Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation

Identifieur interne : 007636 ( Istex/Corpus ); précédent : 007635; suivant : 007637

Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation

Auteurs : J. Pablo Rodríguez ; Mauricio González ; Susana Ríos ; Ver Nica Cambiazo

Source :

RBID : ISTEX:EEAEC74F03B67EADDC845D9F00ABA023094960BB

English descriptors

Abstract

Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast‐like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM β‐ glycerophosphate, and 50 μg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti α‐tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process. © 2004 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/jcb.20234

Links to Exploration step

ISTEX:EEAEC74F03B67EADDC845D9F00ABA023094960BB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
<author>
<name sortKey="Pablo Rodriguez, J" sort="Pablo Rodriguez, J" uniqKey="Pablo Rodriguez J" first="J." last="Pablo Rodríguez">J. Pablo Rodríguez</name>
<affiliation>
<mods:affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jprodrig@inta.cl</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Mauricio" sort="Gonzalez, Mauricio" uniqKey="Gonzalez M" first="Mauricio" last="González">Mauricio González</name>
<affiliation>
<mods:affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rios, Susana" sort="Rios, Susana" uniqKey="Rios S" first="Susana" last="Ríos">Susana Ríos</name>
<affiliation>
<mods:affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cambiazo, Ver Nica" sort="Cambiazo, Ver Nica" uniqKey="Cambiazo V" first="Ver Nica" last="Cambiazo">Ver Nica Cambiazo</name>
<affiliation>
<mods:affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EEAEC74F03B67EADDC845D9F00ABA023094960BB</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/jcb.20234</idno>
<idno type="url">https://api.istex.fr/document/EEAEC74F03B67EADDC845D9F00ABA023094960BB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">007636</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">007636</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
<author>
<name sortKey="Pablo Rodriguez, J" sort="Pablo Rodriguez, J" uniqKey="Pablo Rodriguez J" first="J." last="Pablo Rodríguez">J. Pablo Rodríguez</name>
<affiliation>
<mods:affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jprodrig@inta.cl</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Mauricio" sort="Gonzalez, Mauricio" uniqKey="Gonzalez M" first="Mauricio" last="González">Mauricio González</name>
<affiliation>
<mods:affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rios, Susana" sort="Rios, Susana" uniqKey="Rios S" first="Susana" last="Ríos">Susana Ríos</name>
<affiliation>
<mods:affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cambiazo, Ver Nica" sort="Cambiazo, Ver Nica" uniqKey="Cambiazo V" first="Ver Nica" last="Cambiazo">Ver Nica Cambiazo</name>
<affiliation>
<mods:affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Cellular Biochemistry</title>
<title level="j" type="alt">JOURNAL OF CELLULAR BIOCHEMISTRY</title>
<idno type="ISSN">0730-2312</idno>
<idno type="eISSN">1097-4644</idno>
<imprint>
<biblScope unit="vol">93</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="721">721</biblScope>
<biblScope unit="page" to="731">731</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-11-01">2004-11-01</date>
</imprint>
<idno type="ISSN">0730-2312</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0730-2312</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actin</term>
<term>Actin cytoskeleton</term>
<term>Actin organization</term>
<term>Alexa fluor</term>
<term>Alkaline</term>
<term>Alkaline phosphatase activity</term>
<term>Basal</term>
<term>Basal conditions</term>
<term>Biochem</term>
<term>Biochemical markers</term>
<term>Bone marrow</term>
<term>Calcium deposition</term>
<term>Calcium phosphate deposition</term>
<term>Cell biochem</term>
<term>Cell biochem koukouritaki</term>
<term>Cell layer</term>
<term>Cell morphology</term>
<term>Cell shape</term>
<term>Characteristic phenotype</term>
<term>Chile</term>
<term>Cortical organization</term>
<term>Culture medium</term>
<term>Cytochalasin</term>
<term>Cytoskeletal</term>
<term>Cytoskeletal integrity</term>
<term>Cytoskeletal organization</term>
<term>Cytoskeleton</term>
<term>Cytoskeleton organization</term>
<term>Different donors</term>
<term>Differentiation</term>
<term>Differentiation markers</term>
<term>Entire cytoplasm</term>
<term>Human mesenchymal</term>
<term>Human mscs</term>
<term>Koukouritaki</term>
<term>Mesenchymal</term>
<term>Microtubule</term>
<term>Microtubule network</term>
<term>Morphological changes</term>
