Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families

Identifieur interne : 003F29 ( Istex/Corpus ); précédent : 003F28; suivant : 003F30

Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families

Auteurs : Rodney M. Feldmann ; Carrie E. Schweitzer ; Hiroaki Karasawa

Source :

RBID : ISTEX:7FA40AA03F02C9BA84FF976E49FB3060906BE043

English descriptors


Url:
DOI: 10.1651/10-3423.1

Links to Exploration step

ISTEX:7FA40AA03F02C9BA84FF976E49FB3060906BE043

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
<author>
<name sortKey="Feldmann, Rodney M" sort="Feldmann, Rodney M" uniqKey="Feldmann R" first="Rodney M." last="Feldmann">Rodney M. Feldmann</name>
</author>
<author>
<name sortKey="Schweitzer, Carrie E" sort="Schweitzer, Carrie E" uniqKey="Schweitzer C" first="Carrie E." last="Schweitzer">Carrie E. Schweitzer</name>
</author>
<author>
<name sortKey="Karasawa, Hiroaki" sort="Karasawa, Hiroaki" uniqKey="Karasawa H" first="Hiroaki" last="Karasawa">Hiroaki Karasawa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7FA40AA03F02C9BA84FF976E49FB3060906BE043</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1651/10-3423.1</idno>
<idno type="url">https://api.istex.fr/document/7FA40AA03F02C9BA84FF976E49FB3060906BE043/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003F29</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003F29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
<author>
<name sortKey="Feldmann, Rodney M" sort="Feldmann, Rodney M" uniqKey="Feldmann R" first="Rodney M." last="Feldmann">Rodney M. Feldmann</name>
</author>
<author>
<name sortKey="Schweitzer, Carrie E" sort="Schweitzer, Carrie E" uniqKey="Schweitzer C" first="Carrie E." last="Schweitzer">Carrie E. Schweitzer</name>
</author>
<author>
<name sortKey="Karasawa, Hiroaki" sort="Karasawa, Hiroaki" uniqKey="Karasawa H" first="Hiroaki" last="Karasawa">Hiroaki Karasawa</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Crustacean Biology</title>
<title level="j" type="abbrev">JCB</title>
<idno type="ISSN">0278-0372</idno>
<idno type="eISSN">1937-240X</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<date type="published" when="2011">2011</date>
<biblScope unit="volume">31</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="523">523</biblScope>
<biblScope unit="page" to="565">565</biblScope>
</imprint>
<idno type="ISSN">0278-0372</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0278-0372</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abhandlungen</term>
<term>Ahyong</term>
<term>Albian</term>
<term>Alcock</term>
<term>Anomura</term>
<term>Antennal</term>
<term>Antennar groove</term>
<term>Anteriorly</term>
<term>Anterolateral</term>
<term>Anterolateral margin</term>
<term>Anterolateral margins</term>
<term>Archaeobrachyura</term>
<term>Articulating</term>
<term>Augenrest</term>
<term>Bakel</term>
<term>Basinotopidae</term>
<term>Basinotopus</term>
<term>Beschin</term>
<term>Beurlen</term>
<term>Bifid</term>
<term>Bilobed</term>
<term>Biological society</term>
<term>Bmnh</term>
<term>Brachyura</term>
<term>Brachyuran</term>
<term>Brachyuran crabs</term>
<term>Branchial</term>
<term>Branchial regions</term>
<term>Branchiocardiac</term>
<term>Branchiocardiac groove</term>
<term>Branchiocardiac grooves</term>
<term>Bremer</term>
<term>Bremer support</term>
<term>British columbia</term>
<term>Buccal</term>
<term>Buccal cavity</term>
<term>Camarocarcinidae</term>
<term>Campanian</term>
<term>Carapace</term>
<term>Carapace grooves</term>
<term>Carapace regions</term>
<term>Carapace width</term>
<term>Cardiac</term>
<term>Cardiac region</term>
<term>Cenomanocarcinidae</term>
<term>Cenomanocarcinus</term>
<term>Cervical</term>
<term>Cervical groove</term>
<term>Chela</term>
<term>Chelate</term>
<term>Clade</term>
<term>Collins</term>
<term>Convex</term>
<term>Coxa</term>
<term>Coxal</term>
<term>Crab</term>
<term>Crabs</term>
<term>Cretaceous</term>
<term>Crista dentata</term>
<term>Crustacea</term>
<term>Crustacean</term>
<term>Crustacean biology</term>
<term>Crustaces</term>
<term>Cyclodorippidae</term>
<term>Cyclodorippoida</term>
<term>Cyclodorippoidea</term>
<term>Cymonomidae</term>
<term>Dakoticancridae</term>
<term>Dakoticancroidea</term>
<term>Decapod</term>
<term>Decapod crustaceans</term>
<term>Decapoda</term>
<term>Decapodes</term>
<term>Diaulacidae</term>
<term>Distance posteriorly</term>
<term>Distinct ventrally</term>
<term>Dorsal</term>
<term>Dorsal carapace</term>
<term>Dorsal view</term>
<term>Dorsally</term>
<term>Downturned</term>
<term>Dromia</term>
<term>Dromiacea</term>
<term>Dromiidae</term>
<term>Dromioidea</term>
<term>Dromioids</term>
<term>Dynomenidae</term>
<term>Dynomenidae ortmann</term>
<term>Early cretaceous</term>
<term>Eocene</term>
<term>Epibranchial</term>
<term>Epimeres</term>
<term>Episternites</term>
<term>Etyidae</term>
<term>Eubrachyura</term>
<term>Eubrachyurans</term>
<term>Extant</term>
<term>Extant families</term>
<term>Extinct</term>
<term>Extinct families</term>
<term>Extinct taxa</term>
<term>Family rank</term>
<term>Family status</term>
<term>Fauna</term>
<term>Feldmann</term>
<term>Feldmannia</term>
<term>Feldmannia guinot</term>
<term>Female pleon</term>
<term>Female pleonites</term>
<term>Fifth pereiopods</term>
<term>Fissure</term>
<term>Flank</term>
<term>Forster</term>
<term>Fossil</term>
<term>Fossil decapod crustaceans</term>
<term>Fossil record</term>
<term>Frontal margin</term>
<term>Gastric neck</term>
<term>Genital</term>
<term>Genital openings</term>
<term>Genital openings coxal</term>
<term>Genus</term>
<term>Geologic</term>
<term>Geologic cretaceous</term>
<term>Geologic jurassic</term>
<term>Geologica</term>
<term>Geological society</term>
<term>Geological survey</term>
<term>Geologie</term>
<term>Glaessner</term>
<term>Glaessneropsidae</term>
<term>Glaessneropsoidea</term>
<term>Goniodromitidae</term>
<term>Gonopore</term>
<term>Gonopores</term>
<term>Groove</term>
<term>Guinot</term>
<term>Haan</term>
<term>Hepatic</term>
<term>Hepatic regions</term>
<term>Holotype</term>
<term>Homolica</term>
<term>Homolid</term>
<term>Homolidae</term>
<term>Homolodromiidae</term>
<term>Homolodromiidae alcock</term>
<term>Homolodromioidea</term>
<term>Homolodromioids</term>
<term>Homoloidea</term>
<term>Homoloids</term>
<term>Ibericancridae</term>
<term>Inflated subhepatic region</term>
<term>Jagt</term>
<term>Jahrbuch</term>
<term>Jakobsen</term>
<term>Jurassic</term>
<term>Kaiserlichen akademie</term>
<term>Karasawa</term>
<term>Kato</term>
<term>Konidromitidae</term>
<term>Last anterolateral spine</term>
<term>Late cretaceous</term>
<term>Lateral</term>
<term>Lateral margin</term>
<term>Lateral margins</term>
<term>Laterally</term>
<term>Lato</term>
<term>Latreilliidae</term>
<term>Lecythocaridae</term>
<term>Linea</term>
<term>Linea homolica</term>
<term>Linnaeus</term>
<term>Long epimeres</term>
<term>Longitudinal</term>
<term>Longitudinally</term>
<term>Longodromitidae</term>
<term>Longodromitidae schweitzer</term>
<term>Lorenthey</term>
<term>Maastrichtian</term>
<term>Male pleon</term>
<term>Mantell</term>
<term>Margin</term>
<term>Maxilliped</term>
<term>Maxillipeds</term>
<term>Maximum carapace width</term>
<term>Mclay</term>
<term>Median rostral spine</term>
<term>Memoires</term>
<term>Merus</term>
<term>Mesogastric region</term>
<term>Mesozoic</term>
<term>Millerae</term>
<term>Milne</term>
<term>Milne edwards</term>
<term>Miocene</term>
<term>Mithracitidae</term>
<term>Mizunami</term>
<term>Modern oceans</term>
<term>Monophyly</term>
<term>Montecchio maggiore</term>
<term>Museo</term>
<term>Museo civico</term>
<term>Natural history</term>
<term>Natural history museum</term>
<term>Naturelle</term>
<term>Naturelles</term>
<term>Naturhistorischen museums</term>
<term>Necrocarcinidae</term>
<term>Necrocarcinidae forster</term>
<term>Neues</term>
<term>Neues jahrbuch</term>
<term>Nhmw</term>
<term>Orbital margin</term>
<term>Ornamentation</term>
<term>Ortmann</term>
<term>Other families</term>
<term>Other sternites</term>
<term>Ovate</term>
<term>Palaeocorystidae</term>
<term>Palaontologie</term>
<term>Paleocene</term>
<term>Paleontology</term>
<term>Paratype</term>
<term>Patrulius</term>
<term>Penial tube</term>
<term>Pereiopod</term>
<term>Pereiopods</term>
<term>Phylogenetic</term>
<term>Phylogenetic analysis</term>
<term>Phylogeny</term>
<term>Pleon</term>
<term>Pleonal</term>
<term>Pleonal segments</term>
<term>Pleonal somite</term>
<term>Pleonites</term>
<term>Pleopod</term>
<term>Podotremata</term>
<term>Podotrematous</term>
<term>Podotrematous crabs</term>
<term>Podotreme</term>
<term>Podotreme crabs</term>
<term>Podotremes</term>
<term>Postcervical</term>
<term>Postcervical groove</term>
<term>Posterior margin</term>
<term>Posteriorly</term>
<term>Posterolateral</term>
<term>Posterolateral margin</term>
<term>Posterolateral margins</term>
<term>Poupiniidae</term>
<term>Prosopidae</term>
<term>Queensland</term>
<term>Raninidae</term>
<term>Raninoidea</term>
<term>Rathbun</term>
<term>Renal opening</term>
<term>Reuss</term>
<term>Rostral</term>
<term>Rostrum</term>
<term>Rotl</term>
<term>Saint laurent</term>
<term>Same level</term>
<term>Scale bars</term>
<term>Scholtz</term>
<term>Schweitzer</term>
<term>Sciences naturelles</term>
<term>Second antennal coxa</term>
<term>Section dromiacea</term>
<term>Sella turcica</term>
<term>Sensu</term>
<term>Seorsus</term>
<term>Separate status</term>
<term>Shale</term>
<term>Sister group</term>
<term>Smithsonian institution</term>
<term>Somite</term>
<term>Spermatheca</term>
<term>Sphaerodromiidae</term>
<term>Spine</term>
<term>Stenzel</term>
<term>Sternal</term>
<term>Sternal suture</term>
<term>Sternal sutures</term>
<term>Sternite</term>
<term>Sternites</term>
<term>Sternum</term>
<term>Stimpson</term>
<term>Subdorsal</term>
<term>Subfamily</term>
<term>Subhepatic</term>
<term>Subhepatic region</term>
<term>Sulcate</term>
<term>Superfamily</term>
<term>Suture</term>
<term>Symethidae</term>
<term>Synapomorphies</term>
<term>Tavares</term>
<term>Taxon</term>
<term>Telson</term>
<term>Third maxilliped</term>
<term>Third maxillipeds</term>
<term>Third pereiopods</term>
<term>Thoracic</term>
<term>Thoracic sternites</term>
<term>Thoracic sternum</term>
<term>Torynommidae</term>
<term>Triangular epimeres</term>
<term>Tubercle</term>
<term>Type genus</term>
<term>Type species</term>
<term>Uber</term>
<term>Upper cretaceous</term>
<term>Urogastric region</term>
<term>Uropodal</term>
<term>Uropodal plate</term>
<term>Uropodal plates</term>
<term>Usnm</term>
<term>Vega</term>
<term>Ventral</term>
<term>Ventral extension</term>
<term>Ventral surface</term>
<term>Ventral view</term>
<term>Ventrally</term>
<term>Wien</term>
<term>Withers</term>
<term>Xandarocarcinus</term>
<term>Xandaros</term>
<term>Xanthosia</term>
<term>Zoological nomenclature</term>
<term>Zoology</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abhandlungen</term>
<term>Ahyong</term>
<term>Albian</term>
<term>Alcock</term>
<term>Anomura</term>
<term>Antennal</term>
<term>Antennar groove</term>
<term>Anteriorly</term>
<term>Anterolateral</term>
<term>Anterolateral margin</term>
<term>Anterolateral margins</term>
<term>Archaeobrachyura</term>
<term>Articulating</term>
<term>Augenrest</term>
<term>Bakel</term>
<term>Basinotopidae</term>
<term>Basinotopus</term>
<term>Beschin</term>
<term>Beurlen</term>
<term>Bifid</term>
<term>Bilobed</term>
<term>Biological society</term>
<term>Bmnh</term>
<term>Brachyura</term>
<term>Brachyuran</term>
<term>Brachyuran crabs</term>
<term>Branchial</term>
<term>Branchial regions</term>
<term>Branchiocardiac</term>
<term>Branchiocardiac groove</term>
<term>Branchiocardiac grooves</term>
<term>Bremer</term>
<term>Bremer support</term>
<term>British columbia</term>
<term>Buccal</term>
<term>Buccal cavity</term>
<term>Camarocarcinidae</term>
<term>Campanian</term>
<term>Carapace</term>
<term>Carapace grooves</term>
<term>Carapace regions</term>
<term>Carapace width</term>
<term>Cardiac</term>
<term>Cardiac region</term>
<term>Cenomanocarcinidae</term>
<term>Cenomanocarcinus</term>
<term>Cervical</term>
<term>Cervical groove</term>
<term>Chela</term>
<term>Chelate</term>
<term>Clade</term>
<term>Collins</term>
<term>Convex</term>
<term>Coxa</term>
<term>Coxal</term>
<term>Crab</term>
<term>Crabs</term>
<term>Cretaceous</term>
<term>Crista dentata</term>
<term>Crustacea</term>
<term>Crustacean</term>
<term>Crustacean biology</term>
<term>Crustaces</term>
<term>Cyclodorippidae</term>
<term>Cyclodorippoida</term>
<term>Cyclodorippoidea</term>
<term>Cymonomidae</term>
<term>Dakoticancridae</term>
<term>Dakoticancroidea</term>
<term>Decapod</term>
<term>Decapod crustaceans</term>
<term>Decapoda</term>
<term>Decapodes</term>
<term>Diaulacidae</term>
<term>Distance posteriorly</term>
<term>Distinct ventrally</term>
<term>Dorsal</term>
<term>Dorsal carapace</term>
<term>Dorsal view</term>
<term>Dorsally</term>
<term>Downturned</term>
<term>Dromia</term>
<term>Dromiacea</term>
<term>Dromiidae</term>
<term>Dromioidea</term>
<term>Dromioids</term>
<term>Dynomenidae</term>
<term>Dynomenidae ortmann</term>
<term>Early cretaceous</term>
<term>Eocene</term>
<term>Epibranchial</term>
<term>Epimeres</term>
<term>Episternites</term>
<term>Etyidae</term>
<term>Eubrachyura</term>
<term>Eubrachyurans</term>
<term>Extant</term>
<term>Extant families</term>
<term>Extinct</term>
<term>Extinct families</term>
<term>Extinct taxa</term>
<term>Family rank</term>
<term>Family status</term>
<term>Fauna</term>
<term>Feldmann</term>
<term>Feldmannia</term>
<term>Feldmannia guinot</term>
<term>Female pleon</term>
<term>Female pleonites</term>
<term>Fifth pereiopods</term>
<term>Fissure</term>
<term>Flank</term>
<term>Forster</term>
<term>Fossil</term>
<term>Fossil decapod crustaceans</term>
<term>Fossil record</term>
<term>Frontal margin</term>
<term>Gastric neck</term>
<term>Genital</term>
<term>Genital openings</term>
<term>Genital openings coxal</term>
<term>Genus</term>
<term>Geologic</term>
<term>Geologic cretaceous</term>
<term>Geologic jurassic</term>
<term>Geologica</term>
<term>Geological society</term>
<term>Geological survey</term>
<term>Geologie</term>
<term>Glaessner</term>
<term>Glaessneropsidae</term>
<term>Glaessneropsoidea</term>
<term>Goniodromitidae</term>
<term>Gonopore</term>
<term>Gonopores</term>
<term>Groove</term>
<term>Guinot</term>
<term>Haan</term>
<term>Hepatic</term>
<term>Hepatic regions</term>
<term>Holotype</term>
<term>Homolica</term>
<term>Homolid</term>
<term>Homolidae</term>
<term>Homolodromiidae</term>
<term>Homolodromiidae alcock</term>
<term>Homolodromioidea</term>
<term>Homolodromioids</term>
<term>Homoloidea</term>
<term>Homoloids</term>
<term>Ibericancridae</term>
<term>Inflated subhepatic region</term>
<term>Jagt</term>
<term>Jahrbuch</term>
<term>Jakobsen</term>
<term>Jurassic</term>
<term>Kaiserlichen akademie</term>
<term>Karasawa</term>
<term>Kato</term>
<term>Konidromitidae</term>
<term>Last anterolateral spine</term>
<term>Late cretaceous</term>
<term>Lateral</term>
<term>Lateral margin</term>
<term>Lateral margins</term>
<term>Laterally</term>
<term>Lato</term>
<term>Latreilliidae</term>
<term>Lecythocaridae</term>
<term>Linea</term>
<term>Linea homolica</term>
<term>Linnaeus</term>
<term>Long epimeres</term>
<term>Longitudinal</term>
<term>Longitudinally</term>
<term>Longodromitidae</term>
<term>Longodromitidae schweitzer</term>
<term>Lorenthey</term>
<term>Maastrichtian</term>
<term>Male pleon</term>
<term>Mantell</term>
<term>Margin</term>
<term>Maxilliped</term>
<term>Maxillipeds</term>
<term>Maximum carapace width</term>
<term>Mclay</term>
<term>Median rostral spine</term>
<term>Memoires</term>
<term>Merus</term>
<term>Mesogastric region</term>
<term>Mesozoic</term>
<term>Millerae</term>
<term>Milne</term>
<term>Milne edwards</term>
<term>Miocene</term>
<term>Mithracitidae</term>
<term>Mizunami</term>
<term>Modern oceans</term>
<term>Monophyly</term>
<term>Montecchio maggiore</term>
<term>Museo</term>
<term>Museo civico</term>
<term>Natural history</term>
<term>Natural history museum</term>
<term>Naturelle</term>
<term>Naturelles</term>
<term>Naturhistorischen museums</term>
<term>Necrocarcinidae</term>
<term>Necrocarcinidae forster</term>
<term>Neues</term>
<term>Neues jahrbuch</term>
<term>Nhmw</term>
<term>Orbital margin</term>
<term>Ornamentation</term>
<term>Ortmann</term>
<term>Other families</term>
<term>Other sternites</term>
<term>Ovate</term>
<term>Palaeocorystidae</term>
<term>Palaontologie</term>
<term>Paleocene</term>
<term>Paleontology</term>
<term>Paratype</term>
<term>Patrulius</term>
<term>Penial tube</term>
<term>Pereiopod</term>
<term>Pereiopods</term>
<term>Phylogenetic</term>
<term>Phylogenetic analysis</term>
<term>Phylogeny</term>
<term>Pleon</term>
<term>Pleonal</term>
<term>Pleonal segments</term>
<term>Pleonal somite</term>
<term>Pleonites</term>
<term>Pleopod</term>
<term>Podotremata</term>
<term>Podotrematous</term>
<term>Podotrematous crabs</term>
<term>Podotreme</term>
<term>Podotreme crabs</term>
<term>Podotremes</term>
<term>Postcervical</term>
<term>Postcervical groove</term>
<term>Posterior margin</term>
<term>Posteriorly</term>
<term>Posterolateral</term>
<term>Posterolateral margin</term>
<term>Posterolateral margins</term>
<term>Poupiniidae</term>
<term>Prosopidae</term>
<term>Queensland</term>
<term>Raninidae</term>
<term>Raninoidea</term>
<term>Rathbun</term>
<term>Renal opening</term>
<term>Reuss</term>
<term>Rostral</term>
<term>Rostrum</term>
<term>Rotl</term>
<term>Saint laurent</term>
<term>Same level</term>
<term>Scale bars</term>
<term>Scholtz</term>
<term>Schweitzer</term>
<term>Sciences naturelles</term>
<term>Second antennal coxa</term>
<term>Section dromiacea</term>
<term>Sella turcica</term>
<term>Sensu</term>
<term>Seorsus</term>
<term>Separate status</term>
<term>Shale</term>
<term>Sister group</term>
<term>Smithsonian institution</term>
<term>Somite</term>
<term>Spermatheca</term>
<term>Sphaerodromiidae</term>
<term>Spine</term>
<term>Stenzel</term>
<term>Sternal</term>
<term>Sternal suture</term>
<term>Sternal sutures</term>
<term>Sternite</term>
<term>Sternites</term>
<term>Sternum</term>
<term>Stimpson</term>
<term>Subdorsal</term>
<term>Subfamily</term>
<term>Subhepatic</term>
<term>Subhepatic region</term>
<term>Sulcate</term>
<term>Superfamily</term>
<term>Suture</term>
<term>Symethidae</term>
<term>Synapomorphies</term>
<term>Tavares</term>
<term>Taxon</term>
<term>Telson</term>
<term>Third maxilliped</term>
<term>Third maxillipeds</term>
<term>Third pereiopods</term>
<term>Thoracic</term>
<term>Thoracic sternites</term>
<term>Thoracic sternum</term>
<term>Torynommidae</term>
<term>Triangular epimeres</term>
<term>Tubercle</term>
<term>Type genus</term>
<term>Type species</term>
<term>Uber</term>
<term>Upper cretaceous</term>
<term>Urogastric region</term>
<term>Uropodal</term>
<term>Uropodal plate</term>
<term>Uropodal plates</term>
<term>Usnm</term>
<term>Vega</term>
<term>Ventral</term>
<term>Ventral extension</term>
<term>Ventral surface</term>
<term>Ventral view</term>
<term>Ventrally</term>
<term>Wien</term>
<term>Withers</term>
<term>Xandarocarcinus</term>
<term>Xandaros</term>
<term>Xanthosia</term>
<term>Zoological nomenclature</term>
<term>Zoology</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
</TEI>
<istex>
<corpusName>brill-journals</corpusName>
<keywords>
<teeft>
<json:string>feldmann</json:string>
<json:string>carapace</json:string>
<json:string>guinot</json:string>
<json:string>brachyura</json:string>
<json:string>crustacea</json:string>
<json:string>decapoda</json:string>
<json:string>pereiopods</json:string>
<json:string>superfamily</json:string>
<json:string>pleon</json:string>
<json:string>crustacean</json:string>
<json:string>cervical</json:string>
<json:string>fossil</json:string>
<json:string>sternite</json:string>
<json:string>holotype</json:string>
<json:string>dorsal</json:string>
<json:string>geologic</json:string>
<json:string>branchiocardiac</json:string>
<json:string>bmnh</json:string>
<json:string>sternites</json:string>
<json:string>cretaceous</json:string>
<json:string>haan</json:string>
<json:string>tavares</json:string>
<json:string>pereiopod</json:string>
<json:string>taxon</json:string>
<json:string>coxa</json:string>
<json:string>jurassic</json:string>
<json:string>clade</json:string>
<json:string>anterolateral</json:string>
<json:string>decapod</json:string>
<json:string>podotreme</json:string>
<json:string>somite</json:string>
<json:string>spermatheca</json:string>
<json:string>telson</json:string>
<json:string>posteriorly</json:string>
<json:string>karasawa</json:string>
<json:string>dromiacea</json:string>
<json:string>rathbun</json:string>
<json:string>crustacean biology</json:string>
<json:string>sternum</json:string>
<json:string>phylogeny</json:string>
<json:string>cervical groove</json:string>
<json:string>augenrest</json:string>
<json:string>groove</json:string>
<json:string>ventral</json:string>
<json:string>usnm</json:string>
<json:string>dynomenidae</json:string>
<json:string>subdorsal</json:string>
<json:string>suture</json:string>
<json:string>podotremata</json:string>
<json:string>natural history</json:string>
<json:string>pleonites</json:string>
<json:string>eocene</json:string>
<json:string>raninidae</json:string>
<json:string>homoloidea</json:string>
<json:string>crustaces</json:string>
<json:string>brachyuran</json:string>
<json:string>crab</json:string>
<json:string>geologic cretaceous</json:string>
<json:string>glaessner</json:string>
<json:string>branchiocardiac grooves</json:string>
<json:string>maxilliped</json:string>
<json:string>dromiidae</json:string>
<json:string>paleontology</json:string>
<json:string>pleonal</json:string>
<json:string>genus</json:string>
<json:string>subhepatic</json:string>
<json:string>homolodromioidea</json:string>
<json:string>eubrachyura</json:string>
<json:string>geologie</json:string>
<json:string>epimeres</json:string>
<json:string>bremer</json:string>
<json:string>postcervical</json:string>
<json:string>dorsal carapace</json:string>
<json:string>thoracic</json:string>
<json:string>glaessneropsoidea</json:string>
<json:string>posterolateral</json:string>
<json:string>branchiocardiac groove</json:string>
<json:string>lateral</json:string>
<json:string>ahyong</json:string>
<json:string>uropodal</json:string>
<json:string>necrocarcinidae</json:string>
<json:string>laterally</json:string>
<json:string>anteriorly</json:string>
<json:string>crabs</json:string>
<json:string>bremer support</json:string>
<json:string>naturelle</json:string>
<json:string>beurlen</json:string>
<json:string>postcervical groove</json:string>
<json:string>alcock</json:string>
<json:string>late cretaceous</json:string>
<json:string>synapomorphies</json:string>
<json:string>podotreme crabs</json:string>
<json:string>homolidae</json:string>
<json:string>xandarocarcinus</json:string>
<json:string>xanthosia</json:string>
<json:string>palaontologie</json:string>
<json:string>maastrichtian</json:string>
<json:string>dromioidea</json:string>
<json:string>bakel</json:string>
<json:string>basinotopus</json:string>
<json:string>mclay</json:string>
<json:string>coxal</json:string>
<json:string>rotl</json:string>
<json:string>sensu</json:string>
<json:string>mizunami</json:string>
<json:string>stimpson</json:string>
<json:string>ovate</json:string>
<json:string>raninoidea</json:string>
<json:string>podotrematous</json:string>
<json:string>cenomanocarcinidae</json:string>
<json:string>ortmann</json:string>
<json:string>geologic jurassic</json:string>
<json:string>neues jahrbuch</json:string>
<json:string>patrulius</json:string>
<json:string>pleopod</json:string>
<json:string>jahrbuch</json:string>
<json:string>monophyly</json:string>
<json:string>neues</json:string>
<json:string>longodromitidae</json:string>
<json:string>hepatic</json:string>
<json:string>reuss</json:string>
<json:string>posterior margin</json:string>
<json:string>cyclodorippoidea</json:string>
<json:string>palaeocorystidae</json:string>
<json:string>camarocarcinidae</json:string>
<json:string>goniodromitidae</json:string>
<json:string>branchial</json:string>
<json:string>triangular epimeres</json:string>
<json:string>buccal</json:string>
<json:string>prosopidae</json:string>
<json:string>rostrum</json:string>
<json:string>paratype</json:string>
<json:string>posterolateral margins</json:string>
<json:string>tubercle</json:string>
<json:string>homolica</json:string>
<json:string>seorsus</json:string>
<json:string>symethidae</json:string>
<json:string>albian</json:string>
<json:string>ibericancridae</json:string>
<json:string>ventrally</json:string>
<json:string>sphaerodromiidae</json:string>
<json:string>homolodromiidae</json:string>
<json:string>linea</json:string>
<json:string>fossil record</json:string>
<json:string>campanian</json:string>
<json:string>linea homolica</json:string>
<json:string>dakoticancroidea</json:string>
<json:string>xandaros</json:string>
<json:string>lateral margins</json:string>
<json:string>diaulacidae</json:string>
<json:string>dorsally</json:string>
<json:string>downturned</json:string>
<json:string>episternites</json:string>
<json:string>rostral</json:string>
<json:string>anomura</json:string>
<json:string>milne</json:string>
<json:string>subfamily</json:string>
<json:string>gonopores</json:string>
<json:string>abhandlungen</json:string>
<json:string>mantell</json:string>
<json:string>carapace regions</json:string>
<json:string>milne edwards</json:string>
<json:string>buccal cavity</json:string>
<json:string>dorsal view</json:string>
<json:string>etyidae</json:string>
<json:string>memoires</json:string>
<json:string>paleocene</json:string>
<json:string>uropodal plates</json:string>
<json:string>sulcate</json:string>
<json:string>sternal</json:string>
<json:string>extinct</json:string>
<json:string>jakobsen</json:string>
<json:string>latreilliidae</json:string>
<json:string>chelate</json:string>
<json:string>decapod crustaceans</json:string>
<json:string>stenzel</json:string>
<json:string>lorenthey</json:string>
<json:string>fissure</json:string>
<json:string>withers</json:string>
<json:string>genital</json:string>
<json:string>male pleon</json:string>
<json:string>maxillipeds</json:string>
<json:string>podotremes</json:string>
<json:string>anterolateral margins</json:string>
<json:string>ventral surface</json:string>
<json:string>millerae</json:string>
<json:string>cymonomidae</json:string>
<json:string>feldmannia</json:string>
<json:string>dromioids</json:string>
<json:string>torynommidae</json:string>
<json:string>cenomanocarcinus</json:string>
<json:string>spine</json:string>
<json:string>phylogenetic</json:string>
<json:string>female pleon</json:string>
<json:string>biological society</json:string>
<json:string>subhepatic region</json:string>
<json:string>uber</json:string>
<json:string>mesozoic</json:string>
<json:string>poupiniidae</json:string>
<json:string>museo</json:string>
<json:string>miocene</json:string>
<json:string>scholtz</json:string>
<json:string>epibranchial</json:string>
<json:string>bilobed</json:string>
<json:string>natural history museum</json:string>
<json:string>dromia</json:string>
<json:string>dakoticancridae</json:string>
<json:string>wien</json:string>
<json:string>cyclodorippidae</json:string>
<json:string>merus</json:string>
<json:string>naturelles</json:string>
<json:string>schweitzer</json:string>
<json:string>cyclodorippoida</json:string>
<json:string>archaeobrachyura</json:string>
<json:string>sciences naturelles</json:string>
<json:string>beschin</json:string>
<json:string>chela</json:string>
<json:string>linnaeus</json:string>
<json:string>mithracitidae</json:string>
<json:string>basinotopidae</json:string>
<json:string>decapodes</json:string>
<json:string>bifid</json:string>
<json:string>homolid</json:string>
<json:string>glaessneropsidae</json:string>
<json:string>articulating</json:string>
<json:string>konidromitidae</json:string>
<json:string>fifth pereiopods</json:string>
<json:string>eubrachyurans</json:string>
<json:string>homoloids</json:string>
<json:string>posterolateral margin</json:string>
<json:string>lato</json:string>
<json:string>scale bars</json:string>
<json:string>gonopore</json:string>
<json:string>homolodromioids</json:string>
<json:string>vega</json:string>
<json:string>queensland</json:string>
<json:string>shale</json:string>
<json:string>antennal</json:string>
<json:string>longitudinally</json:string>
<json:string>lecythocaridae</json:string>
<json:string>jagt</json:string>
<json:string>nhmw</json:string>
<json:string>geologica</json:string>
<json:string>kato</json:string>
<json:string>cardiac region</json:string>
<json:string>anterolateral margin</json:string>
<json:string>lateral margin</json:string>
<json:string>geological society</json:string>
<json:string>third maxillipeds</json:string>
<json:string>pleonal somite</json:string>
<json:string>sternal suture</json:string>
<json:string>brachyuran crabs</json:string>
<json:string>extant families</json:string>
<json:string>branchial regions</json:string>
<json:string>frontal margin</json:string>
<json:string>sister group</json:string>
<json:string>cardiac</json:string>
<json:string>margin</json:string>
<json:string>genital openings coxal</json:string>
<json:string>other families</json:string>
<json:string>maximum carapace width</json:string>
<json:string>mesogastric region</json:string>
<json:string>female pleonites</json:string>
<json:string>ventral view</json:string>
<json:string>phylogenetic analysis</json:string>
<json:string>type species</json:string>
<json:string>ventral extension</json:string>
<json:string>early cretaceous</json:string>
<json:string>museo civico</json:string>
<json:string>thoracic sternum</json:string>
<json:string>third pereiopods</json:string>
<json:string>upper cretaceous</json:string>
<json:string>uropodal plate</json:string>
<json:string>carapace grooves</json:string>
<json:string>renal opening</json:string>
<json:string>orbital margin</json:string>
<json:string>second antennal coxa</json:string>
<json:string>flank</json:string>
<json:string>extant</json:string>
<json:string>ornamentation</json:string>
<json:string>forster</json:string>
<json:string>collins</json:string>
<json:string>type genus</json:string>
<json:string>sella turcica</json:string>
<json:string>thoracic sternites</json:string>
<json:string>distinct ventrally</json:string>
<json:string>penial tube</json:string>
<json:string>carapace width</json:string>
<json:string>pleonal segments</json:string>
<json:string>antennar groove</json:string>
<json:string>distance posteriorly</json:string>
<json:string>last anterolateral spine</json:string>
<json:string>british columbia</json:string>
<json:string>long epimeres</json:string>
<json:string>family status</json:string>
<json:string>smithsonian institution</json:string>
<json:string>necrocarcinidae forster</json:string>
<json:string>gastric neck</json:string>
<json:string>sternal sutures</json:string>
<json:string>median rostral spine</json:string>
<json:string>saint laurent</json:string>
<json:string>separate status</json:string>
<json:string>family rank</json:string>
<json:string>urogastric region</json:string>
<json:string>feldmannia guinot</json:string>
<json:string>genital openings</json:string>
<json:string>zoological nomenclature</json:string>
<json:string>dynomenidae ortmann</json:string>
<json:string>longodromitidae schweitzer</json:string>
<json:string>podotrematous crabs</json:string>
<json:string>other sternites</json:string>
<json:string>crista dentata</json:string>
<json:string>homolodromiidae alcock</json:string>
<json:string>third maxilliped</json:string>
<json:string>section dromiacea</json:string>
<json:string>extinct taxa</json:string>
<json:string>montecchio maggiore</json:string>
<json:string>fossil decapod crustaceans</json:string>
<json:string>same level</json:string>
<json:string>kaiserlichen akademie</json:string>
<json:string>geological survey</json:string>
<json:string>extinct families</json:string>
<json:string>modern oceans</json:string>
<json:string>naturhistorischen museums</json:string>
<json:string>inflated subhepatic region</json:string>
<json:string>hepatic regions</json:string>
<json:string>fauna</json:string>
<json:string>zoology</json:string>
<json:string>convex</json:string>
<json:string>longitudinal</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Rodney M. Feldmann</name>
</json:item>
<json:item>
<name>Carrie E. Schweitzer</name>
</json:item>
<json:item>
<name>Hiroaki Karasawa</name>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Raninoida</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Podotremata</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phylogeny</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>classification</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Brachyura</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Dromiacea</value>
</json:item>
</subject>
<arkIstex>ark:/67375/JKT-TRSP55WH-X</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<qualityIndicators>
<score>7.012</score>
