Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer

Identifieur interne : 005958 ( Istex/Corpus ); précédent : 005957; suivant : 005959

Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer

Auteurs : So-Hee Moon ; Seung-Jae Lee ; Il-Song Park ; Min-Ho Lee ; Yun-Jo Soh ; Tae-Sung Bae ; Hyung-Seop Kim

Source :

RBID : ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0

English descriptors

Abstract

Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS. In vitro, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

Url:
DOI: 10.1002/jbm.b.32769

Links to Exploration step

ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer</title>
<author>
<name sortKey="Moon, So Ee" sort="Moon, So Ee" uniqKey="Moon S" first="So-Hee" last="Moon">So-Hee Moon</name>
<affiliation>
<mods:affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Ae" sort="Lee, Seung Ae" uniqKey="Lee S" first="Seung-Jae" last="Lee">Seung-Jae Lee</name>
<affiliation>
<mods:affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Park, Il Ong" sort="Park, Il Ong" uniqKey="Park I" first="Il-Song" last="Park">Il-Song Park</name>
<affiliation>
<mods:affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Min O" sort="Lee, Min O" uniqKey="Lee M" first="Min-Ho" last="Lee">Min-Ho Lee</name>
<affiliation>
<mods:affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soh, Yun O" sort="Soh, Yun O" uniqKey="Soh Y" first="Yun-Jo" last="Soh">Yun-Jo Soh</name>
<affiliation>
<mods:affiliation>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bae, Tae Ung" sort="Bae, Tae Ung" uniqKey="Bae T" first="Tae-Sung" last="Bae">Tae-Sung Bae</name>
<affiliation>
<mods:affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
<affiliation>
<mods:affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: cbuperio@jbnu.ac.kr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/jbm.b.32769</idno>
<idno type="url">https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005958</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005958</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO
<hi rend="subscript">2</hi>
layer
<ref type="note" target="#fn1"></ref>
</title>
<author>
<name sortKey="Moon, So Ee" sort="Moon, So Ee" uniqKey="Moon S" first="So-Hee" last="Moon">So-Hee Moon</name>
<affiliation>
<mods:affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Ae" sort="Lee, Seung Ae" uniqKey="Lee S" first="Seung-Jae" last="Lee">Seung-Jae Lee</name>
<affiliation>
<mods:affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Park, Il Ong" sort="Park, Il Ong" uniqKey="Park I" first="Il-Song" last="Park">Il-Song Park</name>
<affiliation>
<mods:affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Min O" sort="Lee, Min O" uniqKey="Lee M" first="Min-Ho" last="Lee">Min-Ho Lee</name>
<affiliation>
<mods:affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soh, Yun O" sort="Soh, Yun O" uniqKey="Soh Y" first="Yun-Jo" last="Soh">Yun-Jo Soh</name>
<affiliation>
<mods:affiliation>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bae, Tae Ung" sort="Bae, Tae Ung" uniqKey="Bae T" first="Tae-Sung" last="Bae">Tae-Sung Bae</name>
<affiliation>
<mods:affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
<affiliation>
<mods:affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: cbuperio@jbnu.ac.kr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">100B</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2053">2053</biblScope>
<biblScope unit="page" to="2059">2059</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-11">2012-11</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjacent bones</term>
<term>Alloy</term>
<term>Alloy implants</term>
<term>Alloy surface</term>
<term>Alloy surfaces</term>
<term>Anodic</term>
<term>Anodic oxidation</term>
<term>Anodic oxidation treatment</term>
<term>Anodized</term>
<term>Anodizing</term>
<term>Anodizing oxidation</term>
<term>Appl biomater</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bisphosphonates</term>
<term>Bisphosphonates family drug</term>
<term>Bone area</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone response</term>
<term>Brain korea</term>
<term>Cellular reactions</term>
<term>Control group</term>
<term>Current density</term>
<term>Dense nanotube tio2 layer</term>
<term>Dental implants</term>
<term>Drug loading capacity</term>
<term>Drug release</term>
<term>Drug treatment group</term>
<term>Electrolyte solution</term>
<term>Experimental animals</term>
<term>Glycerol solution</term>
<term>Heat treatments</term>
<term>Ibandronate</term>
<term>Implant</term>
<term>Implant material</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>Implant surface layer</term>
<term>Mater</term>
<term>Nanostructure surface</term>
<term>Nanotube</term>
<term>Nanotube structure</term>
<term>Nanotube tio2 layer</term>
<term>Nanotubular</term>
<term>Nanotubular structure</term>
<term>Nanotubular tio2 layer</term>
<term>Nontreatment group</term>
<term>Oral bioscience</term>
<term>Osseointegration</term>
<term>Osteoblast</term>
