="King, A I" uniqKey="King A">A. I. King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcelhaney, J H" uniqKey="Mcelhaney J">J. H. McElhaney</name>
</author>
<author>
<name sortKey="Fogle, J L" uniqKey="Fogle J">J. L. Fogle</name>
</author>
<author>
<name sortKey="Melvin, J W" uniqKey="Melvin J">J. W. Melvin</name>
</author>
<author>
<name sortKey="Haynes, R R" uniqKey="Haynes R">R. R. Haynes</name>
</author>
<author>
<name sortKey="Roberts, V L" uniqKey="Roberts V">V. L. Roberts</name>
</author>
<author>
<name sortKey="Alem, N M" uniqKey="Alem N">N. M. Alem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pugh, J W" uniqKey="Pugh J">J. W. Pugh</name>
</author>
<author>
<name sortKey="Rose, R M" uniqKey="Rose R">R. M. Rose</name>
</author>
<author>
<name sortKey="Radin, E L" uniqKey="Radin E">E. L. Radin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoenfeld, C M" uniqKey="Schoenfeld C">C. M. Schoenfeld</name>
</author>
<author>
<name sortKey="Lautenschlager, E P" uniqKey="Lautenschlager E">E. P. Lautenschlager</name>
</author>
<author>
<name sortKey="Meyer, P R" uniqKey="Meyer P">P. R. Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindahl, O" uniqKey="Lindahl O">O. Lindahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducheyne, P" uniqKey="Ducheyne P">P. Ducheyne</name>
</author>
<author>
<name sortKey="Heymans, L" uniqKey="Heymans L">L. Heymans</name>
</author>
<author>
<name sortKey="Martens, M" uniqKey="Martens M">M. Martens</name>
</author>
<author>
<name sortKey="Aernoudt, E" uniqKey="Aernoudt E">E. Aernoudt</name>
</author>
<author>
<name sortKey="De Meester, P" uniqKey="De Meester P">P. de Meester</name>
</author>
<author>
<name sortKey="Mulier, J C" uniqKey="Mulier J">J. C. Mulier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, T D" uniqKey="Brown T">T. D. Brown</name>
</author>
<author>
<name sortKey="Ferguson, A B" uniqKey="Ferguson A">A. B. Ferguson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, J L" uniqKey="Williams J">J. L. Williams</name>
</author>
<author>
<name sortKey="Lewis, J L" uniqKey="Lewis J">J. L. Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martens, M" uniqKey="Martens M">M. Martens</name>
</author>
<author>
<name sortKey="Van Audekercke, R" uniqKey="Van Audekercke R">R. van Audekercke</name>
</author>
<author>
<name sortKey="Delport, P" uniqKey="Delport P">P. Delport</name>
</author>
<author>
<name sortKey="De Meester, P" uniqKey="De Meester P">P. de Meester</name>
</author>
<author>
<name sortKey="Mulier, J C" uniqKey="Mulier J">J. C. Mulier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciarelli, M J" uniqKey="Ciarelli M">M. J. Ciarelli</name>
</author>
<author>
<name sortKey="Goldstein, S A" uniqKey="Goldstein S">S. A. Goldstein</name>
</author>
<author>
<name sortKey="Dickie, D" uniqKey="Dickie D">D. Dickie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, T S" uniqKey="Keller T">T. S. Keller</name>
</author>
<author>
<name sortKey="Hansson, T H" uniqKey="Hansson T">T. H. Hansson</name>
</author>
<author>
<name sortKey="Panjabi, M M" uniqKey="Panjabi M">M. M. Panjabi</name>
</author>
<author>
<name sortKey="Spengler, D M" uniqKey="Spengler D">D. M. Spengler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Struhl, S" uniqKey="Struhl S">S. Struhl</name>
</author>
<author>
<name sortKey="Goldstein, S A" uniqKey="Goldstein S">S. A. Goldstein</name>
</author>
<author>
<name sortKey="Dickie, D L" uniqKey="Dickie D">D. L. Dickie</name>
</author>
<author>
<name sortKey="Flynn, M J" uniqKey="Flynn M">M. J. Flynn</name>
</author>
<author>
<name sortKey="Matthews, L S" uniqKey="Matthews L">L. S. Matthews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keaveny, T M" uniqKey="Keaveny T">T. M. Keaveny</name>
</author>
<author>
<name sortKey="Pinilla, T P" uniqKey="Pinilla T">T. P. Pinilla</name>
</author>
<author>
<name sortKey="Crawford, R P" uniqKey="Crawford R">R. P. Crawford</name>
</author>
<author>
<name sortKey="Kopperdahl, D L" uniqKey="Kopperdahl D">D. L. Kopperdahl</name>
</author>
<author>
<name sortKey="Lou, A" uniqKey="Lou A">A. Lou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luczynski, K W" uniqKey="Luczynski K">K. W. Luczynski</name>
</author>
<author>
<name sortKey="Brynk, T" uniqKey="Brynk T">T. Brynk</name>
</author>
<author>
<name sortKey="Ostrowska, B" uniqKey="Ostrowska B">B. Ostrowska</name>
</author>
<author>
<name sortKey="Swieszkowski, W" uniqKey="Swieszkowski W">W. Swieszkowski</name>
</author>
<author>
<name sortKey="Reihsner, R" uniqKey="Reihsner R">R. Reihsner</name>
</author>
<author>
<name sortKey="Hellmich, C" uniqKey="Hellmich C">C. Hellmich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luczynski, K W" uniqKey="Luczynski K">K. W. Luczynski</name>
</author>
<author>
<name sortKey="Dejaco, A" uniqKey="Dejaco A">A. Dejaco</name>
</author>
<author>
<name sortKey="Lahayne, O" uniqKey="Lahayne O">O. Lahayne</name>
</author>
<author>
<name sortKey="Jaroszewicz, J" uniqKey="Jaroszewicz J">J. Jaroszewicz</name>
</author>
<author>
<name sortKey="Swieszkowski, W" uniqKey="Swieszkowski W">W. Swieszkowski</name>
</author>
<author>
<name sortKey="Hellmich, C" uniqKey="Hellmich C">C. Hellmich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fritsch, A" uniqKey="Fritsch A">A. Fritsch</name>
</author>
<author>
<name sortKey="Hellmich, C" uniqKey="Hellmich C">C. Hellmich</name>
</author>
<author>
<name sortKey="Dormieux, L" uniqKey="Dormieux L">L. Dormieux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zimmermann, E A" uniqKey="Zimmermann E">E. A. Zimmermann</name>
</author>
<author>
<name sortKey="Schaible, E" uniqKey="Schaible E">E. Schaible</name>
</author>
<author>
<name sortKey="Bale, H" uniqKey="Bale H">H. Bale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malandrino, A" uniqKey="Malandrino A">A. Malandrino</name>
</author>
<author>
<name sortKey="Fritsch, A" uniqKey="Fritsch A">A. Fritsch</name>
</author>
<author>
<name sortKey="Lahayne, O" uniqKey="Lahayne O">O. Lahayne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardoso, L" uniqKey="Cardoso L">L. Cardoso</name>
</author>
<author>
<name sortKey="Teboul, F" uniqKey="Teboul F">F. Teboul</name>
</author>
<author>
<name sortKey="Sedel, L" uniqKey="Sedel L">L. Sedel</name>
</author>
<author>
<name sortKey="Oddou, C" uniqKey="Oddou C">C. Oddou</name>
</author>
<author>
<name sortKey="Meunier, A" uniqKey="Meunier A">A. Meunier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowin, S C" uniqKey="Cowin S">S. C. Cowin</name>
</author>
<author>
<name sortKey="Cardoso, L" uniqKey="Cardoso L">L. Cardoso</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Med Eng</journal-id>
<journal-id journal-id-type="iso-abbrev">J Med Eng</journal-id>
<journal-id journal-id-type="publisher-id">JME</journal-id>
<journal-title-group>