<pdfWordCount>25687</pdfWordCount>
<pdfCharCount>180990</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>43</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>1</abstractWordCount>
<abstractCharCount>0</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Crustacean Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0278-0372</json:string>
</issn>
<eissn>
<json:string>1937-240X</json:string>
</eissn>
<volume>31</volume>
<issue>3</issue>
<pages>
<first>523</first>
<last>565</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
<json:string>1992</json:string>
<json:string>5 and 5-6</json:string>
<json:string>5 through 7/8</json:string>
<json:string>1833</json:string>
<json:string>1834</json:string>
<json:string>1863</json:string>
<json:string>6 and 6/7</json:string>
<json:string>June–July 2009</json:string>
<json:string>19th century</json:string>
</date>
<geogName>
<json:string>Paromola</json:string>
<json:string>Metagastric region</json:string>
<json:string>Paromolopsis</json:string>
<json:string>Dromiidae</json:string>
<json:string>Dioratiopus</json:string>
<json:string>Epibranchial region</json:string>
<json:string>It</json:string>
<json:string>Torynomma</json:string>
</geogName>
<orgName>
<json:string>University of Washington Burke Museum</json:string>
<json:string>Hungary and Washington, USA</json:string>
<json:string>Department of Geology, Kent State University, Kent, Ohio</json:string>
<json:string>National University of Singapore</json:string>
<json:string>Geologisk Museum University</json:string>
<json:string>United States National Museum of Natural History, Smithsonian Institution</json:string>
<json:string>University of Texas</json:string>
<json:string>United States National Museum of Natural History, Smithsonian Institution, Washington</json:string>
<json:string>Oxford University</json:string>
<json:string>Cambridge University, UK</json:string>
<json:string>Canada, Eastern Paleontology, Division, Ottawa, Ontario, Canada</json:string>
<json:string>Paleontological Research Institution, Ithaca, New York, USA</json:string>
<json:string>Kent State University</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>G. Zannato</json:string>
<json:string>P. K. L. Ng</json:string>
<json:string>Barry van Bakel</json:string>
<json:string>Diaulax</json:string>
<json:string>B. van Bakel</json:string>
<json:string>Van Straelen</json:string>
<json:string>Yaldwynopsis Guinot</json:string>
<json:string>Frank Ave</json:string>
<json:string>R. Lemaitre</json:string>
<json:string>Rodney M. Feldmann</json:string>
<json:string>T. Snyder</json:string>
<json:string>Dagnaudus Guinot</json:string>
<json:string>Van Bakel</json:string>
<json:string>Rosario Formation</json:string>
<json:string>A. Milne</json:string>
<json:string>A. Garassino</json:string>
<json:string>H. Milne</json:string>
<json:string>Dakota School</json:string>
<json:string>Geological Survey</json:string>
<json:string>Von Meyer</json:string>
<json:string>A. Milne-Edwards</json:string>
<json:string>A. MilneEdwards</json:string>
<json:string>Van Binkhorst</json:string>
<json:string>Richer de Forges</json:string>
<json:string>A. Cook</json:string>
</persName>
<placeName>
<json:string>Madagascar</json:string>
<json:string>San Diego</json:string>
<json:string>Columbia</json:string>
<json:string>Germany</json:string>
<json:string>United States</json:string>
<json:string>Australia</json:string>
<json:string>Mexico</json:string>
<json:string>UK</json:string>
<json:string>Austria</json:string>
<json:string>Canada</json:string>
<json:string>London</json:string>
<json:string>American</json:string>
<json:string>Prague</json:string>
<json:string>Seattle</json:string>
<json:string>Austin</json:string>
<json:string>Europe</json:string>
<json:string>Los Angeles</json:string>
<json:string>Japan</json:string>
<json:string>America</json:string>
<json:string>Brussels</json:string>
<json:string>Czech Republic</json:string>
<json:string>Vienna</json:string>
<json:string>Barcelona</json:string>
<json:string>Canton</json:string>
<json:string>Denmark</json:string>
<json:string>Frankfurt</json:string>
<json:string>Saint Laurent</json:string>
<json:string>Vicenza</json:string>
<json:string>France</json:string>
<json:string>Copenhagen</json:string>
<json:string>Rapid City</json:string>
<json:string>Hungary</json:string>
<json:string>Italy</json:string>
<json:string>Spain</json:string>
<json:string>New Haven</json:string>
<json:string>Budapest</json:string>
<json:string>Belgium</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>M’Coy, 1854</json:string>
<json:string>Schweitzer and Feldmann, 2009a, p. 82</json:string>
<json:string>Secretan, 1998</json:string>
<json:string>De Grave et al. (2009)</json:string>
<json:string>Glaessner (1969)</json:string>
<json:string>Ahyong et al., 2007</json:string>
<json:string>Schweitzer and Feldmann, 2009a: 116</json:string>
<json:string>Woodward, 1896</json:string>
<json:string>Schweitzer et al., 2010</json:string>
<json:string>Ortmann, 1892</json:string>
<json:string>Beschin et al., 2007</json:string>
<json:string>Secretan, 1964</json:string>
<json:string>Hall and Clarke, 1894, p. 229</json:string>
<json:string>De Grave et al., 2009</json:string>
<json:string>Feldmann and Schweitzer (2009)</json:string>
<json:string>Schweitzer et al., 2004</json:string>
<json:string>Guinot et al., 2008</json:string>
<json:string>Griffin, 1965</json:string>
<json:string>Feldmann et al. (1993)</json:string>
<json:string>defined by Guinot and Bouchard, 1998</json:string>
<json:string>Schweitzer and Feldmann (2011b)</json:string>
<json:string>Guinot and Bouchard (1998)</json:string>
<json:string>Schweitzer et al. (2003)</json:string>
<json:string>Stenzel, 1945</json:string>
<json:string>Schweitzer-Hopkins et al., 1999</json:string>
<json:string>Wright and Collins, 1972</json:string>
<json:string>Feldmann and Schweitzer, 2010</json:string>
<json:string>Fraaye and Van Bakel, 1998</json:string>
<json:string>Schweitzer and Feldmann, 2010</json:string>
<json:string>George Edwards, 1771</json:string>
<json:string>Bishop, 1983c, p. 424</json:string>
<json:string>Dixon et al., 2003</json:string>
<json:string>Schweitzer and Feldmann, 2009a, 2010</json:string>
<json:string>Mantell, 1844</json:string>
<json:string>Schweitzer and Feldmann (2008)</json:string>
<json:string>Feldmann, Schweitzer, and Green, 2008</json:string>
<json:string>Beschin et al., 2001</json:string>
<json:string>Maddison and Maddison, 2005</json:string>
<json:string>Schweitzer, Salva, and Feldmann, 1999</json:string>
<json:string>Schweitzer et al. (2010)</json:string>
<json:string>Miers, 1881</json:string>
<json:string>Bremer, 1994</json:string>
<json:string>Feldmann and Schweitzer, 2009</json:string>
<json:string>Grave et al., 2009</json:string>
<json:string>Schweitzer and Feldmann, 2009</json:string>
<json:string>Schweitzer et al., 2003</json:string>
<json:string>Desmarest, 1822</json:string>
<json:string>Artal et al. (2008)</json:string>
<json:string>Scholtz and McLay, 2009</json:string>
<json:string>Guinot (1993)</json:string>
<json:string>[2007]</json:string>
<json:string>Karasawa et al. (2008)</json:string>
<json:string>Guinot and Bouchard, 1998</json:string>
<json:string>Castro et al. (2003)</json:string>
<json:string>Rathbun, 1935</json:string>
<json:string>Swofford, 1999</json:string>
<json:string>Schweitzer and Feldmann, 2010b</json:string>
<json:string>Forster et al., 1985</json:string>
<json:string>Schweitzer et al. (2004)</json:string>
<json:string>Jakobsen and Collins, 1997</json:string>
<json:string>Schweitzer and Feldmann (2010b)</json:string>
<json:string>Schweitzer et al., 2010, p. 66</json:string>
<json:string>Glaessner, 1969</json:string>
<json:string>Rathbun, 1923a</json:string>
<json:string>Collins and Williams, 2004</json:string>
<json:string>Berglund and Feldmann, 1989</json:string>
<json:string>Feldmann et al. (2007)</json:string>
<json:string>Guinot et al. (2008)</json:string>
<json:string>Nyborg and Fam, 2008</json:string>
<json:string>Feldmann and Lazar, 2007</json:string>
<json:string>Miers, 1880</json:string>
<json:string>Fraaije et al., 2008</json:string>
<json:string>Scholtz and McLay (2009)</json:string>
<json:string>Bell, 1863</json:string>
<json:string>Chu et al., 2009</json:string>
<json:string>Moericke, 1889</json:string>
<json:string>Jamieson et al., 1995</json:string>
<json:string>Schweitzer and Feldmann (2000)</json:string>
<json:string>5 Xandaros Bishop, 1988c</json:string>
<json:string>Schweitzer and Feldmann, 2008</json:string>
<json:string>Armstrong et al., 2009</json:string>
<json:string>Collins and Donovan, 2006</json:string>
<json:string>Feldmann et al., 2007</json:string>
<json:string>Jagt et al., 1991</json:string>
<json:string>in part after Rathbun, 1917, p. 385</json:string>
<json:string>Ahyong et al. (2007)</json:string>
<json:string>Quayle and Collins, 1981</json:string>
<json:string>Bishop et al., 1998</json:string>
<json:string>Karasawa and Kato, 2007</json:string>
<json:string>Schweitzer and Feldmann, 2010a</json:string>
<json:string>Collins and Karasawa, 1993</json:string>
<json:string>Schweitzer-Hopkins et al. (1999)</json:string>
<json:string>Henderson, 1888</json:string>
<json:string>Kato and Terabe, 2006</json:string>
<json:string>Guinot et al., 1998</json:string>
<json:string>Wright and Collins (1972: 32)</json:string>
<json:string>Schweitzer and Feldmann, 2011b</json:string>
<json:string>Sakai, 1969</json:string>
<json:string>Lorenthey and Beurlen, 1929</json:string>
<json:string>Karasawa and Ohara, 2009</json:string>
<json:string>Schweitzer, 2001</json:string>
<json:string>Wright and Wright, 1950</json:string>
<json:string>Withers, 1928</json:string>
<json:string>Collins and Rasmussen, 1992</json:string>
<json:string>Stimpson, 1860</json:string>
<json:string>2008 [imprint 2007], 2009a, b, c, 2010b, c</json:string>
<json:string>McCoy, 1854</json:string>
<json:string>Yokoyama, 1911</json:string>
<json:string>Feldmann et al. (2008)</json:string>
<json:string>van Bakel et al., 2009</json:string>
<json:string>van Straelen, 1936a</json:string>
<json:string>Guinot and Tavares (2003)</json:string>
<json:string>Schweitzer and Feldmann (2009a)</json:string>
<json:string>Tavares, 1991</json:string>
<json:string>Schweitzer and Wahl (2008)</json:string>
<json:string>Bishop and Williams, 2000</json:string>
<json:string>Feldmann and Schweitzer (2007)</json:string>
<json:string>Bishop et al., 1998, p. 239</json:string>
<json:string>Feldmann et al., 1993</json:string>
<json:string>Reuss, 1845</json:string>
<json:string>Ihle, 1913</json:string>
<json:string>Miyake and Takeda, 1970</json:string>
<json:string>Schweitzer et al., 2002, p. 21</json:string>
<json:string>von Fischer-Benzon, 1866</json:string>
<json:string>McLay, 1999</json:string>
<json:string>Woodward, 1898</json:string>
<json:string>Wright and Collins (1972)</json:string>
<json:string>Muller and Collins, 1991</json:string>
<json:string>Schweitzer and Feldmann, 2009a</json:string>
<json:string>Guinot and Quenette, 2005</json:string>
<json:string>Dromiidae and Guinot (2008)</json:string>
<json:string>Schweitzer and Feldmann, 2011a</json:string>
<json:string>Conkle et al., 2006</json:string>
<json:string>Schweitzer and Feldmann, 2001</json:string>
<json:string>Martin and Davis, 2001</json:string>
<json:string>Guinot, 1979</json:string>
<json:string>von Meyer, 1858</json:string>
<json:string>Bell, 1850</json:string>
<json:string>Feldmann and Wilson, 1988</json:string>
<json:string>Muller and ¨ Collins, 1991</json:string>
<json:string>Schweitzer and Feldmann, 2009a, p. 83</json:string>
<json:string>De Grave et al. (2010)</json:string>
<json:string>Guinot (2008)</json:string>
<json:string>Woodward, 1892</json:string>
<json:string>5 Noetlingia Beurlen, 1928</json:string>
<json:string>after Schweitzer and Feldmann, 2000</json:string>
<json:string>Fulton and Grant, 1902</json:string>
<json:string>Collins and Jakobsen, 2003</json:string>
<json:string>Tavares, 2003</json:string>
<json:string>Schweitzer and Feldmann, 2009a, p. 94</json:string>
<json:string>Artal et al., 2008</json:string>
<json:string>Collins and Breton, 2009</json:string>
<json:string>Collins et al., 1993</json:string>
<json:string>Eudes-Deslongchamps, 1835</json:string>
<json:string>Bishop, 1985</json:string>
<json:string>de Haan, 1835</json:string>
<json:string>Brosing et al., 2007</json:string>
<json:string>Bittner, 1893</json:string>
<json:string>Fabricius, 1793</json:string>
<json:string>Schweitzer and Feldmann (2009a, b)</json:string>
<json:string>Feldmann and Schweitzer (2010)</json:string>
<json:string>Collins and Jakobsen (2003)</json:string>
<json:string>van Bakel et al. 2008</json:string>
<json:string>Ng et al. (2008)</json:string>
<json:string>Jimbo, 1894</json:string>
<json:string>Rathbun, 1926</json:string>
<json:string>Schweitzer et al., 2003, 2010</json:string>
<json:string>Guinot and Tavares, 2003</json:string>
<json:string>Fabricius, 1798</json:string>
<json:string>Guinot, 2008</json:string>
<json:string>Schlotheim, 1820</json:string>
<json:string>Kuhl and Hasselt, 1822</json:string>
<json:string>Hammer et al., 2001</json:string>
<json:string>von Meyer, 1857</json:string>
<json:string>Linnaeus, 1758</json:string>
<json:string>Bachmayer and Tollmann, 1953</json:string>
<json:string>De Grave et al., 2009, p. 27</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/JKT-TRSP55WH-X</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - marine & freshwater biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - marine biology & hydrobiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1651/10-3423.1</json:string>
</doi>
<id>7FA40AA03F02C9BA84FF976E49FB3060906BE043</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7FA40AA03F02C9BA84FF976E49FB3060906BE043/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7FA40AA03F02C9BA84FF976E49FB3060906BE043/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7FA40AA03F02C9BA84FF976E49FB3060906BE043/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<availability>
<licence>
<p>© Koninklijke Brill NV, Leiden, The Netherlands</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-56W3KPD5-3">brill-journals</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Rodney M.</forename>
<surname>Feldmann</surname>
</persName>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Carrie E.</forename>
<surname>Schweitzer</surname>
</persName>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Hiroaki</forename>
<surname>Karasawa</surname>
</persName>
</author>
<idno type="istex">7FA40AA03F02C9BA84FF976E49FB3060906BE043</idno>
<idno type="ark">ark:/67375/JKT-TRSP55WH-X</idno>
<idno type="DOI">10.1651/10-3423.1</idno>
<idno type="href">1937240x_031_03_s016_text.pdf</idno>
</analytic>
<monogr>
<title level="j">Journal of Crustacean Biology</title>
<title level="j" type="abbrev">JCB</title>
<idno type="pISSN">0278-0372</idno>
<idno type="eISSN">1937-240X</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<date type="published" when="2011"></date>
<biblScope unit="volume">31</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="523">523</biblScope>
<biblScope unit="page" to="565">565</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Raninoida</term>
</item>
<item>
<term>Podotremata</term>
</item>
<item>
<term>phylogeny</term>
</item>
<item>
<term>classification</term>
</item>
<item>
<term>Brachyura</term>
</item>
<item>
<term>Dromiacea</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011">Created</change>
<change when="2011">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-10-2">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7FA40AA03F02C9BA84FF976E49FB3060906BE043/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus brill-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="http://dtd.nlm.nih.gov/publishing/2.3/journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3">
<front>
<journal-meta>
<journal-id journal-id-type="e-issn">1937240X</journal-id>
<journal-title>Journal of Crustacean Biology</journal-title>
<abbrev-journal-title>JCB</abbrev-journal-title>
<issn pub-type="ppub">0278-0372</issn>
<issn pub-type="epub">1937-240X</issn>
<publisher>
<publisher-name>BRILL</publisher-name>
<publisher-loc>The Netherlands</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1651/10-3423.1</article-id>
<title-group>
<article-title>Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Feldmann</surname>
<given-names>Rodney M.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schweitzer</surname>
<given-names>Carrie E.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Karasawa</surname>
<given-names>Hiroaki</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<year>2011</year>
</pub-date>
<volume>31</volume>
<issue>3</issue>
<fpage>523</fpage>
<lpage>565</lpage>
<permissions>
<copyright-statement>© Koninklijke Brill NV, Leiden, The Netherlands</copyright-statement>
<copyright-holder>Koninklijke Brill NV, Leiden, The Netherlands</copyright-holder>
</permissions>
<self-uri content-type="pdf" xlink:href="1937240x_031_03_s016_text.pdf"></self-uri>
<kwd-group>
<kwd>Raninoida</kwd>
<kwd>Podotremata</kwd>
<kwd>phylogeny</kwd>
<kwd>classification</kwd>
<kwd>Brachyura</kwd>
<kwd>Dromiacea</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>version</meta-name>
<meta-value>header</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<p>PHYLOGENETIC ANALYSIS AND REVISED CLASSIFICATION OF PODOTREMATOUS BRACHYURA (DECAPODA) INCLUDING EXTINCT AND EXTANT FAMILIES Hiroaki Karasawa, Carrie E. Schweitzer, and Rodney M. Feldmann (HK, GHA06103@nifty.com) Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan; (CES, cschweit@kent.edu) Department of Geology, Kent State University at Stark, 6000 Frank Ave. NW, North Canton, Ohio 44720, U.S.A.; (RMF, crrespondence, rfeldman@kent.edu) Department of Geology, Kent State University, Kent, Ohio 44242, U.S.A. A B S T R A C T A phylogenetic analysis based upon 30 extinct and extant taxa of podotrematous brachyuran decapods using 74 characters shows that Podotremata sensu Guinot, 1977 is not monophyletic and results in a new classification for these crabs. Four new taxa are recognized at the section-level (Homoloida, Torynommoida, Etyoida, and Dakoticancroida) as well as two new families (Basinotopidae and Xandarocarcinidae). Dromiacea as historically defined is redefined herein to exclude Homoloidea. New generic names Noetlingocarcinus and Xandarocarcinus, and Seorsus millerae new combination also resulted from the work. K EY W ORDS : Brachyura, classification, Dromiacea, Podotremata, phylogeny, Raninoida DOI: 10.1651/10-3423.1 I NTRODUCTION Numerous recent studies have focused on the phylogeny of Brachyura, and specifically, the monophyly of Podotremata (Jamieson et al., 1995; Guinot and Tavares, 2001; Bro¨ sing et al., 2007; Ahyong et al., 2007; Scholtz and McLay, 2009). These have included molecular studies and studies using adult morphology, foregut ossicles, and spermatozoal structure, but until now none has included most of the extinct groups, which are known from an extensive fossil record on all continents, from the Early Jurassic to the Pleistocene. Because the podotrematous crabs are consid- ered to be the least derived Brachyura, inclusion of their fossils into any analysis is critical because the fossils represent the earliest history of the group as well as the earliest history of Brachyura. There are numerous extinct lineages within Brachyura, many of which are known with certainty to be podotrematous based upon excellent preservation of fossils, so that phylogenies based upon inclusion of fossils can be interpreted to represent a more realistic representation of the relationships between and among these animals. Interestingly, many of the extant podotrematous families have long and illustrious fossil records and have been on Earth since the time of the dinosaurs. Other families are shorter lived, either originat- ing in the Mesozoic and shortly becoming extinct, or exhibiting what appears to be much greater diversity in modern oceans than in the past. How much of this is due to the vagaries of preservation in the fossil record is not yet known. What we do know is that the record of Brachyura and podotrematous crabs is much better known now than even 20 years ago, and the extensive studies carried out by us and others makes it possible to examine the fossils in light of biological morphological studies that have also been extensive in recent decades (Guinot and Tavares, 2001, 2003; Guinot et al., 2008). Thus, we present the first comprehensive phylogeny of podotrematous crabs includ- ing nearly all extinct and extant representatives. M ATERIALS AND M ETHODS Phylogenetic Analysis Thirty extant and fossil families within Podotremata sensu Guinot (1977) were examined (Table 1). Additionally, two enigmatic podotreme genera, Basinotopus M’Coy, 1849, and Xandarocarcinus ( 5 Xandaros Bishop, 1988c), were also included. The analysis also includes representatives of three eubrachyurans as in-group taxa to test the sister-group relationships of each podotreme family. Two extinct families, Nodoprosopidae Schweitzer and Feldmann, 2009 and Tithonohomolidae Feldmann and Schweitzer, 2009, were excluded from the phylogenetic analyses because they each have a large number of unknown character states. The Gastrodoridae van Bakel et al. 2008, are not included here as they are best considered as members of Anomura. The analyses were based upon the examination of material deposited in the following institutions: BMNH, The Natural History Museum, London, UK; GSC, Geological Survey of Canada, Eastern Paleontology, Division, Ottawa, Ontario, Canada; HNHM, Hungarian Natural History Museum, Budapest, Hungary; IG, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium; KSU D, Kent State University Decapod Comparative Collection; KMNH.IVP, Kitakyushu Museum of Natural History and Human History, Kitakyushu, Japan; LACM, Natural History Museum of Los Angeles County, California, USA; MAB, Oertijdmuseum De Groene Poort, Boxtel, The Netherlands; MAFI, Fo¨ ldani Inte´ zet (Hungarian Geological Survey), Budapest, Hungary; MBA, Museum fu¨ r Naturkunde Berlin, Pala¨ ontologisches Museum, Germany; MCZ, Museo Civico ‘‘ G. Zannato ’’ di Montecchio Maggiore (Vicenza), Italy; MFM, Mizunami Fossil Museum, Mizunami, Japan; MGSB, Museo Geolo´ gico del Seminario de Barcelona, Spain; MGUH, Geologisk Museum University of Copenhagen, Denmark; NHMW, Naturhistorisches Museum Wien (Natural History Museum of Vienna), Austria; NM, Na´rodnı ´ JOURNAL OF CRUSTACEAN BIOLOGY, 31(3): 523-565, 2011 523</p>
<p>Table 1. Original classification (De Grave et al., 2009; Schweitzer et al., 2010) used to select taxa for this analysis. { indicates extinct taxa (see text for details). Infraorder Astacidea Latreille, 1802 Superfamily Nephropoidea Dana, 1852 Nephropidae Dana, 1852 Homarus Weber, 1795 [ H. americanus H. Milne Edwards, 1837 (in 1834-1840)] Infraorder Anomura MacLeay, 1838 Superfamily Eocarcinoidea Withers, 1932 Eocarcinidae { Withers, 1932 Eocarcinus { Withers, 1932 [ E. praecursor Withers, 1932] Infraorder Brachyura Linneaus, 1758 Section Dromiacea de Haan, 1833 Superfamily Dakoticancroidea { Rathbun, 1917 Ibericancridae { Artal et al., 2008 Ibericancer { Artal et al., 2008 [ I. sanchoi Artal et al., 2008] Dakoticancridae { Rathbun, 1917 Avitelmessus { Rathbun, 1923b [ A. grapsoideus Rathbun, 1923b] Dakoticancer { Rathbun, 1917 [ D. australis Rathbun, 1935; D. overanus Rathbun, 1917] Tetracarcinus { Weller, 1905 [ T. subquadratus Weller, 1905] Superfamily Homolodromioidea Alcock, 1900 Bucculentidae { Schweitzer and Feldmann, 2009a Bucculentum { Schweitzer and Feldmann, 2009a [ B. bachmayeri Schweitzer and Feldmann, 2009a; B. bucculentum (Wehner, 1988)] Homolodromiidae Alcock, 1900 Homolodromia A. Milne-Edwards, 1880 [ H. robertsi Garth, 1973; H. paradoxa A. Milne Edwards, 1880] Dicranodromia A. Milne-Edwards, 1880 [ D. doederleini Ortmann, 1892] Goniodromitidae { Beurlen, 1932 Eodromites { Patrulius, 1959 [ E. grande (von Meyer, 1857)] Goniodromites { Reuss, 1858 [imprint 1857] [ G. bidentatus Reuss, 1858 [imprint 1857]; G. hirotai Karasawa and Kato, 2007; G. polyodon Reuss, 1858 [imprint 1857]; G. serratus Beurlen, 1929] Pithonoton { von Meyer, 1842 [ P. marginatum von Meyer, 1842; P. cardwelli Armstrong et al., 2009] Sabellidromites { Schweitzer and Feldmann, 2008 [imprint 2007] [ S. inflata (Collins and Karasawa, 1993); S. scarabaea (Wright and Wright, 1950)] Prosopidae { von Meyer, 1860 Prosopon { von Meyer, 1835 [ P. mammillatum Woodward, 1868] Superfamily Glaessneropsoidea { Patrulius, 1959 Glaessneropsidae { Patrulius, 1959 Glaessneropsis { Patrulius, 1959 [ G. heraldica (Moericke, 1889); G. myrmekia Schweitzer and Feldmann, 2009a] Konidromitidae { Schweitzer and Feldmann, 2010b Konidromites { Schweitzer and Feldmann, 2010b [ K. schneideri (Stolley, 1924); K. gibbus (Reuss, 1858 [imprint 1857]] Longodromitidae { Schweitzer and Feldmann, 2009a Antarctiprosopon { Schweitzer and Feldmann, 2011a [ A. chaneyi (Feldmann and Wilson, 1988)] Dioratiopus { Woods, 1953 [ D. salebrosus Woods, 1953] Glaessnerella { Wright and Collins, 1975 [ G. spinosa (van Straelen, 1936a)] Longodromites { Patrulius, 1959 [ L. angustus (Reuss, 18; 58 [imprint 1857]); L.. excisus (von Meyer, 1857); L. ovalis (Moericke, 1889)] Planoprosopon { Schweitzer, Feldmann, and Laza˘r, 2007 [ P. heydeni (von Meyer, 1857) ] Vespridromites { Schweitzer and Feldmann, 2011a [ V. hearttailensis (Bishop, 1985)] Lecythocaridae { Schweitzer and Feldmann, 2009a Lecythocaris { von Meyer, 1858 (2) [ L. obesa Schweitzer and Feldmann, 2009a; L. paradoxa (von Meyer, 1858)] Superfamily Dromioidea de Haan, 1833 Dromiidae de Haan, 1833 Conchoecetes Stimpson, 1858a [ C. artificiosus (Fabricius, 1798)] Dromia Weber, 1795 [ D. personata (Linnaeus, 1758); D. erythropus (George Edwards, 1771)] Epigodromia McLay, 1993 [ E. areolata (Ihle, 1913)] Epipedodromia Andre´, 1932 [ E. thomsoni (Fulton and Grant, 1902)] Lauridromia McLay, 1993 [ L. dehaani (Rathbun, 1923a)] Sphaerodromiidae Guinot and Tavares, 2003 Sphaerodromia Alcock, 1899 [ S. lamellata Crosnier, 1994] Dromilites { H. Milne Edwards, 1837 [ D. bucklandi H. Milne Edwards, 1837 (in 1834-1840); D. simplex Quayle and Collins, 1981] Dynomenidae Ortmann, 1892 Basinotopus { M’Coy, 1849 [ B. lamarckii (Desmarest, 1822); B. tricornis Collins and Jakobsen, 2003] Dynomene Desmarest, 1822 [ D. hispida Gue´ rin-Me´ neville, 1832; D. pilumnoides Alcock, 1900; D. praedator A. Milne-Edwards, 1878] Diaulacidae { Wright and Collins, 1972 Diaulax { Bell, 1863 [ D. oweni (Bell, 1850); D. feliceps Wright and Collins, 1972; D. yokoii Collins et al., 1993] Xandaros { Bishop, 1988c [ X. sternbergi (Rathbun, 1926)] Superfamily Etyioidea { Guinot and Tavares, 2001 Etyidae { Guinot and Tavares, 2001 Etyus { Mantell, 1822 [ E. martini Mantell, 1822] Etyxanthosia { Fraaije, van Bakel, Jagt, and Artal, 2008 [ E. aspera (Rathbun, 1935); E. pawpawensis (Schweitzer, Salva, and Feldmann, 1999)] Feldmannia { Guinot and Tavares, 2001 [ F. wintoni (Rathbun, 1935)] Xanthosia { Bell, 1863 [ X. buchii (Reuss, 1845); X. gibbosa Bell, 1863; X. granulosa (M’Coy, 1854); X. sakoi Karasawa, Ohara, and Kato, 2008; X. similis (Bell, 1863)] 524 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>Muzeum, Prague, Czech Republic; OUM, Geological Collections, Oxford University Museum, UK; PI, Charleston Museum Charleston, South Carolina, USA; PRI, Paleontological Research Institution, Ithaca, New York, USA; QMF, uqf, Queensland Museum, Queensland, Australia; SDSM, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA; SDSNH, San Diego Museum of Natural History, San Diego, California, USA; SM, Sedgwick Museum, Cambridge University, UK; SMF, Senckenberg Forschungsinstitut und NaturMuseum, Frankfurt, Germany; USNM, United States National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA; UT, University of Texas at Austin, Texas, USA; UWBM, University of Washington Burke Museum, Seattle, Washington, USA; and YPM, Yale Peabody Museum of Natural History, New Haven, Connecticut, USA. If actual material was unavailable, the descriptive information for taxa was obtained from the literature; this was necessary for only a few taxa. The genera were selected for the analysis based upon the familial and subfamilial arrangement of De Grave et al. (2009) and Schweitzer et al. (2010) as well as our own observations. The out-groups were chosen from representatives of the astacidean family Nephropidae and the earliest-known anomuran family Eocarcinidae (Feldmann and Schweitzer, 2010). Two analyses were conducted. Analysis I included only extant taxa. Analysis II included both extinct and extant taxa to examine the impact of Superfamily Homoloidea de Haan, 1839 Homolidae de Haan, 1839 Homola Leach, 1816 [imprint 1815] [ H. ranunculus Guinot and Richer de Forges, 1995; H. orientalis Henderson, 1888] Latreillopsis Henderson, 1888 [ L. bispinosa Henderson, 1888] Homolomannia Ihle, 1912 [ H. sibogae Ihle, 1912] Paromola Wood-Mason in Wood-Mason and Alcock, 1891 [ P. macrocheira Sakai, 1961] Yaldwynopsis Guinot and Richer de Forges, 1995 [ Y. spinimanus (Griffin, 1965)] Mithracitidae S ˇ tevc ˇ ic ´ , 2005 Mithracites { Gould, 1859 [ M. vectensis Gould, 1859] Latreilliidae Stimpson, 1858a Latreillia Roux, 1830 [ L. valida de Haan, 1839] Poupiniidae Guinot, 1991 [ Poupinia Guinot, 1991 [ P. hirsuta Guinot, 1991] Section Raninoida Ahyong et al., 2007 Superfamily Raninoidea de Haan, 1839 Camarocarcinidae { Feldmann, Li, and Schweitzer, 2007 Camarocarcinus { Holland and Cvancara, 1958 [ C. arnesoni Holland and Cvancara, 1958;. quinquetuberculatus Collins and Rasmussen, 1992] Cretacocarcinus { Feldmann, Li, and Schweitzer, 2007 [ C. smithi Feldmann et al., 2007] Cenomanocarcinidae { Guinot, Vega, and van Bakel, 2008 Campylostoma { Bell, 1858 [ C. matutiforme Bell, 1858] Cenomanocarcinus { Van Straelen, 1936 [ C. vanstraeleni Stenzel, 1945] Raninidae de Haan, 1839 Lyreidus de Haan, 1841 [ L. tridentatus de Haan, 1841] Ranina Lamarck, 1801 [ R. ranina (Linnaeus, 1758)] Palaeocorystidae { Lo˝ renthey in Lo˝ renthey and Beurlen, 1929 Cretacoranina { Mertin, 1941 [ C. dichrous (Stenzel, 1945)] Eucorystes { Bell, 1863 [ E. broderipi (Mantell, 1844); E. carteri M’Coy, 1854] Notopocorystes { M’Coy, 1849 [ N. japonicus (Jimboˆ , 1894); N. stokesii (Mantell, 1844)] Symethidae Goeke, 1981 Symethis Weber, 1795 [ S. johnsoni Rathbun, 1935] Section Cyclodorippoida Ahyong et al., 2007 Superfamily Cyclodorippoidea Ortmann, 1892 Cyclodorippidae Ortmann, 1892 Tymolus Stimpson, 1858b [ T. japonicus Stimpson, 1858b; T. uncifer (Ortmann, 1892)] Xeinostoma Stebbing, 1920 [ X. eucheir Stebbing, 1920] Cymonomidae Bouvier, 1897 Cymonomus A. Milne-Edwards, 1880 [ Cymonomus sp.] Cymonomoides Tavares, 1993 [ C. guinotae (Tavares, 1991)] Phyllotymolinidae Tavares, 1998 Genkaia Miyake and Takeda, 1970 [ G. gordonae Miyake and Takeda, 1970] Phyllotymolinum Tavares, 1993 [ P. crosnieri Tavares, 1993] Torynommidae { Glaessner, 1980 Torynomma { Woods, 1953 [ T. dentatum Glaessner, 1980; T. flemingi Glaessner, 1980; T. quadrata Woods, 1953] Section Eubrachyura de Saint Laurent, 1980 Subsection Heterotremata Guinot, 1977 Superfamily Dorippoidea MacLeay, 1838 Necrocarcinidae { Fo¨ rster, 1968 Necrocarcinus { Bell, 1863 [ N. labeschei (Eudes-Deslongchamps, 1835); N. wrighti Feldmann, Tshudy, and Thomson, 1993] Goniochelidae { Schweitzer and Feldmann, 2011b Goniochele { Bell, 1858 [ G. angulata Bell, 1858; G. madseni Collins and Jakobsen, 2003] Superfamily Portunoidea Rafinesque, 1815 Carcinidae MacLeay, 1838 Carcinus Leach, 1814 [ C. maenas (Linnaeus, 1758)] Subsection Thoracotremata Guinot, 1977 Superfamily Grapsoidea MacLeay, 1838 Varunidae H. Milne Edwards, 1853 Helice de Haan, 1833 [ H. tridens (de Haan, 1835)] Table 1. Continued. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 525</p>