<term>Osteoblast adhesion</term>
<term>Osteoclast</term>
<term>Osteoclastic activity</term>
<term>Oxidative</term>
<term>Pilot study</term>
<term>Present study</term>
<term>Pulse power</term>
<term>Pure titanium</term>
<term>Recent publication</term>
<term>Removal torque</term>
<term>Removal torque values</term>
<term>Surface analysis</term>
<term>Surface characteristics</term>
<term>Surface layer</term>
<term>Surface topography</term>
<term>Surface treatments</term>
<term>Surgery area</term>
<term>Test group</term>
<term>Tibia</term>
<term>Tio2</term>
<term>Tio2 nanotubes</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Total bone area</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adjacent bones</term>
<term>Alloy</term>
<term>Alloy implants</term>
<term>Alloy surface</term>
<term>Alloy surfaces</term>
<term>Anodic</term>
<term>Anodic oxidation</term>
<term>Anodic oxidation treatment</term>
<term>Anodized</term>
<term>Anodizing</term>
<term>Anodizing oxidation</term>
<term>Appl biomater</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bisphosphonates</term>
<term>Bisphosphonates family drug</term>
<term>Bone area</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone response</term>
<term>Brain korea</term>
<term>Cellular reactions</term>
<term>Control group</term>
<term>Current density</term>
<term>Dense nanotube tio2 layer</term>
<term>Dental implants</term>
<term>Drug loading capacity</term>
<term>Drug release</term>
<term>Drug treatment group</term>
<term>Electrolyte solution</term>
<term>Experimental animals</term>
<term>Glycerol solution</term>
<term>Heat treatments</term>
<term>Ibandronate</term>
<term>Implant</term>
<term>Implant material</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>Implant surface layer</term>
<term>Mater</term>
<term>Nanostructure surface</term>
<term>Nanotube</term>
<term>Nanotube structure</term>
<term>Nanotube tio2 layer</term>
<term>Nanotubular</term>
<term>Nanotubular structure</term>
<term>Nanotubular tio2 layer</term>
<term>Nontreatment group</term>
<term>Oral bioscience</term>
<term>Osseointegration</term>
<term>Osteoblast</term>
<term>Osteoblast adhesion</term>
<term>Osteoclast</term>
<term>Osteoclastic activity</term>
<term>Oxidative</term>
<term>Pilot study</term>
<term>Present study</term>
<term>Pulse power</term>
<term>Pure titanium</term>
<term>Recent publication</term>
<term>Removal torque</term>
<term>Removal torque values</term>
<term>Surface analysis</term>
<term>Surface characteristics</term>
<term>Surface layer</term>
<term>Surface topography</term>
<term>Surface treatments</term>
<term>Surgery area</term>
<term>Test group</term>
<term>Tibia</term>
<term>Tio2</term>
<term>Tio2 nanotubes</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Total bone area</term>
<term>Wiley periodicals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS. In vitro, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>nanotube</json:string>
<json:string>implant</json:string>
<json:string>tio2</json:string>
<json:string>test group</json:string>
<json:string>bisphosphonates</json:string>
<json:string>ibandronate</json:string>
<json:string>osseointegration</json:string>
<json:string>control group</json:string>
<json:string>tibia</json:string>
<json:string>bone contact</json:string>
<json:string>nanotubular</json:string>
<json:string>nanotube tio2 layer</json:string>
<json:string>osteoblast</json:string>
<json:string>alloy implants</json:string>
<json:string>anodic</json:string>
<json:string>anodized</json:string>
<json:string>anodizing</json:string>
<json:string>removal torque</json:string>
<json:string>biomaterials</json:string>
<json:string>biomed mater</json:string>
<json:string>bone area</json:string>
<json:string>osteoclast</json:string>
<json:string>total bone area</json:string>
<json:string>biomed</json:string>
<json:string>present study</json:string>
<json:string>oxidative</json:string>
<json:string>titanium</json:string>
<json:string>implant surface</json:string>
<json:string>alloy</json:string>
<json:string>anodic oxidation</json:string>
<json:string>mater</json:string>
<json:string>drug treatment group</json:string>
<json:string>tio2 nanotubes</json:string>
<json:string>glycerol solution</json:string>
<json:string>electrolyte solution</json:string>
<json:string>implant material</json:string>
<json:string>adjacent bones</json:string>
<json:string>nanotube structure</json:string>
<json:string>titanium implants</json:string>
<json:string>osteoclastic activity</json:string>
<json:string>dental implants</json:string>
<json:string>surface characteristics</json:string>
<json:string>bisphosphonates family drug</json:string>
<json:string>anodic oxidation treatment</json:string>
<json:string>brain korea</json:string>
<json:string>oral bioscience</json:string>
<json:string>removal torque values</json:string>
<json:string>anodizing oxidation</json:string>
<json:string>biomedical materials research</json:string>
<json:string>titanium surfaces</json:string>
<json:string>nanotubular tio2 layer</json:string>
