Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments

Identifieur interne : 000322 ( Istex/Corpus ); précédent : 000321; suivant : 000323

Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments

Auteurs : Oliver Gailing ; Rosemarie Langenfeld-Heyser ; Andrea Polle ; Reiner Finkeldey

Source :

RBID : ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A

English descriptors

Abstract

Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO2) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO2 concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F1 progeny derived from a cross between Quercus robur and Q. robur subsp. slavonica were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.

Url:
DOI: 10.1111/j.1365-2486.2008.01621.x

Links to Exploration step

ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments</title>
<author>
<name sortKey="Gailing, Oliver" sort="Gailing, Oliver" uniqKey="Gailing O" first="Oliver" last="Gailing">Oliver Gailing</name>
<affiliation>
<mods:affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Langenfeld Eyser, Rosemarie" sort="Langenfeld Eyser, Rosemarie" uniqKey="Langenfeld Eyser R" first="Rosemarie" last="Langenfeld-Heyser">Rosemarie Langenfeld-Heyser</name>
<affiliation>
<mods:affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation>
<mods:affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Finkeldey, Reiner" sort="Finkeldey, Reiner" uniqKey="Finkeldey R" first="Reiner" last="Finkeldey">Reiner Finkeldey</name>
<affiliation>
<mods:affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1111/j.1365-2486.2008.01621.x</idno>
<idno type="url">https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000322</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000322</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Quantitative trait loci affecting stomatal density and growth in a
<hi rend="italic">Quercus robur</hi>
progeny: implications for the adaptation to changing environments</title>
<author>
<name sortKey="Gailing, Oliver" sort="Gailing, Oliver" uniqKey="Gailing O" first="Oliver" last="Gailing">Oliver Gailing</name>
<affiliation>
<mods:affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Langenfeld Eyser, Rosemarie" sort="Langenfeld Eyser, Rosemarie" uniqKey="Langenfeld Eyser R" first="Rosemarie" last="Langenfeld-Heyser">Rosemarie Langenfeld-Heyser</name>
<affiliation>
<mods:affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation>
<mods:affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Finkeldey, Reiner" sort="Finkeldey, Reiner" uniqKey="Finkeldey R" first="Reiner" last="Finkeldey">Reiner Finkeldey</name>
<affiliation>
<mods:affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1934">1934</biblScope>
<biblScope unit="page" to="1946">1946</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-08">2008-08</date>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive</term>
<term>Adaptive traits</term>
<term>Arabidopsis</term>
<term>Arabidopsis thaliana</term>
<term>Authors journal compilation</term>
<term>Berger altmann</term>
<term>Biomass production</term>
<term>Blackwell publishing</term>
<term>Candidate genes</term>
<term>Complex traits</term>
<term>Conductance</term>
<term>Consecutive years</term>
<term>Considerable amount</term>
<term>Ecosystem</term>
<term>Environmental conditions</term>
<term>Experimental botany</term>
<term>Female linkage groups</term>
<term>Forest trees</term>
<term>Gailing</term>
<term>Genetic basis</term>
<term>Genetic variation</term>
<term>Genetics</term>
<term>Genome level</term>
<term>Genomic</term>
<term>Genomic regions</term>
<term>Global</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Growth parameters</term>
<term>Hetherington woodward</term>
<term>Higher stomatal density</term>
<term>Increment</term>
<term>Keystone species</term>
<term>Linkage</term>
<term>Linkage group</term>
<term>Linkage groups</term>
<term>Locus</term>
<term>Major effect</term>
<term>Marker</term>
<term>Marker absence</term>
<term>Marker presence</term>
<term>Other traits</term>
<term>Phenotypic</term>
<term>Phenotypic plasticity</term>
<term>Phenotypic variance</term>
<term>Photosynthesis</term>
<term>Plant biology</term>
<term>Plant growth</term>
<term>Plant height</term>
<term>Plant size</term>
<term>Polygenic inheritance</term>
<term>Positive correlation</term>
<term>Positive effect</term>
<term>Present study</term>
<term>Progeny</term>