<journal-title>Journal of Medical Engineering</journal-title>
</journal-title-group>
<issn pub-type="epub">2314-5137</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27006933</article-id>
<article-id pub-id-type="pmc">4782746</article-id>
<article-id pub-id-type="doi">10.1155/2014/470539</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Material Properties of the Mandibular Trabecular Bone</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Lakatos</surname>
<given-names>Éva</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Magyar</surname>
<given-names>Lóránt</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bojtár</surname>
<given-names>Imre</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem Rakpart 3, Budapest 1111, Hungary</aff>
<aff id="I2">
<sup>2</sup>
Department of Forensic Medicine, Semmelweis University, Üllői út 93, Budapest 1091, Hungary</aff>
<author-notes>
<corresp id="cor1">*Éva Lakatos:
<email>lakatoseva@mail.bme.hu</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Hala Zreiqat</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>10</month>
<year>2014</year>
</pub-date>
<volume>2014</volume>
<elocation-id>470539</elocation-id>
<history>
<date date-type="received">
<day>12</day>
<month>6</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Éva Lakatos et al.</copyright-statement>
<copyright-year>2014</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The present paper introduces a numerical simulation aided, experimental method for the measurement of Young's modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>The biomechanical behaviour of a dental implant plays an important role in its functional longevity inside the bone. Implants can have either advantageous or destructive effect on the surrounding bone, depending on several physiological, material, and mechanical factors. The mandible—lower jaw bone—like most human bones is divided into an external cortical and an internal trabecular substance (or spongiosa). The aim of the following experiments was to determine the mechanical properties of the human mandibular trabecular bone, to be used in further finite element models. Application of finite element analysis has become an indispensable method for estimating mechanical behaviour, stress and strain distributions under a certain load, of the cortical and cancellous bone surrounding dental implants, since it is nondestructive. These numerical experiments have their importance in making the implantation the most possibly secure, reliable, and efficient and the lifetime of the implant the longest conceivable, by finding the most favourable thread formation, surface, material, and so forth.</p>
<p>The measurement of the trabecular bone material properties by means of conventional mechanical tests involves several difficulties [
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
]. Because of the scale of the human bones, the primary difficulty is to obtain cubic shaped specimens from purely trabecular regions larger than 5 mm, which is taken for the lower limit to be examined in compression tests [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B3" ref-type="bibr">3</xref>
]. This can cause serious problems in the examination of the small bones like mandible. In contradiction to the measurements of artificial materials, further difficulties arise in case of biological materials—especially human tissues. Since the poor availability of specimens, the researchers are often under the necessity of drawing conclusions from small number of measurements. The most general laboratorial method for the examination of the bone mechanical properties is the compression test, which contains uncertainties even in the case of ideal shaped samples [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B3" ref-type="bibr">3</xref>
]. When purely trabecular samples are harvested, the trabeculae on the edges are cut. Their individual failure causes initial stiffening and the underestimation of Young's modulus [
<xref rid="B2" ref-type="bibr">2</xref>
<xref rid="B4" ref-type="bibr">4</xref>
]. In case of several bone types anisotropy and inhomogeneity are hard to estimate previously [
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
]. Friction between the platform and the specimen leads to uneven stress distribution in the material, which has to be taken into account, when stress-strain pairs are calculated from the force-displacement values; otherwise it leads to the inaccuracy of the obtained Young's modulus values [
<xref rid="B2" ref-type="bibr">2</xref>
<xref rid="B4" ref-type="bibr">4</xref>
].</p>
<p>According to the results of previous researches into the measurement of the trabecular bone's elastic properties, a wide range of Young's modulus values can be found (from 1 MPa to 9800 MPa). The experimental values depend on the measuring technique and on several physiologic factors, the results of which are not always clear. These factors are among others: species; anatomical location; the age, sex, and diseases of the donor; the effects of hormones; the density, porosity, and mineral content of the sample; the method of extraction; the preservation and the preparation of the specimen; the measuring technique (strain rates, supports).</p>
<p>The most commonly examined species are cattle [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
], sheep [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B7" ref-type="bibr">7</xref>
], swine [
<xref rid="B2" ref-type="bibr">2</xref>
], and canine [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
], but results can be found from the examination of monkeys, cats, goats, hares, and rats as well [
<xref rid="B2" ref-type="bibr">2</xref>
]. Most of the samples—either animal or cadaveric human—submitted to compression tests were vertebral [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
], femoral [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
<xref rid="B11" ref-type="bibr">11</xref>
], or tibial [
<xref rid="B9" ref-type="bibr">9</xref>
]. Occasionally can be found measurements concerning the mandible [
<xref rid="B12" ref-type="bibr">12</xref>
<xref rid="B14" ref-type="bibr">14</xref>
], ilium [
<xref rid="B9" ref-type="bibr">9</xref>
], or patella [
<xref rid="B9" ref-type="bibr">9</xref>
].</p>
<p>Most of the measurements have been conducted using cubic or cylindrical shaped specimens which have been machined on all faces, thus containing the inaccuracy from the individual failure of the trabeculae cut on the edges. Misch et al. [
<xref rid="B14" ref-type="bibr">14</xref>
] demonstrated the underestimation of the stiffness caused by the machining of the loaded surfaces using cylindrical, mandibular samples (
<xref ref-type="table" rid="tab1">Table 1</xref>
).</p>
