Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydroxyapatite synthesized by a simplified hydrothermal method

Identifieur interne : 003422 ( Istex/Corpus ); précédent : 003421; suivant : 003423

Hydroxyapatite synthesized by a simplified hydrothermal method

Auteurs : H. S. Liu ; T. S. Chin ; L. S. Lai ; S. Y. Chiu ; K. H. Chung ; C. S. Chang ; M. T. Lui

Source :

RBID : ISTEX:699159804AB7B861CC999FAED9DB56C397A388F1

English descriptors

Abstract

Abstract: A simplified hydrothermal method of synthesizing hydroxyapatite powder is described. Heating powders of Ca(OH)2, Ca(H2PO4)2 · H2O and distilled water in a pressurized pot at 109 °C for 1–3 h results in powders consisting of crystallized hydroxyapatite in a needle shape, 130–170 nm in length and 15–25 nm in width. The specific surface area is 31–43 m2/g and the Ca P ratio is 1.640–1.643. The obtained HA powder can be sintered to a high density at 1200–1300 °C. No decomposition was identified by X-ray diffraction. The optimally sintered ceramic has a pore-free surface structure with a flexural strength of 120 MPa, a micro-Vickers hardness of 5.1 GPa and fracture toughness of 1.2 MPa · m 1 2. The biocompatibility of the pulverized sintered-ceramic is excellent and comparable to that of a commercial grade hydroxyapatite by evaluating the implantation in a dog. The synthesis method is simple, economic, and results in a high quality powder which is useful in hard tissue reconstruction applications.