<term>Pseudotestcross mapping strategy</term>
<term>Qtls</term>
<term>Quantitative trait loci</term>
<term>Quercus</term>
<term>Quercus robur</term>
<term>Regression analysis</term>
<term>Robur</term>
<term>Robur subsp</term>
<term>Root neck</term>
<term>Root neck diameter</term>
<term>Stoma</term>
<term>Stomatal</term>
<term>Stomatal characters</term>
<term>Stomatal conductance</term>
<term>Stomatal densities</term>
<term>Stomatal density</term>
<term>Stomatal development</term>
<term>Stomatal traits</term>
<term>Thaliana</term>
<term>Trait</term>
<term>Variance</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adaptive</term>
<term>Adaptive traits</term>
<term>Arabidopsis</term>
<term>Arabidopsis thaliana</term>
<term>Authors journal compilation</term>
<term>Berger altmann</term>
<term>Biomass production</term>
<term>Blackwell publishing</term>
<term>Candidate genes</term>
<term>Complex traits</term>
<term>Conductance</term>
<term>Consecutive years</term>
<term>Considerable amount</term>
<term>Ecosystem</term>
<term>Environmental conditions</term>
<term>Experimental botany</term>
<term>Female linkage groups</term>
<term>Forest trees</term>
<term>Gailing</term>
<term>Genetic basis</term>
<term>Genetic variation</term>
<term>Genetics</term>
<term>Genome level</term>
<term>Genomic</term>
<term>Genomic regions</term>
<term>Global</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Growth parameters</term>
<term>Hetherington woodward</term>
<term>Higher stomatal density</term>
<term>Increment</term>
<term>Keystone species</term>
<term>Linkage</term>
<term>Linkage group</term>
<term>Linkage groups</term>
<term>Locus</term>
<term>Major effect</term>
<term>Marker</term>
<term>Marker absence</term>
<term>Marker presence</term>
<term>Other traits</term>
<term>Phenotypic</term>
<term>Phenotypic plasticity</term>
<term>Phenotypic variance</term>
<term>Photosynthesis</term>
<term>Plant biology</term>
<term>Plant growth</term>
<term>Plant height</term>
<term>Plant size</term>
<term>Polygenic inheritance</term>
<term>Positive correlation</term>
<term>Positive effect</term>
<term>Present study</term>
<term>Progeny</term>
<term>Pseudotestcross mapping strategy</term>
<term>Qtls</term>
<term>Quantitative trait loci</term>
<term>Quercus</term>
<term>Quercus robur</term>
<term>Regression analysis</term>
<term>Robur</term>
<term>Robur subsp</term>
<term>Root neck</term>
<term>Root neck diameter</term>
<term>Stoma</term>
<term>Stomatal</term>
<term>Stomatal characters</term>
<term>Stomatal conductance</term>
<term>Stomatal densities</term>
<term>Stomatal density</term>
<term>Stomatal development</term>
<term>Stomatal traits</term>
<term>Thaliana</term>
<term>Trait</term>
<term>Variance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO2) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO2 concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F1 progeny derived from a cross between Quercus robur and Q. robur subsp. slavonica were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>stomatal</json:string>
<json:string>stomatal density</json:string>
<json:string>robur</json:string>
<json:string>qtls</json:string>
<json:string>phenotypic</json:string>
<json:string>gailing</json:string>
<json:string>adaptive</json:string>
<json:string>genetics</json:string>
<json:string>linkage groups</json:string>
<json:string>global change biology</json:string>
<json:string>blackwell publishing</json:string>
<json:string>authors journal compilation</json:string>
<json:string>quantitative trait loci</json:string>
<json:string>growth parameters</json:string>
<json:string>quercus</json:string>
<json:string>increment</json:string>
<json:string>stomatal densities</json:string>
<json:string>trait</json:string>
<json:string>ecosystem</json:string>
<json:string>genomic</json:string>
<json:string>quercus robur</json:string>
<json:string>conductance</json:string>
<json:string>thaliana</json:string>
<json:string>arabidopsis</json:string>
<json:string>stoma</json:string>
<json:string>environmental conditions</json:string>
<json:string>photosynthesis</json:string>
<json:string>plant height</json:string>
<json:string>linkage</json:string>
<json:string>progeny</json:string>
<json:string>stomatal development</json:string>
<json:string>linkage group</json:string>
<json:string>global change</json:string>
<json:string>plant size</json:string>
<json:string>experimental botany</json:string>