<p>extinct taxa on the topology of the podotreme relationships. The phylogenetic analysis used PAUP* 4.0b10 (Swofford, 1999), utilizing a data matrix originating in MacClade 4.08 for OS X (Maddison and Maddison, 2005). Heuristic search analyses were performed with the following options in effect: random addition sequence, 50 replications with random input order; one tree held at each step during stepwise addition; tree-bisection-reconnection (TBR) branch stepping performed; MulTrees option activated; steepest descent option not in effect; branches having maximum length zero collapsed to yield polytomies; topological constraints not enforced; multistate taxa interpreted as polymorphism; character state optimization by accelerated transformation (ACCTRAN). All characters were unordered, unscaled and equally weighted. Relative stability of clades was assessed using decay analyses (Bremer, 1994). The Bremer support was obtained using constraint trees generated in MacClade 4.08 for OSX (Maddison and Maddison, 2005) and analyzed using PAUP*. Characters Seventy-four adult morphological characters were used in the analysis. The data matrix is provided in Table 2. Sixty-nine characters were binary; five were multistate characters. The missing, or indeterminable, data were scored as unknown. The rate of missing data within the examined fossil taxa ranged from 6.8 to 68.9 percent. Inapplicable characters states were scored as ‘‘ 2 ’’ to distinguish them from unknown character states, which were scored as ‘‘ ? ’’ . In the text, characters and character states are indicated by numbers in parentheses, e.g., 1-0 5 character 1 + character state 0. Some characters and character states require an explanation, given below. Within many extinct taxa, information on the mouth, sternum, pleon, and pereiopods is lacking. 1. Carapace proportions: elongate (0); as long as wide or wider (1). 2. Anterolateral margins: indistinct (0); distinct (1). 3. Spines or teeth on anterolateral margins: absent (0); present (1). 4. Anterolateral margins not well differentiated from posterolateral margins (0); anterolateral margins well differentiated from postero- lateral margins (1). 5. Posterolateral margins: rounded, not defined (0); defined (1). 6. Spines on posterolateral margin: absent (0); present (1). 7. Posterior margin: concave (0); straight (1). 8. Re-entrants on posterior margin: absent (0); present (1). All homolodromioids and homolids have reentrants on the posterolateral margin (8-1), which all other families lack (8-0). 9. Orbit: not defined (0); defined (1). 10. Augenrest: absent (0); present (1). The augenrest (Schweitzer and Feldmann, 2008 [imprint 2007]) is present in Homolodromioidea, Longodromitidae, and Homoloidea exclud- ing Latreilliidae (10-1). Others lack it (10-0). 11. Augenrest, if present: shallow (0); deep (1). This character is scored inapplicable for the taxa lacking the augenrest. The tanidromitids, longodromitids, mithracitids, poupiniids, and homolids have a shallow augenrest (11-0), whereas homolodromioids, prosopids, bucculentids, and goniodromitids have a deep augenrest (11-1). 12. Inner orbital angle: not defined (0); defined (1). 13. Upper orbital fissures: absent (0); present (1). 14. Subhepatic swelling: present (0); absent (1). 15. Antennal groove: present (0); absent (1). Table 2. Data matrix of podotreme taxa and their character states. See text for details. * indicates extinct taxa. 0 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Astacidea 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 *Eocarcinidae 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 Homolodromiidae 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 *Bucculentidae 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 *Goniodromitidae 0&1 0&1 0&1 0&1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 *Prosopidae 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 *Tanidromitidae 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 *Glaessneropsidae 0 0 0 0 0 0 0 0 1 0 - 0 1 0 0 0 0 0 0 *Konidromitidae 0 0 0 0 0 0 0 0 1 0 - 0 0 0 0 0 0 0 0 *Lecythocaridae 1 0 0 0 0 0 0 0 1 0 - 0 1 0 0 0 0 0 0 *Longodromitidae 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Dromiidae 1 1 1 1 0&1 0 0 0 1 0 - 0 0 0 0&1 0 0 0 0 Dynomenidae 1 1 1 1 1 0 0 0 1 0 - 0 0 1 1 0 0 0&1 0 Sphaerodromiidae 1 1 1 1 0&1 0 0 0 1 0 - 0 0 1 1 0&1 0&1 0&1 0 *Diaulacidae 1 1 1 1 0 0 0 0 1 0 - 0 0 1 1 0 1 0&1 0 * Xandaros 1 1 1 1 1 0 0 0 1 0 - 0 0 1 1 0 1 1 0 * Basinotopus 0 1 1 1 0 0 0 0 1 0 - 0 0 0 0 0 0 0 0 Homolidae 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 Latreilliidae 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 1 0 0 Poupiniidae 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 *Mithracitidae 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 *Etyidae 1 1 1 1 0 0 0 0 1 0 - 1 1 1 1 0 1 0 0 *Dakoticancridae 1 1 0 1 1 0 1 0 1 0 - 0 0 1 1 0 1 0&1 0 *Ibericancridae 1 1 0 1 1 0 1 0 1 0 - 0 1 1 1 0 1 0 0 Raninidae 0 1 0&1 0 1 0 1 0 1 0 - 1 1 1 1 1 1 1 0 Symethidae 0 1 0 0 1 0 1 0 1 0 - 1 1 1 1 1 1 1 0 *Camarocarcinidae 1 1 1 1 1 1 0 0 1 0 - 1 1 1 1 0&1 1 0&1 0 *Cenomanocarcinidae 1 1 1 1 1 0&1 0&1 0 1 0 - 1 1 1 1 0&1 1 0&1 1 *Necrocarcinidae 1 1 1 1 1 0&1 0 0 1 0 - 1 1 1 1 0 1 0&1 1 *Palaeocorystidae 0 1 1 1 1 0 0 0 1 0 - 1 1 1 1 0&1 1 0&1 0&1 Cyclodorippidae 1 1 0&1 0&1 0 0 0 0 1 0 - 0&1 1 1 1 0 1 0 0 Cymonomidae 1 0 0&1 0&1 0 0 0 0 0 0 - 0 0 1 1 0 1 0 0 Phyllotymolinidae 1 1 1 1 0&1 0 0 0 1 0 - 0&1 1 1 1 0 1 0 0 *Torynommidae 1 0 0 0 0 0 0 0 1 0 - 0 0 0 1 0 1 0 0 *Goniochelidae 1 1 1 1 1 0 0 0 1 0 - 1 1 1 1 0 1 0 1 Carcinidae 1 1 1 1 1 0 1 0 1 0 - 1 1 1 1 1 1 1 0 Varunidae 1 1 1 1 1 0 1 0 1 0 - 0 0 1 1 1 1 1 0 526 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>16. Cervical groove: distinct (0); indistinct (1). 17. Postcervical groove: present (0); absent (1). 18. Branchiocardiac groove: distinct (0); indistinct (1). 19. Longitudinal ridge or tubercles on branchial region: absent (0); present (1). 20. Cervical or branchiocardiac groove: reaching ventral carapace (0); ending at anterolateral margin. 21. Intestinal region: very narrow, limited by branchial grooves (0); wide (1). Within all homolodromioids and glaessneropsoids the intestinal region is very narrow and limited by branchial grooves (21-0), whilst other brachyurans have a relatively wide intestinal region (21-1). 22. Homolid lineae: absent (0); present (1). 23. Epistomial spine: absent (0); present (1). 24. Buccal cavern: wide (0); elongate (1). 25. Thoracic sternum: narrow, generally completely covered by pleon (0); wide, not completely covered by pleon (1). Within most podotrematous crabs, the thoracic sternum is narrow (25- 0), but some homoloids, some dakoticancrids, all cyclodorippoids, and eubrachyurans have a relatively wide thoracic sternum (25-1). 26. Sternites 1-3: indistinctly indicated ventrally (0); distinct ventrally (1). Within Homolodromioidea, Glaessneropsoidea, and Dromioidea, the thoracic sternites 1-3 are indistinct ventrally (26-0), whereas within other brachyurans they are distinct ventrally (26-1). However, within homoloids the sternites 1-3 are distinct ventrally but covered by the pleon. 27. Posterior sternites: wide (0); narrow, reduced (1). Most brachyurans have wide posterior thoracic sternites (27-0), whereas within Symethidae and Raninidae, thoracic sternites 6-8 are extremely narrowed posteriorly (27-1). 28. Lateral position of posterior sternites: not visible (0); visible (1). Within most podotreme crabs the posterior thoracic sternites are completely covered by the pleon; therefore, these lateral parts are not visible (28-0). However, within most dakoticancroids, cyclodorippoids, and eubrachyurans, they are visible (28-1). 29. Episternites: not clearly defined (0); clearly defined by grooves (1). 30. Episternites 4-5: process-like (0); wide (1). Within most brachyurans the episternites 4 and 5 are wide (30-1), whereas the homolodromiids, longodromitids, and dromioids have narrow, process-like or triangular episternites 4 and 5 (30-0). 31. Suture 4-5: only lateral position (0); well developed (1). 32. Suture 5-6: only lateral position (0); well developed (1). 33. Suture 6-7: incomplete (0); complete (1). 34. Sternite 4 with anteriorly protruded plate: absent (0), present (1). 35. Median line on sternite 8: absent (0); present (1). 36. Sterno-coxal depression: present (0); absent (1). The homolodromioids, glaessneropsoids, dromioids, and homoloids have a sterno-coxal depression (36-1) (defined by Guinot and Bouchard, 1998), which other brachyurans lack (36-0). 37. Sterno-pleonal depression of male: absent (0); present (1). 2 3 4 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 1 - 0 - - - - 0 - 1 0 0 0 0 0 - - - 0 0 0 2 0 0 0 0 0 ? ? ? ? - ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 ? 0 ? ? ? 0 0 0 0 ? ? ? 0 1 0 ? ? ? ? ? ? ? 0 ? ? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 1 ? 1 0 0 0 0 ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 1 0 0? ? ? ? ? 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0&1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0&1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 ? 1 0 0 ? 1 0 1 ? 1 0 1 0 0 0 0 1 0 0 ? ? ? ? ? 0 ? ? 1 0 0 ? ? ? ? ? 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 ? 1 0 0 1 1 0 0 0 1 0 0&1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 ? ? ? ? ? 0 ? 0 1 0 1 ? ? ? ? ? 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 ? 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0&1 1 0 1 0 1 1 1 0 0 0 1 0&1 0&1 0 ? 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 ? 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0&1 0 1 1 1 1 0 1 1 0&1 0 0 0 1 1 0 0 1 0 1 2 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 2 1 0&1 1 0 0 1 0 1 0 ? 0 1 1 1 0 0 0 1 1 0 0 ? ? ? ? ? ? 0 ? ? ? 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 ? 1 0 0 0 1 0 1 1 1 0&1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 ? ? ? ? ? 1 0 1 1 1 0&1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 ? 1 0 0 0 1 0 1 2 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 2 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 2 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 2 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 ? ? ? ? ? 1 0 1 ? 1 1 1 0 0 0 1 1 0 ? 1 1 1 1 ? 0 ? 1 0 1 ? ? 0 - - ? 1 0 1 2 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 - - - 1 1 1 2 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 - - - 1 1 1 2 1 Table 2. Extended. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 527</p>
<p>Most podotreme crabs have a sterno-pleonal depression (37-0) (Guinot, 1979), which some dakoticancrids and raninids, cyclodorippoids, and eubrachyurans lack (37-1). 38. Sterno-pleonal cavity in male: absent (0); present (1). The cyclodorippoids and eubrachyurans have a sterno-pleonal cavity (38-1) (Guinot, 1979), which is completely covered by the pleon of male, but most podotremes lack it (38-0). 39. Homolid button: absent (0); present (1). The homolid button (Guinot and Bouchard, 1998) is only recognized in Homoloidea (39-1). 40. Sella turcica: absent (0); present (1). The presence of the sella turcica is a feature of the endophragmal skeleton uniting all Eubrachyura (40-1) (Secretan, 1998; Tavares, 2003; Guinot and Tavares, 2001). All podotremes lack the sella turcica (40-0). 41. Spermatheca: absent (0); present (1). Characters of the spermatheca of podotreme crabs were well studied by Guinot and Quenette (2005). The thoracic sternum of podotremes is specialized in females and bears the spermatheca (41-1). Many workers (i.e., Guinot and Tavares, 2001; Guinot and Quenette, 2005) thought that the presence of spermatheca is one of the unique characters for the monophyly of Podotremata. Actually, Eubrachyura lack spermatheca (41-0). 42. Spermatheca: if present, paired (0); united (1). This character is scored inapplicable for the taxa without the spermatheca. Within Symethidae and Raninidae the spermatheca is united and located on a longitudinal median line (42-1), whereas other podotremes have a pair of spermathecae (42-0). 43. Spermatheca position: if present, around level of pereiopod 3 coxa (0); much anterior to pereiopod 3 coxa (1). This is also scored inapplicable for the taxa lacking the spermatheca. Within most podotremes the spermathecae are positioned at the level of the coxa of pereiopod 3 (43-0), while some dromiids have an elongate, long suture 7-8 and the spermatheca position is located much anterior to the coxa of pereiopod 3 (43-1). 44. Aperture of spermatheca: if present, margins not raised (0); raised (1). This is also scored as inapplicable for the taxa lacking the spermatheca. The margin of the spermathecal aperture is raised within homolodromioids and some dromioids (44-1), but it is not raised within the other podotreme crabs (44-0). 45. Pleon: not folding (0); folding (1). 46. Pleonites: visible dorsally (0); not visible (1). 47. Pleonal pleura: well developed (0); reduced (1). 48. Pleonal locking system: coxal spine (0); sternal lobe (1); absent (2). Guinot and Bouchard (1998) have studied the pleonal holding system of brachyuran crabs. The pleon is locked by a coxal spine or projection within homolodromioids, homoloids, most dromioids, and longodromitids (48-0); some dynomenids, etyids, necrocarcinids, and dakoticancroids have a sternal lobe or projection, which locks the pleon (49-1); and other taxa lack both locking systems (49-2). 49. Articulating rings of pleon: present (0); absent (1). 50. Fusion of pleonites and telson in males: absent (0); present (1). 5 6 7 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 ? ? - ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 ? ? ? ? ? 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 2 2 2 0 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 1 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 1 1 0 ? 0 ? 0 0 0 ? 0 ? ? 0 1 ? 1 0 ? ? ? ? 0 1 0 0&1 1 0&1 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 0 1 0&1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0&1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 2 2 2 0 1 0 0 0 0 1 0 0 ? 0 ? ? ? ? ? ? ? ? ? ? 0 1 ? 1 0 ? ? ? ? 0 1 ? 1 1 0 0 0 ? 1 1 0 ? 0 ? ? 0 0 0 0 0 ? ? ? ? 0 0 0 0 ? 1 ? 0 ? 1 0 0 0 0 ? ? 0 2 ? 2 0 ? ? ? ? 0 1 1 0&1 0 0 0 0 0 0&1 0 0 0&1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 ? ? ? 1 1 0 0 1 ? ? 0 1 ? 1 0 ? ? ? ? 0 1 0 0 2 0 0 0 ? 1 1 0 1 1 0 1 0 2 ? 2 0 0 ? ? ? 0 1 0 0 2 0 0 0 ? 1 1 0 1 1 0 1 0 1 ? 1 1 0 ? ? ? 0 1 0 0 2 0 0 0 ? 1 1 0 1 1 0 1 0 2 ? 2 1 0 ? ? ? 0 1 0&1 0 3 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0&1 0 0 0 1 1 0 1 0 0 3 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 ? ? 0 ? ? ? 0 ? ? 1 0 1 1 1 ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 2 0 0 0 ? 1 0 1 1 1 0 1 0&1 1 0 1 0 ? ? ? ? 0 1 0 0 2 0 0 0 ? 1 0 1 1 1 ? ? ? 1 ? ? 0 ? ? ? ? 0 1 0 0 2 0 0 0 ? 1 0 1 1 1 0 1 1 1 0 1 0 0 ? ? ? 1 1 0 0 3 0 0 0 0 1 0 1 1 1 1 1 0 2 2 2 1 0 0 1 1 1 1 0 0 3 0 0 0 0 1 0 1 1 1 1 1 0 2 2 2 1 0 0 1 1 0 1 0 0 2 0 0 0 0 1 0 1 1 1 1 1 0 2 2 2 1 0 0 1 1 0 1 0 0 2 0 ? 0 ? ? ? ? 1 1 ? ? ? 2 ? 2 0 ? ? ? ? 0 1 ? 0 ? 0 ? 1 ? 1 ? 0 1 1 ? ? 0 2 ? 2 ? ? ? ? ? 0 1 1 0 2 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 Table 2. Extended. 528 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>Cyclodorippidae and Cymonomidae are the only taxa with fused pleonal somite 6 and telson in males (50-1). 51. Pleonal somite 6 with triangular lateral lobes: present (0); absent (1). 52. Socket on sternite 6: absent (0); present (1). The homoloids, raninid lyreidines, and eubrachyurans have a socket (Guinot and Bouchard, 1998) on the internal side of pleonal somite 6 (52- 1), which others lack (52-0). 53. Telson of male: elongate, much longer than wide (0); about as long as wide or wider than long (1). 54. Anterior end of telson, if folding present: between mxp 3 (0); anterior sternite 4 (1); posterior sternite 4 (2); behind sternite 4 (3). This character is scored inapplicable for the out-group taxa, symethids and most raninids. The anterior end of the telson is inserted between maxillipeds 3 (54-0) within the homoloids, it reaches the anterior part of thoracic sternite 4 within the homolodromioids, longodromitids, and dromioids (54-1), and within other taxa excluding the cyclodorippids and cymonomids, it is located on the posterior part of sternite 4 (54-2). Within the cyclodorippids, cymonomids, and raninid lyreidines it is located on sternite 5 (54-3). 55. Uropodal plate: absent (0); present (1). Most brachyurans lacks the uropodal plate at the anterolateral angle of the pleonal somite 6 (55-0), but most dromioids have it (55-1). Characters 39, 53, and 55, although considered by Guinot and Bouchard (1998) to be homologous, are distinct structures and are observed as such in fossils. Thus, we score them separately. 56. Male gonopore position: coxal (0); sternal (1). 57. Female gonopore position: coxal (0); sternal (1). 58. Renal opening of second antennal coxa with beak-like structure: absent (0); present (1). The homolodromiids and dromioids have the renal opening of the second antennal coxa with a beak-like structure (McLay, 1999; Scholtz and McLay, 2009) (58-0), which other taxa lack (58-1). 59. Maxilliped 3: pediform (0); operculiform (1). 60. Maxilliped 3 much longer than wide: present (0); absent (1). 61. Maxilliped 3 with two planes: absent (0); present (1). 62. Maxilliped 3 with crista dentata: present (0); absent (1). 63. Maxilliped 3 coxa: large, touching (0); small, not touching (1). 64. Palp of maxilliped 3 merus: distal position (0); inner-mesial position (1). 65. Palp of maxilliped 3: different plane (0); same level as merus (1). 66. Pereiopods 3-4 form: normal (0); paddle-like (1). 67. Pereiopods 4-5 condition: normal (0); P5 dorsal (1); P4-5 dorsal (2). 68. Pereiopods 4-5 condition: normal (0); P5 chelate (1); P4-5 chelate (2). 69. Pereiopods 4-5 size: normal (0); P5 reduced (1); P4-5 reduced (2). 70. Coxae of pereiopods: elongate, large (0); short (1). 71. Male coxa P5 with elongation: not modified (0); modified (1). Within only Homolodromiidae, Sphaerodromiidae, and Dynomenidae the coxa of the pereiopod 5 in males is modified and has a hard, elongate, enclosed penis (Guinot and Tavares, 2003) (71-1). 72. Male coxa P5 with penial tube: absent (0); present (1). The penial tube of the coxa of pereiopod 5 in males (Guinot and Tavares, 2003) (72-1) is present within only dromiids. 73. Pleopods on segments 3-5 in male: present (0); absent (1). Most brachyurans lack pleopods on the pleonal segments (73-1), while the homolodromiids, most dromiids, sphaerodromiids, and dynomenids have the pleopods on pleonal segments 3-5 in males (Guinot et al., 1998; McLay, 1999) (73-1). 74. Male second pleopod with exopod: present (0); absent (1). Most Brachyura lack the exopod of the second pleopods in males (74-1), whereas Sphaerodromiidae and Dynomenidae have it (74-0) (Guinot and Tavares, 2003; Guinot, 2008). R ESULTS Analysis I yielded a single most-parsimonious tree, 154 steps long with a consistency index (CI) of 0.6753, a retention index (RI) of 0.7817, and a rescaled consistency index (RC) of 0.5279. A single most-parsimonious tree indicating Bremer support is given in Fig. 1. Analysis II yielded 39 most-parsimonious trees, 224 steps long with a consistency index (CI) of 0.5938, a retention index (RI) of 0.8030, and a rescaled consistency index (RC) of 0.4768. A strict consensus tree is given in Fig. 2 along with Bremer support values. Character state changes of analysis II are given in Fig. 3. The topologies from analyses I and II were largely matched. Paraphyly of Podotremata The present analysis strongly supports the paraphyly of Podotremata shown by many recent works (Schram, 2001; Martin and Davis, 2001; Dixon et al., 2003; Ahyong and O’Meally, 2004; Bro¨ sing et al., 2007; Ahyong et al., 2007; Chu et al., 2009; Scholtz and McLay, 2009). The topology of analysis I including only extant families (Fig. 1) is consistent with that of Scholtz and McLay (2009) based upon the manual cladistic method. Guinot (1977) divided Podotremata into two subsections, Dromiacea and Archae- obrachyura. Subsequently, Guinot and Tavares (2001) Fig. 1. The single most parsimonious tree from Analysis I (TL 5 154 steps, CI 5 0.6753, RI 5 0.7817, RC 5 0.5279). Bremer support for major branches indicated. Superfamilies and section recognized previous to this work are indicated. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 529</p>
<p>recognized three major clades, the dromiaceans, homo- loideans, and archaeobrachyurans, for Podotremata, and Guinot and Quenette (2005) subdivided Podotremata into three subsections, Dromiacea, Homolidea, and Archaeo- brachyura. Ahyong et al. (2007) rejected the monophyly of the Podotremata and proposed four sections, Dromiacea, Raninoida, Cyclodorippoida, and Eubrachyura for Brachy- ura based upon molecular analysis. Most recently, Guinot et al. (2008) proposed four subsections, Dromioidia, Homoloidia, Raninoidia, and Cyclodorippoidia, for Podo- tremata. De Grave et al. (2009) followed Ahyong et al. (2007) and arranged extant and extinct families within their classification. However, analysis II including extant and extinct families consists of seven major clades A-G (Fig. 3). The basic superfamily-level classification current- ly in use is largely supported, although the enigmatic Fig. 2. Strict consensus tree of 39 most parsimonious trees from Analysis II (TL 5 224 steps, CI 5 0.5938, RI 5 0.8030, RC 5 0.4768). Bremer support for major branches indicated. Superfamilies and section recognized previous to this work are indicated. 530 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>genera Basinotopus and Xandarocarcinus represent herein new families. Additionally, the monophyly of Dromiacea and Archaeobrachyura is not supported. Dromiacea (Clade A).—Dromiacea, the basal, diverse clade A, is the sister group to the rest of the paraphyletic Podotremata, as well as Eubrachyura. This clade is united by three synapomorphies: the renal opening of the second antennal coxa with a beak-like structure (58-1), the presence of chelae of pereiopods 4-5 (68-2), and the presence of pleopods on pleonal segments 3-5 in male (73- 0). The renal opening of the second antennal coxa with a beak-like structure (McLay, 1999; Scholtz and McLay, 2009) and the presence of pleopods on pleonal segments 3- 5 in males (Guinot et al., 1998; McLay, 1999) are unique. Glaessner (1969) placed three superfamilies, Dromioidea, Homoloidea, and Dakoticancroidea, under the section Dromiacea. After that, Guinot (1977) arranged two extant superfamilies, Homolodromioidea and Dromioidea, in the subsection Dromiacea and included Homoloidea within the subsection Archaeobrachyura. Ahyong et al. (2007) placed Homoloidea in Dromiacea based upon molecular analysis. In the most recent work, De Grave et al. (2009) arranged six superfamilies, Eocarcinoidea, Dromioidea, Glaessneropsoidea, Homolodromioidea, Homoloidea, and Dakoticancroidea, within Dromiacea and, subsequently, Fig. 3. Strict consensus tree from Analysis II with character state changes mapped onto it. Tree labeled with taxonomy proposed herein including sections, families, and superfamilies. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 531</p>
<p>Schweitzer et al. (2010) added Etyoidea to the section. Additionally, Feldmann and Schweitzer (2010) moved Eocarcinoidea to Anomura. The analysis rejects the position of Homoloidea within Dromiacea and suggests that Dromiacea, including the four superfamilies, Homo- lodromioidea, Konidromitioidea, Glaessneropsoidea, and Dromioidea, be restricted here. Homolodromioidea is united by two characters, the presence of the augenrest (10-1) and a long, elongate telson of males (53-1). The monophyly of Glaessneropsoidea is not supported and the analysis shows that Glaessneropsoi- dea is polyphyletic. The glaessneropsoid Longodromitidae clade is derived as the sister to Tanidromitidae and Bucculentidae + Goniodromitidae + Prosopidae + Homo- lodromiidae clades. Only one character, possession of reentrants on the posterior margin of the carapace, unites the Tanidromitidae and Bucculentidae + Goniodromitidae + Prosopidae + Homolodromiidae clades. A Bucculentidae + Goniodromitidae + Prosopidae + Homolodromiidae relationship is unresolved, and the clade is united by only one character, the presence of a deep augenrest (11-1). The analysis supports the position of four extinct families under Homolodromioidea as referred by Schweitzer and Feld- mann (2008 [imprint 2007], 2009a) and strongly suggests that Longodromitidae be moved to Homolodromioidea. Only one character, the presence of a well-defined orbit (9-1), defines the unresolved clade of Konidromitidae + Glaessneropsoidea + Dromioidea. The clade of Glaessner- opsidae + Lecythocaridae is united by only one character, the presence of upper orbital fissures (13-1). Schweitzer and Feldmann (2009a) gave Glaessneropsinae full family and superfamily status and included four families, Glaess- neropsidae, Lecythocaridae, Longodromitidae, and Nodo- prosopidae, and subsequently, Schweitzer and Feldmann (2010b) established Konidromitidae within Glaessnerop- soidea. However, Konidromitidae lacks synapomorphies of both glaessneropsoids and dromioids; therefore, the family should be given full superfamily status. Glaessneropsoidea including Glaessneropsidae, Lecythocaridae, and Nodopro- sopidae is restricted here. The monophyly of Dromioidea is supported by four characters, well-defined anterolateral margins with lobes or teeth (2-1; 3-1), the carapace with well-differentiated anterolateral and posterolateral margins (4-1), and a wide intestinal region (21-1). Within the dromioid clade, the most basal Basinotopus is the sister group of the remainder of the dromioid families. M’Coy (1849) and Collins (2002) placed Basinotopus in Dromiidae, while Collins and Jakobsen (2003) moved it to Dynomenidae. Most recently, Guinot (2008) questioned the systematic position of Basinotopus . Basinotopus lacks two synapomorphies, a short, wide carapace (1-1) and a relatively short maxilliped 3 (60-1), of the remaining dromioid clade. Additionally, Basinotopus has one autoapomorphy, well-developed pleonal pleura (47-0). Therefore, it cannot be placed within the previously recognized dromioid families. As a result, a new family is herein erected for Basinotopus . Dromiidae has two unique apomorphies, an anteriorly located spermatheca (43-1) and possession of the penial tube on the coxa of pereiopod 5 in males (72-1). The clade of Sphaerodromiidae + Dynomenidae + Diaulacidae + Xandarocarcinus shares two synapomorphies, absence of the subhepatic swellings (14-1) and possession of the exopod of male second pleopods (74-0). Guinot and Tavares (2003) established the subfamily Sphaerodromii- nae within Dromiidae and Guinot (2008) showed that Sphaerodromiinae has a close relationship with Dynome- nidae. After that, Schweitzer and Feldmann (2010b) gave Sphaerodromiinae full family status. The analysis supports the separate status of Sphaerodromiidae. The monophyly of the clade including Dynomenidae + Diaulacidae + Xandarocarcinus is supported by the synapo- morphies: the absence of the anteriorly protruded plate of thoracic sternite 4 (34-0), and the reduced pereiopod 5 with dorsal position (67-1; 69-1). Diaulacidae and Xandarocarci- nus are united by two characters, the absence of the postcervical groove (17-1) and the absence of the uropodal plate (55-0). Bishop (1988c) erected the new genus Xandaros (now Xandarocarcinus ) for Zanthopsis sternbergi Rathbun, 1926, and he placed the genus within Xanthidae MacLeay, 1838. Subsequently, Schweitzer et al. (2003) moved Xandaros to Dromiidae, and, most recently, Schweitzer et al. (2010) removed it to Dynomenidae. However, the analysis indicates that Xandarocarcinus ( 5 Xandaros ) is the sister to Diaulacidae but has four autoapomorphies, the pleonites not visible dorsally (46-1), a wide telson (53-1), and pereiopods 4 and 5 which are not positioned dorsally and are not reduced in size (67-0; 69-0). Therefore, the analysis suggests that Xandarocarcinus warrants its own new family (see below for nomenclatural discussion). Homoloidea (Clade B).—The monophyly of Clade B, with Bremer support of 2, is strongly supported by these synapomorphies: possession of the augenrest (10-1), the presence of the epistomial spine (23-1), possession of the homolid button (39-1), the presence of a socket on pleonal somite 6 (52-1), and the reduced pereiopod 5 with dorsal position (67-1; 69-1), of which two (23-1; 39-1) are unique. Clade B is the sister group to the remainder of the in-group taxa. Clades B-G + Eubrachyura, with Bremer support of 2, share four synapomorphies, the absence of the post-cervical groove (17-1), a relatively wide intestinal region (21-1), thoracic sternites 1-3 distinct ventrally (26-1), and relatively small coxae of maxillipeds 3 clearly separated by thoracic sternites 1-3 (63-1), of which one (63-1) is unique. The extinct Mithracitidae is derived as the sister to the three extant homoloid families. The monophyly of the three extant families is supported by only one character, a relatively wide thoracic sternum (25-1), and Poupiniidae is the sister to Latreilliidae and Homolidae. Only one character, pereiopod 5 with chelae (68-1), supports the sister-group relationship between Homolidae and Latreilliidae. Torynommidae (Clade C).—The extinct family Torynom- midae is the sister to the remaining taxa. Clades C-G + Eubrachyura, with Bremer support of 2, share six synapomorphies: the carapace rather wider than long (1- 1), well-defined orbits (9-1), the absence of the antennal groove (15-1), well developed sutures 4-5 and 5-6 on the thoracic sternum (31-1; 32-1), and maxilliped 3 without crista dentata (62-1), of which two (31-1; 32-1) are unique 532 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>and never reversed. Glaessner (1980) originally placed Torynommidae in Cyclodorippoidea and subsequent work- ers (De Grave et al., 2009; Schweitzer et al., 2010) accepted his opinion. However, the analysis shows that Cyclodorippoidea defined as containing extinct and extant families is polyphyletic and suggests that Torynommidae be given full superfamily status. Etyoidea (Clade D).—Clades D-G + Eubrachyura are united by five characters: well-defined anterolateral margins (2-1); anterolateral margins with lobes or teeth (3-1); the carapace with well-differentiated anterolateral and posterolateral margins (4-1); the presence of upper orbital fissures (13-1); and the absence of subhepatic swellings (14-1). Guinot and Tavares (2001) erected the new family Etyidae with Etyus , Feldmannia Guinot and Tavares, 2001, and Xanthosia , and showed its placement within Archaeobrachyura. Subsequently, S ˇ tevc ˇ ic ´ (2005) placed the family in Cyclodorippoidea. After that, Kar- asawa et al. (2008) gave Etyidae superfamily status. De Grave et al. (2009) and Schweitzer et al. (2010) placed Etyidae within Dromiacea. The analysis strongly supports the separate status of Etyoidea. Raninoidea (Clade E).—The raninoid clade stands as the sister to clades F-G and Eubrachyura. Two characters, an elongate, triangular buccal cavern (24-1) and the maxilli- ped 3 with two planes (61-1), define Raninoidea with Bremer support of 2. Two synapomorphies, the well defined posterolateral margin (5-1) and the cervical and branchiocardiac grooves not reaching ventrally (20-1), unite clades E-G + Eubrachyura with Bremer support of 2. Within the raninoid clade, Camarocarcinidae represents the most basal clade. Camarocarcinus , the type genus of Camarocarcinidae, was originally included in Raninidae (Holland and Cvancara, 1958). Most recently, Feldmann et al. (2007) erected the new family Camarocarcinidae with Camarocarcinus and Cretacocarcinus, and questionably arranged it within Raninoidea. However, Guinot et al. (2008) thought that Camarocarcinus belonged to Palaeo- corystidae. De Grave et al. (2009) and Schweitzer et al. (2010) accepted the separate status of Camarocarcinidae, which the analysis supports. Fo¨ rster (1968) established the new subfamily Necrocar- cininae under Calappidae de Haan, 1833, and, subsequent- ly, Schweitzer and Feldmann (2000) elevated it to full family status and placed it in Calappoidea. After that, Schweitzer et al. (2003) moved it to Dorippoidea. Most workers (De Grave et al., 2009; Schweitzer et al., 2010) concurred. However, Guinot and Tavares (2001; 2003) showed that Necrocarcinidae had close affinities with podotreme crabs, and Larghi (2004) placed it in Podo- tremata. Most recently, Guinot et al. (2008) removed Necrocarcinidae to the podotreme subsection Raninoidia, but they did not arrange it within the known superfamilies. The analysis suggests that Necrocarcinidae be placed in Raninoidea as the sister group to Cenomanocarcinidae. The clade (Palaeocorystidae + (Raninidae + Symethi- dae)), with Bremer support of 2, shares two characters, an elongate carapace (1-0) and the absence of the pleonal locking system (48-2). Within some recent works (De Grave et al., 2009; Schweitzer et al., 2010) Palaeoco- rystidae was one of the raninid subfamilies, while Guinot et al. (2008) gave it full family status. The analysis strongly supports the separate status of Palaeocorystidae. Palaeoco- rystidae is derived as the sister to Raninidae and Symethidae. The monophyly of Raninidae and Symethidae, with Bremer support of 6, is well supported by six synapomorphies, of which one, the united spermathecae (42-1), is unique. Guinot et al. (2008) suggested that the subsection Raninoidia be divided into two superfamilies, Raninoidea containing only extant families and an unnamed superfam- ily-level group including Palaeocorystidae, Cenomanocar- cinidae, and Necrocarcinidae. The analysis rejects their opinion. Dakoticancroidea (Clade F).—Dakoticancroidea stands as the sister to the Cyclodorippoidea + Eubrachyura. Clades F- G + Eubrachyura, with Bremer support of 2, are united by two synapomorphies, the lateral portion of the posterior thoracic sternites visible ventrally (28-1) and short coxae of pereiopods (70-1), of which one (70-1) is unique and never reversed. Two characters, the absence of the anterolateral spines and teeth (3-0) and a nearly straight posterior margin (7-1) define the monophyly of Dakoticancroidea with Bremer support of 2. Within previous works Dakotican- croidea was arranged within Dromiacea (De Grave et al., 2009; Schweitzer et al., 2010). However, Guinot (1993) suggested that Dakoticancroidea represented a fourth lineage within Podotremata, and Guinot and Tavares (2001) suggested that it be included in Archaeobrachyura. The analysis does not support the status of Dakoticancroi- dea under Dromiacea or Archaeobrachyura and suggests that it represents a separate lineage. Cyclodorippoidea (Clade G).—The most advanced podo- trematous superfamily Cyclodorippoidea is derived as the sister to Eubrachyura. The Cyclodorippoidea + Eubrachyura clade, with Bremer support of 3, is united by four synapomorphies, a wide thoracic sternum (25-1), the absence of the sterno-pleonal depression (37-0), the presence of the sterno-pleonal cavity of males (38-1), and the absence of the pleonal locking system (48-2), of which one (38-1) is unique. The monophyly of Cyclodorippoidea, with Bremer support of 3, is strongly supported by four characters: a complete sternal suture 6-7 (33-1); maxilliped 3 with two planes (61- 1); the palp of maxilliped 3 located in an inner-mesial position (64-1); and pereiopods 4 and 5 with chelae (68-2). Phyllotymolinidae is the sister to Cyclodorippidae and Cymonomidae. The Cyclodorippidae and Cymonomidae clade, with Bremer support of 3, shares three synapomor- phies, an elongate buccal cavern (24-1); the fusion of the telson and pleonal somite 6 (50-1); and the anterior end of the telson not reaching thoracic sternite 4 (54-3), of which one (50-1) is unique. The analysis suggests that Cyclodorippoi- dea contains only extant families, Phyllotymolinidae, Cymonomidae, and Cyclodorippidae, and excludes Tory- nommidae from the superfamily, discussed above. Eubrachyura.—The monophyly of Eubrachyura, with Bre- mer support of 3, is strongly supported by three synapomor- phies, well-defined episternites (29-1), the absence of KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 533</p>