Url:
DOI: 10.1016/0272-8842(95)00135-2

Links to Exploration step

ISTEX:699159804AB7B861CC999FAED9DB56C397A388F1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Hydroxyapatite synthesized by a simplified hydrothermal method</title>
<author>
<name sortKey="Liu, H S" sort="Liu, H S" uniqKey="Liu H" first="H. S." last="Liu">H. S. Liu</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chin, T S" sort="Chin, T S" uniqKey="Chin T" first="T. S." last="Chin">T. S. Chin</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lai, L S" sort="Lai, L S" uniqKey="Lai L" first="L. S." last="Lai">L. S. Lai</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiu, S Y" sort="Chiu, S Y" uniqKey="Chiu S" first="S. Y." last="Chiu">S. Y. Chiu</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chung, K H" sort="Chung, K H" uniqKey="Chung K" first="K. H." last="Chung">K. H. Chung</name>
<affiliation>
<mods:affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, C S" sort="Chang, C S" uniqKey="Chang C" first="C. S." last="Chang">C. S. Chang</name>
<affiliation>
<mods:affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lui, M T" sort="Lui, M T" uniqKey="Lui M" first="M. T." last="Lui">M. T. Lui</name>
<affiliation>
<mods:affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:699159804AB7B861CC999FAED9DB56C397A388F1</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1016/0272-8842(95)00135-2</idno>
<idno type="url">https://api.istex.fr/document/699159804AB7B861CC999FAED9DB56C397A388F1/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003422</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003422</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Hydroxyapatite synthesized by a simplified hydrothermal method</title>
<author>
<name sortKey="Liu, H S" sort="Liu, H S" uniqKey="Liu H" first="H. S." last="Liu">H. S. Liu</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chin, T S" sort="Chin, T S" uniqKey="Chin T" first="T. S." last="Chin">T. S. Chin</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lai, L S" sort="Lai, L S" uniqKey="Lai L" first="L. S." last="Lai">L. S. Lai</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiu, S Y" sort="Chiu, S Y" uniqKey="Chiu S" first="S. Y." last="Chiu">S. Y. Chiu</name>
<affiliation>
<mods:affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chung, K H" sort="Chung, K H" uniqKey="Chung K" first="K. H." last="Chung">K. H. Chung</name>
<affiliation>
<mods:affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, C S" sort="Chang, C S" uniqKey="Chang C" first="C. S." last="Chang">C. S. Chang</name>
<affiliation>
<mods:affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lui, M T" sort="Lui, M T" uniqKey="Lui M" first="M. T." last="Lui">M. T. Lui</name>
<affiliation>
<mods:affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Ceramics International</title>
<title level="j" type="abbrev">CERI</title>
<idno type="ISSN">0272-8842</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996">1996</date>
<biblScope unit="volume">23</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="19">19</biblScope>
<biblScope unit="page" to="25">25</biblScope>
</imprint>
<idno type="ISSN">0272-8842</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0272-8842</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bulk ceramics sintered</term>
<term>Calcium phosphates</term>
<term>Ceramics</term>
<term>Considerable grain growth</term>
<term>Crystalline phase</term>
<term>Dense hydroxyapatite</term>
<term>Diffraction patterns</term>
<term>Elsevier science</term>
<term>Excellent biocompatibility</term>
<term>Filter cake</term>
<term>Flexural strength</term>
<term>Fracture</term>
<term>Fracture strength</term>
<term>Fracture toughness</term>
<term>Hard tissue implantation</term>
<term>Hardness</term>
<term>Heating powders</term>
<term>Heating time</term>
<term>High density</term>
<term>High quality</term>
<term>High strength</term>
<term>High surface area</term>
<term>Higher temperatures</term>
<term>Hydrothermal</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite ceramics</term>
<term>Large quantity</term>
<term>Mechanical properties</term>
<term>Molar ratio</term>
<term>Particle size</term>
<term>Prosthetic applications</term>
<term>Relative density</term>
<term>Scanning electron micrographs</term>
<term>Simplified hydrothermal method</term>
<term>Sintered</term>
<term>Sintered bulk ceramics</term>
<term>Sintered bulk specimens</term>
<term>Sintered specimen</term>
<term>Sintering</term>
<term>Sintering atmosphere</term>
<term>Sintering temperature</term>
<term>Specific surface area</term>
<term>Stoichiometric composition</term>
<term>Theoretical density</term>
<term>Thermal stability</term>
<term>Tricalcium phosphate</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Bulk ceramics sintered</term>
<term>Calcium phosphates</term>
<term>Ceramics</term>
<term>Considerable grain growth</term>
<term>Crystalline phase</term>
<term>Dense hydroxyapatite</term>
<term>Diffraction patterns</term>
<term>Elsevier science</term>
<term>Excellent biocompatibility</term>
<term>Filter cake</term>
<term>Flexural strength</term>
<term>Fracture</term>
<term>Fracture strength</term>
<term>Fracture toughness</term>
<term>Hard tissue implantation</term>
<term>Hardness</term>
<term>Heating powders</term>
<term>Heating time</term>
<term>High density</term>
<term>High quality</term>
<term>High strength</term>
<term>High surface area</term>
<term>Higher temperatures</term>
<term>Hydrothermal</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite ceramics</term>
<term>Large quantity</term>
<term>Mechanical properties</term>
<term>Molar ratio</term>
<term>Particle size</term>
<term>Prosthetic applications</term>
<term>Relative density</term>