<term>Morphology</term>
<term>Msc</term>
<term>Nocodazole</term>
<term>Normal bone</term>
<term>Osteoblast</term>
<term>Osteoblastic</term>
<term>Osteogenic</term>
<term>Osteogenic conditions</term>
<term>Osteogenic differentiation</term>
<term>Osteogenic medium</term>
<term>Osteoporotic</term>
<term>Phenotype</term>
<term>Phosphatase</term>
<term>Rapid changes</term>
<term>Results show</term>
<term>Tubulin</term>
<term>Untreated</term>
<term>Untreated cells</term>
<term>Upper panels</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Actin</term>
<term>Actin cytoskeleton</term>
<term>Actin organization</term>
<term>Alexa fluor</term>
<term>Alkaline</term>
<term>Alkaline phosphatase activity</term>
<term>Basal</term>
<term>Basal conditions</term>
<term>Biochem</term>
<term>Biochemical markers</term>
<term>Bone marrow</term>
<term>Calcium deposition</term>
<term>Calcium phosphate deposition</term>
<term>Cell biochem</term>
<term>Cell biochem koukouritaki</term>
<term>Cell layer</term>
<term>Cell morphology</term>
<term>Cell shape</term>
<term>Characteristic phenotype</term>
<term>Chile</term>
<term>Cortical organization</term>
<term>Culture medium</term>
<term>Cytochalasin</term>
<term>Cytoskeletal</term>
<term>Cytoskeletal integrity</term>
<term>Cytoskeletal organization</term>
<term>Cytoskeleton</term>
<term>Cytoskeleton organization</term>
<term>Different donors</term>
<term>Differentiation</term>
<term>Differentiation markers</term>
<term>Entire cytoplasm</term>
<term>Human mesenchymal</term>
<term>Human mscs</term>
<term>Koukouritaki</term>
<term>Mesenchymal</term>
<term>Microtubule</term>
<term>Microtubule network</term>
<term>Morphological changes</term>
<term>Morphology</term>
<term>Msc</term>
<term>Nocodazole</term>
<term>Normal bone</term>
<term>Osteoblast</term>
<term>Osteoblastic</term>
<term>Osteogenic</term>
<term>Osteogenic conditions</term>
<term>Osteogenic differentiation</term>
<term>Osteogenic medium</term>
<term>Osteoporotic</term>
<term>Phenotype</term>
<term>Phosphatase</term>
<term>Rapid changes</term>
<term>Results show</term>
<term>Tubulin</term>
<term>Untreated</term>
<term>Untreated cells</term>
<term>Upper panels</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast‐like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM β‐ glycerophosphate, and 50 μg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti α‐tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process. © 2004 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>osteogenic</json:string>
<json:string>msc</json:string>
<json:string>actin</json:string>
<json:string>cytoskeleton</json:string>
<json:string>cytochalasin</json:string>
<json:string>nocodazole</json:string>
<json:string>osteogenic differentiation</json:string>
<json:string>microtubule</json:string>
<json:string>cytoskeletal</json:string>
<json:string>phosphatase</json:string>
<json:string>osteoblast</json:string>
<json:string>basal</json:string>
<json:string>alkaline phosphatase activity</json:string>
<json:string>mesenchymal</json:string>
<json:string>osteogenic conditions</json:string>
<json:string>calcium deposition</json:string>
<json:string>biochem</json:string>
<json:string>cytoskeletal organization</json:string>
<json:string>cell shape</json:string>
<json:string>actin cytoskeleton</json:string>
<json:string>untreated cells</json:string>
<json:string>tubulin</json:string>
<json:string>phenotype</json:string>
<json:string>human mesenchymal</json:string>
<json:string>osteoporotic</json:string>
<json:string>koukouritaki</json:string>
<json:string>culture medium</json:string>
<json:string>osteoblastic</json:string>
<json:string>osteogenic medium</json:string>
<json:string>human mscs</json:string>
<json:string>cell morphology</json:string>
<json:string>untreated</json:string>
<json:string>biochemical markers</json:string>
<json:string>alkaline</json:string>
<json:string>cell layer</json:string>
<json:string>actin organization</json:string>
<json:string>microtubule network</json:string>
<json:string>cytoskeleton organization</json:string>
<json:string>differentiation</json:string>
<json:string>chile</json:string>
<json:string>morphology</json:string>
<json:string>alexa fluor</json:string>
<json:string>characteristic phenotype</json:string>
<json:string>cytoskeletal integrity</json:string>
<json:string>normal bone</json:string>
<json:string>upper panels</json:string>
<json:string>different donors</json:string>
<json:string>entire cytoplasm</json:string>
<json:string>basal conditions</json:string>
<json:string>calcium phosphate deposition</json:string>
<json:string>morphological changes</json:string>
<json:string>cortical organization</json:string>
