Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study

Identifieur interne : 007D85 ( Istex/Curation ); précédent : 007D84; suivant : 007D86

The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study

Auteurs : Joke Duyck [Belgique] ; Ignace Naert [Belgique] ; Hans Jacob R Nold [Norvège] ; Jan Eirik Ellingsen [Norvège] ; Hans Van Oosterwyck [Belgique] ; Jos Vander Sloten [Belgique]

Source :

RBID : ISTEX:FE753925B5574EB13E6714ACF19F239ADB7AE629

English descriptors

Abstract

Abstract: Although it is generally accepted that adverse forces can impair osseointegration, the mechanism of this complication is unknown. In this study, static and dynamic loads were applied on 10 mm long implants (Brånemark System®, Nobel Biocare, Sweden) installed bicortically in rabbit tibiae to investigate the bone response. Each of 10 adult New Zealand black rabbits had one statically loaded implant (with a transverse force of 29.4 N applied on a distance of 1.5 mm from the top of the implant, resulting in a bending moment of 4.4 Ncm), one dynamically loaded implant (with a transverse force of 14.7 N applied on a distance of 50 mm from the top of the implant, resulting in a bending moment of 73.5 Ncm, 2.520 cycles in total, applied with a frequency of 1 Hz), and one unloaded control implant. The loading was performed during 14 days. A numerical model was used as a guideline for the applied dynamic load. Histomorphometrical quantifications of the bone to metal contact area and bone density lateral to the implant were performed on undecalcified and toluidine blue stained sections. The histological picture was similar for statically loaded and control implants. Dense cortical lamellar bone was present around the marginal and apical part of the latter implants with no signs of bone loss. Crater‐shaped bone defects and Howship’s lacunae were explicit signs of bone resorption in the marginal bone area around the dynamically loaded implants. Despite those bone defects, bone islands were present in contact with the implant surface in this marginal area. This resulted in no significantly lower bone‐to‐implant contact around the dynamically loaded implants in comparison with the statically loaded and the control implants. However, when comparing the amount of bone in the immediate surroundings of the marginal part of the implants, significantly (P<0.007) less bone volume (density) was present around the dynamically loaded in comparison with the statically loaded and the control implants. This study shows that excessive dynamic loads cause crater‐like bone defects lateral to osseointegrated implants.

Url:
DOI: 10.1034/j.1600-0501.2001.012003207.x

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:FE753925B5574EB13E6714ACF19F239ADB7AE629

