Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Image localization for frameless stereotactic radiotherapy

Identifieur interne : 006C68 ( Istex/Corpus ); précédent : 006C67; suivant : 006C69

Image localization for frameless stereotactic radiotherapy

Auteurs : Sanford L. Meeks ; Frank J. Bova ; Thomas H. Wagner ; John M. Buatti ; William A. Friedman ; Kelly D. Foote

Source :

RBID : ISTEX:DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA

English descriptors

Abstract

Abstract: Purpose: Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patient’s first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring. Methods and Materials: To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan. Results: To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 ± 0.17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 ± 0.3 mm compared with the head ring. Conclusion: Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.

Url:
DOI: 10.1016/S0360-3016(99)00536-2

Links to Exploration step

ISTEX:DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Image localization for frameless stereotactic radiotherapy</title>
<author>
<name sortKey="Meeks, Sanford L" sort="Meeks, Sanford L" uniqKey="Meeks S" first="Sanford L" last="Meeks">Sanford L. Meeks</name>
<affiliation>
<mods:affiliation>E-mail: sanford-meeks@uiowa.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bova, Frank J" sort="Bova, Frank J" uniqKey="Bova F" first="Frank J" last="Bova">Frank J. Bova</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Thomas H" sort="Wagner, Thomas H" uniqKey="Wagner T" first="Thomas H" last="Wagner">Thomas H. Wagner</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buatti, John M" sort="Buatti, John M" uniqKey="Buatti J" first="John M" last="Buatti">John M. Buatti</name>
<affiliation>
<mods:affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Friedman, William A" sort="Friedman, William A" uniqKey="Friedman W" first="William A" last="Friedman">William A. Friedman</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Foote, Kelly D" sort="Foote, Kelly D" uniqKey="Foote K" first="Kelly D" last="Foote">Kelly D. Foote</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0360-3016(99)00536-2</idno>
<idno type="url">https://api.istex.fr/document/DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006C68</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006C68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Image localization for frameless stereotactic radiotherapy</title>
<author>
<name sortKey="Meeks, Sanford L" sort="Meeks, Sanford L" uniqKey="Meeks S" first="Sanford L" last="Meeks">Sanford L. Meeks</name>
<affiliation>
<mods:affiliation>E-mail: sanford-meeks@uiowa.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bova, Frank J" sort="Bova, Frank J" uniqKey="Bova F" first="Frank J" last="Bova">Frank J. Bova</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Thomas H" sort="Wagner, Thomas H" uniqKey="Wagner T" first="Thomas H" last="Wagner">Thomas H. Wagner</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buatti, John M" sort="Buatti, John M" uniqKey="Buatti J" first="John M" last="Buatti">John M. Buatti</name>
<affiliation>
<mods:affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Friedman, William A" sort="Friedman, William A" uniqKey="Friedman W" first="William A" last="Friedman">William A. Friedman</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Foote, Kelly D" sort="Foote, Kelly D" uniqKey="Foote K" first="Kelly D" last="Foote">Kelly D. Foote</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal of Radiation Oncology, Biology, Physics</title>
<title level="j" type="abbrev">ROB</title>
<idno type="ISSN">0360-3016</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">46</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1291">1291</biblScope>
<biblScope unit="page" to="1299">1299</biblScope>
</imprint>
<idno type="ISSN">0360-3016</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0360-3016</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular deviations</term>
<term>Axial</term>
<term>Biol</term>
<term>Bova</term>
<term>Calibration procedure</term>
<term>Computer-assisted radiotherapy</term>
<term>Diode</term>
<term>Ducial</term>
<term>Ducial array</term>
<term>Ducial centroid</term>
<term>Ducial markers</term>
<term>Ducial positions</term>
<term>Frameless</term>
<term>Frameless system</term>
<term>Friedman</term>
<term>Head ring</term>
<term>Hybrid system</term>
<term>Infrared diodes</term>
<term>Invasive head ring</term>
<term>Irled</term>
<term>Irled array</term>
<term>Irled locations</term>
<term>Irled positions</term>
<term>Irled1</term>
<term>Irleds</term>
<term>Isocenter</term>
<term>Lateral</term>
<term>Light emission</term>
<term>Linac</term>
<term>Linac isocenter</term>
<term>Localization</term>
<term>Localization accuracy</term>
<term>Localized</term>
<term>Marker</term>
<term>Maxillary</term>
<term>Maxillary dentition</term>
<term>Meeks</term>
<term>Oncol</term>
<term>Oncology</term>
<term>Optical position sensor</term>
<term>Patient motion</term>
<term>Patient tests</term>
<term>Phantom</term>