<term>Scanning electron micrographs</term>
<term>Simplified hydrothermal method</term>
<term>Sintered</term>
<term>Sintered bulk ceramics</term>
<term>Sintered bulk specimens</term>
<term>Sintered specimen</term>
<term>Sintering</term>
<term>Sintering atmosphere</term>
<term>Sintering temperature</term>
<term>Specific surface area</term>
<term>Stoichiometric composition</term>
<term>Theoretical density</term>
<term>Thermal stability</term>
<term>Tricalcium phosphate</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A simplified hydrothermal method of synthesizing hydroxyapatite powder is described. Heating powders of Ca(OH)2, Ca(H2PO4)2 · H2O and distilled water in a pressurized pot at 109 °C for 1–3 h results in powders consisting of crystallized hydroxyapatite in a needle shape, 130–170 nm in length and 15–25 nm in width. The specific surface area is 31–43 m2/g and the Ca P ratio is 1.640–1.643. The obtained HA powder can be sintered to a high density at 1200–1300 °C. No decomposition was identified by X-ray diffraction. The optimally sintered ceramic has a pore-free surface structure with a flexural strength of 120 MPa, a micro-Vickers hardness of 5.1 GPa and fracture toughness of 1.2 MPa · m 1 2. The biocompatibility of the pulverized sintered-ceramic is excellent and comparable to that of a commercial grade hydroxyapatite by evaluating the implantation in a dog. The synthesis method is simple, economic, and results in a high quality powder which is useful in hard tissue reconstruction applications.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>hydroxyapatite</json:string>
<json:string>sintering</json:string>
<json:string>sintered</json:string>
<json:string>sintering temperature</json:string>
<json:string>hydrothermal</json:string>
<json:string>specific surface area</json:string>
<json:string>diffraction patterns</json:string>
<json:string>heating time</json:string>
<json:string>flexural strength</json:string>
<json:string>fracture toughness</json:string>
<json:string>fracture</json:string>
<json:string>sintered bulk specimens</json:string>
<json:string>relative density</json:string>
<json:string>mechanical properties</json:string>
<json:string>tricalcium phosphate</json:string>
<json:string>fracture strength</json:string>
<json:string>particle size</json:string>
<json:string>large quantity</json:string>
<json:string>heating powders</json:string>
<json:string>filter cake</json:string>
<json:string>dense hydroxyapatite</json:string>
<json:string>crystalline phase</json:string>
<json:string>sintered specimen</json:string>
<json:string>elsevier science</json:string>
<json:string>molar ratio</json:string>
<json:string>high density</json:string>
<json:string>stoichiometric composition</json:string>
<json:string>calcium phosphates</json:string>
<json:string>high surface area</json:string>
<json:string>simplified hydrothermal method</json:string>
<json:string>prosthetic applications</json:string>
<json:string>high quality</json:string>
<json:string>bulk ceramics sintered</json:string>
<json:string>higher temperatures</json:string>
<json:string>high strength</json:string>
<json:string>thermal stability</json:string>
<json:string>sintering atmosphere</json:string>
<json:string>theoretical density</json:string>
<json:string>scanning electron micrographs</json:string>
<json:string>considerable grain growth</json:string>
<json:string>sintered bulk ceramics</json:string>
<json:string>hard tissue implantation</json:string>
<json:string>excellent biocompatibility</json:string>
<json:string>hydroxyapatite ceramics</json:string>
<json:string>hardness</json:string>
<json:string>ceramics</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>H.S. Liu</name>
<affiliations>
<json:string>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>T.S. Chin</name>
<affiliations>
<json:string>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>L.S. Lai</name>
<affiliations>
<json:string>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>S.Y. Chiu</name>
<affiliations>
<json:string>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>K.H. Chung</name>
<affiliations>
<json:string>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>C.S. Chang</name>
<affiliations>
<json:string>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>M.T. Lui</name>
<affiliations>
<json:string>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-PKBCNSWQ-5</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: A simplified hydrothermal method of synthesizing hydroxyapatite powder is described. Heating powders of Ca(OH)2, Ca(H2PO4)2 · H2O and distilled water in a pressurized pot at 109 °C for 1–3 h results in powders consisting of crystallized hydroxyapatite in a needle shape, 130–170 nm in length and 15–25 nm in width. The specific surface area is 31–43 m2/g and the Ca P ratio is 1.640–1.643. The obtained HA powder can be sintered to a high density at 1200–1300 °C. No decomposition was identified by X-ray diffraction. The optimally sintered ceramic has a pore-free surface structure with a flexural strength of 120 MPa, a micro-Vickers hardness of 5.1 GPa and fracture toughness of 1.2 MPa · m 1 2. The biocompatibility of the pulverized sintered-ceramic is excellent and comparable to that of a commercial grade hydroxyapatite by evaluating the implantation in a dog. The synthesis method is simple, economic, and results in a high quality powder which is useful in hard tissue reconstruction applications.</abstract>
<qualityIndicators>
<score>7.224</score>
<pdfWordCount>3268</pdfWordCount>
<pdfCharCount>22021</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>612 x 864 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>163</abstractWordCount>
<abstractCharCount>1017</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Hydroxyapatite synthesized by a simplified hydrothermal method</title>