<json:string>results show</json:string>
<json:string>rapid changes</json:string>
<json:string>cell biochem</json:string>
<json:string>bone marrow</json:string>
<json:string>cell biochem koukouritaki</json:string>
<json:string>differentiation markers</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. Pablo Rodríguez</name>
<affiliations>
<json:string>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</json:string>
<json:string>E-mail: jprodrig@inta.cl</json:string>
<json:string>Correspondence address: Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mauricio González</name>
<affiliations>
<json:string>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</json:string>
</affiliations>
</json:item>
<json:item>
<name>Susana Ríos</name>
<affiliations>
<json:string>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</json:string>
</affiliations>
</json:item>
<json:item>
<name>Verónica Cambiazo</name>
<affiliations>
<json:string>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cytoskeleton</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mesenchymal stem cells</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>osteogenic differentiation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>actin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tubulin</value>
</json:item>
</subject>
<articleId>
<json:string>JCB20234</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-BXFKK9R7-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast‐like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM β‐ glycerophosphate, and 50 μg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti α‐tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process. © 2004 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>9.819</score>
<pdfWordCount>4819</pdfWordCount>
<pdfCharCount>32276</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>592 x 789 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>258</abstractWordCount>
<abstractCharCount>1878</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
<pmid>
<json:string>15660416</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Cellular Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-4644</json:string>
</doi>
<issn>
<json:string>0730-2312</json:string>
</issn>
<eissn>
<json:string>1097-4644</json:string>
</eissn>
<publisherId>
<json:string>JCB</json:string>
</publisherId>
<volume>93</volume>
<issue>4</issue>
<pages>
<first>721</first>
<last>731</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2004</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Hospital Sotero</json:string>
<json:string>Chile, Casilla</json:string>
<json:string>General Electric Medical Systems, Madison</json:string>
<json:string>MSC</json:string>
<json:string>Biochem</json:string>
<json:string>Hospital and INTA</json:string>
<json:string>Wiley-Liss, Inc</json:string>
<json:string>Cytoskeletal Organization</json:string>
<json:string>Molecular Probes Inc.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>O. Brunser</json:string>
<json:string>J. Cell</json:string>
<json:string>Alexa Fluor</json:string>
<json:string>In</json:string>
<json:string>J. Pablo</json:string>
<json:string>Mauricio Gonzalez</json:string>
<json:string>Microphotographs</json:string>
<json:string>Veronica Cambiazo</json:string>
<json:string>Insets</json:string>
</persName>
<placeName>
<json:string>Chile</json:string>
<json:string>Grunwald</json:string>
<json:string>Santiago</json:string>
<json:string>Japan</json:string>
<json:string>Tokyo</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Maccioni and Cambiazo, 1995</json:string>
<json:string>Perinpanayagam et al., 2001</json:string>
<json:string>Egan et al., 1991</json:string>
<json:string>Watanabe et al., 1997, 1998</json:string>
<json:string>Hughes-Fulford et al., 1992</json:string>
<json:string>Bellows et al., 1986</json:string>
<json:string>Nuttall et al., 1998</json:string>
<json:string>Koukouritaki et al., 1997</json:string>
<json:string>Gonzalez et al., 1998</json:string>
<json:string>Jaiswal et al., 1997</json:string>
<json:string>Takahashi et al., 1999</json:string>
<json:string>Hughes-Fulford and Lewis, 1996</json:string>
<json:string>Koukouritaki et al., 1996</json:string>
<json:string>Long et al., 1995</json:string>
<json:string>Yanaka et al., 2003</json:string>
<json:string>Haynesworth et al., 1992a,b</json:string>
<json:string>Lecanda et al., 1997</json:string>
<json:string>Spiegelman and Ginty, 1983</json:string>
<json:string>Luegmayr et al., 1996</json:string>
<json:string>Pavalko et al., 1998</json:string>
<json:string>Koukouritaki et al., 1999</json:string>