<json:string>torque</json:string>
<json:string>recent publication</json:string>
<json:string>pure titanium</json:string>
<json:string>bone response</json:string>
<json:string>surface treatments</json:string>
<json:string>alloy surfaces</json:string>
<json:string>surface layer</json:string>
<json:string>appl biomater</json:string>
<json:string>pulse power</json:string>
<json:string>heat treatments</json:string>
<json:string>drug release</json:string>
<json:string>experimental animals</json:string>
<json:string>surgery area</json:string>
<json:string>surface topography</json:string>
<json:string>surface analysis</json:string>
<json:string>drug loading capacity</json:string>
<json:string>current density</json:string>
<json:string>implant materials</json:string>
<json:string>pilot study</json:string>
<json:string>wiley periodicals</json:string>
<json:string>nontreatment group</json:string>
<json:string>nanotubular structure</json:string>
<json:string>cellular reactions</json:string>
<json:string>titanium surface</json:string>
<json:string>nanostructure surface</json:string>
<json:string>dense nanotube tio2 layer</json:string>
<json:string>alloy surface</json:string>
<json:string>bone formation</json:string>
<json:string>osteoblast adhesion</json:string>
<json:string>implant surface layer</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>So‐Hee Moon</name>
<affiliations>
<json:string>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Seung‐Jae Lee</name>
<affiliations>
<json:string>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Il‐Song Park</name>
<affiliations>
<json:string>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Min‐Ho Lee</name>
<affiliations>
<json:string>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yun‐Jo Soh</name>
<affiliations>
<json:string>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Tae‐Sung Bae</name>
<affiliations>
<json:string>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hyung‐Seop Kim</name>
<affiliations>
<json:string>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
<json:string>E-mail: cbuperio@jbnu.ac.kr</json:string>
<json:string>Correspondence address: Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>titanium (alloys)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surface modification</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>drug delivery/release</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nanomodified surfaces</value>
</json:item>
</subject>
<articleId>
<json:string>JBM32769</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-8SHGJ0XJ-H</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS. In vitro, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p > 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</abstract>
<qualityIndicators>
<score>9.694</score>
<pdfWordCount>4694</pdfWordCount>
<pdfCharCount>28454</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>268</abstractWordCount>
<abstractCharCount>1737</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer</title>
<pmid>
<json:string>22915455</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1552-4981</json:string>
</doi>
<issn>
<json:string>1552-4973</json:string>
</issn>
<eissn>
<json:string>1552-4981</json:string>
</eissn>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<volume>100B</volume>
<issue>8</issue>
<pages>
<first>2053</first>
<last>2059</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>WILEY PERIODICALS, INC.</json:string>
<json:string>ORIGINAL RESEARCH REPORT FIGURE</json:string>
<json:string>ORIGINAL RESEARCH REPORT Implantation</json:string>
<json:string>Kjmeditech, Korea</json:string>
<json:string>Ministry of Education, Science and Technology</json:string>
<json:string>Chonbuk National University, Jeonju, South Korea Received</json:string>
<json:string>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain</json:string>
<json:string>Chonbuk National University, Jeonju, South Korea</json:string>
<json:string>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain</json:string>
<json:string>Use Committee of the Chonbuk National University Laboratory Animal Center, Jeonju, South Korea</json:string>
<json:string>Wiley Periodicals, Inc</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Sung Bae</json:string>
<json:string>S. Kim</json:string>
</persName>
<placeName>
<json:string>IL</json:string>
<json:string>Germany</json:string>
<json:string>Korea</json:string>
<json:string>Helsinki</json:string>
<json:string>Japan</json:string>
<json:string>Tokyo</json:string>
<json:string>Chicago</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Bjursten et al.</json:string>
<json:string>Schwartz et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-8SHGJ0XJ-H</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
<json:string>4 - radiotherapie. traitement instrumental. physiotherapie. reeducation. readaptation, orthophonie, crenotherapie. traitement dietetique et traitements divers (generalites)</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/jbm.b.32769</json:string>