<p>spermathecae (41-0), and the female gonopore located on the sternites (57-1), of which two (29-1, 57-1) are unique. Classification As a result of the analysis, we propose the following revised classification of paraphyletic podotremes including the Eubrachyura: Infraorder Brachyura Linnaeus, 1758 Section Dromiacea De Haan, 1833 Homolodromioidea Alcock, 1900 Konidromitioidea n. superfam. Glaessneropsoidea Patrulius, 1959 Dromioidea De Haan, 1833 Section Homoloida n. section Superfamily Homoloidea De Haan, 1839 Section Torynommoida n. section Superfamily Torynommoidea Glaessner, 1980 (new status) Section Etyoida n. section Superfamily Etyoidea Guinot and Tavares, 2001 Section Raninoida Ahyong et al., 2007 Superfamily Raninoidea De Haan, 1839 Section Dakoticancroida n. section Superfamily Dakoticancroidea Rathbun, 1917 Section Cyclodorippoida Ahyong et al., 2007 Superfamily Cyclodorippoidea Ortmann, 1892 Section Eubrachyura de Saint Laurent, 1980 Geologic ranges for families and other higher-level taxa given here are based upon our analysis of the literature; species-level references may be found com- piled in Schweitzer et al. (2010). Guinot et al. (2008) replaced the section Dromiacea with Dromioidia. How- ever, the name Dromiacea has been well used since de Haan established it in 1833; therefore, the section name Dromiacea is retained here. Additionally, three subsection names, Homoloidia, Raninoidia, and Cyclodorippoidia, established by Guinot et al. (2008), are not used. Two sections, Raninoida and Cyclodorippoida, named by Ahyong et al. (2007), have priority. We use the same suffix– oida for the remaining four sections, Homoloida, Torynommoida, Etyoida, and Dakoticancroida, following Ahyong et al. (2007). S YSTEMATICS Infraorder Brachyura Linnaeus, 1758 Diagnosis.—Carapace shortened and flattened compared to other Decapoda, fused to epistome; last thoracic sternite fused to anterior sternites; peduncles of antennules composed of three articles; penduncle of antenna composed of two articles; maxillae biramous; third maxilliped with well-defined ischium and merus; first pereiopods always chelate; second and third pereiopods never chelate; fourth and fifth pereiopods may be pseudochelate or chelate; pleon reduced, usually held ventral to the carapace but sometimes extending posteriorly from carapace; uropods usually absent but always reduced; telson reduced in size; male pleopods 1 and 2 modified as gonopods, uniramous, pleopods 3-5 usually absent; female pleopods 2-5 present; gonopores on coxae or sternum. Section Dromiacea De Haan, 1833 Diagnosis.—Carapace generally longer than wide but sometimes as long as wide or wider than long; orbits well developed, often with an augenrest situated distal to orbit, often ornamented with spines; cervical, branchiocardiac, and usually postcervical groove present; subhepatic region usually inflated, posterior portion of flanks often poorly calcified; renal opening of second antennal coxa with beak- like structure; maxilliped 3 pediform or operculiform with crista dentata ; pereiopods 4 and 5 usually subchelate, pereiopod 5 always subdorsal, reduced in size; pereiopod 4 sometimes subdorsal, reduced in size; pleon usually with all free somites; male pleonites 3-5 with pleopods, uropodal plates sometimes visible in ventral view; gonopores coxal, spermatheca usually situated posteriorly but may be positioned well anteriorly (Dromiidae); sternum narrow, sterno-coxal depression and sterno-pleonal depression present, sternites 1-3 usually fused, positioned below level of other sternites. Included Superfamilies.—Dromioidea De Haan, 1833; Glaessneropsoidea Patrulius, 1959; Homolodromioidea Alcock, 1900; Konidromitoidea Schweitzer and Feldmann, 2010b. Geologic Range.—Late Early Jurassic – Recent. Remarks.—Dromiacea as herein restricted conforms to that of Scholtz and McLay (2009) but not that of other authors in that we exclude Homoloidea. In light of the fossil record, Dromiacea as defined here is a well-constrained group, united by the synapomorphies discussed above, and characters including a reduced and subdorsal pereiopod 5 and cervical and branchiocardiac grooves present. The section appeared by the late Early Jurassic and was well established by the Late Jurassic (Schweitzer and Feldmann, 2010a). The position of Dromiacea as the sister to all other Brachyura is supported by the fossil record as all of the earliest occurrences in Brachyura belong within this section. The section radiated extensively during the later Mesozoic; six of these families crossed the K/Pg boundary, and one originated during the Cenozoic. Four are extant. Interestingly, of the families that originated in the Mesozoic (nearly all of them), only one became extinct during the Maastrichtian. Thus, members of the section are the first occurring members of Brachyura known to date as well as the longest ranging, with extant members of at least one Middle Jurassic family. Superfamily Homolodromioidea Alcock, 1900 Diagnosis.—Carapace longer than wide or about as long as wide, ovate to hexagonal; with oblique augenrest, some- times with septum about 2/3 the distance distally; cardiac and branchiocardiac grooves well developed on dorsal carapace and continuing onto and joining one another on lateral flanks, lateral flanks often poorly calcified posteri- 534 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>orly; postcervical groove usually present; carapace regions usually moderately to well defined; antennar groove extending forward from junction of cervical and branchio- cardiac grooves; subhepatic region generally inflated; telson elongate in males; maxilliped 3 pediform. Included Families.—Bucculentidae Schweitzer and Feld- mann, 2009a; Goniodromitidae Beurlen, 1932; Homolo- dromiidae Alcock, 1900; Longodromitidae Schweitzer and Feldmann, 2009a; Prosopidae von Meyer, 1860; Tanidro- mitidae Schweitzer and Feldmann, 2008 [imprint 2007]. Geologic Range.—Late Early Jurassic – Recent. Remarks.—The current composition of Homolodromioi- dea was in part defined by Glaessner (1969) although he did not recognize some of the families we distinguish here. Glaessner (1969) recognized Prosopidae and subdivided it into Pithonotinae Glaessner, 1933; Prosopi- nae, and Homolodromiinae. Herein, we recognize the same subfamilies, raised to family status and with Pithonotinae as a junior synonym of Goniodromitidae, and two additional families. Schweitzer and Feldmann (2009a) had originally placed Longodromitidae within Glaessneropsoidea; however, the description of additional species and genera within that family (Schweitzer and Feldmann, 2009b, d) has shown, along with the cladistic analysis herein, that Longodromitidae is better placed within Homolodromioidea. The presence of well-defined augenrests is key in placing Longodromitidae within the superfamily. Homolodromioidea is a long-lived clade. It embraces the oldest known brachyuran, Eoprosopon klugi Fo¨ rster, 1986, from the Pliensbachian (Early Jurassic), and is not common, but is well established, in modern oceans, represented by one extant family. Bucculentidae Schweitzer and Feldmann, 2009a Diagnosis.—Rostrum projected well beyond frontal margin of carapace, may have numerous small spines or be trifid; orbits appearing to be placed under rostrum, augenrest on hepatic region of dorsal carapace or subdorsally on hepatic region, bounded by spines or ridges; frontal margin of carapace may bear spines; hepatic regions strongly inflated and marking widest point on carapace; cervical and branchiocardiac grooves deep; flanks of carapace short. Included Genera.— Bucculentum Schweitzer and Feld- mann, 2009a; Wilmingtonia Wright and Collins, 1972. Material Examined.—Specimens of Bucculentum spp. listed in Schweitzer and Feldmann (2009a); Wilmingtonia satyrica Wright and Collins, 1972, (BMNH) In. 60909 (holotype), In. 61154, In. 63712. Geologic Range.—Late Jurassic (Oxfordian) – Late Cretaceous (Cenomanian). Remarks.—Bucculentidae was originally monotypic, and Schweitzer et al. (2010) added Wilmingtonia , based upon its possession of dorsally located augenrests. Goniodromitidae Beurlen, 1932 Diagnosis.—Carapace slightly longer than wide or about as long as wide; usually moderately vaulted transversely and longitudinally; rostrum simple, bilobed, axially sulcate; eyestalks appearing to arise from beneath rostrum; orbits oblique to axis, directed anterolaterally, elongate, deep, with very long augenrest, orbit and augenrest occupying at least two-thirds the maximum carapace width and often the entire maximum width of carapace, orbit and augenrest separated by ridge; sub-orbital margin may extend farther anteriorly than upper-orbital margin; epigastric regions developed as small swellings; mesogastric region moderately developed, best developed at anterior tip and posteriorly along cervical groove; cervical groove always strong; postcervical groove weak when present; branchiocardiac groove usually well developed but may be interrupted axially; lateral margins usually with spines or rim, especially anteriorly; flanks of carapace well developed, usually with inflated subhepatic region bounded ventrally by antennar groove, with exten- sions of cervical and branchiocardiac grooves which often merge. Chelae, where known, apparently isochelous, fingers gracile, movable finger longer than fixed finger. Included Genera.— Cycloprosopon Lo˝ renthey in Lo˝ renthey and Beurlen, 1929; Cyclothyreus Remesˇ, 1895; Distefania Checchia-Rispoli, 1917; Eodromites Patrulius, 1959; Go- niodromites Reuss, 1858 [imprint 1857]; Maurimia Mar- tins-Neto, 2001; Microcorystes Fritsch, 1893; Palaeodro- mites A. Milne-Edwards, 1865; Pithonoton Von Meyer, 1842; Plagiophthalmus Bell, 1863; Sabellidromites Schweitzer and Feldmann, 2008 [imprint 2007]; Trachy- notocarcinus Wright and Collins, 1972; Trechmannius Collins and Donovan, 2006. Material Examined.—Specimens listed in Schweitzer and Feldmann (2008 [imprint 2007], 2009a, b, c, 2010b, c); Microcorystes parvulus Fritsch, 1893, NM 04297; Plagi- ophthalmus oviformis Bell, 1863, (BMNH) In. 31323 (lectotype); (BMNH) In. 63713; (BMNH) In. 31324; (BMNH) In. 61306; SM B 8826. Geologic Range.—Middle Jurassic (Bajocian) – Paleocene. Remarks.—Goniodromitidae is a diverse family, with many species and genera. All are united by an orbit separated from a long, deep augenrest by a transverse ridge about two-thirds the distance laterally. The family ranges from Middle Jurassic to Paleocene. Herein we add three genera to those listed by Schweitzer et al. (2010), Maurimia , Microcorystes , and Trechmannius , based upon possession of a carapace as wide as long or longer than wide, broad orbits with augenrest where well-preserved, cervical and branchiocardiac grooves, and a well-defined mesogastric region. Whereas these three genera are not well-known, they possess the diagnostic features of the family. The addition of Trechmannius extends the geologic range from the Late Cretaceous into the Paleocene. Homolodromiidae Alcock, 1900 Diagnosis.—Carapace longer than wide; lacking well- defined orbits; eyes resting in augenrest formed by orbital KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 535</p>
<p>spines or by subhepatic region; two forward-directed lateral rostral spines positioned at base of central rostral spine if present, sometimes fused into a single bifid structure, lateral rostral spines appear to originate on dorsal carapace; central rostral spine variable, may be absent, tiny, downturned, or attenuated; subhepatic region inflated, sometimes markedly so; other subdorsal areas may be well developed; cervical and branchiocardiac grooves moderately well defined, parallel to one another; regions indistinct in extant forms and well developed in most fossil forms; appendages typically slender, sometimes long, pereiopod 5 usually carried dorsally, both pereiopods 4 and 5 reduced in size; pleonites with triangular, long epimeres; uropodal plate not visible, telson longer than wide; spermatheca placed posteriorly. Included Genera.— Antarctidromia Fo¨ rster et al., 1985; Dicranodromia A. Milne-Edwards, 1880 (extant); Homo- lodromia A. Milne-Edwards, 1880 (extant); Homolus Eudes-Deslongschamps, 1835; Notiodromia Schweitzer and Feldmann, 2011a; Palehomola Rathbun, 1926; Pre- clarocarcinus Schweitzer, Feldmann, C ´ osovic ´ , Ross, and Waugh, 2009; Rhinodromia Schweitzer, Nyborg, Feld- mann, and Ross, 2004. Material Examined.— Dicranodromia doederleini Ortmann, 1892, SMF unnumbered; D. felderi Martin, 1990, USNM acc. no. 226053; D. ovata , USNM 81931; Homolus auduini Eudes-Deslongchamps, 1835, (BMNH) In 57979 (lecto- type); OUM J.71902; Homolodromia robertsi Garth, 1973, LACM CR 1980-158.6; Palehomola gorrelli Rathbun, 1926, USNM 352912 (holotype); Preclarocarcinus parvus Schweitzer et al., 2009, GSC 27176 (holotype); Rhinodro- mia richardsoni (Woodward, 1896); GSC 5995 (holotype). Geologic Range.—Middle Jurassic (Bathonian) – Recent. Remarks.—Homolodromiidae is the longest ranging family of Brachyura known to date. The earliest occurrence is the Middle Jurassic Homolus , and the family survives in modern oceans, mostly in offshore and slope habitats. Longodromitidae Schweitzer and Feldmann, 2009a Diagnosis.—Carapace longer than wide, widest at position of epibranchial or anterior-most branchial region, dorso- ventrally compressed; rostrum projected well beyond orbits, axially sulcate, markedly downturned distally; augenrest shallow or deep, forward-directed, with intra- and outer-augenrest spines as well as subaugenrest spines; protogastric and hepatic regions poorly differentiated; cervical groove deep, originating well posterior to outer- orbital spine; area between cervical and branchiocardiac grooves narrow; postcervical groove present, discontinuous and extending laterally about half the distance to the lateral margins or composed of two discrete segments that meet axially and extend laterally; cardiac region rounded triangular; epibranchial region with rounded or finger-like projection directed toward cardiac region; subhepatic swelling positioned below orbit, bounded by ventral extension of cervical groove and antennar groove; ventral extensions of cervical and branchiocardiac grooves meeting to form triangular subdorsal extension of epibranchial region; flanks short posteriorly as if they may have been poorly calcified; pleural suture distinct, pterygostome sometimes well calcified; male and female pleonites free, becoming progressively longer and wider toward telson; each somite with three swellings, axial and lateral; telson very long, twice as long as somite 6, extending well beyond coxae of pereiopod 1; pereiopod 5 subdorsal, small; pereiopod 4 ventral, not particularly reduced in size. Included Genera.— Abyssophthalmus Schweitzer and Feld- mann, 2009a; Antarctiprosopon Schweitzer and Feldmann, 2011a; Coelopus E ´ tallon, 1861; Dioratiopus Woods, 1953; Glaessnerella Wright and Collins, 1975; Longodromites Patrulius, 1959; Planoprosopon Schweitzer, Feldmann and Laza˘r, 2007; Vespridromites Schweitzer and Feldmann, 2011a. Material Examined.—Specimens of Abyssophthalmus spp., Longodromites , and Planoprosopon listed in Schweitzer and Feldmann (2009a, b); Coelopus spp. in Schweitzer and Feldmann (2010e) and Antarctiprosopon sp., Dioratiopus sp., Glaessnerella spp. and Vespridromites in Schweitzer and Feldmann (2011a). Geologic Range.—Middle Jurassic (Bajocian) – Eocene. Remarks.—Longodromitidae is tightly constrained, with deep, parallel grooves and deep, forward-directed augen- rests. It ranges from the Middle Jurassic (Bajocian) to Eocene and is nearly cosmopolitan in distribution. Prosopidae von Meyer, 1860 Diagnosis.—Carapace longer than wide, narrowing anteri- orly, widest at branchial regions; regions well defined by grooves; cervical and branchiocardiac groove well devel- oped; postcervical groove usually present; rostrum extend- ing well beyond orbits; augenrest directed anterolaterally, bounded by inflated subhepatic region on suborbital rim and inner- and outer-orbital spine on upper orbital margin; orbit may be situated at base of rostrum as shallow reentrant; lateral margins well defined but not high; grooves deep and well marked, postcervical groove present; posterior margin biconvex, apparently to accommodate fifth pereiopods. Included genera.— Laeviprosopon Glaessner, 1933; Nippo- nopon Karasawa, Kato and Terabe, 2006; Prosopon von Meyer, 1835; Protuberosa Schweitzer and Feldmann, 2009a. Material Examined.—Specimens of Laeviprosopon spp. listed in Schweitzer and Feldmann (2008) and Prosopon spp. and Protuberosa sp. in Schweitzer and Feldmann (2009a). Geologic Range.—Middle Jurassic (Bathonian) – Early Cretaceous (Aptian). Remarks.—For many years, Prosopidae was the default family for most Jurassic Brachyura (i.e., Glaessner, 1969). Recent revisions have shown that Jurassic brachyuran 536 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>diversity is in fact much higher and that few genera are referable to Prosopidae sensu stricto. Tanidromitidae Schweitzer and Feldmann, 2008 [imprint 2007] Diagnosis.—Carapace longer than wide, width 70-85 % maximum length; flanks of carapace strongly developed; regions well defined, generally smooth, protogastric and hepatic regions confluent; rostrum downturned, blunt- triangular, axially sulcate; orbit small, directed forward, situated at base of rostrum, rimmed; augenrest usually rimmed, may have small spines or protuberances; fronto- orbital width 50-60 % maximum carapace width; lateral margins parallel, subparallel to one another, or diverging slightly posteriorly; subhepatic region may be markedly inflated; large portion of ventral side lies below ventral extension of branchiocardiac groove; ventral extension of cervical groove deep; ventral extension of branchiocardiac groove diminishing ventrally. Included Genera.— Gabriella Collins et al., 2006; Tani- dromites Schweitzer and Feldmann, 2008 [2007]. Material Examined.—Specimens of Tanidromites spp. listed in Schweitzer and Feldmann (2008 [imprint 2007]) and Gabriella spp. in Schweitzer and Feldmann (2009d). Geologic Range.—Middle Jurassic (Bajocian) – Early Cretaceous (Hauterivian). Konidromitioidea n. superfam. Diagnosis.—Carapace ovate, longer than wide, widest at position of bifid third lateral spine, about 60 % the distance posteriorly on carapace; widening posteriorly, strongly vaulted longitudinally and transversely; rostrum blunt triangular, axially sulcate, with tiny spines on margins, strongly downturned at tip to be oriented almost perpen- dicular to dorsal carapace; outer suborbital spine extending posteriorly in large, laterally inflated flange; subhepatic region strongly inflated, ornamented with granules arrayed in longitudinal row; lateral margin with five spines; cervical groove sinuous, beginning posterior to outer suborbital spine, deep; branchiocardiac groove much weaker; postcervical groove very short, oblique segments merging with groove defining lateral sides of urogastric region; flanks steep, at right angles to dorsal carapace, posterior to subhepatic region surface of flank concave, perhaps to accommodate merus of first pereiopod, posterior to this concavity the surface is corrugated with three parallel oblique concavities perhaps to accommodate meri of pereiopods 2-4. Included Family.—Konidromitidae Schweitzer and Feld- mann, 2010b. Material Examined.— Konidromites gibbus (Reuss, 1858 [imprint 1857]), specimens listed in Schweitzer and Feldmann (2010b); Konidromites bjorki (Bishop and Williams, 2000), SDSM 11021; Konidromites izetti (Bish- op, 1988b), USNM 418272 (holotype), USNM 418273 (paratype). Geologic Range.—Late Jurassic (Oxfordian) – Late Cretaceous (Campanian). Remarks.—Schweitzer and Feldmann (2010b) originally placed Konidromitidae in Glaessneropsoidea based upon its possession of deep orbits with some ornamentation, a long rostrum, cervical groove, and an inflated subhepatic region. Whereas it does share these features with Glaessneropsoi- dea, our analysis shows that it shares neither the synapomorphies of Glaessneropsoidea nor those of any other superfamilies; thus, we refer it to its own superfamily. Konidromitidae (and the two included genera, Konidro- mites Schweitzer and Feldmann, 2010b, and Concavilateris Frant¸escu, 2010) possess the interesting feature of a crenulate flank, apparently to accommodate the pereiopods. It also possesses an outer suborbital spine extending posteriorly in a large, laterally inflated flange, not seen in any other brachyuran. The lateral spines are also unusual, with five spines extending in a flange-like structure. Superfamily Glaessneropsoidea Patrulius, 1959 Diagnosis.—Carapace longer than wide or wider than long, regions generally well defined by grooves; carapace ornament often well developed, may be composed of tubercles, small spines, large spines, or large swellings; rostrum projecting well beyond orbits, axially sulcate, inflated, or trilobed; orbits well developed; orbit usually ornamented with supra- and sub-orbital spines, fronto- orbital width always occupying entire frontal margin of carapace; augenrest absent; cervical and branchiocardiac grooves usually equally developed, postcervical groove usually present; subhepatic swelling usually present; branchial regions often very short in lateral view; cardiac region always well marked, variable in size (Schweitzer and Feldmann, 2009a, p. 82). Included Families.—Glaessneropsidae Patrulius, 1959; Lecythocaridae Schweitzer and Feldmann, 2009a; Nodo- prosopidae Schweitzer and Feldmann, 2009a. Geologic Range.—Late Jurassic (Oxfordian) – Late Cretaceous (Maastrichtian). Remarks.—The superfamily is united mainly by having well defined orbits with orbital fissures, which other Jurassic taxa do not possess. Nodoprosopidae was not included in this analysis due to the large number of missing characters but was originally included in the superfamily (Schweitzer and Feldmann, 2009a), so we retain it here. Glaessneropsidae Patrulius, 1959 Diagnosis.—Carapace longer than wide, widest at position of branchial region, about half to three-quarters the distance posteriorly; carapace regions flattened or bulbous, may be ornamented with large granules, especially large on branchial regions. Rostrum projected well in advance of KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 537</p>
<p>orbits, spatulate, downturned, with longitudinal swellings and sometimes axial sulcus, tip of rostrum may have spines, rostral width usually about half maximum carapace width but rarely as narrow as one-third carapace width. Eyestalk arising beneath rostrum. Orbits bounded on inner angle by rostrum; upper orbital margin with intra-orbital spine that may be rectangular or triangular in shape; intra-orbital spine may be bounded by deep fissures; fissures and spine directed forward or anterolaterally; outer-orbital angle formed of long, triangular, forward-directed spine that wraps around laterally into cup-shaped structure; orbit directed forward; fronto-orbital width 75-95 % maximum carapace width. Metagastric region bilobed when well marked. Cervical and branchiocardiac grooves usually well-developed but rarely may be shallow and discontin- uous; cervical groove originating at lateral margin just posterior to position of outer-orbital spine; postcervical groove usually present, when present continuous and crossing axis to bound anterior edge of cardiac region. Cardiac region usually small, positioned well anterior of posterior margin but rarely extending toward posterior margin. Subhepatic region markedly inflated, bounded posteriorly by ventral extension of cervical groove, ventrally by antennar groove; anterior margin forms orbital margin. Epibranchial region extending onto flank, bounded by ventral extensions of cervical and branchiocardiac grooves (Schweitzer and Feldmann, 2009a, p. 83). Included Genera.— Glaessneropsis Patrulius, 1959; Ekala- kia Bishop, 1976; Rathbunopon Stenzel, 1945; Vectis Withers, 1946; Verrucarcinus Schweitzer and Feldmann, 2009a. Material Examined.— Glaessneropsis spp. and Verrucarci- nus spp., specimens listed in Schweitzer and Feldmann (2009a); Ekalakia spp., specimens listed in Feldmann, Schweitzer and Wahl (2008); Vectis wrighti Withers, 1946, (BMNH) In. 60908 (holotype); Vectis echinorum Wright and Collins, 1972, SM B14291 (holotype), B14292-4 (paratypes); Rathbunopon polyakron Stenzel, 1945, UT BEG 21097 (holotype); Rathbunopun woodsi Withers, 1951, SM B50799 (holotype); (BMNH) In. 24657. Geologic Range.—Late Jurassic (Oxfordian) – Late Cretaceous (Maastrichtian). Remarks.—To the genera originally referred by Schweitzer and Feldmann (2009a) and Feldmann, Schweitzer, and Wahl (2008), Schweitzer et al. (2010) added Rathbunopon and Vectis based upon the carapace proportions and the ornamentation and conformation of the orbits. The family was well established through the later Mesozoic, ranging from the Oxfordian to the Maastrichtian. Lecythocaridae Schweitzer and Feldmann, 2009a Diagnosis.—Generally small crabs, triangular in outline, with widest part in metabranchial region which is extremely large and bears a prominent node or swelling on anterolateral corner; regions strongly inflated and separated by distinct, deep grooves; grooves not necessarily identifiable as cervical, branchiocardiac, and postcervical. Rostrum broad, spatulate, axially sulcate, and strongly downturned. Orbits circular, rimmed, separated from rostrum by prominent, open notch; with inner suborbital spine. Mesogastric region narrow. Cardiac region very large, extending nearly to posterior border and completely separating metabranchial regions. Hepatic and epibranchial regions developed as globose swellings (Schweitzer and Feldmann, 2009a, p. 94). Material Examined.—Specimens of Lecythocaris spp. listed in Schweitzer and Feldmann (2009a). Geologic Range.—Late Jurassic (Kimmeridgian-Titho- nian). Remarks.—This monogeneric family is known from central and eastern Europe only from the Late Jurassic (Kimmer- idgian-Tithonian). Its distinctive orbits and carapace support its family status. Nodoprosopidae Schweitzer and Feldmann, 2009a Diagnosis.—Carapace longer than wide, markedly vaulted transversely, moderately so longitudinally; widest at position of mid-branchial region, about 75 % the distance posteriorly, narrowing markedly anteriorly; rostrum trifid, with medial spine and two lateral spines that are directed upward; eyestalk apparently arising from under rostrum; orbits or augenrest not developed; lateral margins spinose; protogastric and hepatic regions differentiated; carapace regions ornamented with large tubercles; cervical groove deep; postcervical groove deep, continuous across axis, extending a short distance laterally; branchiocardiac groove oriented obliquely posteriorly, deep; cardiac region small; posterior margin rimmed, broadly concave; carapace apparently with inflated subhepatic region (Schweitzer and Feldmann, 2009a: 116). Geologic Range.—Late Jurassic (Kimmeridgian – Titho- nian). Remarks.—Nodoprosopidae and Nodoprosopon Beurlen, 1928, the only included genus, are unique in possessing a distinctive trifid rostrum and overall triangular carapace. Superfamily Dromioidea De Haan, 1833 Diagnosis.—Carapace longer than wide or as long as wide, anterolateral and posterolateral margins usually well-differentiated, anterolateral margins generally with spines or lobes; rostrum typically bilobed or trilobed; orbits without augenrest, deep, circular; orbital margin often with protuberance or rim, outer suborbital spine and sometimes entire suborbital margin visible in dorsal view; cervical groove, postcervical groove, and branchiocardiac grooves variously developed; intestinal region wide; subhepatic swelling marked; sternum narrow, with strong episternal projections, pleonite 6 usually with triangular epimeres, other pleonites always without triangular epimeres; spermatheca posteriorly placed except in most 538 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>Dromiidae; maxilliped 3 usually operculiform; uropodal plate usually visible in ventral view but may be concealed or absent; both pereiopods 4 and 5 reduced, only pereiopod 5 reduced in size, or all pereiopods more or less similar in size; pereiopod 5 may be subdorsal or dorsal. Included Families.—Basinotopidae new family; Diaulaci- dae Wright and Collins, 1972; Dromiidae De Haan, 1833; Dynomenidae Ortmann, 1892; Sphaerodromiidae Guinot and Tavares, 2003; Xandarocarcinidae new family. Geologic Range.—Early Cretaceous (Aptian) – Recent. Remarks.—Dromioidea has been problematic in the fossil record. Many extinct genera historically referred to Dynomenidae (Glaessner, 1969) cannot be retained there based upon the diagnoses of Guinot (2008) for the various subfamilies. Some have already been removed to Gonio- dromitidae (Schweitzer et al., 2010; herein), Sphaerodro- miidae (Schweitzer and Feldmann, 2010d), or Basinotopi- dae new family (herein), and others are under study by us and others (Barry van Bakel, personal communication). Part of the problem with many of the remaining genera currently placed within Dromiidae and Dynomenidae is that they lack features of the ventral surface and pereiopods, making it very difficult to place them within a family. Thus, many of the genera listed for the two latter families must be considered as provisional until more and better fossil material is recovered to confirm placement within a family. Basinotopidae n. fam. Fig. 4 Diagnosis.—Carapace slightly longer than wide, broadly triangular; rostrum broadly triangular, axially sulcate, with well developed median rostral spine; orbits deep, oblique, directed anterolaterally, suborbital margin with large spine; short segment between outer-orbital angle and first anterolateral spine, placing them at same level; lateral margin with three spines anterior to intersection of cervical groove and one very long, posterolaterally directed spine posterior to intersection of cervical groove; cervical, postcervical, and branchiocardiac grooves deep, cervical and branchiocardiac grooves intersecting carapace margin and extending onto flank; carapace with large nodes on regions; sternite 3 at lower level than sternite 4; sternite 4 with long anterior process, pereiopod 1 articulating with long, vertically directed episternal projections; sternite 5 long, pereiopod 2 articulating with long vertically directed episternal projections; female spermatheca situated poste- riorly; female gonopore on coxa 3; male pleon very narrow, with triangular epimeres on pleomere 6 and short epimeres on other pleomeres, uropodal plates visible; female pleon much wider, with triangular epimeres on pleomere 6 and long, rectangular epimeres on pleonites 2-5, bilobed axial swellings on pleonites 2-5, uropodal plates clearly visible, telson very long, much longer than wide; pereiopod 5 reduced in size, carried dorsally, pereiopod 4 possibly reduced in size. Included Genera.— Basinotopus McCoy, 1849; Lucantho- nisia van Bakel et al., 2009; Noetlingocarcinus ( 5 Noetlingia Beurlen, 1928). Material Examined.— Basinotopus lamarckii (Desmarest, 1822): SM C19106-8, 19324, 19326 (female), 19327 (male); (BMNH) In. 34485, 46379 (female), 49849, 48931; 48932 (female); NHMW 854; MB.A.77 (male); PRI K55179 (2 females). Geologic Range.—Eocene (Ypresian) – Miocene (Lan- ghian). Remarks.—The analysis shows that Basinotopidae and its type genus, Basinotopus, occupy the basal position within Dromioidea, discussed above. Basinotopus has many similarities with Dromilites sensu stricto, now placed within Sphaerodromiidae, but Basinotopus has an elongate, triangular carapace and a well developed median rostral spine, both of which are lacking in Sphaerodromiidae. Lucanthonisia was questionably placed within Dynomeni- dae (van Bakel et al., 2009) and De Grave et al. (2009) and Schweitzer et al. (2010) moved it to Dromiidae. However, Lucanthonisia has an elongate, triangular carapace with a well developed median rostral spine. Therefore, we place it within Basinotopidae based upon its close similarity with Basinotopus . The family ranges from Eocene to Oligocene of Europe. Noetlingocarcinus n. name Noetlingia Beurlen, 1928, p. 164 [preoccupied]. Non Noetlingia Hall and Clarke, 1894, p. 229 (Brachio- poda); Noetlingia Lambert, 1898, p. 126 (Echinodermata). Type Species.— Dromia claudiopolitana Bittner, 1893, by original designation. Etymology.—The generic name is derived from the original genus name honoring Noetling and the Greek word karkinos , meaning crab, a common stem used for genera within Brachyura. Material Examined.— Noetlingocarcinus ( 5 Noetlingia ) claudiopaulitana (Bittner, 1893), MAFI E9280, MCZ 1212. Remarks.—Beurlen (1928) erected Noetlingia to accom- modate Dromia claudiopolitana from the Eocene of Italy. That name had been used previously for a brachiopod and for an echinoid. Thus, we provide the replacement name Noetlingocarcinus for it. This genus had been placed within Dromiidae but we herein placed it within Basinotopidae based upon its elongate, triangular carapace and long, median rostral spine. Diaulacidae Wright and Collins, 1972 Fig. 5 Diagnosis.—Orbit deep, directed forward, outer-orbital corner visible in dorsal view; subhepatic swelling absent. Cervical groove may or may not intersect lateral margin of KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 539</p>