<p>The appropriate sterilization, preservation, and storage of the specimens having the smallest effect possible on the test results are debated. Despite the destructive effect of the ice crystals, the most spread preservation technique is freezing [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B11" ref-type="bibr">11</xref>
,
<xref rid="B14" ref-type="bibr">14</xref>
]. Embalming by means of various agents [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B12" ref-type="bibr">12</xref>
] and drying [
<xref rid="B10" ref-type="bibr">10</xref>
] are used as well. The removal of the medullary substance slightly affects Young's modulus, when low strain rates are used, while in case of sudden impact liquids in the medullary cavities result in the increase of stiffness [
<xref rid="B6" ref-type="bibr">6</xref>
]. Young's modulus data obtained by the compression tests of fresh samples—without sterilization and preservation—are rare and only available for the vertebral and patellar trabecular bone substances [
<xref rid="B9" ref-type="bibr">9</xref>
].</p>
<p>To determine Young's modulus of the human mandibular trabecular bone, Misch et al. [
<xref rid="B14" ref-type="bibr">14</xref>
] conducted compression tests using cylindrical cadaveric samples. The cylinders were drilled out from the bone in vertical direction and stored frozen. The samples covered by cortical layer resulted in 24.9–240 MPa Young's modulus (mean: 96.2 MPa, standard variation: 40.6 MPa), while the others with machined surface gave 3.5–125.6 MPa (mean: 56.0 MPa, standard variation: 29.6 MPa). O'Mahony et al. [
<xref rid="B13" ref-type="bibr">13</xref>
] conducted compression tests on seven trabecular bone samples (stored frozen) harvested from the mandible of one single cadaver, in three anatomically characteristic directions: inferosuperior (vertical), buccolingual (horizontal, perpendicular to the arch of the mandible), and mesiodistal (horizontal, in the direction of the arch of the mandible). In these three directions Young's modulus values measured were 114, 511, and 907 MPa, respectively. The aforementioned two experiments focused on the arched, implantologically interesting part (corpus mandibulae) of the mandible. On the contrary van Eijden et al. [
<xref rid="B12" ref-type="bibr">12</xref>
] examined trabecular bone samples from the condylar part of the mandible (processus condylaris), which is not involved in implantological treatments but contains trabecular bone in a larger amount. The specimens were preserved by embalming and tested under compression in the horizontal and vertical directions. Young's modulus values reported were 438 MPa and 157 MPa in the horizontal and vertical directions, respectively.</p>
<p>Young's modulus values from the aforementioned experiments are summarized in
<xref ref-type="table" rid="tab1">Table 1</xref>
.</p>
<p>From the above review it is emerged that no standard measuring technique exists for the mechanical properties of biological tissues as opposed to artificial materials. The aim of the following experiment series was to eliminate the inaccuracies in Young's modulus measurements of the mandibular trabecular bone resulting from the preservation and the machining of the loaded surfaces.</p>
<p>In case of trabecular bone—especially in small bones like mandible—extracting specimens with regular shape and uniform size encounters difficulties. In order to achieve comparable results further examinations might be required.</p>
<p>Besides the loading compression tests, unloading mechanical tests exist, eliminating the plastic effects from the results [
<xref rid="B15" ref-type="bibr">28</xref>
,
<xref rid="B16" ref-type="bibr">29</xref>
], probably resulting from the sliding between mineral crystals [
<xref rid="B17" ref-type="bibr">30</xref>
] or collagen cross-linking [
<xref rid="B18" ref-type="bibr">31</xref>
]. Ultrasonic measurements might be coupled with mechanical tests or micromechanic models for validation of the test results and for getting closer to the complete, anisotropic elastic properties of the bone or scaffolds [
<xref rid="B15" ref-type="bibr">28</xref>
,
<xref rid="B19" ref-type="bibr">32</xref>
<xref rid="B21" ref-type="bibr">34</xref>
].</p>
<p>In the present research the mechanical behaviour of the human mandible has been examined by means of compression tests. Young's modulus of the trabecular bone substance has been determined from the numerical simulations of the experiments.</p>
</sec>
<sec id="sec2">
<title>2. Materials and Methods</title>
<p>In the following experiments, fresh cadaveric samples were tested under compression. (Ethics committee approval was obtained—Approval number 4/2011 TUKEB). Ten specimens were harvested from the molar mandibular region of 6 middle aged male patients from the lower edge of the bone. Since we aimed to examine the trabecular bone, the cortical layer around it was cut, the way it is shown in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
.</p>
<p>The samples were submitted to compression tests using a Zwick Z005 displacement controlled testing machine (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
), and force-displacement pairs were registered using 0.5 mm/min loading rate. The tests resulted in three basic types of force-displacement curves, two of which (Figures
<xref ref-type="fig" rid="fig3">3(a)</xref>
and
<xref ref-type="fig" rid="fig3">3(b)</xref>
) were the compression of samples with poor or no trabecular substance (
<xref ref-type="fig" rid="fig3">Figure 3(a)</xref>
) and with so stiff cancellous bone, which rather possesses the characteristics of compressed cortical bone (
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
). Three measurements like these were excluded from the further examinations.
<xref ref-type="fig" rid="fig3"> Figure 3(c)</xref>
shows a typical example of the received force-displacement curves from the successful measurements, which corresponds to the characteristic diagram of the compressed cellular solids [
<xref rid="B15" ref-type="bibr">28</xref>
]. The initial, closely linearly elastic part comes from the elastic bending of the trabeculae and the long horizontal plate shows the gradual failure of the spongiosa, until the cell walls touch and the curve increases steeply.</p>
</sec>
<sec id="sec3">
<title>3. Results</title>
<p>Since the geometry of the specimens was complex and varying, the numerical simulation—using the ANSYS software system—of each compression test was conducted to determine Young's modulus of the trabecular bone. For the simulations a parametric finite element model (
<xref ref-type="fig" rid="fig4">Figure 4</xref>