<json:string>present study</json:string>
<json:string>stomatal conductance</json:string>
<json:string>major effect</json:string>
<json:string>robur subsp</json:string>
<json:string>complex traits</json:string>
<json:string>hetherington woodward</json:string>
<json:string>forest trees</json:string>
<json:string>consecutive years</json:string>
<json:string>stomatal characters</json:string>
<json:string>berger altmann</json:string>
<json:string>positive correlation</json:string>
<json:string>genomic regions</json:string>
<json:string>root neck diameter</json:string>
<json:string>root neck</json:string>
<json:string>marker presence</json:string>
<json:string>genetic variation</json:string>
<json:string>locus</json:string>
<json:string>variance</json:string>
<json:string>marker</json:string>
<json:string>phenotypic plasticity</json:string>
<json:string>phenotypic variance</json:string>
<json:string>considerable amount</json:string>
<json:string>higher stomatal density</json:string>
<json:string>plant biology</json:string>
<json:string>pseudotestcross mapping strategy</json:string>
<json:string>plant growth</json:string>
<json:string>stomatal traits</json:string>
<json:string>genome level</json:string>
<json:string>biomass production</json:string>
<json:string>regression analysis</json:string>
<json:string>keystone species</json:string>
<json:string>genetic basis</json:string>
<json:string>positive effect</json:string>
<json:string>female linkage groups</json:string>
<json:string>marker absence</json:string>
<json:string>other traits</json:string>
<json:string>adaptive traits</json:string>
<json:string>polygenic inheritance</json:string>
<json:string>arabidopsis thaliana</json:string>
<json:string>candidate genes</json:string>
<json:string>global</json:string>
<json:string>genetic</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>OLIVER GAILING</name>
<affiliations>
<json:string>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>ROSEMARIE LANGENFELD‐HEYSER</name>
<affiliations>
<json:string>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>ANDREA POLLE</name>
<affiliations>
<json:string>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>REINER FINKELDEY</name>
<affiliations>
<json:string>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>adaptive trait</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>global change</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>QTL</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>quantitative genetics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Quercus robur</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stomatal density</value>
</json:item>
</subject>
<articleId>
<json:string>GCB1621</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-XW3NXWKG-Q</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO2) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO2 concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F1 progeny derived from a cross between Quercus robur and Q. robur subsp. slavonica were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>6796</pdfWordCount>
<pdfCharCount>46029</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>265</abstractWordCount>
<abstractCharCount>1759</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Global Change Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
<issn>
<json:string>1354-1013</json:string>
</issn>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<volume>14</volume>
<issue>8</issue>
<pages>
<first>1934</first>
<last>1946</last>
<total>13</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2005</json:string>
<json:string>2006</json:string>
<json:string>2007</json:string>
<json:string>2008</json:string>
<json:string>19th century</json:string>
<json:string>2004</json:string>
</date>
<geogName>
<json:string>Drava</json:string>
<json:string>Munsterland</json:string>
<json:string>rivers Save</json:string>
</geogName>
<orgName>
<json:string>Germany Abstract Stomatal</json:string>
<json:string>Busgen-Institute, Georg-August University Gottingen, Busgenweg</json:string>
<json:string>Gottingen University</json:string>
<json:string>Blackwell Publishing Ltd</json:string>
<json:string>Department of Forest Genetics and Forest</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Mrs Olga</json:string>
<json:string>B. Zolfaghari</json:string>
<json:string>O. Dolynska</json:string>
</persName>