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study</title>
<author>
<name sortKey="Duyck, Joke" sort="Duyck, Joke" uniqKey="Duyck J" first="Joke" last="Duyck">Joke Duyck</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Naert, Ignace" sort="Naert, Ignace" uniqKey="Naert I" first="Ignace" last="Naert">Ignace Naert</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="R Nold, Hans Jacob" sort="R Nold, Hans Jacob" uniqKey="R Nold H" first="Hans Jacob" last="R Nold">Hans Jacob R Nold</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo, Norway</mods:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ellingsen, Jan Eirik" sort="Ellingsen, Jan Eirik" uniqKey="Ellingsen J" first="Jan Eirik" last="Ellingsen">Jan Eirik Ellingsen</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo, Norway</mods:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van Oosterwyck, Hans" sort="Van Oosterwyck, Hans" uniqKey="Van Oosterwyck H" first="Hans" last="Van Oosterwyck">Hans Van Oosterwyck</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vander Sloten, Jos" sort="Vander Sloten, Jos" uniqKey="Vander Sloten J" first="Jos" last="Vander Sloten">Jos Vander Sloten</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FE753925B5574EB13E6714ACF19F239ADB7AE629</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1034/j.1600-0501.2001.012003207.x</idno>
<idno type="url">https://api.istex.fr/document/FE753925B5574EB13E6714ACF19F239ADB7AE629/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">007D85</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">007D85</idno>
<idno type="wicri:Area/Istex/Curation">007D85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study</title>
<author>
<name sortKey="Duyck, Joke" sort="Duyck, Joke" uniqKey="Duyck J" first="Joke" last="Duyck">Joke Duyck</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Naert, Ignace" sort="Naert, Ignace" uniqKey="Naert I" first="Ignace" last="Naert">Ignace Naert</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, BIOMAT research group, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="R Nold, Hans Jacob" sort="R Nold, Hans Jacob" uniqKey="R Nold H" first="Hans Jacob" last="R Nold">Hans Jacob R Nold</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo, Norway</mods:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ellingsen, Jan Eirik" sort="Ellingsen, Jan Eirik" uniqKey="Ellingsen J" first="Jan Eirik" last="Ellingsen">Jan Eirik Ellingsen</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo, Norway</mods:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dept. of Prosthetic Dentistry, Oral Research Laboratory, University of Oslo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van Oosterwyck, Hans" sort="Van Oosterwyck, Hans" uniqKey="Van Oosterwyck H" first="Hans" last="Van Oosterwyck">Hans Van Oosterwyck</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vander Sloten, Jos" sort="Vander Sloten, Jos" uniqKey="Vander Sloten J" first="Jos" last="Vander Sloten">Jos Vander Sloten</name>
<affiliation wicri:level="1">
<mods:affiliation>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven, Belgium</mods:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Dept. of Mechanics, Division of Biomechanics and Engineering Design, Catholic University Leuven</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Clinical Oral Implants Research</title>
<title level="j" type="alt">CLINICAL ORAL IMPLANTS RESEARCH</title>
<idno type="ISSN">0905-7161</idno>
<idno type="eISSN">1600-0501</idno>
<imprint>
<biblScope unit="vol">12</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="207">207</biblScope>
<biblScope unit="page" to="218">218</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Munksgaard International Publishers</publisher>
<pubPlace>Copenhagen</pubPlace>
<date type="published" when="2001-06">2001-06</date>
</imprint>
<idno type="ISSN">0905-7161</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0905-7161</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abutment</term>
<term>Animal experiment</term>
<term>Apical part</term>
<term>Biocare</term>
<term>Body weight</term>
<term>Bone</term>
<term>Bone contact</term>
<term>Bone defects</term>
<term>Bone density</term>
<term>Bone formation</term>
<term>Bone level</term>
<term>Bone loss</term>
<term>Bone resorption</term>
<term>Bone response</term>
<term>Bone segments</term>
<term>Carr</term>
<term>Clin</term>
<term>Control implant</term>
<term>Control implants</term>
<term>Cortical bone</term>
<term>Crater</term>
<term>Dentistry</term>
<term>Distal side</term>
<term>Duyck</term>
<term>Dynamic load</term>
<term>Dynamic loading</term>
<term>Dynamic loading table</term>
<term>Dynamic loads</term>
<term>Equivalent strain</term>
<term>Excessive load</term>
<term>Healing period</term>
<term>Histological</term>
<term>Histological analysis</term>
<term>Histological picture</term>
<term>Histological sections</term>
<term>Impl</term>
<term>Implant</term>
<term>Implant installation</term>
<term>Implant surface</term>
<term>Implante</term>
<term>Implantes</term>
<term>Implants charges</term>
<term>Implants research</term>
<term>International journal</term>
<term>Jemt</term>
<term>Jemt lekholm</term>
<term>Lekholm</term>
<term>Load direction</term>
<term>Loading</term>
<term>Loading conditions</term>
<term>Loading device</term>
<term>Loading period</term>
<term>Long axis</term>
<term>Marginal bone</term>
<term>Marginal bone loss</term>
<term>Marginal contact</term>
<term>Marginal part</term>
<term>Maxillofacial</term>
<term>Maxillofacial implants</term>
<term>Microstrain</term>
<term>Naert</term>
<term>Nite</term>
<term>Nite element analysis</term>
<term>Nite element model</term>
<term>Nobel biocare</term>
<term>Oosterwyck</term>
<term>Oral impl</term>
<term>Oral implants</term>
<term>Oral rehabilitation</term>
<term>Osseointegrated</term>
<term>Osseointegrated implants</term>
<term>Osseointegration</term>
<term>Percutaneous abutment</term>