<p>Fig. 4. Dromioidea, Basinotopidae, Basinotopus lamarckii (Desmarest, 1822). A-B, (BMNH) In. 48932, female, dorsal carapace (A) and oblique posterior view (B); C-D, (BMNH) 49849, specimen with two individuals, dorsal carapace of one individual (C) and sternum of second individual (D); E-F, (BMNH) unnumbered, dorsal carapace (E) and sternum (F). Scale bars 5 1 cm. 540 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>carapace; postcervical groove present; branchiocardiac groove intersecting lateral margin of carapace; grooves not extending or only weakly extending onto flanks; flanks smooth, without swellings. P5 subdorsal. Somites 1-6 of pleon of unknown gender free, none with triangular epimeres, somite 6 and telson long, without uropodal plates. Sternites 1-3 fused, triangular in shape, situated well-below level of other sternites; suture 3/4 complete; sutures 5/6 and 6/7 complete; spermatheca situated posteriorly, large, ovate; episternites long, narrow; sternum narrow, shallow. Material Examined.— Diaulax carteriana Bell, 1863, SM B22784, 22791, 22799, (BMNH) In. 44401, (BMNH) In. 29714; Brussels I.G.8968; D. feliceps Wright and Collins, 1972, SM B22794, SM B30706 (paratype), (BMNH) In. 30102 (holotype), (BMNH) I.635, (BMNH) 59810; D. oweni Bell, 1850, (BMNH) In. 29803 (holotype), (BMNH) In. 61136. Geologic Range.—Early Cretaceous (Albian) – Eocene (Ypresian). Remarks.—Wright and Collins (1972) erected the family for a single genus. Later, Schweitzer et al. (2004) synonymized Diaulacidae with Dynomenidae based on their distinctive similarities. Some sternal elements and the apparent lack of visible uropodal plates suggest that Diaulacidae should be maintained as a separated family. The range of the family, known only from one genus, is Albian to Eocene. Dromiidae De Haan, 1833 Diagnosis.—Carapace longer than wide to wider than long; rostrum typically bilobed; orbits without augenrest, deep, circular; orbital margin often with protuberance or rim, subouterorbital spine often visible in dorsal view; cervical groove weak; postcervical groove sometimes present; branchiocardiac groove present; sternum with anteriorly displaced spermatheca in most taxa; pleon without long epimeres on pleonites, somite 6 without triangular epimeres, telson rarely longer than wide, uropodal plates usually visible; both pereiopods 4 and 5 reduced in size, pereiopod 4 subdorsal, pereiopod 5 carried dorsally, penial tube on coxa of pereiopod 5 in males. Included Fossil Genera.— Cryptodromia Stimpson, 1858a (also extant); Dromia Weber, 1795 (also extant); Dromidia Stimpson, 1858a (also extant); Dromiopsis Reuss, 1858 [imprint 1857]; Epigodromia McLay, 1993 (also extant); Fig. 5. Dromioidea, Diaulacidae, Diaulax carteriana Bell, 1863. A-B, SM B 22799, dorsal carapace (A) and female sternum with large spermatheca (B); C-D, SM B 22784, dorsal carapace (C) and pleon and proximal elements of pereiopods, showing that none are subdorsal (D). Scale bars 5 1 cm. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 541</p>
<p>Kerepesia Mu¨ ller, 1976; Pseudodromilites Beurlen, 1928; Quinquerugatus Frant¸escu et al., 2010. Material Examined.— Conchoecetes artificiosus (Fabricius, 1798), SMF 11511; Cryptodromiopsis unidentata (Ru¨ ppell, 1830), SMF 24583; Dromia personata (Linnaeus, 1758), USNM 258144, 258152, Dromia dehaani Rathbun, 1923a, USNM 42218, 57751; Dromidia antillensis Stimpson, 1858a, USNM 202878, 241052; Dromidia australis Rathbun, 1923a, SMF 4704; Dromidiopsis orientalis (Miers, 1880), USNM 70802; Dromiopsis rugosa (Schlotheim, 1820), KSU D 801, 803; Epigodromia areolata (Ihle, 1913), USNM 282756-58; Exodromidia spinosa Studer, 1883, USNM 231224; Kerepe- sia viai Mu¨ ller, 1976, HNHM M86.420 (holotype); Petalo- mera lateralis (Gray, 1831) USNM 6462; Quinquerugatus holthuisi Frant¸escu et al., 2010, PI 15222 (holotype), PI 15206 (paratype); Sternodromia spinirostris (Miers, 1881), USNM 121405; SMF 5922; Takedromia cristatipes (Sakai, 1969), USNM 128579, 282762. Geologic Range.—Early Cretaceous (Aptian) – Recent. Remarks.—The fossil record of the genera included here in Dromiidae ranges from Late Cretaceous to Holocene. Some of the genera here referred to Dromiidae are provisional, based upon their fragmental nature. Kerepesia is fragmental but has a rostrum and orbits similar to that of other dromiids in being trifid and with a suborbital spine respectively. Both Noetlingicarcinus and Pseudodromilites are based on dorsal carapace material only and lack appendages or ventral aspects of the carapace. They are both longer than wide, have well defined carapace grooves, and a suborbital spine that is visible in dorsal view. Thus, the best placement for them seems to be Dromiidae. Dromiopsis is herein moved to Dromiidae from Dynome- nidae based upon its possession of well-defined carapace grooves and a suborbital spine that is visible in dorsal view. Members of Dynomenidae have an entire suborbital margin visible in dorsal view. It should be noted that this placement is based upon examination of the type species of Dromiopsis , D. rugosus Schlotheim, 1820, and that the composition of the genus is likely heterogeneous. Schweitzer et al. (2010) listed five species of Dromia , one questionably referred from the Cretaceous. That Cretaceous species, Dromia anomala Rathbun, 1935, is a lobster, possibly a member of Hoploparia , based upon examination of the holotype (UT 21200). Thus, the record of Dromia is restricted to the Eocene to Holocene. Dynomenidae Ortmann, 1892 Diagnosis.—Carapace wider than long or longer than wide; surface covered in dense setae; lateral margins with spines or blunt protuberances; front broadly triangular, sulcate; entire suborbital margin visible in dorsal view, subhepatic swelling absent; cervical and branchiocardiac grooves well defined, postcervical groove sometimes present; pleonites 1-5 without long epimeres, somite 6 with triangular epimeres, male telson not longer than wide, uropodal plates visible in ventral view; female spermatheca placed posteriorly on sternum; pereiopod 5 reduced in size. Included Fossil Genera.— Dynomene Desmarest, 1823 (also extant); Graptocarcinus Roemer, 1887; Kierionopsis Da- vidson, 1966; Kromtitis Mu¨ ller, 1984. Material Examined.— Dynomene emiliae Mu¨ ller, 1978, HNHM M.86.108; D. hispida Latreille in Milbert, 1812, USNM 15593, 189454; D. lessinea Beschin et al., 2001, MCZ 2065 (holotype); D. pilumnoides Alcock, 1900, SMF 17127, USNM 282761; D. praedator A. Milne-Edwards, 1879, SMF 4855; Graptocarcinus muiri Stenzel, 1944, UT 21288 (holotype); G. texanus Roemer, 1887, OUM K.53173a, b, SM B8845, (BMNH) In. 62020; Hirsutodynomene ursula (Stimpson, 1860), USNM 77313; Kierionopsis nodosa Davidson, 1966, USNM 649150 (holotype), 649161 (para- type); Kromtitis koberi (Bachmayer and Tollmann, 1953), MNHN R03456, NHMW 61/1953 (holotype), Kromtitis pentagonalis Mu¨ ller and Collins, 1991, HMNH M91.133; Paradynomene tuberculata Sakai, 1963, USNM 291445. Geologic Range.—Late Cretaceous (Cenomanian) – Recent. Remarks.—Guinot (2008) provided diagnoses for Dynome- nidae and its constituent subfamilies which she intended to assist paleontologists in evaluating placement of extinct taxa within the family. Her definitions for the family and the conformation of the sternum and pleon of members of the family exclude many of the historically referred genera (Glaessner, 1969; Schweitzer et al., 2003, 2010). This is perhaps not surprising as Dynomenidae is one of the most derived of Dromiacea and a very small group in modern oceans, with few genera and species. Possibly it is a specialized group, having occupied a small niche since its appearance. The extant genus Dynomene is known from Miocene and younger occurrences in the Tethyan and Indo-Pacific realm. Of the extinct genera, the oldest confirmed genus is Graptocarcinus from the Late Cretaceous. Placement of the genus in the family is based upon sternal features (personal communication, B. van Bakel, June–July 2009). Guinot (2008) suggested that the Paleocene Kierionopsis was a member of Paradynomeninae Guinot, 2008, based upon features of the dorsal carapace. Examination of type material in the USNM suggests that indeed dorsal carapace features indicate such placement but that characters of the pleon are equivocal. Pleonites 3-5 are rectangular, with straight epimeres, whereas pleonite 6 has triangular epimeres. The telson is wide. These are typical features of Dynomenidae (Schweitzer and Feldmann, 2010d, table 1). However, the uropodal plates are not visible. We were unable to determine whether they were obscured by sediment on the USNM specimen; this seems unlikely because all of the other pleomeres and the telson were visible. In Dynomenidae, uropodal plates are visible. Thus, place- ment of Kierionopsis in Dynomenidae must be consid- ered provisional at this time. Guinot (2008) also considered the Paleocene-Miocene Kromtitis to be a clear member of Paradynomeninae based upon dorsal carapace characters. This seems to be the best placement for the genus at this time as there are no ventral characters to further confirm placement. 542 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>Sphaerodromiidae Guinot and Tavares, 2003 Diagnosis.—Carapace longer than wide or about as long as wide; rostrum projecting beyond orbits; orbital area composed of two contiguous circular depressions, outer depression deeper, essentially continuous with orbit, poorly separated from orbit; lateral rim merging with or separated only by short distance from outer-orbital angle; subhepatic region inflated; cervical groove weak, postcervical and branchiocardiac grooves well defined; female spermatheca positioned posteriorly on sternum, short female sutures 7/8; male P5 coxa extended into immobile structure; telson long, uropodal plates large and readily visible in ventral view, triangular epimeres on sixth somites, rectangular terminations on remaining pleomeres; long anterior process of sternite 4; pereiopods 4 and 5 reduced in size. [See Guinot and Tavares (2003) for additional characters observed from extant specimens.] Included Fossil Genera.— Dromilites H. Milne Edwards, 1837; Ferricorda Schweitzer and Feldmann, 2010d. Material Examined.—Specimens of Dromilites spp., Ferri- corda , and Sphaerodromia spp. are listed in Schweitzer and Feldmann (2010d). Geologic Range.—Late Cretaceous (Maastrichtian) – Recent. Remarks.—The occurrence of the family in the fossil record was recently summarized (Schweitzer and Feld- mann, 2010d) and need not be repeated. Our analysis confirms its distinct family status. Xandarocarcinidae n. fam. Fig. 6 Diagnosis.—Carapace wider than long, hexagonal, antero- lateral and posterolateral margins well differentiated, both with spines; posterior margin concave, rimmed. Rostrum extending beyond orbits, axially bifid, axial two spines flanked by second pair of spines posterior to them and separated from them by arcuate segment; orbital margin sinuous, first extending posteriorly in segment parallel to axis, then extending convex forward in short arc, then turning strongly concave posteriorly and arcing anteriorly to outer-orbital spine; outer-orbital spine triangular, directed forward; orbit deep, circular, directed forward; eyestalks short, arcuate, arcing concave forward, well calcified. Carapace regions weakly defined, protogastric, hepatic, and epibranchial with large swellings. Cervical groove moderately defined, extending from anterolateral margin just anterior to last anterolateral spine, arcing convex forward, terminating lateral to urogastric region. Branchiocardiac groove obscure laterally, deeper axially, parallel to cervical groove. Postcervical groove present only as weak separation between urogastric and cardiac regions. Sternites 1-3 apparently fused, longer than wide; sternite 4 longer than wide, flattened. Male pleon moderately wide, with parallel sides, somites without triangular epimeres, uropodal plates not visible, telson reaching middle of sternite 4, all somites free. Female pleon wide, with convex lateral margins, somites without triangular epimeres, uropodal plates not visible, telson reaching well anterior to sternite 4, all somites free. Female gonopores coxal, ovate, positioned obliquely in distal position on coxae of third pereiopods. Chelipeds strongly sexually dimorphic, much larger in males than in females; chelae ornamented with rows of tubercles on outer surface of manus and carpus; fingers edentulous except for small spine at tip of fixed finger interlocking with movable finger, finger tips black; pereiopods 2-5 similar in size, none subdorsal. Included Genera.— Acanthodiaulax Schweitzer et al., 2003; Xandarocarcinus new name (type genus). Material Examined.— Acanthodiaulax mclayi Schweitzer et al., 2003, KSU D272, cast of GSC 124804, holotype; KSU D271, cast of GSC124805, paratype; KSU D246; Late Cretaceous (Santonian), British Columbia, Canada. Remarks.— Xandarocarcinus new name is unusual among podotreme crabs in having well-differentiated anterolateral and posterolateral margins, a pleon that is not visible in dorsal view, a wide telson, and no pereiopods that are reduced in size and subdorsal. In these respects, this brachyuran is much more similar to most heterotreme crabs. However, the female gonopores are clearly placed on the coxae of the third pereiopods, so it is a podotreme with certainty. In spite of the many synapomorphies it shares with other dromioids, no other group possesses this combination of characters. Thus, we place Xandarocarci- nus within a new family. Acanthodiaulax , known from only the type species, is very similar to Xandarocarcinus in terms of its dorsal carapace shape, the nature of the orbits and rostrum, and dorsal carapace ornamentation. Only a single appendage is known from Acanthodiaulax and no aspects of the ventral surface. Thus, we place it within Xandarocarcinidae based upon its close similarity with Xandarocarcinus . All known occurrences of the family are Late Cretaceous from Pacific coastal North America. Xandarocarcinus n. name Fig. 6 Xandaros Bishop, 1988c, p. 252 [preoccupied]. Schweitzer et al., 2002, p. 21; De Grave et al., 2009, p. 27; Schweitzer et al., 2010, p. 66. Non Xandaros Maciolek, 1981, p. 827. Type Species.— Zanthopsis sternbergi Rathbun, 1926, by original designation. Diagnosis.—Carapace wider than long, hexagonal, widest at position of last anterolateral spine about half the distance posteriorly on carapace; carapace strongly vaulted longitu- dinally, weakly vaulted transversely. Rostrum extending beyond orbits, axially bifid, axial two spines flanked by second pair of spines posterior to them and separated from them by arcuate segment; orbital margin sinuous, first extending posteriorly in segment parallel to axis, then extending convex forward in short arc, then turning strongly concave posteriorly and arcing anteriorly to KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 543</p>
<p>outer-orbital spine; outer-orbital spine triangular, directed forward; orbit deep, circular, directed forward; eyestalks short, arcuate, arcing concave forward, well-calcified. Anterolateral margin tightly convex, with three spines excluding outer-orbital spine, increasing in size posteriorly; posterolateral margin nearly straight, with a few small projections; posterior margin concave, rimmed. Carapace regions weakly defined, protogastric, hepatic, and epibran- chial with large swellings. Cervical groove moderately defined, extending from anterolateral margin just anterior to last anterolateral spine, arcing convex forward, termi- nating lateral to urogastric region. Branchiocardiac groove Fig. 6. Dromioidea, Xandarocarcinidae, Xandarocarcinus sternbergi (Rathbun, 1926). A-B, SDSNH 26037, hypotype, dorsal carapace (A) and pleon (B) showing completely ventral nature of pleon; C-D, SDSNH 26036, hypotype, dorsal carapace with eyestalks preserved (C) and ventral surface with maxillipeds and showing massive chelipeds; note termination of male pleon in middle of sternite 4 (D); E, SDSNH 26033, hypotype, female pleon, note termination well anterior to sternite 4; F, SDSNH 26034, hypotype, male pleon terminating in middle of sternite 4. Scale bars 5 1 cm. 544 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>obscure laterally, deeper axially, parallel to cervical groove. Post-cervical groove present only as weak separation between urogastric and cardiac regions. Sternites 1-3 apparently fused, longer than wide; sternite 4 longer than wide, flattened. Male pleon moderately wide, with parallel sides, somites without triangular epimeres, uropodal plate not visible, telson reaching middle of sternite 4, all somites free. Female pleon wide, with convex lateral margins, somites without triangular epimeres, uropods not visible, telson reaching well anterior to sternite 4, all somites free. Female gonopores coxal, ovate, positioned obliquely in distal position on coxae of third pereiopods. Chelipeds strongly sexually dimorphic, much larger in males than in females; chelae ornamented with rows of tubercles on outer surface of manus and carpus; fingers edentulous except for small spine at tip of fixed finger interlocking with movable finger, finger tips black; pereiopods 2-5 similar in size, none subdorsal. Etymology.—The generic name is derived from the original genus name Xandaros , a Greek word meaning a fabulous sea creature, and the Greek word karkinos , meaning crab, a common stem within Brachyura. Material Examined.—SDSNH 26033, 26034, 26036, 26037, all hypotypes, from Point Loma Formation, Late Cretaceous (Campanian); KSU D 659, Rosario Formation (Late Cretaceous), Baja California, Mexico. Remarks.—Maciolek (1981) named a new genus and species of annelid worm from geothermal vents, Xandaros acanthodes . Bishop (1988c) later used the same genus name for a Cretaceous crab. Thus, we herein provide a replacement name for the crab, Xandarocarcinus . Dromiacea incertae sedis Included Genera.— Ameridromia Blow and Manning, 1996; Cyamocarcinus Bittner, 1883; Eotrachynotocarcinus Beschin et al., 2007; Gemmellarocarcinus Checchia- Rispoli, 1905; Mesodromilites Woodward, 1900; Ovamene Mu¨ ller and Collins, 1991; Stephanometopon Bosquet, 1854. Material Examined.— Ameridromia hyneorum Blow and Manning, 1996, USNM 484532 (holotype); Cyamocarcinus angustifrons Bittner, 1883, KSU D 57; Gemmellarocarci- nus loerentheyi Checchia-Rispoli, 1905, KSU D 107; Mesodromilites glaber (Woodward, 1898) (BMNH) I.7990 (holotype). Remarks.—Several extinct genera have been referred previously either to Dromiidae or Dynomenidae. Exami- nation of these taxa with respect to the most recent diagnoses for these families (Guinot and Tavares, 2003; Guinot, 2008) and other dromiaceans (Schweitzer and Feldmann, 2009a, 2010d) suggests that they cannot be placed confidently within any of them. None of the above genera possess any portion of ventral surface of the carapace or appendages, and in fact, some are quite fragmental as in Stephanometopon which is known only from anterior portions of the carapace. Ameridromia was named upon a broken carapace and is referred to the family based upon its small orbits and spined anterolateral margins. Its placement is very problematic. Ovamene is about as wide as long and smooth, with little ornamenta- tion. Superficially, it resembles the anomuran group Porcellanidae, but more complete carapace material will be needed to test this hypothesis. Both Cyamocarcinus and Gemmellarocarcinus are wider than long and ovate; have very narrow fronto-orbital widths with respect to the maximum carapace width; have entire anterolateral margins that are developed as a thickened rim; and simple, v-shaped fronts. Gemmellarocarcinus has distinctive transverse ridges on the hepatic and epibranchial regions, and Cyamocarcinus has a row of setal pits parallel to the frontal margins of the carapace. These two genera cannot be accommodated in any known family of Brachyura; recovery of sternal or pleonal elements may help to determine their placement. Eotrachynotocarcinus is enigmatic. It shares similarities with members of Dynomenidae and with Goniodromitidae. Like members of Metadynomeninae Guinot, 2008 (Dyno- menidae), the carapace grooves are well developed and the carapace is wider than long. However, the orbital margin and rostrum of Eotrachynotocarcinus is more like that of many goniodromitids, with a flared rostrum and rimmed orbital margin. In most dynomenids, the orbit can be seen in dorsal view, which is not the case in Eotrachynotocar- cinus . Details of the orbits or ventral surface of the carapace would help to determine an appropriate placement for this genus. Mesodromilites is well preserved but does not fit into any known family based upon dorsal carapace characters, and unfortunately, it lacks a sternum and pleon. It has a trifid front, similar to some dynomenids, and has wide orbits and augenrests, similar to goniodromitids. Its carapace is long, with distinctive spines and swellings, not unlike sphaero- dromiids and some dynomenids. In fact, Mesodromilites is quite similar to sphaerodromiids in its cristate lateral margins, wide orbits, and ornamentation. However, it differs from all other dromiaceans in its unusual posterior region that is separated from the remainder of the carapace by a keel and groove. Thus, until sterna or pleons are recovered, it is best placed in Dromiacea incertae sedis. Homoloida n. section Diagnosis.—Carapace longer than wide, usually pseudo- rostral spines present; usually augenrest developed to accommodate eye; epistomial spine present; pereiopod 5 usually reduced in size, subdorsal; sternal suture 6/7 complete, separating sternum into two segments; external, paired spermatheca in females; all 7 somites in male and female pleons usually free but female somites sometimes fused; sterno-coxal depression and sterno-pleonal depres- sion present; usually pleonal holding mechanism (homolid press-button) present; female pleonal somite 1 with reduced pleopods; male pleonites 1 and 2 with pleopods with distinct coxae and bases, socket on somite 6. Included Superfamily.—Homoloidea De Haan, 1839. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 545</p>
<p>Geologic Range.—Late Jurassic (Tithonian) – Recent. Superfamily Homoloidea De Haan, 1839 Diagnosis.—as for section. Included Families.—Homolidae De Haan, 1839; Latreillii- dae Stimpson, 1858a; Mithracitidae S ˇ tevc ˇ ic ´ , 2005; Poupi- niidae Guinot, 1991; Tithonohomolidae Feldmann and Schweitzer, 2009. Geologic Range.—Late Jurassic (Tithonian) – Recent. Remarks.—Homoloidea is a variable superfamily and by extension, so is the section. Only some members possess a linea homolica, suggesting that it is apomorphic for Homolidae (and Tithonohomolidae, which was not includ- ed in our analysis) but also a character that evolved early as it is present in Jurassic forms. Uniting the group are the presence of a sternum divided into 2 parts by a complete suture 6/7 as well as features of the pleons. In addition, our analysis united the Homoloidea by possession of an augenrest, an epistomial spine, the homolid press-button, and a socket on sternite 6. The augenrest in Homoloidea is essentially the same as that seen in Homolodromioidea, except that in Homolidae, the linea homolica cuts through it. Although most have a reduced, subdorsal, chelate P5, the Poupiniidae lack this character. Homolidae De Haan, 1839 Diagnosis.—Carapace rectangular or ovate, longer than wide; linea homolica well developed; rostrum a single spine or bifid, a spine often placed to either side of rostrum; cervical and well-developed branchiocardiac grooves; well- defined carapace regions; pereiopod 5 reduced, subchelate or chelate. Included Genera.— Antarctomithrax Feldmann, 1994; Dag- naudus Guinot and Richer de Forges, 1995 (also extant); Doerflesia Feldmann and Schweitzer, 2009; Homola Leach, 1816 [imprint 1815] (also extant); Homolopsis Bell, 1863; Hoplitocarcinus Beurlen, 1928; Latheticocarcinus Bishop, 1988b; Lignihomola Collins, 1997; Londinimola Collins and Saward, 2006; Paromola Wood-Mason in Wood-Mason and Alcock, 1891 (also extant); Paromolopsis Wood-Mason in Wood-Mason and Alcock, 1891 (also extant); Prohomola Karasawa, 1992; Zygastrocarcinus Bishop, 1983b. Material Examined.— Doerflesia ornata Feldmann and Schweitzer, 2009, NHMW 2007z0149/0015 (holotype), NHMW 1912/0006/0696 (paratype); Latheticocarcinus affinis (Jakobsen and Collins, 1997), MGUH 24362 (holotype), 24363 (paratype); L. brightoni Wright and Collins, 1972, (BMNH) In. 31004 (holotype), SM B23287 (paratype); L. ludvigseni Schweitzer et al., 2004, GSC 124842 (holotype); L. spinigus Jakobsen and Collins, 1997, MGUH 24359 (holotype), MGUH 24360-61 (paratypes); L. transiens Segerberg, 1900, MGUH 256; Lignihomola etheridgei (Woodward, 1892) (BMNH) In. 36264; Londo- nimola williamsi Collins and Saward, 2006, (BMNH) IC453 (holotype); Homola barbata (Fabricius, 1793), USNM 273440; Homola orientalis (Henderson, 1888), USNM 55131; Homola ranunculus Guinot and Richer de Forges, 1995, SMF 22291, USNM 268911; Paromolopsis boasi Wood-Mason and Alcock, 1891, USNM 184580; Prohomola japonica (Yokoyama, 1911), KMNH.IVP 300,010; Prohomolopsis piersoni Schweitzer et al., 2004, UWBM 97178 (holotype), 97179 (paratype); Zygastrocar- cinus cardsmithi Bishop, 1986, SDSM GAB 23-40; Z. waagei Feldmann, Schweitzer, and Green, 2008, YPM 220105 (holotype), YPM 220103-10, 221135 (paratypes). Geologic Range.—Late Jurassic (Tithonian) – Recent. Remarks.—Homolidae in the fossil record is very well constrained due to the diagnostic feature of the linea homolica. All of the genera referred to the family here have this feature as well as most of the others listed here. In our analysis, Homolidae is the sister group to Latreillidae, both of which exhibit a chelate or subchelate P5. However, the latter may be readily distinguished from Homolidae because the latreillids have a very elongate ‘‘ gastric neck ’’ and lack the linea homolica. Placement of fossil taxa in Homolidae can be problematic because many specimens preserve only the intralineal, dorsal part of the carapace. The flanks, or extralineal elements, are often missing, which gives the false impression that the specimen is narrow and of a form different from that of homolids. Bell (1863) described a new genus of homolid crab, Homolopsis , from Cretaceous rocks of England. Bonaparte (1831) had used that spelling as an apparently unjustified correction or incorrect subsequent spelling of Homalopsis Kuhl and Hasselt, 1822, who used that name for a snake. According to ICZN Articles 33.3 and 54.3, incorrect spellings do not enter into homonymy. Thus, Homolopsis was an available name when used by Bell in 1863, so we retain it here. Latreilliidae Stimpson, 1858a Diagnosis.—Carapace triangular, narrowed and much extended anteriorly into ‘‘ gastric neck ’’ ; linea homolica absent; cervical and branchiocardiac grooves weak; cara- pace regions poorly developed, sometimes with a spine in mesogastric region and sometimes with branchial spines; eyestalks long; rostrum short, downturned; pseudorostral spines long; male pleon straight; female pleonites 4-6 fused, somites may have spines; female with paired spermatheca; pereiopods very long, slender. Included Fossil Genera: none. Material Examined.—Cast of Heeia villersensis (He´e, 1924), specimen in Oxford University collection; (BMNH) In. 60988, 61137. Geologic Range.—Recent. Remarks.—Latreilliids have an elongate ‘‘ gastric neck, ’’ the region anterior to the metagastric region and leading up to the rostrum, yielding an overall elongate dorsal carapace. Heeia Wright and Collins, 1972, from the Cenomanian of Britain originally was placed within Latreilliidae. It possesses the 546 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>same overall shape, although its elongate nature is due to its long rostrum and overall elongate carapace rather than a long ‘‘ gastric neck. ’’ The carapace regions are well-developed from the base of the rostral spine visible in the OU specimen, which is not the case in latreilliids, in which only the mesogastric region is elongate leading up to the rostrum. In addition, in latreilliids, the rostrum is tiny, flanked by two longer pseudorostral spines. In Heeia , there appears to be one long rostral spine; it is difficult to determine if it may be broken along the base and may have been bifid. The reconstruction of Wright and Collins (1972: 32) that show a trifid tip cannot be confirmed by any material known to us. We suggest that the elongate carapace, long rostrum, and well-developed carapace regions make Heeia similar to the majoid family Priscinachidae Breton, 2009, described from the Cenomanian of northern France. We herein refer it to that family provisionally until more complete specimens can be found to confirm the placement. Removal of Heeia from Latreilliidae renders the family without a fossil record. Castro et al. (2003) summarized the family and that remains the most complete work on it to date. They appear to be a rather specialized group that may carry sea anemones or other objects with the fifth pereiopods. Many live in outer-shelf and slope depths, so little is known about their biology. Given the bathymetric distribution of most latrelliids, coupled with their general small size and delicate carapace, it is anticipated that their fossil record will never be substantial. Mithracitidae S ˇ tevc ˇ ic ´ , 2005 Diagnosis.—Carapace about as wide as long, widest in branchial regions; rostrum triangular, simple; orbits narrow, deep, directed forward; augenrest bounded by supra, outer, and subaugenrest spines; lateral margins sinuous, with spines anterior to intersection of cervical groove, convex posterior to it; posterior margin concave, rimmed; linea homolica absent; cervical and branchiocar- diac grooves well developed; female pleonites with 4-6 fused or 5-6 fused. Included Genera.— Enodicarcinus Schweitzer and Feld- mann, 2011b; Mithracites Gould, 1859 (type genus). Material Examined.— Mithracites vectensis Gould, 1859, SM B14268, 14271, 14272, 14282, 14283; (BMNH) In. 28828, In. 28835, In. 28832. Geologic Range.—Aptian. Remarks.—Guinot and Tavares (2001) originally suggested the affinity of Mithracites with the Homolidae. S ˇ tevc ˇ ic ´ (2005) placed the genus within its own family and our analysis bears this out. Thus, we place Mithracitidae within Homoloidea. The family is characterized by the absence of a linea homolica , a feature seen only in Homolidae; however, it does possess a reduced, subdorsal P5, and morphological characters of the carapace that are reminis- cent of the other Homoloidea. Mithracitidae is distin- guished from other families in the superfamily in having a subdorsal P4 as well. Poupiniidae Guinot, 1991 Fig. 7 Diagnosis.—Carapace longer than wide, large in overall size, widened posteriorly; large augenrest; small pseudo- rostral spines; without flanks, not covering coxae of pereiopods; linea homolica absent; cervical and branchio- cardiac grooves moderately defined; all female pleonites free. Included Fossil Genus: Rhinopoupinia Feldmann et al., 1993. Geologic Range.—Late Cretaceous (Maastrichtian) – Recent. Remarks.—Guinot (1991) introduced a new family and genus to embrace a single species, Poupinia hirsuta , from the South Pacific. To our knowledge, it remains the sole species within the genus. Feldmann et al. (1993) described what remains the sole fossil representative of the family, Rhinopoupinia bicornis , from the Maastrichtian of Antarc- tica. The family is nested well within Homoloidea in our analysis, but is distinguished from other families in possessing a P5 that is subdorsal, as in other homoloids, but is normal in size, not reduced. Further, the propodus and dactylus on P5 are normal and do not form either a subchelate or chelate closure. Other characters of the family on the ventral surface and pleon are less likely to be preserved on fossil forms. The general outline, groove pattern, and flanks are consistent with placement in Homoloidea. Tithonohomolidae Feldmann and Schweitzer, 2009 Diagnosis.—Inter-lineal portion of carapace longer than wide; extra-lineal regions of cephalothorax not known; linea homolica present; rostrum broad and tapering or downturned and blunt; orbits directed anterolaterally, with two prominent orbital eaves; regions well-defined, tumid, often tuberculate or nodose. Fig. 7. Homoloidea, Poupiniidae, Rhinopoupinia bicornis Feldmann et al., 1993. USNM 457696, holotype. Scale bar 5 1 cm. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 547</p>