<placeName>
<json:string>Hamm</json:string>
<json:string>Germany</json:string>
<json:string>Rhine</json:string>
<json:string>Europe</json:string>
<json:string>LOD</json:string>
<json:string>Croatia</json:string>
</placeName>
<ref_url>
<json:string>http://wheat.pw.usda.gov/ggpages/keygeneAFLPs</json:string>
</ref_url>
<ref_bibl>
<json:string>Gailing et al., 2007</json:string>
<json:string>Bazzaz, 1990</json:string>
<json:string>Bachmann & Gailing, 2003</json:string>
<json:string>Barrenche et al., 1998</json:string>
<json:string>Beerling et al., 1998</json:string>
<json:string>Ferris et al., 2002</json:string>
<json:string>Rieseberg et al., 2003</json:string>
<json:string>Krutovsky & Neale, 2005</json:string>
<json:string>Berger & Altmann, 2000</json:string>
<json:string>Elias, 1995</json:string>
<json:string>Saintagne et al., 2004</json:string>
<json:string>Brendel et al., 2008</json:string>
<json:string>Yang & Sack, 1995</json:string>
<json:string>Saintagne et al. (2004)</json:string>
<json:string>Bradshaw et al., 1998</json:string>
<json:string>Haley & Knott, 1992</json:string>
<json:string>Beerling, 1996</json:string>
<json:string>Parelle et al., 2007</json:string>
<json:string>Fischer et al., 1998</json:string>
<json:string>Beavis effect; Beavis, 1998</json:string>
<json:string>Gailing et al., 2005</json:string>
<json:string>Hesmer, 1955</json:string>
<json:string>Poulson et al., 2006</json:string>
<json:string>Churchill & Doerge, 1994</json:string>
<json:string>Vos et al., 1995</json:string>
<json:string>Raven, 2002</json:string>
<json:string>Dai et al., 1995</json:string>
<json:string>Lu et al., 1998</json:string>
<json:string>Gailing et al., 2004</json:string>
<json:string>Woodward & Kelly, 1995</json:string>
<json:string>Scotti-Saintagne et al., 2004</json:string>
<json:string>Tanksley, 1993</json:string>
<json:string>September 2006</json:string>
<json:string>Al Afas et al., 2006</json:string>
<json:string>see also Gailing, 2008</json:string>
<json:string>Penuelas & Matamala, 1990</json:string>
<json:string>Porth et al., 2005</json:string>
<json:string>Rae et al., 2006</json:string>
<json:string>Steinger et al., 2007</json:string>
<json:string>Nelson, 1997</json:string>
<json:string>Orr, 2001</json:string>
<json:string>Wachter, 2001</json:string>
<json:string>Dudley, 1996</json:string>
<json:string>Grattapaglia & Sederoff, 1994</json:string>
<json:string>Derory et al., 2006</json:string>
<json:string>Schluter et al., 2003</json:string>
<json:string>Hall et al., 2005</json:string>
<json:string>Bratteler et al., 2006</json:string>
<json:string>Coupe et al., 2006</json:string>
<json:string>Orr, 1998</json:string>
<json:string>Martin & Stimart, 2005</json:string>
<json:string>Gailing, 2008</json:string>
<json:string>see Hetherington & Woodward, 2003</json:string>
<json:string>Ainsworth & Rogers, 2007</json:string>
<json:string>Wang et al., 2007</json:string>
<json:string>Bergmann et al., 2004</json:string>
<json:string>Gailing (2008)</json:string>
<json:string>Shpak et al., 2005</json:string>
<json:string>Hetherington & Woodward, 2003</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-XW3NXWKG-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - environmental sciences</json:string>
<json:string>2 - ecology</json:string>
<json:string>2 - biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - ecology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - General Environmental Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Environmental Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Global and Planetary Change</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2486.2008.01621.x</json:string>
</doi>
<id>067FB276AD82B50D511430BC1DD1F22B7D2B4D3A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Quantitative trait loci affecting stomatal density and growth in a
<hi rend="italic">Quercus robur</hi>
progeny: implications for the adaptation to changing environments</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</licence>
</availability>
<date type="published" when="2008-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Quantitative trait loci affecting stomatal density and growth in a
<hi rend="italic">Quercus robur</hi>
progeny: implications for the adaptation to changing environments</title>
<title level="a" type="short">QTL LOCI AFFECTING STOMATAL DENSITY AND GROWTH IN QUERCUS ROBUR</title>
<author xml:id="author-0000">