<json:string>Spiegelman and Farmer, 1982</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-BXFKK9R7-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - cell biology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Cell Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - vertebres: systeme osteoarticulaire, muscle strie</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1002/jcb.20234</json:string>
</doi>
<id>EEAEC74F03B67EADDC845D9F00ABA023094960BB</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/EEAEC74F03B67EADDC845D9F00ABA023094960BB/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/EEAEC74F03B67EADDC845D9F00ABA023094960BB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/EEAEC74F03B67EADDC845D9F00ABA023094960BB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2004 Wiley‐Liss, Inc.</licence>
</availability>
<date type="published" when="2004-11-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
<title level="a" type="short" xml:lang="en">Changes in Cytoskeleton in Human Mesenchymal Stem Cells</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">J.</forename>
<surname>Pablo Rodríguez</surname>
</persName>
<email>jprodrig@inta.cl</email>
<affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile
<address>
<country key="CL"></country>
</address>
</affiliation>
<affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Mauricio</forename>
<surname>González</surname>
</persName>
<affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile
<address>
<country key="CL"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Susana</forename>
<surname>Ríos</surname>
</persName>
<affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile
<address>
<country key="CL"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Verónica</forename>
<surname>Cambiazo</surname>
</persName>
<affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile
<address>
<country key="CL"></country>
</address>
</affiliation>
</author>
<idno type="istex">EEAEC74F03B67EADDC845D9F00ABA023094960BB</idno>
<idno type="ark">ark:/67375/WNG-BXFKK9R7-7</idno>
<idno type="DOI">10.1002/jcb.20234</idno>
<idno type="unit">JCB20234</idno>
<idno type="toTypesetVersion">file:JCB.JCB20234.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Cellular Biochemistry</title>
<title level="j" type="alt">JOURNAL OF CELLULAR BIOCHEMISTRY</title>
<idno type="pISSN">0730-2312</idno>
<idno type="eISSN">1097-4644</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-4644</idno>
<idno type="book-part-DOI">10.1002/jcb.v93:4</idno>
<idno type="product">JCB</idno>
<imprint>
<biblScope unit="vol">93</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="721">721</biblScope>
<biblScope unit="page" to="731">731</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-11-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast‐like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM β‐ glycerophosphate, and 50 μg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti α‐tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process. © 2004 Wiley‐Liss, Inc.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">cytoskeleton</term>
<term xml:id="kwd2">mesenchymal stem cells</term>
<term xml:id="kwd3">osteogenic differentiation</term>
<term xml:id="kwd4">actin</term>
<term xml:id="kwd5">tubulin</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/EEAEC74F03B67EADDC845D9F00ABA023094960BB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4644</doi>
<issn type="print">0730-2312</issn>
<issn type="electronic">1097-4644</issn>
<idGroup>
<id type="product" value="JCB"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF CELLULAR BIOCHEMISTRY">Journal of Cellular Biochemistry</title>
<title type="short">J. Cell. Biochem.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi origin="wiley" registered="yes">10.1002/jcb.v93:4</doi>
<numberingGroup>
<numbering type="journalVolume" number="93">93</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2004-11-01">1 November 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="10" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jcb.20234</doi>
<idGroup>
<id type="unit" value="JCB20234"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2004 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-04-01"></event>
<event type="manuscriptAccepted" date="2004-06-11"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2004-08-11"></event>
<event type="firstOnline" date="2004-08-11"></event>
<event type="publishedOnlineFinalForm" date="2004-10-18"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-29"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">721</numbering>
<numbering type="pageLast">731</numbering>
</numberingGroup>