) was created, which possesses variable geometrical properties, set according to the original bone sample. The dimensions measured on the specimens were as follows: outer extents of the sample, the bearing length of the load, and the cortical thickness on the buccal and lingual sides and by the cut. Both the cortical and the trabecular bone materials were assumed to be linearly elastic continuums with Poisson's ratio 0.3 [
<xref rid="B2" ref-type="bibr">2</xref>
]. The elastic properties of the cortical layer were set according to data from literature: a 15 GPa Young's modulus value was used [
<xref rid="B16" ref-type="bibr">29</xref>
].</p>
<p>Young's modulus of the trabecular bone was determined by simulating the compression test (
<xref ref-type="fig" rid="fig4">Figure 4</xref>
): loading the upper side of the model with vertical force and constraining the lower side against horizontal and vertical displacements. An arbitrary force (
<italic>F</italic>
<sub>1</sub>
) value from the initial elastic part of the
<italic>F</italic>
-
<italic>e</italic>
diagram (
<xref ref-type="fig" rid="fig3">Figure 3(c)</xref>
) was applied and Young's modulus of the spongiosa was set to result in the same displacement (
<italic>e</italic>
<sub>1</sub>
<italic>e</italic>
<sub>0</sub>
) as the compression test did (where
<italic>e</italic>
<sub>0</sub>
is a displacement from the initial balancing, resulting from the inaccuracy of the specimen geometry). The elastic modulus was found using the following iteration algorithm, initiating from an arbitrary
<italic>E</italic>
<sub>1</sub>
value:
<disp-formula id="eq1">
<label>(1)</label>
<mml:math id="M1">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>/</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>U</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>z</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mtext>while</mml:mtext>
<mml:mo></mml:mo>
<mml:mo></mml:mo>
<mml:mfenced open="|" close="|" separators="|">
<mml:mrow>
<mml:mi mathvariant="normal">Δ</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>></mml:mo>
<mml:mi>ɛ</mml:mi>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where
<italic>E</italic>
<sub>
<italic>i</italic>
</sub>
is Young's modulus of the trabecular bone in the
<italic>i</italic>
th iteration step, (
<italic>e</italic>
<sub>1</sub>
<italic>e</italic>
<sub>0</sub>
) is the displacement of the real bone from the experiments, introduced above,
<italic>e</italic>
<sub>0</sub>
is a displacement from the initial balancing,
<italic>U</italic>
<sub>
<italic>zi</italic>
</sub>
is the displacement of the top point of the structure in the
<italic>i</italic>
th iteration step, |Δ
<italic>e</italic>
| = (
<italic>e</italic>
<sub>1</sub>
<italic>e</italic>
<sub>0</sub>
) −
<italic>U</italic>
<sub>
<italic>zi</italic>
</sub>
is displacement error, and
<italic>ɛ</italic>
is a predefined accuracy.</p>
<p>The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa (namely, 20.29, 199.5, 61.4, 26.7, 6.9, 49.7, and 8.5 MPa). Compared to the literature of the cancellous bone mechanical properties, the results show correlation to the values—24.9 to 240.0—measured by Misch et al. (1999) [
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B17" ref-type="bibr">30</xref>
]. The method introduced above provides results in the buccolingual direction. The elastic modulus values were determined to be used in further finite element simulations.</p>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>The present research aimed at overcoming some difficulties of determining the trabecular bone material properties by means of conventional mechanical tests and to give a closer estimation of Young's modulus of the trabecular substance of the human mandible, narrowing the wide range of values that can be found in the literature. The specimens were protected from the destruction caused by sterilization, preservation, and storage, by using no freezing or embalming on them. The compression tests were conducted on the fresh cadaveric samples immediately after extraction. To avoid the underestimation of Young's modulus caused by the individual failure of the trabeculae cut on the surfaces, the samples were covered with cortical layer.</p>
<p>Young's modulus of the trabecular bone inside the complex and varying shaped specimens was determined by the numerical simulation of each compression test using the specimen specific finite element model of each sample with geometrical properties set according to the original bone sample. An iteration algorithm—initiated from an arbitrary elastic modulus value—was followed, until the simulated compression test resulted in the same displacement from the same load as the experiment. The simulations resulted in Young's modulus values comparable to the measurements of Misch et al. (1999) [
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B17" ref-type="bibr">30</xref>
].</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgment</title>
<p>The authors thank the Research Center for Biomechanics of Budapest University of Technology and Economics for providing the laboratorial background for the experiment.</p>
</ack>
<sec>
<title>Ethical Approval</title>
<p>Ethics committee approval was obtained (Approval number 4/2011 TUKEB).</p>
</sec>
<sec>
<title>Disclosure</title>
<p>The paper reports the results of experimental investigation on human derived materials.</p>
</sec>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Lemaitre</surname>
<given-names>J.</given-names>
</name>
</person-group>
<source>
<italic>Handbook of Materials Behavior Models</italic>
</source>
<year>2001</year>
<publisher-loc>New York, NY, USA</publisher-loc>
<publisher-name>Elsevier</publisher-name>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>Y. H.</given-names>
</name>
<name>
<surname>Draughn</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
<source>
<italic>Mechanical Testing of Bone and the Bone–Implant Interface</italic>
</source>
<year>2000</year>
<publisher-loc>New York, NY, USA</publisher-loc>
<publisher-name>CRC Press</publisher-name>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linde</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Elastic and viscoelastic properties of trabecular bone by a compression testing approach</article-title>
<source>
<italic>Danish Medical Bulletin</italic>
</source>
<year>1994</year>
<volume>41</volume>
<issue>2</issue>
<fpage>119</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="other">2-s2.0-0028415083</pub-id>
<pub-id pub-id-type="pmid">8039429</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Odgaard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Linde</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>The underestimation of Young's modulus in compressive testing of cancellous bone specimens</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1991</year>
<volume>24</volume>
<issue>8</issue>
<fpage>691</fpage>