<term>Phantom tests</term>
<term>Phys</term>
<term>Radiat</term>
<term>Radiat oncol biol phys</term>
<term>Radiosurgery</term>
<term>Radiotherapy</term>
<term>Real time</term>
<term>Reference position</term>
<term>Registration error</term>
<term>Rotational</term>
<term>Spatial relationship</term>
<term>Standard deviation</term>
<term>Stereotactic</term>
<term>Stereotactic coordinates</term>
<term>Stereotactic head ring</term>
<term>Stereotactic localization</term>
<term>Stereotactic radiosurgery</term>
<term>Stereotactic radiotherapy</term>
<term>Stereotactic space</term>
<term>Stereotaxic techniques</term>
<term>Targeted radiotherapy</term>
<term>Translational</term>
<term>Treatment isocenter</term>
<term>Treatment plan</term>
<term>Voxel size</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Angular deviations</term>
<term>Axial</term>
<term>Biol</term>
<term>Bova</term>
<term>Calibration procedure</term>
<term>Diode</term>
<term>Ducial</term>
<term>Ducial array</term>
<term>Ducial centroid</term>
<term>Ducial markers</term>
<term>Ducial positions</term>
<term>Frameless</term>
<term>Frameless system</term>
<term>Friedman</term>
<term>Head ring</term>
<term>Hybrid system</term>
<term>Infrared diodes</term>
<term>Invasive head ring</term>
<term>Irled</term>
<term>Irled array</term>
<term>Irled locations</term>
<term>Irled positions</term>
<term>Irled1</term>
<term>Irleds</term>
<term>Isocenter</term>
<term>Lateral</term>
<term>Light emission</term>
<term>Linac</term>
<term>Linac isocenter</term>
<term>Localization</term>
<term>Localization accuracy</term>
<term>Localized</term>
<term>Marker</term>
<term>Maxillary</term>
<term>Maxillary dentition</term>
<term>Meeks</term>
<term>Oncol</term>
<term>Oncology</term>
<term>Optical position sensor</term>
<term>Patient motion</term>
<term>Patient tests</term>
<term>Phantom</term>
<term>Phantom tests</term>
<term>Phys</term>
<term>Radiat</term>
<term>Radiat oncol biol phys</term>
<term>Radiosurgery</term>
<term>Radiotherapy</term>
<term>Real time</term>
<term>Reference position</term>
<term>Registration error</term>
<term>Rotational</term>
<term>Spatial relationship</term>
<term>Standard deviation</term>
<term>Stereotactic</term>
<term>Stereotactic coordinates</term>
<term>Stereotactic head ring</term>
<term>Stereotactic localization</term>
<term>Stereotactic radiosurgery</term>
<term>Stereotactic radiotherapy</term>
<term>Stereotactic space</term>
<term>Translational</term>
<term>Treatment isocenter</term>
<term>Treatment plan</term>
<term>Voxel size</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Purpose: Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patient’s first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring. Methods and Materials: To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan. Results: To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 ± 0.17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 ± 0.3 mm compared with the head ring. Conclusion: Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>stereotactic</json:string>
<json:string>ducial</json:string>
<json:string>irled</json:string>
<json:string>irleds</json:string>
<json:string>ducial markers</json:string>
<json:string>isocenter</json:string>
<json:string>radiotherapy</json:string>
<json:string>frameless</json:string>
<json:string>localization</json:string>
<json:string>phys</json:string>
<json:string>translational</json:string>
<json:string>irled array</json:string>
<json:string>maxillary</json:string>
<json:string>stereotactic head ring</json:string>
<json:string>radiosurgery</json:string>
<json:string>rotational</json:string>
<json:string>meeks</json:string>
<json:string>irled positions</json:string>
<json:string>irled1</json:string>
<json:string>biol</json:string>
<json:string>diode</json:string>
<json:string>oncology</json:string>
<json:string>bova</json:string>
<json:string>stereotactic radiotherapy</json:string>
<json:string>oncol</json:string>
<json:string>radiat</json:string>
<json:string>phantom tests</json:string>
<json:string>linac</json:string>
<json:string>stereotactic space</json:string>
<json:string>maxillary dentition</json:string>
<json:string>stereotactic coordinates</json:string>
<json:string>radiat oncol biol phys</json:string>
<json:string>patient motion</json:string>
<json:string>head ring</json:string>
<json:string>infrared diodes</json:string>
<json:string>reference position</json:string>
<json:string>stereotactic localization</json:string>
<json:string>calibration procedure</json:string>
<json:string>lateral</json:string>
<json:string>localized</json:string>
<json:string>invasive head ring</json:string>
<json:string>optical position sensor</json:string>
<json:string>stereotactic radiosurgery</json:string>
<json:string>irled locations</json:string>
<json:string>hybrid system</json:string>
<json:string>ducial array</json:string>
<json:string>linac isocenter</json:string>
<json:string>ducial centroid</json:string>
<json:string>voxel size</json:string>
<json:string>registration error</json:string>
<json:string>friedman</json:string>
<json:string>phantom</json:string>
<json:string>real time</json:string>