<p>Included Genera.— Tenuihomola Feldmann and Schweit- zer, 2009; Tithonohomola Glaessner, 1933. Material Examined.—Specimens listed in Feldmann and Schweitzer (2009). Geologic Range.—Late Jurassic (Tithonian). Remarks.—Tithonohomolidae share the character of pos- session of a linea homolica with Homolidae that firmly establishes the family as a member of Homoloidea. The representatives of this extinct group cannot be referred to Homolidae because they lack pseudorostral spines; possess a broad, blunt, and downturned rostrum; and exhibit supraorbital eaves separated by a groove. Presence of a linea homolica separates Tithonohomolidae from other families within the superfamily. Torynommoida n. section Diagnosis.—Carapace quadrate; front narrow; orbits ex- tremely broad, forward-directed, with short intraorbital spine and stout, forward directed outer-orbital spine; orbits and frontal margin of carapace nearly straight; cervical groove with hepatic groove extending from it anteriorly and intersecting lateral margin, branchiocardiac groove subpar- allel to cervical groove and hepatic segment; branchiocar- diac groove extending onto flank in long, oblique path; cervical groove weakly extending onto flank and appearing to nearly intersect branchiocardiac groove; hepatic groove appearing to extend onto flank; third maxilliped without crista dentata; anterior sternite 4 broad, with transverse ridge at which female pleon terminates, sternopleonal depression present, well-developed sternal sutures 4/5, 5/6, and 6/7; pleonites of female wide, with moderately devel- oped epimeres; telson much wider than long, terminating before coxae of first pereiopods. Included Superfamily.—Torynommoidea Glaessner, 1980. Geologic Range.—Early Cretaceous (Aptian) – Late Cretaceous (Maastrichtian). Superfamily Torynommoidea Glaessner, 1980, n. status Diagnosis.—As for section. Included Family.—Torynommidae Glaessner, 1980. Included Genera.— Torynomma Woods, 1953; ? Withersella Wright and Collins, 1972. Material Examined.— Torynomma quadrata Woods, 1953, QMF 2877 (holotype), QMF 2880 (paratype), uqf 14924, MFM; Withersella crepitans Wright and Collins, 1972, (BMNH) IC15. Geologic Range.—Early Cretaceous (Aptian) – Late Cretaceous (Maastrichtian). Results.— Torynomma spp. are unusual, and as is reinforced by our analysis, unique among Brachyura. They are clearly podotremes based upon presence of female gonopores on coxae of the third pereiopods, but the conformation of the sternum and pleon as well as the dorsal carapace is different from other podotrematous crabs, and in fact, all other brachyurans. The sternum is relatively wide for a podotreme, and the transverse ridge on the sternum against which the female pleon terminates appears to be unique to the section. These features are of the type species of Torynomma ; the composition of the genus requires examination, and it may be heterogeneous. Withersella is known only from rather poorly preserved dorsal carapace material, with no ventral surfaces. It is similar in some ways to Torynomma , especially in the development of carapace grooves and regions. Thus, we place it in Torynommidae until better preserved material can be recovered. Etyoida n. section Diagnosis.—Carapace transversely ovate; rostrum triangu- lar, downturned; orbits circular, directed forward; fronto- orbital width half to three-quarters maximum carapace width; anterolateral margins with spines; posterolateral margin concave; posterior margin narrow; carapace regions often well-marked, generally granular, granules may be all of one size or with interspersed larger tubercles; cervical groove generally extending in sinuous but overall relatively straight path across carapace; if regions developed, well- defined branchial subdivisions may be present; sterno- pleonal depression present, sternite 3 and sometimes 4 visible even with pleon in place; paired spermatheca long, ovate, situated posteriorly; all pleonites free in males and females, telson long, triangular; all pereiopods carried laterally; maxilliped 3 operculiform. Included Superfamily.—Etyoidea Guinot and Tavares, 2001. Superfamily Etyoidea Guinot and Tavares, 2001 Diagnosis.—As for section. Included family.—Etyidae Guinot and Tavares, 2001. Etyidae Guinot and Tavares, 2001 Fig. 8 Diagnosis.—as for section. Included Genera.— Caloxanthus A. Milne-Edwards, 1864; Etyus Mantell, 1822; Etyxanthosia Fraaije et al., 2008; Feldmannia Guinot and Tavares, 2001; Guinotosia Beschin et al., 2007; Secretanella Guinot and Tavares, 2001; Sharnia Collins and Saward, 2006; Xanthosia Bell, 1863, sensu stricto. Material Examined.—Specimens of Etyxanthosia , Xantho- sia , and Feldmannia listed in Schweitzer-Hopkins et al. (1999); Caloxanthus americanus Rathbun, 1935, UT BEG 21192 (holotype), BEG 21193-96 (paratypes), (BMNH) In. 60949, 61678; C. formosus A. Milne-Edwards, 1864, MNHN R03351 (holotype), (BMNH) In. 61163; C. ornatus (von Fischer-Benzon, 1866), (BMNH) I.8034-6, 16205, 16206; C. purleyensis (Withers, 1928), (BMNH) In. 27330 548 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>(holotype); C. simplex (Secretan, 1964), MNHN R03879 (holotype); Etyxanthosia fossa (Wright and Collins, 1972), (BMNH) In. 60996 (holotype), In. 60995, 60997 (para- types); OUM K.51634; Secretanella arcuata (Secretan, 1964), MNHN R03978 (holotype), R03980, A31661 (paratypes); Sharnia burnhamensis Collins and Saward, 2006, (BMNH) IC 454 (holotype); Feldmannia jacksoni (Wright and Collins, 1972), (BMNH) In. 60957 (holotype); Xanthosia buchii (Reuss, 1845), NHMW 1864XL604 (holotype); Xanthosia gibbosa Bell, 1863, (BMNH) In. 29964, 29966, 36647, 59523 (syntypes); Xanthosia similis Bell, 1863, SM B 22637; Xanthosia granulosa (McCoy, 1854), SM B 22656, (BMNH) In. 29736-7. Material of Xanthosia sensu lato: Xanthosia buteonis Wright and Collins, 1972, (BMNH) In. 60958 (holotype); X. gracilis Jakobsen and Collins, 1997, MGUH 24367; X. occidentalis Bishop, 1985, SDSM 10037 (paratype), 10036, GAB 36- 361, 1376, 886, 895, 1372; X. robertsi Secretan, 1964, MNHN R03979 (holotype); X. semiornata Jagt et al., 1991, MAB K0020 (holotype). Geologic Range.—Early Cretaceous (Aptian) – Eocene (Lutetian). Remarks.—As in Torynommidea, Etyidea are unique among Brachyura. They are clearly podotremes, but unlike all other podotremes, they have a wide, transversely ovate carapace, lacking a well-developed branchiocardiac groove, and apparently are without subdorsal fifth pereiopods. In many regards, members of this section are superficially similar to heterotremes in possessing well-developed, forward directed orbits and well-differentiated anterolateral and posterolateral margins. In fact, genera within the section had been placed within Xanthidae sensu lato by various authors (Glaessner, 1969; Schweitzer-Hopkins et al., 1999). Thus, it is perhaps not surprising that our analysis places them as a monotypic group within their own section. Note that Feldmannia Guinot and Tavares, 2001, a member of Etyidae, is a senior homonym of Feldmannia Casadı ´ o et al., 2001, a trace fossil. Low and Guinot (2010) erected a replacement name for the trace fossil, Feldman- nius . To those genera listed by Schweitzer et al. (2010), we add Secretanella to the family. Guinot and Tavares (2001) erected the genus to accommodate a species of Xanthosia from Madagascar and suggested that it had heterotreme status. Our evaluation of the type material of this taxon suggests that it is best placed within Etyidae based upon its carapace shape and ornamentation, its wide female pleon with all somites free, and telson that extends beyond the coxae of pereiopod 1. All of these features are seen in genera within Etyidae, and in fact, there is no other family that can accommodate Secretanella at this time. Additional material with preserved gonopores and other aspects of the sternum and pleon could help to confirm the podotreme and family status of this genus. Xanthosia sensu lato is problematic. Schweitzer et al. (2010) placed many of the species that had originally been placed within the genus into Xanthidae sensu lato. The composition of Xanthosia sensu lato is quite variable and requires extensive revision. Those species listed in Xanthosia sensu stricto by Schweitzer et al. (2010) are those they considered to be similar to the type species. The family, like some others within Brachyura, origi- nated in the Cretaceous and persisted well into the Cenozoic. Clear examples of the family are known from the Eocene of Italy, and other genera are known from the Danian and Eocene of northern Europe. Section Raninoida Ahyong et al., 2007 Diagnosis.—Carapace longer than wide or about as wide as long, generally ovate, usually vaulted transversely, regions poorly defined; usually with well-developed rostrum and orbital spines; branchiocardiac groove developed as boundary for urogastric region; maxilliped 3 elongate, merus long; thoracic sternum narrow, sternites 1-3 generally fused, sternites 7 and 8 often reduced and at lower level than other sternites; where known, pleon narrow in males and females, showing reduced but clear dimorphism; genital openings coxal, spermatheca present. Included Superfamily.—Raninoidea De Haan, 1839. Fig. 8. Etyoidea, Etyidae, Xanthosia aspera Rathbun, 1935. Scale bar 5 1 cm. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 549</p>
<p>Geologic Range.—Early Cretaceous (Berriasian) – Recent. Superfamily Raninoidea De Haan, 1839 Diagnosis.—As for section. Geologic Range.—Early Cretaceous (Berriasian) – Recent. Included Families.—Camarocarcinidae Feldmann, Li, and Schweitzer, 2008; Cenomanocarcinidae Guinot, Vega, and Van Bakel, 2008; Necrocarcinidae Fo¨ rster, 1968; Palaeo- corystidae Lo˝ renthey in Lo˝ renthey and Beurlen, 1929; Raninidae De Haan, 1839; Symethidae Goeke, 1981. Remarks.—Raninoidea has been expanded over the past 30 years to include several primarily Cretaceous families. Glaessner (1969) considered all representatives of the superfamily to be referable to Raninidae. Tucker (1998) recognized the distinctive character of Symethis and elevated Symethinae to family rank. Subsequently, Necro- carcinus , Camarocarcinus , and Cenomanocarcinus , which were referred to the eubrachyuran family Calappidae De Haan, 1833, were demonstrated to be podotrematous (Larghi, 2004; and others). Thus, Necrocarcinidae Fo¨ rster, 1968, was removed from the eubrachyurans and has now been referred to Raninoidea (Guinot et al., 2008). Feldmann et al. (2007) erected Camarocarcinidae to include Camarocarcinus and a new species, Cretacocarci- nus Feldmann et al., 2007. Guinot et al. (2008) proposed Cenomanocarcinidae to embrace two other species previ- ously thought to be calappids, Cenomanocarcinus and Campylostoma . At the same time, they proposed elevating the extant subfamilies of raninids to family rank and considered the section to include two superfamilies, Raninoidea and a second, unnamed superfamily. Our analysis supports a different interpretation. Within the section, Camarocarcinidae is the sister to the remainder of the raninoids; Necrocarcinidae and Cenomanocarcinidae are sister to Palaeocorystidae, Symethidae, and Raninidae. Thus, the inclusion of Necrocarcinidae, Cenomanocarcini- dae and Palaeocorystidae, as well as Orithopsidae, within a separate superfamily (Guinot et al., 2008) is unwarranted. Camarocarcinidae Feldmann, Li, and Schweitzer, 2008 Diagnosis.—Carapace nearly circular in outline, length about 96 % maximum width, strongly vaulted transversely and longitudinally. Front narrow, sulcate, down-turned, with axial projection and two smaller lateral spines. Orbits directed forward, deepest axially; upper margin of orbits quadrate to circular, rim flared upward, with two orbital fissures; orbits elevated on carapace well above anterolat- eral margin; fronto-orbital width ranging from 25 % to 40 % maximum carapace width. Anterolateral and posterolateral margins with spines. Branchiocardiac groove defined by row of obliquely directed, elongate pits; cervical groove less strongly developed to obscure. Cuticle with endocu- ticular pillars extending up to or through exocuticle surface; cuticle surface nearly smooth to granular. Third maxilli- peds much longer than wide, oriented in two planes, one nearly perpendicular to dorsal surface of carapace, other parallel to ventral surface of carapace; sternum very narrow, sternal elements flattened axially, nearly vertical laterally. Included Genera.— Camarocarcinus Holland and Cvan- cara, 1958; Cretacocarcinus Feldmann, Li, and Schweitzer, 2008. Material Studied.—The specimens studied are detailed in Feldmann et al. (2008). Geologic Range.—Late Cretaceous (Campanian) – Paleo- cene (Danian). Remarks.—Camarocarcinidae and Necrocarcinidae are similar in terms of overall dorsal morphology and differ from the other families of Raninoidea in possessing spines on the posterolateral margin. However, several characters separate Camarocarcinidae from its most similar taxon, Necrocarcinidae. Whereas the cuticle on camarocarcinids exhibits endocuticular pillars reaching the exocuticle, that is not the case in necrocarcinids. The sternum on species of Camarocarcinidae is extremely narrow, flattened axially, and nearly vertical laterally. The sternum in Necrocarcini- dae is not strongly depressed axially, wider, and the lateral portions of the sternum are not vertical, they are oriented at about a 40-degree angle to the axis. The sternum of Necrocarcinidae appears to have a complete suture between sternite 6 and 7, which seems not to be the case in Camarocarcinidae. Cenomanocarcinidae Guinot, Vega, and van Bakel, 2008 Fig. 9 Diagnosis.—Carapace hexagonal to rounded; wider than long; orbits closely spaced, with two fissures; rostrum projected weakly beyond orbits, with five spines; anterolat- eral margins spinose; posterolateral margins with one or two spines; carapace moderately vaulted transversely and longitudinally; cervical and branchiocardiac grooves weak; carapace ornamented with longitudinal ridges ornamented with tubercles; male sternum ovate, broadly concave; sternites 1-3 fused, forming a triangular shape; sternite 4 trapezoidal, longer than wide, with projections extending from anterior end, pereiopod 1 articulating from concavity at about midlength; sternal suture 4/5 deep, concave posteriorly laterally, becoming straight and oriented parallel to axis of animal axially; sternite 5 wider than long, articulating with pereiopod 2, with two tubercles on each side probably serving to hold pleon in place, directed posterolaterally; sternite 6 inclined at moderate angle to remainder of sternum; sternite 8 directeed ventrolaterally, much smaller than sternite 7; sternal sutures 5/6 and 6/7 complete; pleon of male moderately wide, telson much longer than wide, somites 5 and 6 with three spines, one axial and one on each side; pereiopod 5 much reduced in size. Included Genera.— Campylostoma Bell, 1858; Cenomano- carcinus Van Straelen, 1936. Material Examined.— Campylostoma matutiforme Bell, 1858, SM C19125-7, (BMNH) 35231, I.7314, In. 29083, 550 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>32654-55, 41726, Cenomanocarcinus vanstraeleni Stenzel, 1945, UT 21079, 21090, and 21091 (syntypes). Geologic Range.—Early Cretaceous (Albian) – Eocene (Ypresian). Remarks.—Guinot et al. (2008) tentatively referred Campylostoma to Cenomanocarcinidae. Examination of SM C 19127 (Fig. 9D, E) suggests that its sternum is quite similar to that of Cenomanocarcinus spp. and should be referred to the family with confidence. Guinot et al. (2008) also provide a detailed discussion of the interpre- tations of relationship between Cenomanocarcinus and Necrocarcinus and that will not be repeated here. The two genera, and the families to which they are referred herein, differ in that species within Cenomanocarcinidae have paddle-like dactyli on pereiopods 2-4 and a dorsally carried P5; whereas the necrocarcinids have normally developed P2-P4 and dorsally carried P4-P5. Cenomano- cardinidae have a flattened sternum with reduced sternites 1-3, and very broad, arcuate, and flattened sternite 4 with convex lateral margins. Sternites 1-3 of Necrocarcinidae are quadrate and well-defined, and sternite 4 is narrower, with raised lateral margins that are concave. Sternite 5 in Cenomanocarcinidae is arcuate, oriented convex posteri- orly; that of Necrocarcinidae is straight and directed laterally. Necrocarcinidae Fo¨ rster, 1968 Fig. 10 Diagnosis.—Carapace circular or ovate, about as long as wide or slightly wider than long, widest at position of last anterolateral spine, moderately vaulted longitudinally and transversely; regions well-defined, usually with longitu- dinal ridges or rows of tubercles on axial and branchial regions; rostrum narrow, sulcate at tip or with small spines; orbits small, circular, with two fissures, directed forward; inner-orbital, intra-orbital, and outer-orbital spines well developed; fronto-orbital width between 30 and 45 % maximum carapace width but rarely over half in some species; anterolateral margins long, usually with numerous spines; posterolateral margin entire or with spines; cervical and branchiocardiac grooves well devel- oped, usually parallel to one another; sternum narrow, sternites 1-3 apparently fused, quadrate, anterior two sides at low angle to one another, posterior two sides at high angle to one another, lateral margins raised and granular; sternite 4 long, with widely raised lateral margins, axially deep, episternal projections short, suture 4/5 incomplete; sternal suture 4/5 deep, concave poste- riorly laterally, becoming straight and oriented parallel to axis of animal axially; sternite 5 wider than long, articulating with pereiopod 2, directed laterally; sternite 6 similar to sternite 5; sternites 7 directed ventrolaterally; sternite 8 directed ventrolaterally, much smaller than sternite 7; sternal sutures 5/6 and 6/7 complete. All pleonites free, with blunt axial spines, somite 6 much longer than wide, telson long; pereiopods 4 and 5 apparently reduced in size (after Schweitzer and Feld- mann, 2000; Schweitzer et al., 2003). Included genera.— Necrocarcinus Bell, 1863; Corazzato- carcinus Larghi, 2004; Cristella Collins and Rasmussen, 1992; Paranecrocarcinus Van Straelen, 1936; Polycnemi- dium Reuss, 1859; Pseudonecrocarcinus Fo¨ rster, 1968; Shazella Collins and Williams, 2004. Material Examined.— Necrocarcinus labeschei Eudes-Des- longchamps, 1835, SM B23152, 23210, B80539; Poly- cnemedium pustulosum (Reuss, 1845), NHMW 1864XII666 (holotype); Geologic Range.—Early Cretaceous (Berriasian) – Paleo- cene (Danian). Remarks.—Necrocarcinidae and Camarocarcinidae appear as sister taxa in the present study. Several newly observed features are detailed in the diagnosis. Palaeocorystidae Lo˝ renthey in Lo˝ renthey and Beurlen, 1929 Fig. 11 Diagnosis.—Carapace obovate, widest at position of third or fourth anterolateral spine; frontal margin wide; antero- lateral margin with 3 or 4 spines; carapace surface ornamented with ridges, straps, or tubercles; sternites 1-3 fused, 1 and 2 directed downward; sternite 4 long, pereiopod 1 articulating near posterior corner, moderately wide, lateral margins concave; sternal suture 4/5 sinuous laterally, then curving abruptly anteriorly parallel to axis; sternite 5 long, moderately wide, with tubercles on episternal projection for attachment of pleon; sternal suture 5/6 complete; all female pleonites free, pleonite 6 long, pleonites 2-5 with central spine, entire pleon reaching to level of base of coxae of first pereiopods; male pleon narrower, telson triangular, somite 6 long, reaching to level of base of coxae of pereiopods 2; chelae with long fingers; female gonopore coxal, small, round. Included Genera.— Cretacoranina Mertin, 1941; Euco- rystes Bell, 1863; Heus Bishop and Williams, 2000; Notopocorystes M’Coy, 1849. Material Examined.— Eucorystes broderipi (Mantell, 1844), (BMNH) 21331, male, (BMNH) In. 61147, male, 61148-49, 29810-11; SM B30645, 30638, both females; E. eichhorni Bishop, 1983b, KSU D1180, cast of holotype SDSM 10007, KSU D1181, cast of paratype, SDSM 10010; E. harveyi (Woodward, 1896), KSU D1178, cast of GSC 5817; E. platys Schweitzer and Feldmann, 2001, KSU D 240, cast of GSC 124811, KSU D 373, cast of USNM 512163, holotype; Notopocorystes stokesii (Mantell, 1844), (BMNH) In. 30376, 61151, syntype, female; (BMNH) 39366, female; SM B30575, male, B30572. Geologic Range.—Early Cretaceous (Albian) – Late Cretaceous (Maastrichtian). Remarks.—Customarily considered members of Raninidae, paleocorystids have been recognized as distinctly different from the remainder of the genera within the family. Possession of a bifid rostrum; well developed carapace KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 551</p>
<p>Fig. 9. Raninoidea, Cenomanocarcinidae. A-B, Cenomanocarcinus vanstraeleni Stenzel, 1945, UT 2191, syntype, dorsal carapace (A) and sternum; C, Cenomanocarcinus vanstraeleni Stenzel, 1945, UT 21090, syntype, sternum, pleon, and enormous coxae of pereiopods 4; D-E, Campylostoma matutiforme Bell, 1858, SM C 16127, poorly preserved specimen showing dorsal carapace (D) and ventral surface with anterior sternites (E). Scale bars 5 1 cm. 552 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>grooves; and generally coarse ornamentation including straps, ridges, or tubercles readily separates the group from Raninidae as defined herein. On the ventral surface of the carapace, the buccal cavity is broad, rather than elongate and narrow as in Raninidae; and the posterior sternites are broad, as opposed to narrow as they are in raninids. Raninidae De Haan, 1839 Diagnosis.—Carapace longer than wide; frontal margin short; rostrum typically triangular extending no farther anteriorly than orbital spines; orbits defined by outer orbital spine, narrow, fissured; anterolateral and posterolateral margins usually distinct; posterior margin straight. Cara- pace regions indistinct. Buccal cavity elongate, narrow, completely closed by elongate maxilliped 3. Sternum narrow; sternites 1-3 fused, distinct ventrally; sternites 4 and 5 relatively broad; sternites 6-8 narrow, reduced; sutures 4-5, 5-6, and 6-7 complete; episternites 4 and 5 wide; spermatheca united. Pleonites visible dorsally, pleura reduced; male pleonites and telson not fused. Cheliped with carpus/propodus articulation nearly parallel to merus; fixed Fig. 10. Raninoidea, Necrocarcinidae, Necrocarcinus labeschei (Eudes-Deslongchamps, 1835). A-B, SM B 23152, dorsal carapace (A) and sternum (B); C, SM B 80539, excellently preserved sternum; D, SM B 23210, one of the few known pleons of the family. Scale bars 5 1 cm. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 553</p>
<p>Fig. 11. Raninoidea, Palaeocorystidae. A-B, Eucorystes broderipi (Mantell, 1844), (BMNH) In. 30374, female, dorsal carapace (A) and ventral view of sternum and pleon (B); C-D Notopocorystes stokesii (Mantell, 1844), (BMNH) In. 39366, female, dorsal carapace (C) and pleon and sternum (D); E, E. broderipi , (BMNH) In. 30375, male sternum and pleon; F, N. stokesii , (BMNH) In. 61250, male sternum and pleon. Scale bars 5 1 cm. 554 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>finger and dactylus at approximately right angle to manus. Pereiopods 2-4 with paddle-like dactyli; pereiopod 5 usually reduced, subdorsal. Included genera.— Araripecarcinus Martins-Neto, 1987; Bicornisranina Nyborg and Fam, 2008; Cenocorystes Collins and Breton, 2009; Cristafrons Feldmann, Tshudy, and Thomson, 1993; Cyrtorhina Monod, 1956; Erroranilia Boyko, 2004; Eumorphocorystes Van Binkhorst, 1857; Hemioon Bell, 1863; Lophoranina Fabiani, 1910; Lianira Beschin, Busulini, De Angeli, Tessier, and Ungaro, 1991; Lovarina Beschin, Busulini, De Angeli, Tessier, and Ungaro, 1991; Lyreidina Fraaye and Van Bakel, 1998; Lyreidus De Haan, 1841; Notopoides Henderson, 1888; Notopus De Haan, 1841; Notosceles Bourne, 1922; Ponotus Karasawa and Ohara, 2009; Quasilaeviranina Tucker, 1998; Ranidina Bittner, 1893; Raniliformis Jagt, Collins, and Fraaye, 1993; Ranilia H. Milne Edwards, 1837 [in 1834-1840]; Ranina Lamarck, 1801; Raninella A. Milne- Edwards, 1862; Raninoides H. Milne Edwards, 1837 [in 1834-1840]; Remyranina Schweitzer and Feldmann, 2010f; Rogueus Berglund and Feldmann, 1989; Macroacaena Tucker, 1998; Tribolocephalus Ristori, 1886; Umalia Guinot, 1993. Material Studied.—Specimens described and illustrated in Feldmann and Schweitzer (2007). Geologic Range.—Early Cretaceous (Albian) – Recent. Remarks.—Raninidae embraces a readily recognized group of brachyurans based upon the shape of the carapace, the distinctive conformation of the chelipeds, the extension of the pleon posteriorly, and the form of the sternum in which sternites 1-3 form a narrow crown, 4-5 are broad, and 6-8 are extremely narrow and reduced. In other regards, however, genera within the family are different enough that they are currently aligned into six subfamilies; one of which, Palaeocorystinae, is herein elevated to the level of family. Tucker (1998) elevated Symethinae to family rank, a position with which we concur. Symethidae Goeke, 1981 Diagnosis.—Carapace elongate, ovoid; rostrum extended well beyond anterolateral margin; eyes very small; carapace anterior to cervical groove deeply pitted; buccal cavity elongate, narrow, completely closed by third maxilliped which lies in two planes; sternum with spermatheca well separated, hooded, otherwise as in Raninidae. Cheliped with carpus/propodus articulation transverse to long axis of arm, fixed finger and dactylus not strongly deflected; pereiopods 2-5 with crescentic dactyli; pereiopod 5 subdorsal. Included Genus.— Symethis Weber, 1795. Material Studied.—Specimen described and illustrated in Feldmann and Schweitzer (2007). Geologic Range.—Recent. Remarks.—Guinot (1993) retained Symethinae as a sub- family within Raninidae, although noting anecdotally that it might well be elevated to family rank, a position supported by De Grave et al. (2009). Schweitzer et al. (2010) recognized Symethidae as is recognized herein. The conformation of the carapace and pereiopods is markedly different from that of Raninidae sensu stricto although details of the sternum and pleon are similar in the two families. These latter characteristics place the Raninidae and Symethidae clade as the sister group to Palaeocorystidae. Dakoticancroida n. section Diagnosis.—As for superfamily. Included Superfamily.—Dakoticancroidea Rathbun, 1917. Superfamily Dakoticancroidea Rathbun, 1917 Fig. 12 Diagnosis.—Carapace quadrate, as wide as long or longer than wide; rostrum narrow, bilobed; orbits well developed, rimmed; eyes sheltered by orbits when retracted; antero- lateral margins entire; posterior margin nearly straight; medial part of cervical groove weakly developed; gastric regions poorly separated from cardiac and intestinal regions; branchiocardiac groove well developed; pleural sutures located on sides of carapace; genital openings on coxae, female on third and male on fifth pereiopods; fifth pereiopods reduced; sternum of female without longitudi- nal grooves; lateral portion of posterior part of sternites visible, coxae of pereiopods at same level as sternum; pair of spermatheca present in females; first pereiopods isochelous (in part after Rathbun, 1917, p. 385; Glaessner, 1969; Bishop, 1983c, p. 424; Bishop et al., 1998, p. 239). Included Families.—Dakoticancridae Rathbun, 1917; Iber- icancridae Artal et al., 2008. Geologic Range.—Late Cretaceous (Campanian – Maas- trichtian). Remarks.—Our analysis arranged Ibericancridae and Dakoticancridae as sister groups that together are sister to the clade Cyclodorippoida and Eubrachyura. Artal et al. (2008) compared the two families and placed them in the same superfamily also. Despite this, there are several rather major differences between these two families. The shape of the sternum is considerably different. In Dakoticancridae, it is wide and remains wide to the posterior end of the carapace. The sternites are well developed, have epister- nites, and clearly resemble those of more derived Brachyura. The sterno-pleonal depression is shallow and broad, and Dakoticancer has a sterno-pleonal cavity in males. In Ibericancridae, the sternum is narrow and the sterno-pleonal depression is deep and steep-sided. The sternum remains narrow, but is visible laterally, to the posterior end of the carapace. In Ibericancridae, both pereiopods 4 and 5 are much reduced in size compared to the other pereiopods, whereas in Dakoticancridae, only pereiopod 5 is reduced in size. In other regards, the two KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 555</p>