<lpage>698</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(91)90333-I</pub-id>
<pub-id pub-id-type="other">2-s2.0-0025781444</pub-id>
<pub-id pub-id-type="pmid">1918092</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashman</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Rho</surname>
<given-names>J. Y.</given-names>
</name>
</person-group>
<article-title>Elastic modulus of trabecular bone material</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1988</year>
<volume>21</volume>
<issue>3</issue>
<fpage>177</fpage>
<lpage>181</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(88)90167-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-0023887316</pub-id>
<pub-id pub-id-type="pmid">3379077</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carter</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>W. C.</given-names>
</name>
</person-group>
<article-title>The compressive behavior of bone as a two-phase porous structure</article-title>
<source>
<italic>Journal of Bone and Joint Surgery. Series A</italic>
</source>
<year>1977</year>
<volume>59</volume>
<issue>7</issue>
<fpage>954</fpage>
<lpage>962</lpage>
<pub-id pub-id-type="other">2-s2.0-0017698252</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soncini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rodriguez Y Baena</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pietrabissa</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Quaglini</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Rizzo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zaffe</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Experimental procedure for the evaluation of the mechanical properties of the bone surrounding dental implants</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2002</year>
<volume>23</volume>
<issue>1</issue>
<fpage>9</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(01)00073-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-0036027549</pub-id>
<pub-id pub-id-type="pmid">11762859</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>Y. H.</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
<article-title>Mechanical properties and bone densities of canine trabecular bone</article-title>
<source>
<italic>Journal of Materials Science: Materials in Medicine</italic>
</source>
<year>1998</year>
<volume>9</volume>
<issue>5</issue>
<fpage>263</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008852610820</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032078174</pub-id>
<pub-id pub-id-type="pmid">15348882</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldstein</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
<article-title>The mechanical properties of trabecular bone: dependence on anatomic location and function</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1987</year>
<volume>20</volume>
<issue>11-12</issue>
<fpage>1055</fpage>
<lpage>1061</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(87)90023-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-0023515099</pub-id>
<pub-id pub-id-type="pmid">3323197</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chevalier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pahr</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Allmer</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Charlebois</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zysset</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>2007</year>
<volume>40</volume>
<issue>15</issue>
<fpage>3333</fpage>
<lpage>3340</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbiomech.2007.05.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-35448949602</pub-id>
<pub-id pub-id-type="pmid">17572433</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>E. F.</given-names>
</name>
<name>
<surname>Bayraktar</surname>
<given-names>H. H.</given-names>
</name>
<name>
<surname>Keaveny</surname>
<given-names>T. M.</given-names>
</name>
</person-group>
<article-title>Trabecular bone modulus-density relationships depend on anatomic site</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>2003</year>
<volume>36</volume>
<issue>7</issue>
<fpage>897</fpage>
<lpage>904</lpage>
<pub-id pub-id-type="doi">10.1016/S0021-9290(03)00071-X</pub-id>
<pub-id pub-id-type="other">2-s2.0-0038673390</pub-id>
<pub-id pub-id-type="pmid">12757797</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Eijden</surname>
<given-names>T. M. G. J.</given-names>
</name>
<name>
<surname>van Ruijven</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Giesen</surname>
<given-names>E. B. W.</given-names>
</name>
</person-group>
<article-title>Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure</article-title>
<source>
<italic>Calcified Tissue International</italic>
</source>
<year>2004</year>
<volume>75</volume>
<issue>6</issue>
<fpage>502</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="doi">10.1007/s00223-004-0295-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-12944325797</pub-id>
<pub-id pub-id-type="pmid">15654494</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Mahony</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>J. O.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Anisotropic elastic properties of cancellous bone from a human edentulous mandible</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2000</year>
<volume>11</volume>
<issue>5</issue>
<fpage>415</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="doi">10.1034/j.1600-0501.2000.011005415.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034303223</pub-id>
<pub-id pub-id-type="pmid">11168233</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misch</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Bidez</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
<article-title>Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement</article-title>
<source>
<italic>Journal of Oral and Maxillofacial Surgery</italic>
</source>
<year>1999</year>
<volume>57</volume>
<issue>6</issue>
<fpage>700</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.1016/S0278-2391(99)90437-8</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033067941</pub-id>
<pub-id pub-id-type="pmid">10368096</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>15</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>F. G.</given-names>
</name>
<name>
<surname>King</surname>
<given-names>A. I.</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Evans</surname>
<given-names>F. G.</given-names>
</name>
</person-group>
<article-title>Regional differences in some physical properties of human spongy bone</article-title>
<source>
<italic>Biomechanical Studies of the Musculo-Skeletal System</italic>
</source>
<year>1961</year>
<publisher-loc>Springfield, Ill, USA</publisher-loc>
<publisher-name>Charles C Thomas</publisher-name>