<json:string>spatial relationship</json:string>
<json:string>angular deviations</json:string>
<json:string>treatment plan</json:string>
<json:string>standard deviation</json:string>
<json:string>treatment isocenter</json:string>
<json:string>ducial positions</json:string>
<json:string>localization accuracy</json:string>
<json:string>frameless system</json:string>
<json:string>patient tests</json:string>
<json:string>light emission</json:string>
<json:string>marker</json:string>
<json:string>axial</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Sanford L Meeks Ph.D.</name>
<affiliations>
<json:string>E-mail: sanford-meeks@uiowa.edu</json:string>
<json:string>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frank J Bova Ph.D.</name>
<affiliations>
<json:string>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Thomas H Wagner M.S.</name>
<affiliations>
<json:string>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>John M Buatti M.D.</name>
<affiliations>
<json:string>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>William A Friedman M.D.</name>
<affiliations>
<json:string>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kelly D Foote M.D.</name>
<affiliations>
<json:string>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Computer-assisted radiotherapy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Stereotaxic techniques</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Targeted radiotherapy</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-DNCLKX49-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Purpose: Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patient’s first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring. Methods and Materials: To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan. Results: To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 ± 0.17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 ± 0.3 mm compared with the head ring. Conclusion: Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>398</abstractWordCount>
<abstractCharCount>2611</abstractCharCount>
<keywordCount>3</keywordCount>
<score>10</score>
<pdfWordCount>5112</pdfWordCount>
<pdfCharCount>30912</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>586 x 785 pts</pdfPageSize>
</qualityIndicators>
<title>Image localization for frameless stereotactic radiotherapy</title>
<pmid>
<json:string>10725643</json:string>
</pmid>
<pii>
<json:string>S0360-3016(99)00536-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Journal of Radiation Oncology, Biology, Physics</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0360-3016</json:string>
</issn>
<pii>
<json:string>S0360-3016(00)X0078-8</json:string>
</pii>
<volume>46</volume>
<issue>5</issue>
<pages>
<first>1291</first>
<last>1299</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
<json:string>1995</json:string>
<json:string>1500</json:string>
<json:string>1296</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Elsevier Science Inc</json:string>
<json:string>University of Iowa College of Medicine, Iowa City</json:string>
<json:string>Division of Radiation Oncology</json:string>
<json:string>Dentsply International</json:string>
<json:string>University of Florida</json:string>
<json:string>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL Purpose</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName>
<json:string>DE</json:string>
<json:string>Milford</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-DNCLKX49-R</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - radiology, nuclear medicine & medical imaging</json:string>
<json:string>2 - oncology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - oncology & carcinogenesis</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Cancer Research</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Radiology Nuclear Medicine and imaging</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Oncology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Radiation</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0360-3016(99)00536-2</json:string>
</doi>
<id>DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Image localization for frameless stereotactic radiotherapy</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science Inc.</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Physics Contributions</note>
<note type="content">Fig. 1: (a) The system for optic-guided radiotherapy relies on optic tracking of an infrared light-emitting diode (IRLED) array. The IRLED array is attached to the patient via a custom maxillary bite plate. An array of three CCD cameras mounted in the ceiling tracks the IRLED array. The patient’s displacement from isocenter is displayed on a computer monitor. The radiation therapist then uses this digital information to position the patient. (b) Computer readout indicates the IRLED array’s deviation from its reference position. This deviation is resolved into three orthogonal components (anterior-posterior [AP], lateral [Lat], and axial [Ax]), and the angular deviations about each of these three orthogonal axes. The vector displacement is the root mean square sum of the translational components.</note>
