Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments

Identifieur interne : 006258 ( Main/Exploration ); précédent : 006257; suivant : 006259

Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments

Auteurs : Oliver Gailing ; Rosemarie Langenfeld-Heyser [Allemagne] ; Andrea Polle [Allemagne] ; Reiner Finkeldey

Source :

RBID : ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A

Descripteurs français

English descriptors

Abstract

Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO2) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO2 concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F1 progeny derived from a cross between Quercus robur and Q. robur subsp. slavonica were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.

Url:
DOI: 10.1111/j.1365-2486.2008.01621.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments</title>
<author>
<name sortKey="Gailing, Oliver" sort="Gailing, Oliver" uniqKey="Gailing O" first="Oliver" last="Gailing">Oliver Gailing</name>
</author>
<author>
<name sortKey="Langenfeld Eyser, Rosemarie" sort="Langenfeld Eyser, Rosemarie" uniqKey="Langenfeld Eyser R" first="Rosemarie" last="Langenfeld-Heyser">Rosemarie Langenfeld-Heyser</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
<author>
<name sortKey="Finkeldey, Reiner" sort="Finkeldey, Reiner" uniqKey="Finkeldey R" first="Reiner" last="Finkeldey">Reiner Finkeldey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1111/j.1365-2486.2008.01621.x</idno>
<idno type="url">https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000322</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000322</idno>
<idno type="wicri:Area/Istex/Curation">000322</idno>
<idno type="wicri:Area/Istex/Checkpoint">002528</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002528</idno>
<idno type="wicri:doubleKey">1354-1013:2008:Gailing O:quantitative:trait:loci</idno>
<idno type="wicri:Area/Main/Merge">006341</idno>
<idno type="wicri:Area/Main/Curation">006258</idno>
<idno type="wicri:Area/Main/Exploration">006258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Quantitative trait loci affecting stomatal density and growth in a
<hi rend="italic">Quercus robur</hi>
progeny: implications for the adaptation to changing environments</title>
<author>
<name sortKey="Gailing, Oliver" sort="Gailing, Oliver" uniqKey="Gailing O" first="Oliver" last="Gailing">Oliver Gailing</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Langenfeld Eyser, Rosemarie" sort="Langenfeld Eyser, Rosemarie" uniqKey="Langenfeld Eyser R" first="Rosemarie" last="Langenfeld-Heyser">Rosemarie Langenfeld-Heyser</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Finkeldey, Reiner" sort="Finkeldey, Reiner" uniqKey="Finkeldey R" first="Reiner" last="Finkeldey">Reiner Finkeldey</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1934">1934</biblScope>
<biblScope unit="page" to="1946">1946</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-08">2008-08</date>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive</term>
<term>Adaptive traits</term>
<term>Arabidopsis</term>
<term>Arabidopsis thaliana</term>
<term>Authors journal compilation</term>
<term>Berger altmann</term>
<term>Biomass production</term>
<term>Blackwell publishing</term>
<term>Candidate genes</term>
<term>Complex traits</term>
<term>Conductance</term>
<term>Consecutive years</term>
<term>Considerable amount</term>
<term>Ecosystem</term>
<term>Environmental conditions</term>
<term>Experimental botany</term>
<term>Female linkage groups</term>
<term>Forest trees</term>
<term>Gailing</term>
<term>Genetic basis</term>
<term>Genetic variation</term>
<term>Genetics</term>
<term>Genome level</term>
<term>Genomic</term>
<term>Genomic regions</term>
<term>Global</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Growth parameters</term>
<term>Hetherington woodward</term>
<term>Higher stomatal density</term>
<term>Increment</term>
<term>Keystone species</term>
<term>Linkage</term>
<term>Linkage group</term>
<term>Linkage groups</term>
<term>Locus</term>
<term>Major effect</term>
<term>Marker</term>
<term>Marker absence</term>