<fpage>p. 19</fpage>
</element-citation>
</ref>
<ref id="B26">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McElhaney</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Fogle</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Melvin</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Haynes</surname>
<given-names>R. R.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>V. L.</given-names>
</name>
<name>
<surname>Alem</surname>
<given-names>N. M.</given-names>
</name>
</person-group>
<article-title>Mechanical properties of cranial bone</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1970</year>
<volume>3</volume>
<issue>5</issue>
<fpage>495–496, IN5, 497</fpage>
<lpage>511</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(70)90059-X</pub-id>
<pub-id pub-id-type="other">2-s2.0-0014856907</pub-id>
<pub-id pub-id-type="pmid">5000416</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pugh</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Radin</surname>
<given-names>E. L.</given-names>
</name>
</person-group>
<article-title>Elastic and viscoelastic properties of trabecular bone: dependence on structure</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1973</year>
<volume>6</volume>
<fpage>475</fpage>
<lpage>485</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(73)90006-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-0015667763</pub-id>
<pub-id pub-id-type="pmid">4748497</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schoenfeld</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Lautenschlager</surname>
<given-names>E. P.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>P. R.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Mechanical properties of human cancellous bone in the femoral head</article-title>
<source>
<italic>Medical and Biological Engineering</italic>
</source>
<year>1974</year>
<volume>12</volume>
<issue>3</issue>
<fpage>313</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1007/BF02477797</pub-id>
<pub-id pub-id-type="other">2-s2.0-0016237894</pub-id>
<pub-id pub-id-type="pmid">4466984</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindahl</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Mechanical properties of dried defatted spongy bone</article-title>
<source>
<italic>Acta Orthopaedica Scandinavica</italic>
</source>
<year>1976</year>
<volume>47</volume>
<issue>1</issue>
<fpage>11</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.3109/17453677608998966</pub-id>
<pub-id pub-id-type="other">2-s2.0-0017239379</pub-id>
<pub-id pub-id-type="pmid">1266584</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducheyne</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Heymans</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Aernoudt</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>de Meester</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mulier</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<article-title>The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1977</year>
<volume>10</volume>
<issue>11-12</issue>
<fpage>747</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(77)90089-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-0017624363</pub-id>
<pub-id pub-id-type="pmid">606721</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>T. D.</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>A. B.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Mechanical property distributions in the cancellous bone of the human proximal femur</article-title>
<source>
<italic>Acta Orthopaedica Scandinavica</italic>
</source>
<year>1980</year>
<volume>51</volume>
<issue>1–6</issue>
<fpage>429</fpage>
<lpage>437</lpage>
<pub-id pub-id-type="doi">10.3109/17453678008990819</pub-id>
<pub-id pub-id-type="other">2-s2.0-0018859794</pub-id>
<pub-id pub-id-type="pmid">7446022</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>J. L.</given-names>
</name>
</person-group>
<article-title>Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis</article-title>
<source>
<italic>Journal of Biomechanical Engineering</italic>
</source>
<year>1982</year>
<volume>104</volume>
<issue>1</issue>
<fpage>50</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">7078118</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van Audekercke</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Delport</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>de Meester</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mulier</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<article-title>The mechanical characteristics of cancellous bone at the upper femoral region</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1983</year>
<volume>16</volume>
<issue>12</issue>
<fpage>971</fpage>
<lpage>983</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(83)90098-2</pub-id>
<pub-id pub-id-type="other">2-s2.0-0021073475</pub-id>
<pub-id pub-id-type="pmid">6671988</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ciarelli</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Dickie</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Experimental determination of the orthogonal mechanical properties, density, and distribution of human trabecular bone from the major metaphyseal regions utilizing materials testing and computed tomography</article-title>
<source>
<italic>Transactions of the Orthopedic Research Society</italic>
</source>
<year>1986</year>
<fpage>p. 42</fpage>
</element-citation>
</ref>
<ref id="B35">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>T. S.</given-names>
</name>
<name>
<surname>Hansson</surname>
<given-names>T. H.</given-names>
</name>
<name>
<surname>Panjabi</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Spengler</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
<article-title>Regional variations in the compressive properties of lumbar trabeculae</article-title>
<source>
<italic>Transactions of the Orthopedic Research Society</italic>
</source>
<year>1987</year>
<fpage>p. 378</fpage>
</element-citation>
</ref>
<ref id="B36">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Struhl</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Dickie</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Flynn</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>L. S.</given-names>
</name>
</person-group>
<article-title>The distribution of mechanical properties of trabecular bone within vertebral bodies and iliac crest: correlation with computed tomography density</article-title>
<source>
<italic>Transactions of the Orthopedic Research Society</italic>
</source>
<year>1987</year>
<fpage>p. 262</fpage>
</element-citation>
</ref>