<persName>
<forename type="first">OLIVER</forename>
<surname>GAILING</surname>
</persName>
<affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">ROSEMARIE</forename>
<surname>LANGENFELD‐HEYSER</surname>
</persName>
<affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">ANDREA</forename>
<surname>POLLE</surname>
</persName>
<affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">REINER</forename>
<surname>FINKELDEY</surname>
</persName>
<affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<idno type="istex">067FB276AD82B50D511430BC1DD1F22B7D2B4D3A</idno>
<idno type="ark">ark:/67375/WNG-XW3NXWKG-Q</idno>
<idno type="DOI">10.1111/j.1365-2486.2008.01621.x</idno>
<idno type="unit">GCB1621</idno>
<idno type="supplier">1621</idno>
<idno type="toTypesetVersion">file:GCB.GCB1621.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2486</idno>
<idno type="book-part-DOI">10.1111/gcb.2008.14.issue-8</idno>
<idno type="product">GCB</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1934">1934</biblScope>
<biblScope unit="page" to="1946">1946</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO
<hi rend="subscript">2</hi>
) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO
<hi rend="subscript">2</hi>
concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F
<hi rend="subscript">1</hi>
progeny derived from a cross between
<hi rend="italic">Quercus robur</hi>
and
<hi rend="italic">Q. robur</hi>
subsp.
<hi rend="italic">slavonica</hi>
were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">adaptive trait</term>
<term xml:id="k2">global change</term>
<term xml:id="k3">QTL</term>
<term xml:id="k4">quantitative genetics</term>
<term xml:id="k5">
<hi rend="italic">Quercus robur</hi>
</term>
<term xml:id="k6">stomatal density</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="GLOBAL CHANGE BIOLOGY">Global Change Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="08008">
<doi origin="wiley">10.1111/gcb.2008.14.issue-8</doi>
<numberingGroup>
<numbering type="journalVolume" number="14">14</numbering>
<numbering type="journalIssue" number="8">8</numbering>
</numberingGroup>
<coverDate startDate="2008-08">August 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="16" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2486.2008.01621.x</doi>
<idGroup>
<id type="unit" value="GCB1621"></id>
<id type="supplier" value="1621"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright>© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="firstOnline" date="2008-04-09"></event>
<event type="publishedOnlineFinalForm" date="2008-07-08"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.4 mode:FullText source:FullText result:FullText" date="2010-03-30"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1934">1934</numbering>
<numbering type="pageLast" number="1946">1946</numbering>
</numberingGroup>
<correspondenceTo> Oliver Gailing, fax +495 513 98367, e‐mail:
<email normalForm="ogailin@gwdg.de">ogailin@gwdg.de</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB1621.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 27 July 2007; revised version received 6 November 2007 and accepted 25 January 2008</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="2"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="56"></count>
<count type="wordTotal" number="10319"></count>
<count type="linksCrossRef" number="79"></count>
</countGroup>
<titleGroup>
<title type="main">Quantitative trait loci affecting stomatal density and growth in a
<i>Quercus robur</i>
progeny: implications for the adaptation to changing environments</title>
<title type="shortAuthors">O. GAILING
<i>et al.</i>
</title>
<title type="short">QTL LOCI AFFECTING STOMATAL DENSITY AND GROWTH IN
<i>QUERCUS ROBUR</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>OLIVER</givenNames>
<familyName>GAILING</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>ROSEMARIE</givenNames>
<familyName>LANGENFELD‐HEYSER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>ANDREA</givenNames>
<familyName>POLLE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>REINER</givenNames>
<familyName>FINKELDEY</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="DE">
<unparsedAffiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">adaptive trait</keyword>
<keyword xml:id="k2">global change</keyword>
<keyword xml:id="k3">QTL</keyword>
<keyword xml:id="k4">quantitative genetics</keyword>