<p>families are similar to one another. As noted below, examination of other Cretaceous genera that are also rectangular and have narrow sterna may eventually indicate that Dakoticancroida is a more diverse section than is recognized now. To date, few sterna are known for many of the North American genera, but as more material comes to light, this is changing. Dakoticancroida may be much more robust than currently thought. Dakoticancridae Rathbun, 1917 Diagnosis.—Carapace quadrate, as wide as long or longer than wide; rostrum narrow, bilobed; orbits well developed, rimmed; eyes sheltered by orbits when retracted; antero- lateral margins entire; posterior margin nearly straight; medial part of cervical groove weakly developed; gastric regions poorly separated from cardiac and intestinal regions; branchiocardiac groove well developed; pleural sutures located on sides of carapace; genital openings on coxae, female on third and male on fifth pereiopods; sternum broad, sternites visible to posterior of carapace, sternite 4 with ridge parallel to anterior end, sternites 5, 6, and 7 with granular transverse ridges, sometimes with sterno-pleonal cavity in males; sternum of female without longitudinal grooves; lateral portion of posterior part of sternites visible; male pleon with all somites free, lateral terminations on pleonites rectangular, telson rounded triangular; female pleon wide, with long epimeres, all Fig. 12. Dakoticancroidea. A-B, Dakoticancridae, Dakoticancer overanus Rathbun, 1917, KSU D 907; C-D, Ibericancridae, Ibericancer sanchoi Artal et al., 2008, KSU D 446, cast of MGSB 68572, holotype. Scale bars 5 1 cm. 556 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>pleonites free; coxae of pereiopods at same level as sternum; first pereiopods isochelous; fifth pereiopods very reduced, subdorsal. Included Genera.— Avitelmessus Rathbun, 1923b; Dakoti- cancer Rathbun, 1917; Tetracarcinus Weller, 1905. Geologic Range.—Late Cretaceous (Campanian – Maas- trichtian). Remarks.—Dakoticancridae traditionally includes rectan- gular, North American taxa with well-defined axial regions and transverse ridges on the branchial regions. Sterna and pleons are well described (Bishop et al., 1998; Artal et al., 2008), so that even though the sternum is wide and superficially appears heterotreme in nature, the genital openings are coxal in males and females. This mixture of primitive and derived characters is becoming more commonly observed and reported for Cretaceous Brachyura (Feldmann, Schweitzer, and Green, 2008). Dakoticancer and Avitelmessus have very similar sternal, pleonal, and dorsal carapace features. Tetracarcinus and Dakoticancer are so similar dorsally that we considered synonymizing them. Thus, these three genera seem to form a natural group. However, examination of Seorsus Bishop, 1988a, suggests that it may be better placed within Ibericancridae. The history of Seorsus is complicated. Bishop (1988a) described Seorsus from Maastrichtian rocks of Mississippi. Later, in 1992a, he described a new species, Diaulax millerae , from Campanian rocks of Delaware. Examination of specimens of D. millerae , the original descriptions of Seorsus wadei , and specimens of the type species of Diaulax suggest that D. millerae and Seorsus wadei are congeneric. Thus, we herein refer D. millerae to Seorsus , resulting in Seorsus millerae new combination. A well-preserved specimen of S. millerae under study by the authors has a preserved sternum and pleon. The sternum is narrow, but with well defined sternites and episternites and is visible posteriorly. Thus, we tentatively place Seorsus in Iberican- cridae until further study can confirm the placement. Ibericancridae Artal, Guinot, van Bakel, and Castillo, 2008 Diagnosis.—Carapace subrectangular; front broad, with inner-orbital projections; rostrum narrow, downturned, bilobed; orbits small, directed forward; branchiocardiac groove deep; sternum narrow, deep sterno-pleonal cavity, sternites 1-3 at lower level than other sternites, sternite 4 with blunt but marked projection, sternite 5 with pleonal locking mechanism, sternal sutures 4/5 through 7/8 interrupted; female gonopore on coxa of pereiopod 3, male gonopore on coxa of pereiopod 5, spermatheca of female at sternal suture 7/8; male pleon very narrow, all somites free, female pleon wider, all somites free; pereiopods 4 and 5 much reduced in size compared to 1-3, possibly subdorsal. Included Genera.— Ibericancer Artal et al., 2008; tenta- tively Seorsus Bishop, 1988a, and Sodakus Bishop, 1978. Geologic Range.—Late Cretaceous (Campanian – Maas- trichtian). Remarks.—Artal et al. (2008) erected the family for specimens from the Campanian of Spain. There appears to be some variability in the specimens illustrated as belonging to the type and only species of the only genus of the family. There is variation in the fronto-orbital width-to- width ratio, and there seems to be some significant variation in ornamentation of the carapace and some aspects of the sternum. Evaluation of the nature of these variations must await examination of all of the illustrated material. Comparison of the sternum of the holotype of Iber- icancer sanchoi (MGSB 68572) with those of Seorsus millerae new combination and Sodakus tatankayotankaen- sis Bishop, 1978, reveals some similarities. All are relatively deep, narrow, and composed of distinct sternites with episternites. In Sodakus , the male pleon does not reach as far anteriorly as in Ibericancer , and the sterno-pleonal depression is not as deep. Thus, we tentatively refer Sodakus to Ibericancridae until type and other material can be more carefully examined, following Schweitzer and Feldmann (2011b). Sodakus had been referred to Dorippi- dae, to which it is clearly not referable, because members of Dorippidae have very wide sterna. Section Cyclodorippoida Ahyong et al., 2007 Diagnosis.—Carapace ovate to pentagonal; third maxilli- peds elongate, covering buccal cavity, palp located at inner portion of merus; buccal cavity elongate; pereiopods 2 and 3 long, slender; pereiopods 4 and 5 much shorter, subdorsal to dorsal; sternum wide, with short but very deep and clear sternopleonal cavity in males; pleonal locking mechanism absent, pair of spermatheca present in females; genital openings coxal in males and females, pleon in males and females usually with some fusion of somites. Geologic Range.—Early Cretaceous (Albian) – Recent. Remarks.—The section is well defined by possession of a distinctive sterno-pleonal cavity which it shares with Eubrachyura. Most taxa are tiny and poorly calcified, at least Holocene ones, which may explain why the fossil record for the group is poor. At this time, Hillius is the oldest known member of the section, Early Cretaceous age (Albian). Other fossil occurrences of Cyclodorippoida are Eocene, from Hungary and Washington, USA (Mu¨ ller and Collins, 1991; Schweitzer, 2001) as well as Miocene occurrences (Conkle et al., 2006, for summary). Superfamily Cyclodorippoidea Ortmann, 1892 Diagnosis.—As for section. Geologic Range.—Early Cretaceous (Albian) – Recent. Cyclodorippidae Ortmann, 1892 Diagnosis.—Carapace ovate to pentagonal; orbits devel- oped; buccal cavity rounded anteriorly, projecting beyond KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 557</p>
<p>epistome; third maxillipeds triangular, covering buccal cavity; pereiopods 2 and 3 long, slender; pereiopods 4 and 5 much shorter, subdorsal to dorsal; sternum wide, with short but very deep and clear sterno-pleonal cavity; genital openings coxal in males and females, spermatheca at level of genital openings or anterior to them; pleon with some fusion of somites; flagellum of third maxilliped absent. Included Fossil Genera.— Hillius Bishop, 1983a; Tymolus Stimpson, 1858b; Xeinostoma Stebbing, 1920. Material Examined.—SDSNH 23643 (holotype), Hillius youngi Bishop, 1983a. Geologic Range.—Early Cretaceous (Albian) – Recent. Cymonomidae Bouvier, 1897 Diagnosis.—Carapace subquadrate; orbits poorly defined; usually with a rostrum projected beyond frontal margin and often with outer-ocular spines; third maxillipeds long, covering buccal cavity, flagellum present; pereiopods 2 and 3 long; pereiopods 4 and 5 reduced, subdorsal; genital openings coxal. Included Fossil Genus.— Cymonomus A. Milne-Edwards, 1880. Geologic Range.—Eocene (Priabonian) – Recent. Phyllotymolinidae Tavares, 1998 Diagnosis.—Carapace subcircular; buccal cavity rectangu- lar anteriorly, not protruding beyond epistome; third maxillipeds long, covering buccal cavity, merus subrect- angular, flagellum present; pereiopods 2 and 3 long; pereiopods 4 and 5 reduced, subdorsal; genital openings coxal. Included Fossil Genera.—None, only extant forms are known. Section Eubrachyura de Saint Laurent, 1980 Diagnosis.—Female gonopores sternal on sternite 6; gonopores coxal or sternal in males; carapace variable in shape and ornamentation; orbits usually well-devel- oped, protective of eye; epistome enclosing base of second antenna, sometimes fused to it; sternites visible even with pleon in place, composed of well-developed sternites separated by sutures that typically extend all the way to the axis or just short of the axis, third maxillipeds separated by sternum, episternites well developed, usually Fig. 13. Spindle diagram of generic occurrences within superfamilies referred to the sections of podotrematous Brachyura. Generic occurrences are tallied by occurrence of a genus within a stage. Where stage data was not known, for only about 10 percent of the data, the genus was assigned to the middle range of the epoch. Number of extant genera from Ng et al. (2008) and De Grave et al. (2010) and number of species from Schweitzer et al. (2010). Spindle diagram generated using PAST version 2.0 (Hammer et al., 2001). Note that spindles are arranged based upon number of stages per epoch and not based on length of time per stage, making the Cenozoic seem longer than the Mesozoic. 558 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>all but sternite 8 visible and sometimes 8 visible as well; pleonites in males may show fusion, uropods not present in males or females, pleon typically carried so that it is not visible in dorsal view; carapace grooves reduced; pereiopods typically not carried subdorsally (except Dorippidae). Geologic Range.—Early Cretaceous (Albian) – Recent. Remarks.—Eubrachyura embraces all Brachyura with female gonopores that are sternal. The group is morpho- logically varied and has a confirmed fossil record extending into at least the Albian (Feldmann, Schweitzer, and Green, 2008). For a list of all currently referred families, genera, and species, see Schweitzer et al. (2010). D ISCUSSION Podotremata sensu lato is much more diverse than had previously been hypothesized. The various sections, and the superfamilies assigned to them, display a variety of diversity and survivorship patterns through the Mesozoic and Cenozoic (Fig. 13). Of the ten superfamilies now recognized as being podotrematous, six survived the Cretaceous/Paleogene boundary events and five are extant. One did not reach the end of the Cretaceous. All five extant families had origins in the Early Cretaceous. Examination of patterns of diversity and disparity in Decapoda is ongoing. A CKNOWLEDGEMENTS Examination of type and comparative material in museum collections in Europe and USA was funded by NSF grants EF-0531670 and INT-0313606 to Feldmann and Schweitzer. G. Schweigert, Staatliches Museum fu¨ r Naturkunde, Stuttgart, Germany; M. Nose, Bayerische Staatsammlung fu¨ r Pala¨ontologie, Mu¨ nchen, Germany; O. Schultz, and A. Kroh, Geological and Palaeontological Department of the Naturhistorisches Museum Wien, Austria; I. Zorn, Geological Survey of Austria, Vienna; M. Munt and C. Mellish, The Natural History Museum, London, UK; M. Riley, Sedgwick Museum, Cambridge University, United Kingdom; P. Mu¨ ller Terme´szettu- doma´nyi Mu´ zeum, Fo¨ ld-e´s o˝ sle´nytar, Budapest, Hungary; P. Artal and S. Calzada, Museo Geolo´ gico del Seminario de Barcelona, Spain; S. Shelton and J. Martin, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA; H. Kato and K. Komai, Natural History Museum and Institute of Chiba, Japan; S. De Grave, Oxford University Museum of Natural History, Oxford, UK; R. Lemaitre and K. Reed (Crustacea) and J. Thompson and the late W. Blow (Paleobiology), Smithsonian Institution, United States National Museum of Natural History, Washington, D.C.; M. Ohara, Wakayama Prefectural Museum of Natural History, Kainan, Japan; N. S. Rugh and T. Deme´re´, San Diego Museum of Natural History, San Diego, California, USA.; A. Lord and C. Franz (Paleontology) and M. Tu¨ rkay (Crustacea), Senckenberg Museum, Frankfurt, Germany; B. J. Dougherty, Geological Survey of Canada, Ottawa, Canada; the late A. Dhondt, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium; J. Sklenar ˇ , National Museum, Prague, Czech Republic; J. Sprinkle and A. Molineux, University of Texas, Austin; C. Beschin, A. De Angeli, and V. Frisone, Museo Civico ‘‘ G. Zannato ’’ di Montecchio Maggiore (Vicenza), Italy; R. Fraaije, Oertijdmuseum De Groene Poort, Boxtel, The Netherlands; E. Nesbitt, Burke Museum of Natural History and Culture, Washington, USA; C. McClintock, Yale Peabody Museum of Natural History, USA; S. L. Jakobsen, Geological Museum, University of Copenhagen, Denmark; A. E. Sanders, Charleston Museum, South Carolina, USA; and G. Dietl, Paleontological Research Institution, Ithaca, NY, USA, all facilitated access to paleontological or biological collections or loans from their respective institutions. J. Martin, Natural History Museum of Los Angeles County, California, USA, loaned the specimen of Homolodromia robertsi . A. Cook, Queensland Museum, Australia, generously provided photos of type material of Dioratiopus and Torynomma . Schweigert provided much needed assistance in determining the modern-day equiva- lents of 19 th century formation names and in determining the age of 19 th century occurrences. De Grave, provided relevant 19 th century literature. A. Garassino, Museo Civico di Storia Naturale di Milano, provided obscure literature unavailable in the United States. P. K. L. Ng, National University of Singapore, and R. Lemaitre, United States National Museum of Natural History, Smithsonian Institution, provided information on interpreting the validity of publications and taxonomic names under the International Code of Zoological Nomenclature. T. Snyder and all of the staff at the Inter- Library Loan service at the KSU library assisted in finding old and obscure literature. Schweigert and an anonymous reviewer made numerous helpful comments on the manuscript. Our sincere thanks are extended to each of these individuals. R EFERENCES Ahyong, S. T., and D. O’Meally. 2004. Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. Raffles Bulletin of Zoology 52: 673-693. ———, J. C. Y. Lai, D. Sharkey, D. J. Colgan, and P. K. L. Ng. 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): the status of Podotremata based on small subunit nuclear ribosomal RNA. Molecular Phylogenetics and Evolution 45: 576-586. Alcock, A. 1899. An Account of the Deep-Sea Brachyura collected by the Royal Indian Marine Survey Ship Investigator. Vol. 4. Trustees of the Indian Museum, Calcutta. 85 pp., plates 1-4. ———. 1900. Materials for a carcinological fauna of India, 5: The Brachyura Primigenia or Dromiacea. Journal of the Asiatic Society of Bengal 68 (2) (3): 123-169. Andre´ , M. 1932. Crustace´s recueillis par M. E. Aubert de la Ru¨ aux Iles Kergulen, Saint Paul et de la Nouvelle-Amsterdam. Bulletin de Museum National d’Histoire National Paris 4: 174-181. Armstrong, A., T. Nyborg, G. A. Bishop, A ` . Osso´ -Morales, and F. J. Vega. 2009. Decapod crustaceans from the Paleocene of Central Texas, USA. Revista Mexicana de Ciencias Geolo´ gicas 26: 745-763. Artal, P., D. Guinot, B. van Bakel, and J. Castillo. 2008. Ibericancridae, a new dakoticancrid family (Decapoda, Brachyura, Podotremata) from the upper Campanian (Upper Cretaceous) of Spain. Zootaxa 1907: 1-27. Bachmayer, F., and A. Tollmann. 1953. Die Crustaceen-Fauna aus dem tortonischen Leithakalk (Steinbru¨ che der Firma Fenk) bei Groß-Ho¨ flein im Burgenland. In, Kober-Festschrift, Skizzen zum Antlitz der Erde: 308-314, pl. 1. Bell, T. 1850. Notes on the Crustacea of the Chalk Formation, pp. 344- 345, pl. 38. In, F. Dixon (ed.), The Geology and Fossils of the Tertiary and Cretaceous Formations of Sussex. Brown, Green, and Longmans, London. ———. 1858. A monograph of the fossil malacostracous Crustacea of Great Britain, Pt. I, Crustacea of the London Clay. Monograph of the Palaeontographical Society, London 10 [1856]: i-viii, 1-44, 11 pls. ———. 1863. A monograph of the fossil malacostracous Crustacea of Great Britain, Pt. II, Crustacea of the Gault and Greensand. Palaeontographical Society Monograph, London: 1-40, 11 pls. Berglund, R. E. and R. M. Feldmann, 1989. A new crab, Rogueus orri n. gen. and sp. (Decapoda: Brachyura), from the Lookingglass Formation (Ulatisian Stage: Lower Middle Eocene) of southwestern Oregon. Journal of Paleontology 63: 69-73. Beurlen, K. 1928. Die fossilen Dromiaceen und ihre Stammesgeschichte. Pala¨ontologische Zeitschrift 10: 144-183. ———. 1929. Untersuchungen u¨ ber Prosoponiden. Centralblatt fu¨ r Mineralogie, Geologie, und Pala¨ontologie, (B, Geologie und Pala¨onto- logie) 1929: 125-142. ———. 1932. Brachyurenreste aus dem Lias von Bornholm mit Beitra¨ gen zur Phylogenie und Systematik der Brachyuren Dekapoden. Pala¨onto- logische Zeitschrift 14: 52-66. Beschin, C., A. Busulini, A. De Angeli, and G. Tessier. 2007. I Decapodi dell’Eocene inferiore di Contrada Gecchelina (Vicenza – Italia settentrionale) (Anomura e Brachiura). Museo di Archeologia e Scienze Naturali ‘‘ G. Zannato, ’’ Montecchio Maggiore (Vicenza) 2007: 9-76. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 559</p>
<p>———, ———, ———, ———, and S. Ungaro. 1991. Due nuovi generi di Raninidae dell’Eocene del Veneto (Italia). Lavori—Societa` Venezi- ana di Scienze Naturali 16: 187-212. ———, A. de Angeli, and A. Checchi. 2001. Crostacei decapodi associate a coralli della ‘‘ Formazione di Castelgomberto ’’ (Oligocene) (Vicenza- Italia Settentrionale). Studi e Ricerche—Associazione Amici del Museo—Museo Civico ‘‘ G. Zannato, ’’ Montecchio Maggiore (Vicenza) 2001: 13-30. Bishop, G. A. 1976. Ekalakia lamberti n. gen., n. sp. (Crustacea, Decapoda) from the Upper Cretaceous Pierre Shale of eastern Montana. Journal of Paleontology 50: 398-401. ———. 1978. Two new crabs, Sodakus tatankayotankaensis n. gen., n. sp. and Raninella oaheensis n. sp. (Crustacea, Decapoda), from the Upper Cretaceous Pierre Shale of South Dakota. Journal of Paleontology 52: 608-617. ———. 1983a. Fossil decapod crustaceans from the Lower Cretaceous, Glen Rose Limestone of central Texas. Transactions of the San Diego Society of Natural History 20: 27-55. ———. 1983b. Two new species of crabs, Notopocorystes ( Eucorystes ) eichhorni and Zygastrocarcinus griesi (Decapoda: Brachyura) from the Bearpaw Shale (Campanian) of north-central Montana. Journal of Paleontology 57: 900-910. ———. 1983c. Fossil decapod Crustacea from the Late Cretaceous Coon Creek Formation, Union County, Missisippi. Journal of Crustacean Biology 3: 417-430. ———. 1985. Fossil decapod crustaceans from the Gammon Ferruginous Member, Pierre Shale (Early Campanian), Black Hills, South Dakota. Journal of Paleontology 59: 605-624. ———. 1986. A new crab, Zygastrocarcinus cardsmithi (Crustacea, Decapoda), from the lower Pierre Shale, southeastern Montana. Journal of Paleontology 60: 1097-1102. ———. 1987. Dromiopsis kimberlyae , a new Late Cretaceous crab from the Pierre Shale of South Dakota. Proceedings of the Biological Society of Washington 100: 35-39. ———. 1988a. A new crab, Seorsus wadei , from the Late Cretaceous Coon Creek Formation, Union County, Mississippi. Proceedings of the Biological Society of Washington 101: 72-78. ———. 1988b. New fossil crabs, Plagiophthalmus izetti , Latheticocarci- nus shapiroi , and Sagittiformosus carabus (Crustacea, Decapoda) from the Western Interior Cretaceous, U.S.A. Proceedings of the Biological Society of Washington 101: 375-381. ———. 1988c. Two crabs, Xandaros sternbergi (Rathbun, 1926) n. gen., and Icriocarcinus xestos n. gen., n. sp., from the Late Cretaceous of San Diego County, California, USA, and Baja California Norte, Mexico. Transactions of the San Diego Society of Natural History 21: 245-257. ———. 1992a. A new Cretaceous crab Diaulax millerae (Crustacea: Decapoda), from the northern Atlantic Coastal Plain, U.S.A. Proceed- ings of the Biological Society of Washington 105: 555-561. ———, and A. B. Williams. 2000. Fossil crabs from Tepee Buttes, submarine seeps of the late Cretaceous Pierre Shale, South Dakota and Colorado, U.S.A. Journal of Crustacean Biology 20 (special number) (2): 285-300. ———, R. M. Feldmann, and F. J. Vega. 1998. The Dakoticancridae (Decapoda, Brachyura) from the Late Cretaceous of North America and Mexico. Contributions to Zoology 67: 237-255. Bittner, A. 1883. Neue Beitra¨ ge zur Kenntniss der Brachyuren-Fauna des Alttertia¨ rs von Vicenza und Verona. Denkschriften der Kaiserlichen Akademie der Wissenschaften, (Mathematisch-naturwissenschaftliche Klasse) 46: 299-316, pl. 1. ———. 1893. Decapoden des pannonischen Tertia¨rs. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 102: 10-37, pls. 1, 2. Blow, W. C., and R. C. Manning. 1996. Preliminary descriptions of 25 new decapod crustaceans from the Middle Eocene of the Carolinas, U.S.A. Tulane Studies in Geology and Paleontology 29: 1-26, pls. 1-5. Bonaparte, C. L. 1831. Saggio di una distribuzione metodica degli animali vertebrati. Roma, 78 pp. Bosquet, J. 1854. Les Crustace´s fossiles du terrain Cre´ tace´ du Limbourg. Verhandelingen van den Commissie van de Geologische Kaart van Nederland 2: 12-128. Bourne, G. C. 1922. On the Raninidae: a study in Carcinology. Journal of the Linnean Society of London, (Zoology) 35: 25-78, pls. 4-7. Bouvier, E.-L. 1897. Sur la classification, les origines et la distribution des Crabes de la famille des Dorippide´ s. Bulletin de la Societe´ Philomatique de Paris (8) 9: 54-70. Boyko, C. B. 2004. The problematic Paralbunea Hu and Tao, 1996: Homonymy, generic nom. nov., and correct taxonomic placement. Palaeontology 47: 929-932. Bremer, K. 1994. Branch support and tree stability. Cladistics 10: 295-304. Breton, G. 2009. Description of Priscinachus elongatus n. gen., n. sp., and Priscinachidae n. fam. for the earliest spider crab (Crustacea, Decapoda, Majoidea), from the French Cretaceous (Cenomanian). Geodiversitas 31: 509-523. Bro¨ sing, A., S. Richter, and G. Scholtz. 2007. Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon. Journal of Zoological Systematics and Evolutionary Research 45: 20-32. Casadı ´ o, S., S. A. Marenssi, and S. N. Santillana. 2001. Endolithic bioerosion traces attributed to boring bryozoans in the Eocene of Antarctica. Amegheniana 38: 321-329. Castro, P., A. B. Williams, and L. L. Cooper. 2003. Revision of the family Latreilliidae Stimpson, 1858 (Crustacea, Decapoda, Brachyura). Zoo- systema 25: 601-634. Checchia-Rispoli, G. 1905. I Crostacei dell’Eocene dei dintorni di Monreale in provincia di Palermo. Giornale della Societa Scienze Naturale e Economiche di Palermo 25: 309-325, 1 pl. ———. 1917. Distefania , nuovo genere di Brachiuri del Cenomaniano della Sicilia. Bollettino della Societa` Zoologica Italiana (3) 3 (12): 173- 186, pls. 1-2. Chu, K. H., L. M. Tsang, K. Y. Ma, T. Y. Chan, and P. K. L. Ng. 2009. Decapod phylogeny: what can protein-coding genes tell us?, pp. 89-99. In, J. W. Martin, K. A. Crandall, and D. L. Felder (eds.), Decapod Crustacean Phylogenetics. CRC Press, Taylor and Francis Group, Boca Raton, Florida. Collins, J. S. H. 1997. Fossil Homolidae (Crustacea; Decapoda). Bulletin of the Mizunami Fossil Museum 24: 51-71. ———. 2002. A taxonomic review of British decapod Crustacea. Bulletin of the Mizunami Fossil Museum 29: 81-92. ———, and G. Breton, 2009. New crabs (Crustacea, Decapoda) from the Cenomanian stratotype (Western Paris Basin, France). Bulletin of the Mizunami Fossil Museum 35: 43-50. ———, and S. K. Donovan. 2006. New decapod crustaceans from the Palaeogene of Jamaica. Bulletin of the Mizunami Fossil Museum 33: 59-65. ———, and S. L. Jakobsen. 2003. New crabs (Crustacea, Decapoda) from the Eocene (Ypresian/Lutetian) Lillebælt Clay Formation of Jutland, Denmark. Bulletin of the Mizunami Fossil Museum 30: 63-96. ———, and H. Karasawa, 1993. The Cretaceous crab, Pithonoton inflatum sp. nov. from Hokkaido, Japan. Scientific Reports of the Toyohashi Museum of Natural History 3: 17-19. ———, and H. W. Rasmussen. 1992. Upper Cretaceous-Lower Tertiary decapod crustaceans from west Greenland. Grønlands Geologiske Undersøgelse, Bulletin 162: 1-46. ———, and J. Saward, 2006. Three new genera and species of crabs from the Lower Eocene of London Clay of Essex, England. Bulletin of the Mizunami Fossil Museum 33: 67-76. ———, and R. J. Williams. 2004. A new genus and species of necrocarcinid crab (Crustacea, Brachyura) from the Upper Cretaceous of England. Bulletin of the Mizunami Fossil Museum 31: 33-35. ———, Y. Kanie, and H. Karasawa. 1993. Late Cretaceous crabs from Japan. Transactions and Proceedings of the Palaeontological Society of Japan, n. s. 172: 292-310. ———, A. J. Ross, G. Genzano, and H. Manzian, 2006. Earleria gen. nov. and Gabriella gen. nov., replacement names for Foersteria Arai and Brinkmann-Voss, 1980 (Cnidaria, Hydrozoa, Mitrocomidae) and Foersteria Wehner, 1988 (Crustacea, Decapoda, Prosopidae), junior homonyms of Foersteria Sze´ pligeti, 1896 (Insecta, Hymenoptera, Braconidae). Bulletin of the Mizunami Fossil Museum 33: 125-126. Conkle, L. N., C. E. Schweitzer, R. M. Feldmann, and R. B. Blodgett. 2006. A new species of Tymolus and a report on Metacarcinus from the Miocene of Alaska. Bulletin of the Mizunami Fossil Museum 33: 47-57. Crosnier, A. 1994. Sphaerodromia lamellata n. sp. from New Caledonia (Decapoda Brachyura, Dromiidae). Crustaceana 67:341-347 Dana, J. D. 1852a. Parts I and II, Crustacea. U.S. Exploring Expedition During the Years 1838, 1839, 1840, 1841, 1842, under the Command of 560 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>Charles Wilkes, U.S.N. 13: 1-1618, 1 map; separate folio atlas with 96 pls. C. Sherman, Philadelphia. Davidson, E. 1966. A new Paleocene crab from Texas. Journal of Paleontology 40: 211-213. De Grave, S., N. D. Pentcheff, S. T. Ahyong, T.-Y. Chan, K. A. Crandall, P. C. Dworschak, D. L. Felder, R. M. Feldmann, C. H. J. M. Fransen, L. Y. D. Goulding, R. Lemaitre, M. L. Low, J. W. Martin, P. K. L. Ng, C. E. Schweitzer, S. H. Tan, D. Tshudy, and R. Wetzer. 2009. A classification of Recent and fossil genera of decapod crustaceans. The Raffles Bulletin of Zoology Supplement 21: 1-109. De Haan, W. 1833-1850. Crustacea. In, P. F. von Siebold (ed.), Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspiciis Superiorum, qui summum in India Batava Imperium Tenent, Suscepto, Annis 1823-1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit: i-xvii, i-xxxi, ix-xvi, 1-243, pls. A–J, L–Q, 1-55, circ. tab. 2, J. Mu¨ ller et Co., Lugduni Batavorum [ 5 Leyden]. de Saint Laurent, M. 1980. Sur la classification et la phyloge´ nie des Crustace´s De´ capodes Brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. Comptes Rendus Hebdomadaires des Se´ ances de l’Acade´mie des Sciences, Paris, (D) 290: 1265-1268. Desmarest, A. G. 1822. Histoire naturelle des Crustace´ s fossiles. Les Crustace´s proprement dits: 67-154, pls. 5-11. (F. G. Levrault, Paris). ———. 1823. Crustace´ s Malacostrace´ s. In, Dictionnaire des Sciences Naturelles 28: 138-425, F. G. Levrault et Le Normant, Strasbourg and Paris. Dixon, C. J., S. T. Ahyong, and F. R. Schram. 2003. A new hypothesis of decapod phylogeny. Crustaceana 76: 935-975. Edwards, George. 1771. Catalogue of animals. In, M. Catesby’s, The Natural History of Carolina, Florida, and the Bahama Islands containing the figures of birds, beasts, fishes, serpents, insects, and plants; particularly, those not hitherto described, or incorrectly figured by former authors, with their descriptions in English and French; to which is prefixed, a new and correct map of the countries; with observations on their natural state, inhabitants, and productions, revised by Mr. Edwards; to the whole is now added a Linnaean index of the animals and plants. B. White, London, 2 volumes, 220 plates. E ´ tallon, A. 1861. Notes sur les Crustace´ s Jurassiques du bassin du Jura. Me´ moires de la Societe´ de l’Agriculture, des Sciences et Lettres de la Haute Saoˆ ne 9: 129-171, pl. 2. Eudes-Deslongchamps, J. A. 1835. Me´moire pour servir a` l’histoire naturelle des Crustace´s fossils. Me´moire de la Societe´ Linne´enne de Normandie 5: 37-46, pl. 1. Fabiani, R. 1910. I crostacei terziari del Vicentino. Bolletino del Museo civico di Vicenza 1: 1-40. Fabricius, J. C. 1793. Entomologiae systematica emendata et aucta, secundum Classes, Ordines, Genera, Species, adjectis Synonimis, Locis, Observationibus, Descriptionibus: 1-519, C. G. Proft et Storch, Hafniae [ 5 Copenhagen]. ———. 1798. Supplementatione Entomologiae Systematicae: i-iv, 1-572, C. G. Proft et Storch, Hafnie [ 5 Copenhagen]. Feldmann, R. M. 1993. Additions to the fossil decapod crustacean fauna of New Zealand. New Zealand Journal of Geology and Geophysics 36:201- 211. ———. 1994. Antarctomithrax thomsoni, a new genus and species of crab (Brachyura; Majidae) from the La Meseta Formation of Seymour Island, Antarctica. Journal of Paleontology 66 (1): 174-176. ———, and C. E. Schweitzer. 2007. Sexual dimorphism in fossil and extant Raninidae (Decapoda: Brachyura). Annals of Carnegie Museum 76: 39-52. ———, and ———. 2009. Revision of Jurassic Homoloidea De Haan, 1839, from the Ernstbrunn and S ˇ tramberk limestones, Austria and the Czech Republic. Annalen des Naturhistorischen Museums in Wien (A) 111: 183-206. ———, and ———. 2010. Is Eocarcinus the earliest brachyuran? Journal of Crustacean Biology 30: 241-250. ———, and M. T. Wilson. 1988. Eocene decapod crustaceans from Antarctica, pp. 465-488. In, R. M. Feldmann and M. O. Woodburne (eds.), Geology and paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America, Memoir 169. ———, R.-Y. Li, and C. E. Schweitzer, 2007. A new family, genus, and species of crab (Crustacea, Decapoda, Brachyura) from the Upper Cretaceous (Campanian) of Manitoba, Canada. Canadian Journal of Earth Science 44: 1741-1752. ———, C. E. Schweitzer, and R. M. Green. 2008. Unusual Albian (Early Cretaceous) Brachyura (Homoloidea de Haan and Componocancroidea new superfamily) from Montana, U.S.A. Journal of Crustacean Biology 502-509. ———, ———, and W. Wahl. 2008. New species of Glaessneropsidae from Western Interior. Journal of Paleontology 82: 1030-1034. ———, D. M. Tshudy, and M. R. A. Thomson, 1993. Late Cretaceous and Paleocene decapod crustaceans from James Ross Basin, Antarctic Peninsula. The Paleontological Society Memoir 28: i-iv, 1-41. Fo¨ rster, R. 1968. Paranecrocarcinus libanoticus n. sp. (Decapoda) und die Entwicklung der Calappidae in der Kreide. Mitteilungen der Bayer- ischen Staatssammlung fu¨ r Pala¨ ontologie und Historische Geologie 8: 167-195. ———. 1986. Der erste Nachweis eines brachyuren Krebses aus dem Lias (Oberes Pliensbach) Mitteleuropas. Mitteilungen der Bayerischen Staatssammlung fu¨ r Pala¨ontologie und Historische Geologie 26: 25-31. ———, A. Gaz ´ dzicki, and R. Wrona, 1985. First record of a homolodromiid crab from a Lower Miocene glacio-marine sequence of West Antarctica. Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Monatshefte 1985 (6): 340-348. Fraaye, R. H. B., and B. W. M. van Bakel, 1998. New raninid crabs (Crustacea, Decapoda, Brachyura) from the late Maastrichtian of the Netherlands. Geologie en Mijnbouw 76: 293-299. ———, ———, J. W. M. Jagt, and P. Artal. 2008. New decapod crustaceans (Anomura, Brachyura) from mid-Cretaceous reefal deposits at Monte Orobe (Navarra, northern Spain), and comments on related type-Maastrichtian material. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, (Sciences de la Terre) 78: 193-208. Frant¸escu, O. D. 2010. Brachyuran decapods (including five new species and one new genus) from Jurassic (Oxfordian-Kimmeridgian) coral reef limestones from Dobrogea, Romania. Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen, DOI: 10.1127/0077-7749/2010/0110. Frant¸escu, A. L., R. M. Feldmann, and C. E. Schweitzer. 2010. A new genus and species of dromiid crab (Decapoda, Brachyura) from the middle Eocene of South Carolina, pp. 255-267. In, C. H. J. M. Fransen, S. De Grave, and P. K. L. Ng (eds.), studies on Malacostraca: Lipke Bijdeley Holthuis Memorial Volume. Crustaceana Monographs 14: 754 pp. Fritsch, A. 1893. Studien im Gebiete der bo¨ hmischen Kreideformation. Pala¨ontologische Untersuchungen der einzelnen Schichten. V. Priesener Schichten. Archiv der Naturwissenschaftlichen Landesdurchforschung von Bo¨ hmen 9 (1): 1-135. Fulton, S. W., and F. E. Grant. 1902. Some little-known Victorian decapod Crustacea, with descriptions of new species, 2. Proceedings of the Royal Society of Victoria, (2) 15: 59-68, 3 pls. Garth, J. S. 1973. New taxa of brachyuran crabs from deep waters off western Peru and Costa Rica. Bulletin of the Southern California Academy of Sciences 72: 1-12. Glaessner, M. F. 1933. Die Krabben der Juraformation. Zentralblatt fu¨ r Mineralogie, Geologie und Pala¨ontologie (B) 3: 178-191. ———. 1969. Decapoda. In, R. C. Moore (ed.), Treatise on Invertebrate Paleontology, R (4) (2): R400-R533, R626-R628. Geological Society of America, Boulder, Colorado, and University of Kansas Press, Lawrence, Kansas. ———. 1980. New Cretaceous and Tertiary crabs (Crustacea: Brachyura) from Australia and New Zealand. Transactions of the Royal Society of South Australia 104: 171-192. Goeke, G. D. 1981. Symethinae, new subfamily, and Symethis garthi , new species, and the transfer of Raninoides ecuadorensis to Notosceles (Raninidae: Brachyura: Gymnopleura). Proceedings of the Biological Society of Washington 93: 971-981. Gould, C. 1859. Description of a new fossil crustacean from the lower Greensand. Quarterly Journal of the Geological Society 15: 237-238. Gray, J. E. 1831. Description of a new genus and some undescribed species of Crustacea. Zoological Miscellany 1: 39-40. Griffin, D. J. G., 1965. A new species of Paromola (Crustacea, Decapoda, Thelxiopidae) from New Zealand. Transactions of the Royal Society of New Zealand 7(4): 85-91. Gue´ rin-Me´ neville, F. E. 1832. Notice sur quelques modifications a` introduire dans les Notopodes de M. Latreille et e´ tablissement d’un nouveau genre dans cette tribu. Annales des Sciences naturelles 25: 283- 289. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 561</p>