<ref id="B37">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keaveny</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Pinilla</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Crawford</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Kopperdahl</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Systematic and random errors in compression testing of trabecular bone</article-title>
<source>
<italic>Journal of Orthopaedic Research</italic>
</source>
<year>1997</year>
<volume>15</volume>
<issue>1</issue>
<fpage>101</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1002/jor.1100150115</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031039667</pub-id>
<pub-id pub-id-type="pmid">9066533</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luczynski</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Brynk</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ostrowska</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Swieszkowski</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Reihsner</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hellmich</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Consistent quasistatic and acoustic elasticity determination of poly-L-lactide-based rapid-prototyped tissue engineering scaffolds</article-title>
<source>
<italic>Journal of Biomedical Materials Research Part A</italic>
</source>
<year>2013</year>
<volume>101</volume>
<issue>1</issue>
<fpage>138</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.34316</pub-id>
<pub-id pub-id-type="pmid">22825840</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luczynski</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Dejaco</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lahayne</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Jaroszewicz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Swieszkowski</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hellmich</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>MicroCT/micromechanics-based finite element models and quasi-static unloading tests deliver consistent values for young's modulus of rapid-prototyped polymer-ceramic tissue engineering scaffold</article-title>
<source>
<italic>Computer Modeling in Engineering and Sciences</italic>
</source>
<year>2012</year>
<volume>87</volume>
<issue>6</issue>
<fpage>505</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="other">2-s2.0-84872193280</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fritsch</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hellmich</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dormieux</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength</article-title>
<source>
<italic>Journal of Theoretical Biology</italic>
</source>
<year>2009</year>
<volume>260</volume>
<issue>2</issue>
<fpage>230</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtbi.2009.05.021</pub-id>
<pub-id pub-id-type="other">2-s2.0-68949191021</pub-id>
<pub-id pub-id-type="pmid">19497330</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zimmermann</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Schaible</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bale</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2011</year>
<volume>108</volume>
<issue>35</issue>
<fpage>14416</fpage>
<lpage>14421</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1107966108</pub-id>
<pub-id pub-id-type="other">2-s2.0-80052277874</pub-id>
<pub-id pub-id-type="pmid">21873221</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malandrino</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fritsch</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lahayne</surname>
<given-names>O.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Anisotropic tissue elasticity in human lumbar vertebra, by means of a coupled ultrasound-micromechanics approach</article-title>
<source>
<italic>Materials Letters</italic>
</source>
<year>2012</year>
<volume>78</volume>
<fpage>154</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="doi">10.1016/j.matlet.2012.03.052</pub-id>
<pub-id pub-id-type="other">2-s2.0-84861623004</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardoso</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Teboul</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sedel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Oddou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Meunier</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>In vitro acoustic waves propagation in human and bovine cancellous bone</article-title>
<source>
<italic>Journal of Bone and Mineral Research</italic>
</source>
<year>2003</year>
<volume>18</volume>
<issue>10</issue>
<fpage>1803</fpage>
<lpage>1812</lpage>
<pub-id pub-id-type="doi">10.1359/jbmr.2003.18.10.1803</pub-id>
<pub-id pub-id-type="other">2-s2.0-0142240451</pub-id>
<pub-id pub-id-type="pmid">14584891</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowin</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Cardoso</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Fabric dependence of wave propagation in anisotropic porous media</article-title>
<source>
<italic>Biomechanics and Modeling in Mechanobiology</italic>
</source>
<year>2011</year>
<volume>10</volume>
<issue>1</issue>
<fpage>39</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1007/s10237-010-0217-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-79551544936</pub-id>
<pub-id pub-id-type="pmid">20461539</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The position of the bone specimens in the mandible (a) and its cross section (b) and the illustration of the cut cortical bone ((c)-(d)).</p>
</caption>
<graphic xlink:href="JME2014-470539.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>The testing machine and an illustration of the compression test (for better visibility demonstrated on a dried sample).</p>
</caption>
<graphic xlink:href="JME2014-470539.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Force-displacement diagrams detected: too soft (a) and too stiff (b) trabecular bone and the results of the successful tests corresponding the diagram of compressed cellular solids (c).</p>
</caption>
<graphic xlink:href="JME2014-470539.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Specimen specific finite element model for Young's modulus calculations (a) and the vertical normal stress distribution from the vertical compressive load—the highest compressive and tensile stresses are indicated in dark blue and red through green, yellow, and orange (b).</p>
</caption>
<graphic xlink:href="JME2014-470539.004"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Experimental Young's modulus values [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
,
<xref rid="B12" ref-type="bibr">12</xref>
<xref rid="B14" ref-type="bibr">14</xref>
].</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Author</th>