</doi>
<id>B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO
<hi rend="subscript">2</hi>
layer
<ref type="note" target="#fn1"></ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2012 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2012-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO
<hi rend="subscript">2</hi>
layer
<ref type="note" target="#fn1"></ref>
</title>
<title level="a" type="short" xml:lang="en">Bioactivity of Ti‐6Al‐4V Alloy Implants</title>
<author xml:id="author-0000">
<persName>
<forename type="first">So‐Hee</forename>
<surname>Moon</surname>
</persName>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Seung‐Jae</forename>
<surname>Lee</surname>
</persName>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Il‐Song</forename>
<surname>Park</surname>
</persName>
<affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Min‐Ho</forename>
<surname>Lee</surname>
</persName>
<affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Yun‐Jo</forename>
<surname>Soh</surname>
</persName>
<affiliation>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Tae‐Sung</forename>
<surname>Bae</surname>
</persName>
<affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006" role="corresp">
<persName>
<forename type="first">Hyung‐Seop</forename>
<surname>Kim</surname>
</persName>
<email>cbuperio@jbnu.ac.kr</email>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea
<address>
<country key="KR"></country>
</address>
</affiliation>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
</author>
<idno type="istex">B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0</idno>
<idno type="ark">ark:/67375/WNG-8SHGJ0XJ-H</idno>
<idno type="DOI">10.1002/jbm.b.32769</idno>
<idno type="unit">JBM32769</idno>
<idno type="toTypesetVersion">file:JBM.JBM32769.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="pISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<idno type="book-DOI">10.1002/(ISSN)1552-4981</idno>
<idno type="book-part-DOI">10.1002/jbm.b.v100b.8</idno>
<idno type="product">JBM</idno>
<imprint>
<biblScope unit="vol">100B</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2053">2053</biblScope>
<biblScope unit="page" to="2059">2059</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces
<hi rend="italic">in vitro</hi>
as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group).
<hi rend="italic">In vitro</hi>
, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size.
<hi rend="italic">In vivo</hi>
, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS.
<hi rend="italic">In vitro</hi>
, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (
<hi rend="italic">p</hi>
< 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">titanium (alloys)</term>
<term xml:id="kwd2">surface modification</term>
<term xml:id="kwd3">drug delivery/release</term>
<term xml:id="kwd4">nanomodified surfaces</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1552-4981</doi>
<issn type="print">1552-4973</issn>
<issn type="electronic">1552-4981</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Journal of Biomedical Materials Research</journalTitle>
<accessionId ref="info:x-wiley/issn/00219304">0021-9304</accessionId>
<accessionId ref="info:x-wiley/issn/10974636">1097-4636</accessionId>
<pubYear year="2004">2004</pubYear>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi origin="wiley" registered="yes">10.1002/jbm.b.v100b.8</doi>
<numberingGroup>
<numbering type="journalVolume" number="100">100B</numbering>
<numbering type="journalIssue">8</numbering>
</numberingGroup>
<coverDate startDate="2012-11">November 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="50" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jbm.b.32769</doi>
<idGroup>
<id type="unit" value="JBM32769"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-11-08"></event>
<event type="manuscriptRevised" date="2012-04-10"></event>
<event type="manuscriptAccepted" date="2012-06-13"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.9 mode:FullText" date="2012-10-09"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-08-22"></event>
<event type="firstOnline" date="2012-08-22"></event>
<event type="publishedOnlineFinalForm" date="2012-10-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-29"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2053</numbering>
<numbering type="pageLast">2059</numbering>
</numberingGroup>
<correspondenceTo>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBM32769.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="30"></count>
<count type="wordTotal" number="5607"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO
<sub>2</sub>
layer
<link href="#fn1"></link>
</title>
<title type="short" xml:lang="en">Bioactivity of Ti‐6Al‐4V Alloy Implants</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>So‐Hee</givenNames>
<familyName>Moon</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Seung‐Jae</givenNames>
<familyName>Lee</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Il‐Song</givenNames>