<term>Marker presence</term>
<term>Other traits</term>
<term>Phenotypic</term>
<term>Phenotypic plasticity</term>
<term>Phenotypic variance</term>
<term>Photosynthesis</term>
<term>Plant biology</term>
<term>Plant growth</term>
<term>Plant height</term>
<term>Plant size</term>
<term>Polygenic inheritance</term>
<term>Positive correlation</term>
<term>Positive effect</term>
<term>Present study</term>
<term>Progeny</term>
<term>Pseudotestcross mapping strategy</term>
<term>Qtls</term>
<term>Quantitative trait loci</term>
<term>Quercus</term>
<term>Quercus robur</term>
<term>Regression analysis</term>
<term>Robur</term>
<term>Robur subsp</term>
<term>Root neck</term>
<term>Root neck diameter</term>
<term>Stoma</term>
<term>Stomatal</term>
<term>Stomatal characters</term>
<term>Stomatal conductance</term>
<term>Stomatal densities</term>
<term>Stomatal density</term>
<term>Stomatal development</term>
<term>Stomatal traits</term>
<term>Thaliana</term>
<term>Trait</term>
<term>Variance</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adaptive</term>
<term>Adaptive traits</term>
<term>Arabidopsis</term>
<term>Arabidopsis thaliana</term>
<term>Authors journal compilation</term>
<term>Berger altmann</term>
<term>Biomass production</term>
<term>Blackwell publishing</term>
<term>Candidate genes</term>
<term>Complex traits</term>
<term>Conductance</term>
<term>Consecutive years</term>
<term>Considerable amount</term>
<term>Ecosystem</term>
<term>Environmental conditions</term>
<term>Experimental botany</term>
<term>Female linkage groups</term>
<term>Forest trees</term>
<term>Gailing</term>
<term>Genetic basis</term>
<term>Genetic variation</term>
<term>Genetics</term>
<term>Genome level</term>
<term>Genomic</term>
<term>Genomic regions</term>
<term>Global</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Growth parameters</term>
<term>Hetherington woodward</term>
<term>Higher stomatal density</term>
<term>Increment</term>
<term>Keystone species</term>
<term>Linkage</term>
<term>Linkage group</term>
<term>Linkage groups</term>
<term>Locus</term>
<term>Major effect</term>
<term>Marker</term>
<term>Marker absence</term>
<term>Marker presence</term>
<term>Other traits</term>
<term>Phenotypic</term>
<term>Phenotypic plasticity</term>
<term>Phenotypic variance</term>
<term>Photosynthesis</term>
<term>Plant biology</term>
<term>Plant growth</term>
<term>Plant height</term>
<term>Plant size</term>
<term>Polygenic inheritance</term>
<term>Positive correlation</term>
<term>Positive effect</term>
<term>Present study</term>
<term>Progeny</term>
<term>Pseudotestcross mapping strategy</term>
<term>Qtls</term>
<term>Quantitative trait loci</term>
<term>Quercus</term>
<term>Quercus robur</term>
<term>Regression analysis</term>
<term>Robur</term>
<term>Robur subsp</term>
<term>Root neck</term>
<term>Root neck diameter</term>
<term>Stoma</term>
<term>Stomatal</term>
<term>Stomatal characters</term>
<term>Stomatal conductance</term>
<term>Stomatal densities</term>
<term>Stomatal density</term>
<term>Stomatal development</term>
<term>Stomatal traits</term>
<term>Thaliana</term>
<term>Trait</term>
<term>Variance</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>écosystème</term>
<term>Génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO2) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO2 concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F1 progeny derived from a cross between Quercus robur and Q. robur subsp. slavonica were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Finkeldey, Reiner" sort="Finkeldey, Reiner" uniqKey="Finkeldey R" first="Reiner" last="Finkeldey">Reiner Finkeldey</name>
<name sortKey="Gailing, Oliver" sort="Gailing, Oliver" uniqKey="Gailing O" first="Oliver" last="Gailing">Oliver Gailing</name>
</noCountry>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Langenfeld Eyser, Rosemarie" sort="Langenfeld Eyser, Rosemarie" uniqKey="Langenfeld Eyser R" first="Rosemarie" last="Langenfeld-Heyser">Rosemarie Langenfeld-Heyser</name>
</region>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A
   |texte=   Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022