<th align="center" rowspan="1" colspan="1">Bone type</th>
<th align="center" rowspan="1" colspan="1">Preservation</th>
<th align="center" rowspan="1" colspan="1">Young's modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Evans and King, 1961 [
<xref rid="B25" ref-type="bibr">15</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Embalmed</td>
<td align="center" rowspan="1" colspan="1">20.68–965 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">McElhaney et al., 1970 [
<xref rid="B26" ref-type="bibr">16</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Vertebra</td>
<td align="center" rowspan="1" colspan="1">Fresh</td>
<td align="center" rowspan="1" colspan="1">Avg 151.7 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pugh et al., 1973 [
<xref rid="B27" ref-type="bibr">17</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">423–1516 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Schoenfeld et al., 1974 [
<xref rid="B28" ref-type="bibr">18</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Fresh</td>
<td align="center" rowspan="1" colspan="1">Avg 344,7 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lindahl, 1976 [
<xref rid="B29" ref-type="bibr">19</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Tibia</td>
<td align="center" rowspan="1" colspan="1">Dried, defatted</td>
<td align="center" rowspan="1" colspan="1">1.4–79 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lindahl, 1976 [
<xref rid="B29" ref-type="bibr">19</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Vertebra</td>
<td align="center" rowspan="1" colspan="1">Dried, defatted</td>
<td align="center" rowspan="1" colspan="1">1.1–139 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Carter and Hayes, 1977 [
<xref rid="B6" ref-type="bibr">6</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Tibia</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">10–500 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ducheyne et al., 1977 [
<xref rid="B30" ref-type="bibr">20</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">58.8–2942 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brown and Ferguson, 1980 [
<xref rid="B31" ref-type="bibr">21</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">1000–9800 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Williams and Lewis, 1982 [
<xref rid="B32" ref-type="bibr">22</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Tibia</td>
<td align="center" rowspan="1" colspan="1">Dried, defatted</td>
<td align="center" rowspan="1" colspan="1">8–457 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Goldstein, 1987 [
<xref rid="B9" ref-type="bibr">9</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Tibia</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">4–430 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Martens et al., 1983 [
<xref rid="B33" ref-type="bibr">23</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">58–2248 MPa
<break></break>
(900 ± 710 MPa)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ciarelli et al., 1986 [
<xref rid="B34" ref-type="bibr">24</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Tibia</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">5–552 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ciarelli et al., 1986 [
<xref rid="B34" ref-type="bibr">24</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">7.6–800 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ciarelli et al., 1986 [
<xref rid="B34" ref-type="bibr">24</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Radius</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">1.1–448 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ashman and Rho, 1988 [
<xref rid="B5" ref-type="bibr">5</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Vertebra</td>
<td align="center" rowspan="1" colspan="1">Fresh</td>
<td align="center" rowspan="1" colspan="1">158–378 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Keller et al., 1987 [
<xref rid="B35" ref-type="bibr">25</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Vertebra</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">15–30 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Struhl et al., 1987 [
<xref rid="B36" ref-type="bibr">26</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Vertebra</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">10–428 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Odgaard and Linde, 1991 [
<xref rid="B4" ref-type="bibr">4</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">103–1058 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Linde, 1994 [
<xref rid="B3" ref-type="bibr">3</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Tibia</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">445 ± 256 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Keaveny et al., 1997 [
<xref rid="B37" ref-type="bibr">27</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Vertebra</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">165 ± 110 MPa</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Misch et al., 1999 [
<xref rid="B14" ref-type="bibr">14</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Mandible</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">24.9–240 MPa
<break></break>
(with cortical layer)
<break></break>
3.5–125.6 MPa
<break></break>
(without cortical layer)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">O'Mahony et al., 2000 [
<xref rid="B13" ref-type="bibr">13</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Mandible</td>
<td align="center" rowspan="1" colspan="1">Frozen</td>
<td align="center" rowspan="1" colspan="1">Avg 907 MPa
<break></break>
(mesiodistal)
<break></break>
Avg 511 MPa
<break></break>
(buccolingual)
<break></break>
Avg 114 MPa
<break></break>
(inferosuperior)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">van Eijden et al., 2004 [
<xref rid="B12" ref-type="bibr">12</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Mandibular condyle</td>
<td align="center" rowspan="1" colspan="1">Embalmed</td>
<td align="center" rowspan="1" colspan="1">Avg 438 MPa
<break></break>
(vertically)
<break></break>
Avg 157 MPa
<break></break>
(horizontally)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Chevalier et al., 2007 [
<xref rid="B10" ref-type="bibr">10</xref>
]</td>
<td align="center" rowspan="1" colspan="1">Femur</td>
<td align="center" rowspan="1" colspan="1">Dried, defatted</td>
<td align="center" rowspan="1" colspan="1">63.9–2987.9 MPa</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 003232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4782746
   |texte=   Material Properties of the Mandibular Trabecular Bone
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27006933" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022