<pii>
<json:string>0272-8842(95)00135-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Ceramics International</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1997</publicationDate>
<issn>
<json:string>0272-8842</json:string>
</issn>
<pii>
<json:string>S0272-8842(00)X0014-4</json:string>
</pii>
<volume>23</volume>
<issue>1</issue>
<pages>
<first>19</first>
<last>25</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1250</json:string>
<json:string>1200</json:string>
<json:string>1996</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Taiwan, Republic of China</json:string>
<json:string>Veterans General Hospital University</json:string>
<json:string>John Wiley and Sons Inc.</json:string>
<json:string>National Yang-Ming Medical University and Veterans</json:string>
<json:string>National Tsing Hua University, Hsinchu</json:string>
<json:string>Department of Materials Science and Engineering</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>L. S. Lai</json:string>
<json:string>J. Muter</json:string>
<json:string>K. H. Chung</json:string>
<json:string>C. S. Changb</json:string>
<json:string>J. Crjsst</json:string>
<json:string>T. S. Chin</json:string>
<json:string>J. Murer</json:string>
<json:string>M. T. Luib</json:string>
<json:string>S. Y. Chiu</json:string>
<json:string>J. Biomed</json:string>
</persName>
<placeName>
<json:string>York</json:string>
<json:string>Padua</json:string>
<json:string>Italy</json:string>
<json:string>Taipei</json:string>
<json:string>Superplasticity</json:string>
<json:string>Kanazawa</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Jarcho et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-PKBCNSWQ-5</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - materials science, ceramics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - enabling & strategic technologies</json:string>
<json:string>3 - materials</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Surfaces, Coatings and Films</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Process Chemistry and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Ceramics and Composites</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Electronic, Optical and Magnetic Materials</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1016/0272-8842(95)00135-2</json:string>
</doi>
<id>699159804AB7B861CC999FAED9DB56C397A388F1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/699159804AB7B861CC999FAED9DB56C397A388F1/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/699159804AB7B861CC999FAED9DB56C397A388F1/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/699159804AB7B861CC999FAED9DB56C397A388F1/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Hydroxyapatite synthesized by a simplified hydrothermal method</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1996</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Hydroxyapatite synthesized by a simplified hydrothermal method</title>
<author xml:id="author-0000">
<persName>
<forename type="first">H.S.</forename>
<surname>Liu</surname>
</persName>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">T.S.</forename>
<surname>Chin</surname>
</persName>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">L.S.</forename>
<surname>Lai</surname>
</persName>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">S.Y.</forename>
<surname>Chiu</surname>
</persName>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">K.H.</forename>
<surname>Chung</surname>
</persName>
<affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">C.S.</forename>
<surname>Chang</surname>
</persName>
<affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">M.T.</forename>
<surname>Lui</surname>
</persName>
<affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</affiliation>
</author>
<idno type="istex">699159804AB7B861CC999FAED9DB56C397A388F1</idno>
<idno type="DOI">10.1016/0272-8842(95)00135-2</idno>
<idno type="PII">0272-8842(95)00135-2</idno>
</analytic>
<monogr>
<title level="j">Ceramics International</title>
<title level="j" type="abbrev">CERI</title>
<idno type="pISSN">0272-8842</idno>
<idno type="PII">S0272-8842(00)X0014-4</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996"></date>
<biblScope unit="volume">23</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="19">19</biblScope>
<biblScope unit="page" to="25">25</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1996</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A simplified hydrothermal method of synthesizing hydroxyapatite powder is described. Heating powders of Ca(OH)2, Ca(H2PO4)2 · H2O and distilled water in a pressurized pot at 109 °C for 1–3 h results in powders consisting of crystallized hydroxyapatite in a needle shape, 130–170 nm in length and 15–25 nm in width. The specific surface area is 31–43 m2/g and the Ca P ratio is 1.640–1.643. The obtained HA powder can be sintered to a high density at 1200–1300 °C. No decomposition was identified by X-ray diffraction. The optimally sintered ceramic has a pore-free surface structure with a flexural strength of 120 MPa, a micro-Vickers hardness of 5.1 GPa and fracture toughness of 1.2 MPa · m 1 2. The biocompatibility of the pulverized sintered-ceramic is excellent and comparable to that of a commercial grade hydroxyapatite by evaluating the implantation in a dog. The synthesis method is simple, economic, and results in a high quality powder which is useful in hard tissue reconstruction applications.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1996">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/699159804AB7B861CC999FAED9DB56C397A388F1/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CERI</jid>
<aid>95001352</aid>