<note type="content">Fig. 2: (A) The combination bite plate has aluminum fiducial markers for localization in the CT scan and infrared light-emitting diodes (IRLEDs) for optic tracking in the treatment vault. Because the spatial relationship between the IRLEDs and the fiducial markers is known, the required positions of the IRLEDs can be predicted based on CT localization of the aluminum fiducial markers. (B) Schematic representation of the new reference array shows the positions of the aluminum fiducials (F1–8) and the diodes (L1–6).</note>
<note type="content">Fig. 3: (A) The positions of the IRLEDs are determined using simple vector relationships between the aluminum CT fiducial markers and the infrared light-emitting diodes (IRLEDS). (B) Orthogonal vector relationships can be determined using the relationships of the fiducial markers to one another in addition to their relationship with the IRLEDs. Using such an overdefined system with a known geometry provides checks for internal consistency.</note>
<note type="content">Fig. 4: To test the CT localization against a rigid standard, patients are scanned with the CT localizer attached to the stereotactic head ring and the maxillary bite plate in place.</note>
<note type="content">Fig. 5: The localization inaccuracy at a point increases as a function of fiducial localization error (mean registration error) and the distance from the fiducial centroid to the point of interest (isocenter in this case). Shown is the predicted error as a function of distance for mean registration errors ranging from 0.1 to 0.5 mm.</note>
<note type="content">Fig. 6: (A) Agreement of the predicted error with the actual measured error for the five phantom tests. The predicted and measured values agree to within 0.0 ± 0.2 mm (mean ± standard deviation) for these tests. (B) Agreement of the predicted error with the actual measured error for 11 patient tests. The predicted and measured values agree to within 0.2 ± 0.5 mm (mean ± standard deviation) for these tests. This agreement is sufficient to detect gross errors caused by patient motion during the CT scan.</note>
<note type="content">Table 1: Mean (in stereotactic coordinates) and standard deviation of IRLED positions (in millimeters) relative to fiducial centroidlegend</note>
<note type="content">Table 2: Average isocentric positioning uncertainty for six phantom tests was 0.65 ± 0.17 mmlegend</note>
<note type="content">Table 3: Average displacement from predicted isocenter for the first 10 patient testslegend</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Image localization for frameless stereotactic radiotherapy</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Sanford L</forename>
<surname>Meeks</surname>
</persName>
<roleName type="degree">Ph.D.</roleName>
<email>sanford-meeks@uiowa.edu</email>
<note type="biography">Reprint requests to: Sanford L. Meeks, Ph.D., University of Iowa College of Medicine, Division of Radiation Oncology, W189Z-GH, 200 Hawkins Drive, Iowa City, IA 52242. Tel: (319) 356-0881; Fax: (319) 384-9749</note>
<affiliation>Reprint requests to: Sanford L. Meeks, Ph.D., University of Iowa College of Medicine, Division of Radiation Oncology, W189Z-GH, 200 Hawkins Drive, Iowa City, IA 52242. Tel: (319) 356-0881; Fax: (319) 384-9749</affiliation>
<affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Frank J</forename>
<surname>Bova</surname>
</persName>
<roleName type="degree">Ph.D.</roleName>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Thomas H</forename>
<surname>Wagner</surname>
</persName>
<roleName type="degree">M.S.</roleName>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">John M</forename>
<surname>Buatti</surname>
</persName>
<roleName type="degree">M.D.</roleName>
<affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">William A</forename>
<surname>Friedman</surname>
</persName>
<roleName type="degree">M.D.</roleName>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Kelly D</forename>
<surname>Foote</surname>
</persName>
<roleName type="degree">M.D.</roleName>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
</author>
<idno type="istex">DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA</idno>
<idno type="DOI">10.1016/S0360-3016(99)00536-2</idno>
<idno type="PII">S0360-3016(99)00536-2</idno>
</analytic>
<monogr>
<title level="j">International Journal of Radiation Oncology, Biology, Physics</title>
<title level="j" type="abbrev">ROB</title>
<idno type="pISSN">0360-3016</idno>
<idno type="PII">S0360-3016(00)X0078-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">46</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1291">1291</biblScope>
<biblScope unit="page" to="1299">1299</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Purpose: Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patient’s first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring. Methods and Materials: To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan. Results: To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 ± 0.17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 ± 0.3 mm compared with the head ring. Conclusion: Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Computer-assisted radiotherapy</term>