<term>Pilot study</term>
<term>Press plunger</term>
<term>Pressure side</term>
<term>Pressure sides</term>
<term>Prosthesis</term>
<term>Prosthetic dentistry</term>
<term>Proximal side</term>
<term>Radiological</term>
<term>Radiological data</term>
<term>Resorption</term>
<term>Resorption lacunae</term>
<term>Sloten</term>
<term>Standard abutment</term>
<term>Static load</term>
<term>Static loading device</term>
<term>Statically</term>
<term>Strain distribution</term>
<term>Tensile strength</term>
<term>Test implant</term>
<term>Third thread</term>
<term>Thread tips</term>
<term>Tibia</term>
<term>Tibial axis</term>
<term>Total contact</term>
<term>Total length</term>
<term>Transverse force</term>
<term>Vander</term>
<term>Vander sloten</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abutment</term>
<term>Animal experiment</term>
<term>Apical part</term>
<term>Biocare</term>
<term>Body weight</term>
<term>Bone</term>
<term>Bone contact</term>
<term>Bone defects</term>
<term>Bone density</term>
<term>Bone formation</term>
<term>Bone level</term>
<term>Bone loss</term>
<term>Bone resorption</term>
<term>Bone response</term>
<term>Bone segments</term>
<term>Carr</term>
<term>Clin</term>
<term>Control implant</term>
<term>Control implants</term>
<term>Cortical bone</term>
<term>Crater</term>
<term>Dentistry</term>
<term>Distal side</term>
<term>Duyck</term>
<term>Dynamic load</term>
<term>Dynamic loading</term>
<term>Dynamic loading table</term>
<term>Dynamic loads</term>
<term>Equivalent strain</term>
<term>Excessive load</term>
<term>Healing period</term>
<term>Histological</term>
<term>Histological analysis</term>
<term>Histological picture</term>
<term>Histological sections</term>
<term>Impl</term>
<term>Implant</term>
<term>Implant installation</term>
<term>Implant surface</term>
<term>Implante</term>
<term>Implantes</term>
<term>Implants charges</term>
<term>Implants research</term>
<term>International journal</term>
<term>Jemt</term>
<term>Jemt lekholm</term>
<term>Lekholm</term>
<term>Load direction</term>
<term>Loading</term>
<term>Loading conditions</term>
<term>Loading device</term>
<term>Loading period</term>
<term>Long axis</term>
<term>Marginal bone</term>
<term>Marginal bone loss</term>
<term>Marginal contact</term>
<term>Marginal part</term>
<term>Maxillofacial</term>
<term>Maxillofacial implants</term>
<term>Microstrain</term>
<term>Naert</term>
<term>Nite</term>
<term>Nite element analysis</term>
<term>Nite element model</term>
<term>Nobel biocare</term>
<term>Oosterwyck</term>
<term>Oral impl</term>
<term>Oral implants</term>
<term>Oral rehabilitation</term>
<term>Osseointegrated</term>
<term>Osseointegrated implants</term>
<term>Osseointegration</term>
<term>Percutaneous abutment</term>
<term>Pilot study</term>
<term>Press plunger</term>
<term>Pressure side</term>
<term>Pressure sides</term>
<term>Prosthesis</term>
<term>Prosthetic dentistry</term>
<term>Proximal side</term>
<term>Radiological</term>
<term>Radiological data</term>
<term>Resorption</term>
<term>Resorption lacunae</term>
<term>Sloten</term>
<term>Standard abutment</term>
<term>Static load</term>
<term>Static loading device</term>
<term>Statically</term>
<term>Strain distribution</term>
<term>Tensile strength</term>
<term>Test implant</term>
<term>Third thread</term>
<term>Thread tips</term>
<term>Tibia</term>
<term>Tibial axis</term>
<term>Total contact</term>
<term>Total length</term>
<term>Transverse force</term>
<term>Vander</term>
<term>Vander sloten</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Abstract: Although it is generally accepted that adverse forces can impair osseointegration, the mechanism of this complication is unknown. In this study, static and dynamic loads were applied on 10 mm long implants (Brånemark System®, Nobel Biocare, Sweden) installed bicortically in rabbit tibiae to investigate the bone response. Each of 10 adult New Zealand black rabbits had one statically loaded implant (with a transverse force of 29.4 N applied on a distance of 1.5 mm from the top of the implant, resulting in a bending moment of 4.4 Ncm), one dynamically loaded implant (with a transverse force of 14.7 N applied on a distance of 50 mm from the top of the implant, resulting in a bending moment of 73.5 Ncm, 2.520 cycles in total, applied with a frequency of 1 Hz), and one unloaded control implant. The loading was performed during 14 days. A numerical model was used as a guideline for the applied dynamic load. Histomorphometrical quantifications of the bone to metal contact area and bone density lateral to the implant were performed on undecalcified and toluidine blue stained sections. The histological picture was similar for statically loaded and control implants. Dense cortical lamellar bone was present around the marginal and apical part of the latter implants with no signs of bone loss. Crater‐shaped bone defects and Howship’s lacunae were explicit signs of bone resorption in the marginal bone area around the dynamically loaded implants. Despite those bone defects, bone islands were present in contact with the implant surface in this marginal area. This resulted in no significantly lower bone‐to‐implant contact around the dynamically loaded implants in comparison with the statically loaded and the control implants. However, when comparing the amount of bone in the immediate surroundings of the marginal part of the implants, significantly (P<0.007) less bone volume (density) was present around the dynamically loaded in comparison with the statically loaded and the control implants. This study shows that excessive dynamic loads cause crater‐like bone defects lateral to osseointegrated implants.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007D85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 007D85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:FE753925B5574EB13E6714ACF19F239ADB7AE629
   |texte=   The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022