<ce:pii>0272-8842(95)00135-2</ce:pii>
<ce:doi>10.1016/0272-8842(95)00135-2</ce:doi>
<ce:copyright type="unknown" year="1996"></ce:copyright>
</item-info>
<head>
<ce:title>Hydroxyapatite synthesized by a simplified hydrothermal method</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>H.S.</ce:given-name>
<ce:surname>Liu</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>T.S.</ce:given-name>
<ce:surname>Chin</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>L.S.</ce:given-name>
<ce:surname>Lai</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>S.Y.</ce:given-name>
<ce:surname>Chiu</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>K.H.</ce:given-name>
<ce:surname>Chung</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>C.S.</ce:given-name>
<ce:surname>Chang</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.T.</ce:given-name>
<ce:surname>Lui</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="28" month="8" year="1995"></ce:date-received>
<ce:date-accepted day="26" month="9" year="1995"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A simplified hydrothermal method of synthesizing hydroxyapatite powder is described. Heating powders of Ca(OH)
<ce:inf>2</ce:inf>
, Ca(H
<ce:inf>2</ce:inf>
PO
<ce:inf>4</ce:inf>
)
<ce:inf>2</ce:inf>
· H
<ce:inf>2</ce:inf>
O and distilled water in a pressurized pot at 109 °C for 1–3 h results in powders consisting of crystallized hydroxyapatite in a needle shape, 130–170 nm in length and 15–25 nm in width. The specific surface area is 31–43 m
<ce:sup>2</ce:sup>
/g and the
<math altimg="si1.gif">
<fr shape="sol">
<nu>
<rm>Ca</rm>
</nu>
<de>
<rm>P</rm>
</de>
</fr>
</math>
ratio is 1.640–1.643. The obtained HA powder can be sintered to a high density at 1200–1300 °C. No decomposition was identified by X-ray diffraction. The optimally sintered ceramic has a pore-free surface structure with a flexural strength of 120 MPa, a micro-Vickers hardness of 5.1 GPa and fracture toughness of
<math altimg="si2.gif">1.2
<rm>MPa · m</rm>
<sup>
<fr shape="sol">
<nu>1</nu>
<de>2</de>
</fr>
</sup>
</math>
. The biocompatibility of the pulverized sintered-ceramic is excellent and comparable to that of a commercial grade hydroxyapatite by evaluating the implantation in a dog. The synthesis method is simple, economic, and results in a high quality powder which is useful in hard tissue reconstruction applications.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Hydroxyapatite synthesized by a simplified hydrothermal method</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Hydroxyapatite synthesized by a simplified hydrothermal method</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.S.</namePart>
<namePart type="family">Liu</namePart>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.S.</namePart>
<namePart type="family">Chin</namePart>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.S.</namePart>
<namePart type="family">Lai</namePart>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.Y.</namePart>
<namePart type="family">Chiu</namePart>
<affiliation>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.H.</namePart>
<namePart type="family">Chung</namePart>
<affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.S.</namePart>
<namePart type="family">Chang</namePart>
<affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.T.</namePart>
<namePart type="family">Lui</namePart>
<affiliation>National Yang-Ming Medical University and Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1996</dateIssued>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A simplified hydrothermal method of synthesizing hydroxyapatite powder is described. Heating powders of Ca(OH)2, Ca(H2PO4)2 · H2O and distilled water in a pressurized pot at 109 °C for 1–3 h results in powders consisting of crystallized hydroxyapatite in a needle shape, 130–170 nm in length and 15–25 nm in width. The specific surface area is 31–43 m2/g and the Ca P ratio is 1.640–1.643. The obtained HA powder can be sintered to a high density at 1200–1300 °C. No decomposition was identified by X-ray diffraction. The optimally sintered ceramic has a pore-free surface structure with a flexural strength of 120 MPa, a micro-Vickers hardness of 5.1 GPa and fracture toughness of 1.2 MPa · m 1 2. The biocompatibility of the pulverized sintered-ceramic is excellent and comparable to that of a commercial grade hydroxyapatite by evaluating the implantation in a dog. The synthesis method is simple, economic, and results in a high quality powder which is useful in hard tissue reconstruction applications.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Ceramics International</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CERI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
</originInfo>
<identifier type="ISSN">0272-8842</identifier>
<identifier type="PII">S0272-8842(00)X0014-4</identifier>
<part>
<date>1997</date>
<detail type="volume">
<number>23</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>98</end>
</extent>
<extent unit="pages">
<start>19</start>
<end>25</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">699159804AB7B861CC999FAED9DB56C397A388F1</identifier>
<identifier type="ark">ark:/67375/6H6-PKBCNSWQ-5</identifier>
<identifier type="DOI">10.1016/0272-8842(95)00135-2</identifier>
<identifier type="PII">0272-8842(95)00135-2</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/699159804AB7B861CC999FAED9DB56C397A388F1/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003422 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003422 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:699159804AB7B861CC999FAED9DB56C397A388F1
   |texte=   Hydroxyapatite synthesized by a simplified hydrothermal method
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022