</item>
<item>
<term>Stereotaxic techniques</term>
</item>
<item>
<term>Targeted radiotherapy</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="GR1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="GR2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="GR3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="GR4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="GR5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="GR6"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>ROB</jid>
<aid>6853</aid>
<ce:pii>S0360-3016(99)00536-2</ce:pii>
<ce:doi>10.1016/S0360-3016(99)00536-2</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science Inc.</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Physics Contributions</ce:textfn>
</ce:dochead>
<ce:title>Image localization for frameless stereotactic radiotherapy</ce:title>
<ce:presented>Presented at the 41st annual meeting of the American Society for Therapeutic Radiology and Oncology, San Antonio, Texas, October 31 to November 4, 1999.</ce:presented>
<ce:author-group>
<ce:author>
<ce:given-name>Sanford L</ce:given-name>
<ce:surname>Meeks</ce:surname>
<ce:degrees>Ph.D.</ce:degrees>
<ce:cross-ref refid="AFF1"></ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>sanford-meeks@uiowa.edu</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Frank J</ce:given-name>
<ce:surname>Bova</ce:surname>
<ce:degrees>Ph.D.</ce:degrees>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Thomas H</ce:given-name>
<ce:surname>Wagner</ce:surname>
<ce:degrees>M.S.</ce:degrees>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>John M</ce:given-name>
<ce:surname>Buatti</ce:surname>
<ce:degrees>M.D.</ce:degrees>
<ce:cross-ref refid="AFF1"></ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>William A</ce:given-name>
<ce:surname>Friedman</ce:surname>
<ce:degrees>M.D.</ce:degrees>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Kelly D</ce:given-name>
<ce:surname>Foote</ce:surname>
<ce:degrees>M.D.</ce:degrees>
<ce:cross-ref refid="AFF2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label></ce:label>
<ce:textfn>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label></ce:label>
<ce:textfn>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Reprint requests to: Sanford L. Meeks, Ph.D., University of Iowa College of Medicine, Division of Radiation Oncology, W189Z-GH, 200 Hawkins Drive, Iowa City, IA 52242. Tel: (319) 356-0881; Fax: (319) 384-9749</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="2" month="12" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Purpose: Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patient’s first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring.</ce:simple-para>
<ce:simple-para>Methods and Materials: To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan.</ce:simple-para>
<ce:simple-para>Results: To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 ± 0.17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 ± 0.3 mm compared with the head ring.</ce:simple-para>
<ce:simple-para>Conclusion: Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Computer-assisted radiotherapy</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Stereotaxic techniques</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Targeted radiotherapy</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Image localization for frameless stereotactic radiotherapy</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Image localization for frameless stereotactic radiotherapy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanford L</namePart>
<namePart type="family">Meeks</namePart>
<namePart type="termsOfAddress">Ph.D.</namePart>
<affiliation>E-mail: sanford-meeks@uiowa.edu</affiliation>
<affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</affiliation>
<description>Reprint requests to: Sanford L. Meeks, Ph.D., University of Iowa College of Medicine, Division of Radiation Oncology, W189Z-GH, 200 Hawkins Drive, Iowa City, IA 52242. Tel: (319) 356-0881; Fax: (319) 384-9749</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank J</namePart>
<namePart type="family">Bova</namePart>
<namePart type="termsOfAddress">Ph.D.</namePart>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas H</namePart>
<namePart type="family">Wagner</namePart>
<namePart type="termsOfAddress">M.S.</namePart>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John M</namePart>
<namePart type="family">Buatti</namePart>
<namePart type="termsOfAddress">M.D.</namePart>
<affiliation>Division of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William A</namePart>
<namePart type="family">Friedman</namePart>
<namePart type="termsOfAddress">M.D.</namePart>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kelly D</namePart>
<namePart type="family">Foote</namePart>