<keyword xml:id="k5">
<i>Quercus robur</i>
</keyword>
<keyword xml:id="k6">stomatal density</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO
<sub>2</sub>
) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO
<sub>2</sub>
concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F
<sub>1</sub>
progeny derived from a cross between
<i>Quercus robur</i>
and
<i>Q. robur</i>
subsp.
<i>slavonica</i>
were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>QTL LOCI AFFECTING STOMATAL DENSITY AND GROWTH IN QUERCUS ROBUR</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments</title>
</titleInfo>
<name type="personal">
<namePart type="given">OLIVER</namePart>
<namePart type="family">GAILING</namePart>
<affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ROSEMARIE</namePart>
<namePart type="family">LANGENFELD‐HEYSER</namePart>
<affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ANDREA</namePart>
<namePart type="family">POLLE</namePart>
<affiliation>Department of Forest Botany, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">REINER</namePart>
<namePart type="family">FINKELDEY</namePart>
<affiliation>Department of Forest Genetics and Forest Tree Breeding, Büsgen‐Institute, Georg‐August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008-08</dateIssued>
<edition>Received 27 July 2007; revised version received 6 November 2007 and accepted 25 January 2008</edition>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">2</extent>
<extent unit="tables">3</extent>
<extent unit="formulas">0</extent>
<extent unit="references">56</extent>
<extent unit="linksCrossRef">79</extent>
<extent unit="words">10319</extent>
</physicalDescription>
<abstract lang="en">Stomatal traits are important to cope with changes in levels of atmospheric carbon dioxide (CO2) and with changing availability of water. Thus, they are expected to be involved in the reactions of plants to climate change. They are known to show a plastic physiological response to environmental factors such as elevated CO2 concentrations, but they are also under genetic control and should undergo evolutionary change if selection differs among environments. Stomatal development is regulated by several environmental and genetic signals suggesting a polygenic inheritance. In the present study, F1 progeny derived from a cross between Quercus robur and Q. robur subsp. slavonica were used to map QTLs (quantitative trait loci) for stomatal densities and growth parameters under nonwater stress conditions in 2 and 3 consecutive years, respectively. The positions of QTLs for stomatal density and growth coincided on six linkage groups. The QTL allele associated with the higher stomatal density was generally associated with taller plants and size increment indicating pleiotropic gene effects or close linkage. The phenotypic effects of the individual QTLs were mostly moderate in terms of phenotypic variance explained. However, a considerable amount of the genetically determined variation was explained by QTLs for stomatal density (from 63.6% to 94.4%). Especially, the QTL on linkage group 11 had a strong and highly significant effect on stomatal densities and growth parameters in all years suggesting a major QTL on this linkage group. The importance to analyse the genetic variation controlling complex adaptive traits in keystone species as oaks is discussed with regard to a better understanding of the reactions of ecosystems to global change.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>adaptive trait</topic>
<topic>global change</topic>
<topic>QTL</topic>
<topic>quantitative genetics</topic>
<topic>Quercus robur</topic>
<topic>stomatal density</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1934</start>
<end>1946</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">067FB276AD82B50D511430BC1DD1F22B7D2B4D3A</identifier>
<identifier type="ark">ark:/67375/WNG-XW3NXWKG-Q</identifier>
<identifier type="DOI">10.1111/j.1365-2486.2008.01621.x</identifier>
<identifier type="ArticleID">GCB1621</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/067FB276AD82B50D511430BC1DD1F22B7D2B4D3A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000322 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000322 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:067FB276AD82B50D511430BC1DD1F22B7D2B4D3A
   |texte=   Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022