<correspondenceTo>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JCB.JCB20234.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="31"></count>
<count type="wordTotal" number="5322"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
<title type="short" xml:lang="en">Changes in Cytoskeleton in Human Mesenchymal Stem Cells</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>J.</givenNames>
<familyName>Pablo Rodríguez</familyName>
</personName>
<contactDetails>
<email>jprodrig@inta.cl</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Mauricio</givenNames>
<familyName>González</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Susana</givenNames>
<familyName>Ríos</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Verónica</givenNames>
<familyName>Cambiazo</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CL" type="organization">
<unparsedAffiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CL" type="organization">
<unparsedAffiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">cytoskeleton</keyword>
<keyword xml:id="kwd2">mesenchymal stem cells</keyword>
<keyword xml:id="kwd3">osteogenic differentiation</keyword>
<keyword xml:id="kwd4">actin</keyword>
<keyword xml:id="kwd5">tubulin</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>FONDECYT</fundingAgency>
<fundingNumber>1020728</fundingNumber>
<fundingNumber>1010693</fundingNumber>
<fundingNumber>1030618</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast‐like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM β‐ glycerophosphate, and 50 μg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti α‐tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process. © 2004 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Changes in Cytoskeleton in Human Mesenchymal Stem Cells</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Pablo Rodríguez</namePart>
<affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</affiliation>
<affiliation>E-mail: jprodrig@inta.cl</affiliation>
<affiliation>Correspondence address: Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mauricio</namePart>
<namePart type="family">González</namePart>
<affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susana</namePart>
<namePart type="family">Ríos</namePart>
<affiliation>Laboratorio de Biología Celular, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verónica</namePart>
<namePart type="family">Cambiazo</namePart>
<affiliation>Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Casilla 138‐11, Santiago, Chile</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-11-01</dateIssued>
<dateCaptured encoding="w3cdtf">2004-04-01</dateCaptured>
<dateValid encoding="w3cdtf">2004-06-11</dateValid>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">3</extent>
<extent unit="tables">0</extent>
<extent unit="references">31</extent>
<extent unit="words">5322</extent>
</physicalDescription>
<abstract lang="en">Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast‐like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM β‐ glycerophosphate, and 50 μg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti α‐tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process. © 2004 Wiley‐Liss, Inc.</abstract>
<note type="funding">FONDECYT - No. 1020728; No. 1010693; No. 1030618; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>cytoskeleton</topic>
<topic>mesenchymal stem cells</topic>
<topic>osteogenic differentiation</topic>
<topic>actin</topic>
<topic>tubulin</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Cellular Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Cell. Biochem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0730-2312</identifier>
<identifier type="eISSN">1097-4644</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4644</identifier>
<identifier type="PublisherID">JCB</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>93</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>721</start>
<end>731</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">EEAEC74F03B67EADDC845D9F00ABA023094960BB</identifier>
<identifier type="ark">ark:/67375/WNG-BXFKK9R7-7</identifier>
<identifier type="DOI">10.1002/jcb.20234</identifier>
<identifier type="ArticleID">JCB20234</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2004 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/EEAEC74F03B67EADDC845D9F00ABA023094960BB/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007636 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 007636 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:EEAEC74F03B67EADDC845D9F00ABA023094960BB
   |texte=   Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022