<p>Guinot, D. 1977. Propositions pour une nouvelle classification des Crustace´ s De´ capodes Brachyoures. Comptes Rendus Hebdomadaires des Se´ ances de l’Acade´mie des Sciences, Paris, (D) 285: 1049-1052. ———. 1979. Donne´es nouvelles sur la morphologie, la phylogene`se et la taxonomie des Crustace´s De´capodes Brachyoures. Me´ moires du Muse´ um national d’Histoire naturelle (A) Zoologie 112: 1-354. ———. 1991. E ´ tablissement de la famille des Poupiniidae pour Poupina hirsuta gen. nov., sp. nov. de Polyne´ sie (Crustacea Decapoda Brachyura Homoloidea). Bulletin du Muse´ um National d’Histoire Naturelle, Paris (4) 12 [1990]: 577-605. ———. 1993. Donne´ es nouvelles sur les Raninoidea De Haan, 1841 (Crustacea Decapoda Brachyura Podotremata). Comptes Rendus Acade´ mie des Sciences, Paris (Sciences de la Vie) 316: 1324-1331. ———. 2008. A re-evaluation of the Dynomenidae Ortmann, 1892 (Crustacea, Decapoda, Brachyura, Podotremata), with the recognition of four subfamilies. Zootaxa 1850: 1-26. ———, and J.-M. Bouchard. 1998. Evolution of the abdominal holding systems of brachyuran crabs (Crustacea, Decapoda, Brachyura). Zoosystema 20: 613-694. ———, and G. Quenette. 2005. The spermatheca in podotreme crabs (Crustacea, Decapoda, Brachyura, Podotremata) and its phylogenetic implications. Zoosystema 27: 267-342. ———, and B. Richer de Forges. 1995. Crustacea Decapoda Brachyura: re´vision de la famille des Homolidae De Haan, 1839. In, A. Crosnier (ed.), Re´ sultats des Campagnes MUSORSTOM, 13. Me´ moires du Muse´ um National d’Histoire Naturelle, Paris 163: 283-517. ———, and M. Tavares. 2001. Une nouvelle famille de crabes du Crustace´ s et la notion de Podotremata Guinot, 1977 (Crustacea, Decapoda, Brachyura). Zoosystema 23: 507-546. ———, and ———. 2003. A new subfamilial arrangement for the Dromiidae De Haan, 1833, with diagnoses and descriptions of new genera and species (Crustacea, Decapoda, Brachyura). Zoosystema 25: 43-129. ———, F. J. Vega, and B. van Bakel. 2008. Cenomanocarcinidae n. fam., a new Cretaceous podotreme family (Crustacea, Decapoda, Brachyura, Raninoidia), with comments on related families. Geodiversitas 30 (4): 681-719. ———, B. G. M. Jamieson, B. Richer de Forges, and C. C. Tudge. 1998. Comparative spermatozoal ultrastructure of the three dromiacean families exemplified by Homolodromia kai (Homolodromiidae), Sphaerodromia lamellata (Dromiidae) and Dynomene tanensis (Dyno- menidae) (Podotremata: Brachyura). Journal of Crustacean Biology 18: 78-94. Hall, J., and J. M. Clarke. 1894. Paleontology: Vol. VIII. An introduction to the study of the genera of Palaeozoic Brachiopoda. Part II. Geological Survey of the State of New York, Charles van Benthuysen and Sons, Albany, New York, 394 pp., 84 pls. Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologica electronica 4 (1): 9. , http://folk.uio.no/ ohammer/past . He´ e, A. 1924. Catalogue critique des Crustace´s jurassiques du Calvados et de l’Orne. Bulletin de la Societe´ Linne´enne de Normandie (7) 6: 126- 157, pls. 3-6. Henderson, J. R. 1888. Report on the Anomura collected by H. M. S. Challenger during the years 1873-1876. Report on the Scientific Results of the Voyage of HMS Challenger, (Zoology) 27: i-xi, 1-221, pls. 1-21. Holland, F. D., Jr. and A. Cvancara, 1958. Crabs from the Cannonball Formation (Paleocene) of North Dakota. Journal of Paleontology 32: 495-505. Ihle, J. E. W., 1913. Die Decapoda Brachyura der Siboga-Expedition. I. Dromiacea. Siboga Expeditie 39 (b): 1-96, pls. 1-4. International Commission on Zoological Nomenclature. 1999. Interna- tional Code of Zoological Nomenclature. International Trust for Zoological Nomenclature, The Natural History Museum, London, UK. Jagt, J. W. M., J. S. H. Collins, and R. H. B. Fraaye. 1991. A new late Maastrichtian xanthid crab from southern Limburg (the Netherlands). Cretaceous Research 12: 553-560. ———, ———, and ———. 1993. A new early Palaeocene genus of raninid crab (Crustacea, Decapoda) from Denmark, southern Sweden and the Netherlands. Contributions to Tertiary and Quaternary Geology 30 (3-4): 177-182, 3 figs. Jakobsen, S. L. and J. S. H. Collins. 1997. New Middle Danian species of anomuran and brachyuran crabs from Fakse, Denmark. Bulletin of the Geological Society of Denmark 44: 89-100. Jamieson, G. M., D. Guinot, and B. Richer de Forges. 1995. Phylogeny of the Brachyura (Crustacea, Decapoda): evidence from spermatozoal ultrastructure. Me´ moires du Muse´ um National d’Histoire Naturelle, Paris 166: 265-283. Jimboˆ , K. 1894. Beitra¨ge zur Kenntnis der Fauna der Kreideformation von Hokkaidoˆ . Pala¨ontologische Abhundlungen, N. F. 2: 149-194. Karasawa, H. 1992. Fossil decapod crustaceans from the Manda Group (Middle Eocene), Kyushu, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, (new series) 167: 1247-1258. ———, and K. Kato. 2007. New prosopid crabs (Crustacea, Decapoda, Brachyura) from the Upper Jurassic Torinosu Group, Shikoku, Japan. Memoire della Societa` Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 35: 62-65. ———, and M. Ohara. 2009. Ponotus shirahamensis , a new genus and species of raninid crabs (Decapoda, Brachyura) from the Miocene Tanabe Group of Japan. Boletı ´ n de la Sociedad Geolo´ gica Mexicana 61: 199-202. ———, H. Kato and K. Terabe. 2006. A new member of the family Prosopidae (Crustacea: Decapoda: Brachyura) from the Lower Creta- ceous of Japan. Revista Mexicana de Ciencias Geolo´ gicas 23: 344-349. ———, M. Ohara, and H. Kato. 2008. New records for Crustacea from the Arida Formation (Lower Cretaceous, Barremian) of Japan. Boletı ´ n de la Sociedad Geolo´ gica Mexicana 60: 101-110. Kuhl, H., and W. J. C. van Hasselt. 1822. Getrokken uit den Algemeenen konst-en letterbode, 1822, no. 6, 7, 8, 9 en 10. Uittreksels uit brieven van de heeren Kuhl en van Hasselt, aan de heeren C.J. Temminck, Th. van Swinderen, W. de Haan, D.J. van Ewyck, H. Boie en Z.E. den Minister voor het openbaar Onderwijs, de Nationale Nijverheid en de Kolonien. Groningen, 26 p. Lamarck, J. B. P. A. 1801. Syste` me des animaux sans verte´bre´ s, ou tableau ge´ne´ral des classes, des ordres et des genres de ces animaux; pre´ sentant leurs caracte` res essentiels et leurs distribution, d’apre`s la conside´ ration de leurs rapports naturels et de leur organisation, et suivant l’arrangement e´ tabli dans les galeries du Muse´ um d’Histoire Naturelle, parmi leurs de´pouilles conserve´ es; pre´ ce´de´ du discours d’ouverture du cours de zoologie, donne´ dans le Muse´ um national d’Histoire naturelle l’an 8 de la Republique: 1-432. Chez De´terville, Paris. Lambert, J. M. 1898. Rectification de nomenclature. Revue Critique de Pale´ ozoologie 2: 125-127. Larghi, C. 2004. Brachyuran decapod Crustacea from the Upper Cretaceous of Lebanon. Journal of Paleontology 78 (3): 528-541. Latreille, P. A. 1802-1803. Histoire naturelle, ge´ne´ rale et particulie` re, des Crustace´ s et des Insectes 3: 1-468. F. Dufart, Paris. ———. 1812. Crustace´ s et Insectes, pp. 270-280. In, J. Milbert (ed.), Voyage pittoresque a` l’Ile-de-France, au Cap de Bonne-Espe´rance er a` l’Ile de Te´ne´riffe. Le Normant, Paris, Vol. 2. Leach, W. E. 1814. Crustaceology. In, D. Brewster (ed.), Edinburgh Encyclopaedia 7: 383-437, pl. 221. (Edinburgh). ———. 1816 [imprint 1815]. A tabular view of the external characters of four classes of animal which Linne arranged under Insecta: with the distribution of the genera composing three of these classes into orders and c. and descriptions of several new genera and species. Transactions of the Linnean Society of London 11 (2): 306-400, and ‘Errata’. [Dated 1815, but published 24 January 1816.] Linnaeus, C. [von]. 1758. Systema Naturae per Regna tria Naturae, secundum classes, ordines, genera, species, cum characteribus, differ- entiis, synonymis, locis (ed. 10) 1: 1-824. Laurentii Salvii, Holmiae [ 5 Stockholm]. Lo˝ renthey, E. and K. Beurlen, 1929. Die fossilen Decapoden der La¨ nder der Ungarischen Krone. Geologica Hungarica, (Palaeontologica) 3: 1- 421, 12 tabs., 16 pls. Low, M. E. Y., and D. Guinot. 2010. Feldmannius nom. nov. for Feldmannia Casadı ´ o, Marenssi & Santillana, ‘‘ 30-09-2001, ’’ preoccu- pied by Feldmannia Guinot & Tavares, ‘‘ 28 Septembre 2001 ’’ : a case of 48-hour precedence. Zootaxa 2568: 67-68. Maciolek, N. J. 1981. Spionidae (Annelida: Polychaeta) from the Gala´pagos Rift geothermal vents. Proceedings of the Biological Society of Washington 94: 826-837. MacLeay, W. S. 1838. On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith. In, A. Smith, Illustrations of the Annulosa of South Africa; consisting chiefly of figures and descriptions of the 562 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>objects of natural history collected during an expedition into the interior of South Africa, in the years 1834, 1835, and 1836; fitted out by ‘‘ The Cape of Good Hope Association for Exploring Central Africa. ’’ : 53-71, 2 pls. Smith, Elder and Company, London. Maddison, W. P., and D. L. Maddison. 2005. MacClade version 4.08. Sinauer Associates, Sunderland, Massachusetts. Mantell, G. A. 1822. The fossils of the South Downs; or illustrations of the geology of Sussex: 1-327, 42 pls. Lupton Relfe, London. ———. 1844. Medals of creation 1-2: 1-1016, 6 pls. (H. G. Bohn, London). Martin, J. W. 1990. Crabs of the family Homolodromiidae, ii. Dicranodromia felderi , new species, from the Western Atlantic, with notes on the type series of D. ovata A. Milne Edwards, 1880. Journal of Crustacean Biology 10: 708-720. ———, and G. B. Davis, 2001. An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Science Series 39: 1-124. Martins-Neto, R. G. 1987. Primeiro registro de deca´pode na Formac¸a˜ o Santana, bacia do Araripe (Creta´ceo Inferior), Brasil. Cie´ ncia e Cultura 39 (4): 406-410. ———. 2001. Review of some Crustacea (Isopoda and Decapoda) from Brazilian deposits (Paleozoic, Mesozoic and Cenozoic) with descrip- tions of new taxa. Acta Geologica Leopoldensia 24 (52/53): 237-254. M’Coy, F. 1849. On the classification of some British fossil Crustacea with notices of new forms in the university collection at Cambridge. Annals and Magazine of Natural History (2) 4: 161-179, 330-335. ———. 1854. On some new Cretaceous Crustacea. Annals and Magazine of Natural History (2) 44: 116-122. McLay, C. L. 1993. Crustacea Decapoda: the sponge crabs (Dromiidae) of New Caledonia and Philippines with a review of the genera. Me´moires du Museum National d’Histoire Naturelle 156: 111-251. ———. 1999. Revision of the family Dynomenidae. Me´moires du Museum National d’Histoire Naturelle 181: 427-569. Mertin, H. 1941. Decapode Krebse aus dem subhercynen und Braun- schweiger Emscher und Untersenon sowie Bemerkungen u¨ ber ver- wandte Formen in der Oberkreide. Nova Acta Leopoldina 10 (68):149- 264, pls. 1-8. Miers, E. J. 1880. On a collection of Crustacea from the Malaysian region. Part III: Crustacea Anomura and Macrura (except Penaeidae). Annals and Magazine of Natural History, series 5 5: 370-384. ———. 1881. On a Collection of Crustacea made by Baron Hermann Maltzam [sic] at Goree Island, Senegambia. Annals and Magazine of Natural History series 5 8: 204-220, 259-281, 364-377, plates 13-16. Milne Edwards, H. 1837. Description of Dromilites . In, L’Institut 5: 255. ———. 1834-1840. Histoire naturelle des Crustace´ s, comprenant l’anatomie, la physiologie, et la classification de ces animaux, 1 [1834]: 1-468; 2 [1837] 1-532; 3 [1840]: 1-638, Atlas: 1-32, pls. 1-42. ———. 1853. Me´moire sur la famille des Ocypodides. Suite (1). Deuxie´ me Tribu Principale. Annales des Sciences Naturelles, 3e se´ rie 20: 163-228. Milne-Edwards, A. 1862. Sur l’existence de Crustace´ s de la famille des Raniniens pendant la pe´riode cre´ tace´e. Comptes Rendus de l’Academie des Sciences de Paris 55: 492-494. ———. 1864. Monographie des Crustace´ s de la famille Cance´ riens. Annales des Sciences Naturelles, (Zoologie) (5) 1 [1864]: 31-88, pls. 1- 10. ———. 1865. Note sur deux nouveaux Crustace´ s fossiles du terrain ne´ ocomien du De´ partement de l’Yonne. Bulletin de la Socie´ te´ des Sciences Historiques et Naturelles de l’Yonne 19: 341-347, pl. 5. ———. 1873-1881. E ´ tudes sur les Xiphosures et les Crustace´ s de la re´gion Mexicaine. Mission Scientifique au Mexique et dans l’Histoire de la Faune de l’Ame´ rique Centrale et du Mexique 5: 1-368, 61 pls. Imprimerie Nationale, Paris. ———. 1880. E ´ tudes pre´ liminaires sur les Crustace´s, 1 e`re partie. Reports on the Results of Dredging under the Supervision of Alexander Agassiz, in the Gulf of Mexico, and in the Caribbean Sea, 1877, ’78, ’79, by the U.S. Coast Guard Survey Steamer ‘Blake’, Lieutenant-Commander C. D. Sigsbee, U. S. N., and Commander J. R. Bartlett, U. S. N., commanding. VIII. Bulletin of the Museum of Comparative Zoology, Harvard 8 (1): 1-68, pls. 1, 2. Miyake, S., and M. Takeda. 1970. A remarkable species of the Dromiacea (Crustacea, Decapoda) from the Tsushima lslands, Japan. Ohmu 3: 19- 28. Moericke, W., 1889. Die Crustaceen der Stramberger Schichten. Palaeontographica (Supplement) 2 (6): 43-72, pl. 6. Monod, T., 1956. Hippidea et Brachyura ouest-africains. Me´moires de l’Institut Franc¸ais d’Afrique Noire 45: 1-674. Mu¨ ller, P. 1976. Decapoda (Crustacea) fauna a Budapesti mioce´ nbo˝ l (4). Faune de De´ capodes (Crustace´s) dans le Mioce`ne de Budapest. Fo¨ ldtani Ko¨ zlo¨ ny 106 (2): 149-160, pls. 1-5. ———. 1978. Decapoda (Crustacea) fauna a Budapesti mioce´nbo˝ l (5). Faune de De´ capodes (Crustace´s) dans le Mioce`ne de Budapest. Fo¨ ldtani Ko¨ zlo¨ ny 108: 272-312, pls. 1-23. ———. 1984. Decapod Crustacea of the Badenian. Geologica Hungarica, (Palaeontologica) 42: 1-317, pls. 1-97. ———, and J. S. H. Collins. 1991. Late Eocene coral-associated decapods (Crustacea) from Hungary. Contributions to Tertiary and Quaternary Geology 28 (2-3): 47-92, pls. 1-8. Ng, P. K. L., D. Guinot, and P. J. F. Davie. 2008. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology, (Supplement) 17: 1-286. Nyborg, T. G. and J. Fam, 2008. Bicornisranina bocki , n. gen., n. sp. (Decapoda: Raninidae) from the Cretaceous of Vancouver Island, British Columbia, Canada. Journal of Crustacean Biology 28: 686-694. Ortmann, A. E. 1892. Die Abtheilungen Hippidea, Dromiidea und Oxystomata: die Decapoden-Krebse des Strassburger Museums, mit besonderer Beru¨ cksichtigung der von Herrn Dr. Do¨ derlein bei Japan und bei den Liu-Kiu-Inseln gesammelten und z. Z. im Strassburger Museum aufbewahrten Formen. V. Theil. Zoologische Jahrbu¨ cher, (Systematik, Geographie und Biologie der Thiere) 6: 532-588, pl. 26. Patrulius, D., 1959. Contributions a` la syste´matique des De´capodes ne´ ojurassiques. Revue de Ge´ ologie et Ge´ ographie 3 (2): 249-257. Quayle, W. J., and J. S. H. Collins 1981. New Eocene crabs from the Hampshire Basin. Palaeontology 24 (4): 733-758, pls. 104, 105. Rafinesque, C. S. 1815. Analyse de la nature, ou tableau de l’univers et des corps organise´e: 1-224. L’Imprimerie de Jean Barravecchia, Palermo. Rathbun, M. J. 1917. New species of South Dakota Cretaceous crabs. Contributions to Zoology 67: 237-255. ———. 1923a. Report on the crabs obtained by the F. I. S. ‘‘ Endeavour ’’ on the coasts of Queensland, New South Wales, Victoria, South Australia and Tasmania. Report on the Brachyryncha, Oxystomata and Dromiacea, pp. 95-156, pls. 16-42. In, Biological results of the Fishing Experiment carried on by the F.I.S. ‘‘ Endeavour, ’’ 1909-14, Sydney. Commonwealth of Australia, Department of Trade and Customs, Vol. 5, 398 pp., 147 pls. ———. 1923b. Decapod crustaceans from the Upper Cretaceous of North Carolina. North Carolina Geological Survey 5: 403-407. ———. 1926. The fossil stalk-eyed Crustacea of the Pacific slope of North America. United States National Museum Bulletin 138: i-viii, 1-155. ———. 1935. Fossil Crustacea of the Atlantic and Gulf Coastal Plain. Geological Society of America, (Special Paper) 2: i-viii, 1-160. Remesˇ, M., 1895. Beitra¨ge zur Kenntnis der Crustaceen der Stramberger Schichten. Bulletin International de l’Acade´mie des Sciences de Bohe`me 2: 200-204, pls. 1-3. Reuss, A. E., 1845. Die Versteinerungen der bo¨ hmischen Kreideformation. Schweizerbart, Stuttgart. ———. 1858 [imprint 1857]. U ¨ ber kurzschwa¨nzige Krebse im Jurakalke Ma¨ hrens. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaf- ten, (Mathematisch-Naturwissenschaftliche Classe) 31: 5-13. ———. 1859. Zur Kenntnis fossiler Krabben. Denkschrift der kaiserlichen Akademie der Wissenschaften Wien 17: 1-90, pls. 1-24. Ristori, G. 1886. I crostacei brachiuri e anomuri del pliocene italiano. Bollettino della Societa` Geologica Italiana 5: 93-128, pls. 2, 3. Roemer, F. A. 1887. Graptocarcinus texanus , ein Brachyure aus der Kreide von Texas. Neues Jahrbuch fu¨ r Mineralogie, Geologie, und Pala¨ontologie 1887: 173-176. Roux, P., 1828-1830. Crustace´s de la Me´diterrane´e et de son littoral: i-iv, 1-176, pls. 1-45. Levrault, Paris and Marseille. Ru¨ ppell, E. 1830. Beschreibung und Abbildung von 24 Arten kurzsch- wa¨nzigen Krabben, also Beitrag zur Naturgeschichte des Rothen Meeres: 1-28, pls. 1-6. H. L. Bro¨ nner, Frankfurt am Main. Sakai, T. 1961. New species of Japanese crabs from the collection of His Majesty the Emperor of Japan. Crustaceana 3: 131-150. ———. 1963. Description of two new genera and 14 new species of Japanese crabs from the collection of His Majesty the Emperor of Japan. Crustaceana 5: 213-233. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 563</p>
<p>———. 1969. Two new genera and twenty-two new species of crabs from Japan. Proceedings of the Biological Society of Washington 82: 243- 280. Schlotheim, E. F. 1820. Die Petrefactenkunde Deutschalands. Becker, Gotha. Schlu¨ ter, C. 1879. Neue und weniger gekannte Kreide- und Tertia¨rkrebse des no¨ rdlichen Deutschlands. Zeitschrift der Deutschen Geologischen Gesellschaft (Berlin) 31: 586-615, pls. 13-18. Scholtz, G., and C. L. McLay. 2009. Is the Brachyura Podotremata a monophyletic group?, pp. 417-435. In, J. W. Martin, K. A. Crandall, and D. L. Felder (eds.), Decapod Crustacean Phylogenetics. CRC Press, Taylor and Francis Group, Boca Raton, Florida. Schram, F. R. 2001. Phylogeny of decapods: moving towards a consensus. Hydrobiologia 449: 1-20. Schweitzer, C. E. 2001. Additions to the Tertiary decapod fauna of the Pacific Northwest of North America. Journal of Crustacean Biology 21: 521-537. ———, and R. M. Feldmann. 2000. New species of calappid crabs from western North America and reconsideration of the Calappidae De Haan sensu lato. Journal of Paleontology 74: 230-246. ———, and ———. 2001. New Cretaceous and Tertiary decapod crustaceans from western North America. Bulletin of the Mizunami Fossil Museum 28: 173-210. ———, and ———. 2008 [imprint 2007]. A new classification for some Jurassic Brachyura (Crustacea: Decapoda: Brachyura: Homolodromioi- dea): Families Goniodromitidae Beurlen, 1932 and Tanidromitidae new family. Senckenbergiana lethaia 87: 119-156. ———, and ———. 2008. Revision of the genus Laeviprosopon Glaessner, 1933 (Decapoda: Brachyura: Homolodromioidea: Prosopi- dae) including two new species. Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen 250(3): 273-285. ———, and ———. 2009a. Revision of the Prosopinae sensu Glaessner, 1969 (Crustacea: Decapoda: Brachyura) including 4 new families and 4 new genera. Annalen des Naturhistorischen Museums in Wien, Serie A 110: 55-121. ———, and ———. 2009b. New species of Longodromitidae Schweitzer and Feldmann, 2008, from the Ernstbrunn Formation, Late Jurassic (Tithonian), Austria. Annalen des Naturhistorischen Museums in Wien, Serie A 111: 207-224. ———, and ———. 2009c. Revision of the Genus Cyclothyreus Remesˇ, 1895 (Decapoda: Brachyura: Dromioidea). Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen 253: 357-372. ———, and ———. 2009d. Revision of Gabriella with new species. Neues Jahrbuch fu¨ r Geologie und Pala¨ ontologie, Abhandlungen 252: 1- 16. ———, and ———. 2010a. The oldest Brachyura (Decapoda: Homo- lodromioidea, Glaessneropsoidea) (Jurassic: Pliensbachian, Bajocian, Bathonian) known to date. Journal of Crustacean Biology 30: 251-256. ———, and ———. 2010b. A new family of Mesozoic Brachyura (Glaessneropsoidea) and reevaluation of Distefania Checchia-Rispoli, 1917 (Homolodromioidea: Goniodromitidae). Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen 256(3): 363-380. ———, and ———. 2010c. Revision of Cycloprosopon and additions to Eodromites (Brachyura: Homolodromioidea: Goniodromitidae). An- nalen des Naturhistorischen Museums in Wien, Serie A 112: 169-194. ———, and ———. 2010d. The Sphaerodromiidae (Brachyura: Dromia- cea: Dromioidea) in the fossil record. Journal of Crustacean Biology 30: 417-429. ———, and ———. 2010e. The genus Coelopus E ´ tallon, 1861 (Brachyura: Glaessneropsoidea: Longodromitidae) with new species. Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen 258/1: 51-60. ———, and ———. 2010f. The Remy Collection of Fossil Decapod Crustaceans, Muse´um National D’histoire Naturelle, Paris. Geodiversi- tas 32: 399-415. ———, and ———. 2011a. Revision of some fossil podotrematous Brachyura (Homolodromiidae; Longodromitidae; Torynommidae). Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen, in press. ———, and ———. 2011b. New fossil Brachyura (Decapoda: Homo- loidea, Dorippoidea, Carpilioidea) from the United Kingdom. Bulletin of the Mizunami Fossil Museum, in press. ———, ———, and I. Laza˘r. 2007. Decapods from Jurassic (Oxfordian) sponge megafacies of Dobrogea, Romania and reconsideration of Nodoprosopon Beurlen, 1928. Neues Jahrbuch fu¨ r Geologie und Pala¨ ontologie, Abhandlungen 244: 99-113. ———, ———, G. Gonza´ les-Barba, and F. J. Vega, 2002. New crabs from the Eocene and Oligocene of Baja California Sur, Mexico and an assessment of the evolutionary and paleobiogeographic implications of Mexican fossil decapods. Paleontological Society Memoir 76: 1-43. ———, T. G. Nyborg, R. M. Feldmann, and R. L. M. Ross, 2004. Homolidae De Haan, 1839 and Homolodromiidae Alcock, 1900 (Crustacea: Decapoda: Brachyura) from the Pacific Northwest of North America and a reassessment of their fossil records. Journal of Paleontology 78: 133-149. ———, ———, V. C ´ osovic ´ , R. L. M. Ross, and D. A. Waugh. 2009. New Cretaceous and Eocene Decapoda (Thalassinidea, Brachyura) from British Columbia, Canada. Annals of Carnegie Museum 77: 403-423 ———, ———, A. Garassino, H. Karasawa, and G. Schweigert. 2010. Systematic list of fossil decapod crustacean species. Crustaceana Monographs 10: Brill, Leiden, 222 pp. ———, ———, J. Fam, W. A. Hessin, S. W. Hetrick, T. G. Nyborg, and R. L. M. Ross. 2003. Cretaceous and Eocene decapod crustaceans from the Georgia Basin, British Columbia, Canada. National Research Council of Canada Memoir Series, 66 pp. Schweitzer Hopkins, C. [E.], E. W. Salva, and R. M. Feldmann. 1999. Reevaluation of the genus Xanthosia Bell, 1863 (Decapoda: Brachyura: Xanthidae) and description of two new species from the Cretaceous of Texas. Journal of Paleontology 73: 77-90. Secretan, S. 1964. Les Crustace´ s du Jurassique supe´rieur et Cre´ tace´ de Madagascar. Me´ moires du Muse´um National d’Histoire Naturelle, Paris 156: 1-223. ———. 1998. The sella turcica of crabs and the endophragmal system of decapods. Journal of Natural History 32: 1753-1767. Segerberg, K. O. 1900. De Anomura och Brachyura dekapoderna inom Skandinaviens Yngre krita. Geologiska Fo¨ reningens i Stockholm Fo¨ rhandlingar 22: 347-388, pls. 7-9. Stebbing, T. R. R. 1920. South African Crustacea (Part X of S.A. Crustacea, for the Marine Investigations in South Africa). Annals of the South African Museum 17 (4): 231-272. Stenzel, H. B. 1944. A new Cretaceous crab, Graptocarcinus muiri , from Mexico. Journal of Paleontology 18: 550-552. ———. 1945. Decapod crustaceans from the Cretaceous of Texas. The University of Texas Publication 4401: 401-477. S ˇ tevc ˇ ic ´ , Z. 2005. The reclassification of brachyuran crabs (Crustacea: Decapoda: Brachyura). Natura Croatica 14 (suppl.) (1): 1-159. Stimpson, W. 1858a. Prodromus descriptionis animalium evertebratorum, quae in Expeditione ad Oceanum Pacificum Septentrionalem, a Republica Federata missa, Cadwaladaro Ringgold et Johanne Rodgers ducibus, observavit et descripsit. Pars VII. Crustacea Anomura. Proceedings of the Academy of Natural Sciences of Philadelphia 10: 225-252. [Pages 63-90 on separate.] ———. 1858b. Prodromus descriptionis animalium evertebratorum, quae in Expeditione ad Oceanum Pacificum Septentrionalem, a Republica Federata missa, Cadwaladaro Ringgold et Johanne Rodgers ducibus, observavit et descripsit W. Stimpson. Pars. VI. Crustacea Oxystomata. Proceedings of the Academy of Natural Sciences, Philadelphia 10: 159- 163. ———. 1860. Notes on North American Crustacea in the museum of the Smithsonian Institution. Annals of the Lyceum of Natural History of New York 7: 177-246 [49-118]. Stolley, E. 1924. U ¨ ber einige Krebsreste aus schweizerischem und Norddeutschem Neokom. Eclogae Geologicae Helvetiae 18: 411-429, pl. 13. Studer, T. 1883. Verzeichnis der Crustaceen, welche wa¨ hrend der Reise S.M.S. Gazelle an der Wesku¨ ste von Afrika, Ascension und dem Cap der guten Hoffnung gsammelt wurden. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin 2: 1-32. Swofford, D. L. 1999. PAUP*: Phylogenetic Analysis Using Parsimony, Version 4b. Illinois Natural History Survey, Champaign, Illinois. Takeda, M., and I. Fujiyama, 1983. Three decapod crustaceans from the Lower Cretaceous Miyako Group, northern Japan. Bulletin of the National Science Museum, Tokyo (C, Geology and Paleontology) 9 (4): 129-136, pls.1, 2. Tavares, M. 1991. Espe`ces nouvelles de Cyclodorippoidea Ortmann et remarques sur les genres Tymolus Stimpson et Cyclodorippe A. Milne Edwards (Crustacea, Decapoda, Brachyura). Bulletin du Muse´ um 564 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 31, NO. 3, 2011</p>
<p>national d’Histoire naturelle, Section A, Zoologie, Biologie et Ecologie Animales, Paris, 4e se´r. 12: 623-648. ———. 1993. Crustacea Decapoda: Les Cyclodorippidae et Cymonomi- dae de l’Indo-Ouest-Pacifique a` l’exclusion du genre Cymonomus , pp. 253-313 In, A. Crosnier, Re´ sultats des Campagnes MUSORSTOM, Volume 10. Me´ moires du Muse´ um national d’Histoire naturelle. Vol. 156. Paris. ———. 1998. Phyllotymolinidae, nouvelle famille de Brachyoures Podotremata (Crustacea, Decapoda). Zoosystema 20: 109-122. ———. 2003. A new theoretical approach for the study of monophyly of the Brachyura (Crustacea: Decapoda) and its impact on the Anomura. Memoires of the Musum Victoria 60: 145-149. Tsang, L. M., K. Y. Ma, S. T. Ahyong, T.-Y. Chan, and K. H. Chu. 2008. Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Molecular Phylogenetics and Evolution 48: 359-368. Tucker, A. B. 1998. Systematics of the Raninidae (Crustacea: Decapoda: Brachyura), with accounts of three new genera and two new species. Proceedings of the Biological Society of Washington 111: 320-371. van Bakel, B. W. M., P. Artal, R. H. B. Fraaije, and J. W. M. Jagt. 2009. A new Early Oligocene crab (Decapoda, Brachyura, Dromiacea) from northwest Belgium, with comments on its palaeobiology. Geologica Belgica 12: 45-57. ———, R. H. B. Fraaije, J. W. M. Jagt, and P. Artal. 2008. An unexpected diversity of Late Jurassic hermit crabs (Crustacea, Decapoda, Anomura) in Central Europe. Neues Jahrbuch fu¨ r Geologie und Pala¨ontologie, Abhandlungen 250: 137-156. van Binkhorst, J. T. 1857. Neue Krebse aus der Maestrichter Tuffkreide. Verhandlungen des Naturhistorischen Vereins der Preussischen Rhein- lande und Westfalens 14: 107-110, pls. 6, 7. van Straelen, V. 1936. Crustace´s De´capodes nouveaux ou peu connus de l’e´ poque Cre´tacique. Bulletin du Muse´e Royal d’Histoire Naturelle de Belgique 12 (45): 1-49. von Fischer-Benzon, R., 1866. U ¨ ber das relative Alter des Faxoe-Kalkes und u¨ ber die in demselben vorkommenden Anomuren und Brachyuren, Kiel. von Meyer, H. 1835. Briefliche Mittheilungen. In, Neues Jahrbuch fu¨ r Mineralogie, Geologie, Geognosie, und Petrefaktenkunde 1834: 329. ———. 1842. U ¨ ber die in dem dichten Jurakalk von Aalen in Wu¨ rtemburg vorkommenden Spezies des Crustaceengenus Prosopon . Beitra¨ge zur Petrefaktenkunde 5: 70-75, pl. 15. ———. 1857. Briefliche Mitteilungen. Neues Jahrbuch fu¨ r Mineralogie, Geologie, Geognosie, und Petrefaktenkunde 1857: 556. ———. 1858. Briefliche Mitteilungen. Neues Jahrbuch fu¨ r Mineralogie, Geologie, Geognosie, und Petrefaktenkunde 1858: 59-62. ———. 1860. Die Prosoponiden oder die Familie der Maskenkrebse. Palaeontographica 7: 183-222, pl. 23. Weber, F. 1795. Nomenclator entomologicus secundum Entomologiam Systematicum ill. Fabricii adjectis speciebus recens detectis et varietatibus: 1-171. C. E. Bohn, Chilonii et Hamburgi. Wehner, G., 1988. U ¨ ber die Prosoponiden (Crustacea, Decapoda) des Jura: 1-154, 8 pls., 1 insert. Dissertation zur Erlangung des Doktorgrades der Fakulta¨ t fu¨ r Geowissenschaften der Ludwig-Maximilians-Universita¨t zu Mu¨ nchen. Weller, S. 1905. The fauna of the Cliffwood (N. J.) Clays. Journal of Geology 13: 324-337. Withers, T. H. 1928. New Cretaceous crabs from England and Syria. Annals and Magazine of Natural History, (10) 2: 457-461, pl. 13. ———. 1932. A Liassic crab, and the origin of the Brachyura. Annals and Magazine of Natural History (10) 9: 313-323, pls. 9-10. ———. 1946. New Cretaceous cirripedes and crab. Annals and Magazine of Natural History (11) 12: 552-561, pl. 2. ———. 1951. Some Jurassic and Cretaceous crabs (Prosoponidae). Bulletin of the British Museum (Natural History), (Geology) 1 (6): 171-186, pls. 15-17. Wood-Mason, J., and A. Alcock. 1891. A note on the result of the last season’s deep-sea dredging: natural history notes from H. M. Indian Marine Survey Steamer ‘‘ Investigator ’’ : Commander R. F. Hoskyn, R. N. Commanding, no. 21. Annals and Magazine of Natural History (6) 7: 258-272. Woods, J. T. 1953. Brachyura from the Cretaceous of central Queensland. Memoirs of the Queensland Museum 13: 50-57. Woodward, H. 1868. On a new brachyurous crustacean ( Prosopon mammillatum ) from the Great Oolite, Stonesfield. Geological Magazine 5: 3-5, pl. 1. ———. 1896. On some podophthalmatous Crustacea from the Cretaceous formations of Vancouver and Queen Charlotte islands. Quarterly Journal of the Geological Society of London 52: 221-228. ———. 1892. Note on a new decapodous crustacean ( Prosopon Etheridgei H. Woodw.) from the Cretaceous of Queensland, Australia. Proceedings of the Linnaean Society of New South Wales (2) 7: 301- 306. ———. 1898. On a new species of brachyurous Crustacea from the Chert beds (Upper Greensand), Baycliffe, near Maiden Bradley Wilts. Geological Magazine (new series) 5: 302-303. ———. 1900. Note on a Crustacean Mesodromilites birleyi gen. et sp. nov. from the Gault of Folkestone, Kent. Geological Magazine (new series) 7: 61-64. Wright, C. W., and J. S. H. Collins. 1972. British Cretaceous crabs. Palaeontographical Society Monographs 126 (533): 1-113. ———, and ———. 1975. Glaessnerella (Crustacea Decapoda, Cymo- nomidae), a replacement name for Glaessneria Wright and Collins, 1972 non Takeda and Miyake, 1969. Palaeontology 18 (2): 441. ———, and E. V. Wright. 1950. Some dromiacean crabs from the English Cretaceous. Proceedings of the Geologists’ Association 61: 13-27, pl. 1. Yokoyama, M., 1911. Some Tertiary fossils from the Miike coalfield. Journal of the College of Science, Imperial University of Tokyo 27: 1-16. R ECEIVED : 28 November 2010. A CCEPTED : 14 January 2011. KARASAWA ET AL.: PHYLOGENY AND REVISION OF PODOTREME CRABS 565</p>
</body>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rodney M.</namePart>
<namePart type="family">Feldmann</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carrie E.</namePart>
<namePart type="family">Schweitzer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Karasawa</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>BRILL</publisher>
<place>
<placeTerm type="text">The Netherlands</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011</dateIssued>
<dateCreated encoding="w3cdtf">2011</dateCreated>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<subject>
<genre>keywords</genre>
<topic>Raninoida</topic>
<topic>Podotremata</topic>
<topic>phylogeny</topic>
<topic>classification</topic>
<topic>Brachyura</topic>
<topic>Dromiacea</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Crustacean Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JCB</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0278-0372</identifier>
<identifier type="eISSN">1937-240X</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>523</start>
<end>565</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">7FA40AA03F02C9BA84FF976E49FB3060906BE043</identifier>
<identifier type="ark">ark:/67375/JKT-TRSP55WH-X</identifier>
<identifier type="DOI">10.1651/10-3423.1</identifier>
<identifier type="href">1937240x_031_03_s016_text.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© Koninklijke Brill NV, Leiden, The Netherlands</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-56W3KPD5-3">brill-journals</recordContentSource>
<recordOrigin>© Koninklijke Brill NV, Leiden, The Netherlands</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/7FA40AA03F02C9BA84FF976E49FB3060906BE043/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003F29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7FA40AA03F02C9BA84FF976E49FB3060906BE043
   |texte=   Phylogenetic Analysis and Revised Classification of Podotrematous Brachyura (Decapoda) Including Extinct and Extant Families
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022