<namePart type="termsOfAddress">M.D.</namePart>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Purpose: Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patient’s first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring. Methods and Materials: To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan. Results: To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 ± 0.17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 ± 0.3 mm compared with the head ring. Conclusion: Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.</abstract>
<note type="content">Section title: Physics Contributions</note>
<note type="content">Fig. 1: (a) The system for optic-guided radiotherapy relies on optic tracking of an infrared light-emitting diode (IRLED) array. The IRLED array is attached to the patient via a custom maxillary bite plate. An array of three CCD cameras mounted in the ceiling tracks the IRLED array. The patient’s displacement from isocenter is displayed on a computer monitor. The radiation therapist then uses this digital information to position the patient. (b) Computer readout indicates the IRLED array’s deviation from its reference position. This deviation is resolved into three orthogonal components (anterior-posterior [AP], lateral [Lat], and axial [Ax]), and the angular deviations about each of these three orthogonal axes. The vector displacement is the root mean square sum of the translational components.</note>
<note type="content">Fig. 2: (A) The combination bite plate has aluminum fiducial markers for localization in the CT scan and infrared light-emitting diodes (IRLEDs) for optic tracking in the treatment vault. Because the spatial relationship between the IRLEDs and the fiducial markers is known, the required positions of the IRLEDs can be predicted based on CT localization of the aluminum fiducial markers. (B) Schematic representation of the new reference array shows the positions of the aluminum fiducials (F1–8) and the diodes (L1–6).</note>
<note type="content">Fig. 3: (A) The positions of the IRLEDs are determined using simple vector relationships between the aluminum CT fiducial markers and the infrared light-emitting diodes (IRLEDS). (B) Orthogonal vector relationships can be determined using the relationships of the fiducial markers to one another in addition to their relationship with the IRLEDs. Using such an overdefined system with a known geometry provides checks for internal consistency.</note>
<note type="content">Fig. 4: To test the CT localization against a rigid standard, patients are scanned with the CT localizer attached to the stereotactic head ring and the maxillary bite plate in place.</note>
<note type="content">Fig. 5: The localization inaccuracy at a point increases as a function of fiducial localization error (mean registration error) and the distance from the fiducial centroid to the point of interest (isocenter in this case). Shown is the predicted error as a function of distance for mean registration errors ranging from 0.1 to 0.5 mm.</note>
<note type="content">Fig. 6: (A) Agreement of the predicted error with the actual measured error for the five phantom tests. The predicted and measured values agree to within 0.0 ± 0.2 mm (mean ± standard deviation) for these tests. (B) Agreement of the predicted error with the actual measured error for 11 patient tests. The predicted and measured values agree to within 0.2 ± 0.5 mm (mean ± standard deviation) for these tests. This agreement is sufficient to detect gross errors caused by patient motion during the CT scan.</note>
<note type="content">Table 1: Mean (in stereotactic coordinates) and standard deviation of IRLED positions (in millimeters) relative to fiducial centroidlegend</note>
<note type="content">Table 2: Average isocentric positioning uncertainty for six phantom tests was 0.65 ± 0.17 mmlegend</note>
<note type="content">Table 3: Average displacement from predicted isocenter for the first 10 patient testslegend</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Computer-assisted radiotherapy</topic>
<topic>Stereotaxic techniques</topic>
<topic>Targeted radiotherapy</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Radiation Oncology, Biology, Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>ROB</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20000315</dateIssued>
</originInfo>
<identifier type="ISSN">0360-3016</identifier>
<identifier type="PII">S0360-3016(00)X0078-8</identifier>
<part>
<date>20000315</date>
<detail type="volume">
<number>46</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>5</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1089</start>
<end>1364</end>
</extent>
<extent unit="pages">
<start>1291</start>
<end>1299</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA</identifier>
<identifier type="ark">ark:/67375/6H6-DNCLKX49-R</identifier>
<identifier type="DOI">10.1016/S0360-3016(99)00536-2</identifier>
<identifier type="PII">S0360-3016(99)00536-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Inc., ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006C68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 006C68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DAFB44C79F8F7F1173D51A527DA1D256F1ADBEAA
   |texte=   Image localization for frameless stereotactic radiotherapy
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022