<familyName>Park</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Min‐Ho</givenNames>
<familyName>Lee</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Yun‐Jo</givenNames>
<familyName>Soh</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Tae‐Sung</givenNames>
<familyName>Bae</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Hyung‐Seop</givenNames>
<familyName>Kim</familyName>
</personName>
<contactDetails>
<email>cbuperio@jbnu.ac.kr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="KR" type="organization">
<unparsedAffiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="KR" type="organization">
<unparsedAffiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="KR" type="organization">
<unparsedAffiliation>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">titanium (alloys)</keyword>
<keyword xml:id="kwd2">surface modification</keyword>
<keyword xml:id="kwd3">drug delivery/release</keyword>
<keyword xml:id="kwd4">nanomodified surfaces</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Ministry of Education, Science and Technology</fundingAgency>
<fundingNumber>2010‐0013251</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces
<i>in vitro</i>
as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group).
<i>In vitro</i>
, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size.
<i>In vivo</i>
, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS.
<i>In vitro</i>
, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (
<i>p</i>
< 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>
<b>How to cite this article</b>
: Moon S‐H, Lee S‐J, Park I‐S, Lee M‐H, Soh Y‐J, Bae T‐S, Kim H‐S. 2012. Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO
<sub>2</sub>
layer. J Biomed Mater Res Part B 2012:100B:2053–2059.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Bioactivity of Ti‐6Al‐4V Alloy Implants</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer</title>
</titleInfo>
<name type="personal">
<namePart type="given">So‐Hee</namePart>
<namePart type="family">Moon</namePart>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung‐Jae</namePart>
<namePart type="family">Lee</namePart>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Il‐Song</namePart>
<namePart type="family">Park</namePart>
<affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min‐Ho</namePart>
<namePart type="family">Lee</namePart>
<affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun‐Jo</namePart>
<namePart type="family">Soh</namePart>
<affiliation>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tae‐Sung</namePart>
<namePart type="family">Bae</namePart>
<affiliation>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyung‐Seop</namePart>
<namePart type="family">Kim</namePart>
<affiliation>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<affiliation>E-mail: cbuperio@jbnu.ac.kr</affiliation>
<affiliation>Correspondence address: Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-11</dateIssued>
<dateCaptured encoding="w3cdtf">2011-11-08</dateCaptured>
<dateValid encoding="w3cdtf">2012-06-13</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">5</extent>
<extent unit="tables">1</extent>
<extent unit="references">30</extent>
<extent unit="words">5607</extent>
</physicalDescription>
<abstract lang="en">Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS. In vitro, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</abstract>
<note type="content">*How to cite this article: Moon S‐H, Lee S‐J, Park I‐S, Lee M‐H, Soh Y‐J, Bae T‐S, Kim H‐S. 2012. Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer. J Biomed Mater Res Part B 2012:100B:2053–2059.</note>
<note type="funding">Ministry of Education, Science and Technology - No. 2010‐0013251; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>titanium (alloys)</topic>
<topic>surface modification</topic>
<topic>drug delivery/release</topic>
<topic>nanomodified surfaces</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1552-4973</identifier>
<identifier type="eISSN">1552-4981</identifier>
<identifier type="DOI">10.1002/(ISSN)1552-4981</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>100B</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>2053</start>
<end>2059</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Journal of Biomedical Materials Research</title>
</titleInfo>
<identifier type="ISSN">0021-9304</identifier>
<identifier type="ISSN">1097-4636</identifier>
<part>
<date point="end">2004</date>
</part>
</relatedItem>
<identifier type="istex">B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0</identifier>
<identifier type="ark">ark:/67375/WNG-8SHGJ0XJ-H</identifier>
<identifier type="DOI">10.1002/jbm.b.32769</identifier>
<identifier type="ArticleID">JBM32769</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005958 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 005958 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0
   |texte=   Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022