Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants

Identifieur interne : 003349 ( Istex/Corpus ); précédent : 003348; suivant : 003350

Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants

Auteurs : Gaurav V. Joshi ; Yuanyuan Duan ; John Neidigh ; Mari Koike ; Gilbert Chahine ; Radovan Kovacevic ; Toru Okabe ; Jason A. Griggs

Source :

RBID : ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE

English descriptors

Abstract

Customized one‐component dental implants have been fabricated using Electron Beam Melting® (EBM®), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σmax, 5% and σmax, 63%). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σmax, 63% (p ≤ 0.05), but there was no significant difference in the σmax, 5% (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.

Url:
DOI: 10.1002/jbm.b.32825

Links to Exploration step

ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants</title>
<author>
<name sortKey="Joshi, Gaurav V" sort="Joshi, Gaurav V" uniqKey="Joshi G" first="Gaurav V." last="Joshi">Gaurav V. Joshi</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Yuanyuan" sort="Duan, Yuanyuan" uniqKey="Duan Y" first="Yuanyuan" last="Duan">Yuanyuan Duan</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neidigh, John" sort="Neidigh, John" uniqKey="Neidigh J" first="John" last="Neidigh">John Neidigh</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koike, Mari" sort="Koike, Mari" uniqKey="Koike M" first="Mari" last="Koike">Mari Koike</name>
<affiliation>
<mods:affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chahine, Gilbert" sort="Chahine, Gilbert" uniqKey="Chahine G" first="Gilbert" last="Chahine">Gilbert Chahine</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kovacevic, Radovan" sort="Kovacevic, Radovan" uniqKey="Kovacevic R" first="Radovan" last="Kovacevic">Radovan Kovacevic</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Okabe, Toru" sort="Okabe, Toru" uniqKey="Okabe T" first="Toru" last="Okabe">Toru Okabe</name>
<affiliation>
<mods:affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jgriggs@umc.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jbm.b.32825</idno>
<idno type="url">https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003349</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003349</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
<ref type="note" target="#fn2"></ref>
</title>
<author>
<name sortKey="Joshi, Gaurav V" sort="Joshi, Gaurav V" uniqKey="Joshi G" first="Gaurav V." last="Joshi">Gaurav V. Joshi</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Yuanyuan" sort="Duan, Yuanyuan" uniqKey="Duan Y" first="Yuanyuan" last="Duan">Yuanyuan Duan</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neidigh, John" sort="Neidigh, John" uniqKey="Neidigh J" first="John" last="Neidigh">John Neidigh</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koike, Mari" sort="Koike, Mari" uniqKey="Koike M" first="Mari" last="Koike">Mari Koike</name>
<affiliation>
<mods:affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chahine, Gilbert" sort="Chahine, Gilbert" uniqKey="Chahine G" first="Gilbert" last="Chahine">Gilbert Chahine</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kovacevic, Radovan" sort="Kovacevic, Radovan" uniqKey="Kovacevic R" first="Radovan" last="Kovacevic">Radovan Kovacevic</name>
<affiliation>
<mods:affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Okabe, Toru" sort="Okabe, Toru" uniqKey="Okabe T" first="Toru" last="Okabe">Toru Okabe</name>
<affiliation>
<mods:affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
<affiliation>
<mods:affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jgriggs@umc.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">101B</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="124">124</biblScope>
<biblScope unit="page" to="130">130</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-01">2013-01</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abrupt change</term>
<term>Alloy</term>
<term>Alloy blocks</term>
<term>Ambient conditions</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Cellular titanium</term>
<term>Characteristic lifetime</term>
<term>Clinical situation</term>
<term>Coronoradicular direction</term>
<term>Crack growth</term>
<term>Crack growth exponent</term>
<term>Crack path</term>
<term>Crack propagation</term>
<term>Cumulative damage model</term>
<term>Current study</term>
<term>Cyclic</term>
<term>Cyclic fatigue</term>
<term>Cyclic loading</term>
<term>Data analyses</term>
<term>Dental implants</term>
<term>Elastic modulus</term>
<term>Electron beam</term>
<term>Electron beam orientation</term>
<term>Entire fracture surface</term>
<term>Failure origin</term>
<term>Failure probabilities</term>
<term>Failure probability</term>
<term>Fatigue</term>
<term>Fatigue properties</term>
<term>Fatigue resistance</term>
<term>Fatigue striations</term>
<term>Fatigue testing</term>
<term>Fractographic analysis</term>
<term>Fracture</term>
<term>Fracture origin</term>
<term>Fracture surface</term>
<term>Growth rate</term>
<term>Implant</term>
<term>Inner span</term>
<term>Inverse power model</term>
<term>Likelihood values</term>
<term>Long axis</term>
<term>Mater</term>
<term>Mechanical properties</term>
<term>Microvoid dimples</term>
<term>Model parameters</term>
<term>Online</term>
<term>Online issue</term>
<term>Oral maxillofac impl</term>
<term>Orthopaedic implant applications</term>
<term>Outer span</term>
<term>Parallel orientation</term>
<term>Peak stress plots</term>
<term>Peak stresses</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Processing parameters</term>
<term>Prototyping</term>
<term>Rapid prototyping</term>
<term>Rectangular beam specimens</term>
<term>Rmax</term>
<term>Selective electron beam</term>
<term>Selective laser</term>
<term>Selective laser sintering</term>
<term>Statistical models</term>
<term>Statistical power</term>
<term>Stress graph</term>
<term>Target peak stress</term>
<term>Tensile surface</term>
<term>Titanium</term>
<term>Titanium alloy</term>
<term>Torsional fatigue resistance</term>
<term>Various stress amplitudes</term>
<term>Weibull</term>
<term>Weibull distribution</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abrupt change</term>
<term>Alloy</term>
<term>Alloy blocks</term>
<term>Ambient conditions</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Cellular titanium</term>
<term>Characteristic lifetime</term>
<term>Clinical situation</term>
<term>Coronoradicular direction</term>
<term>Crack growth</term>
<term>Crack growth exponent</term>
<term>Crack path</term>
<term>Crack propagation</term>
<term>Cumulative damage model</term>
<term>Current study</term>
<term>Cyclic</term>
<term>Cyclic fatigue</term>
<term>Cyclic loading</term>
<term>Data analyses</term>
<term>Dental implants</term>
<term>Elastic modulus</term>
<term>Electron beam</term>
<term>Electron beam orientation</term>
<term>Entire fracture surface</term>
<term>Failure origin</term>
<term>Failure probabilities</term>
<term>Failure probability</term>
<term>Fatigue</term>
<term>Fatigue properties</term>
<term>Fatigue resistance</term>
<term>Fatigue striations</term>
<term>Fatigue testing</term>
<term>Fractographic analysis</term>
<term>Fracture</term>
<term>Fracture origin</term>
<term>Fracture surface</term>
<term>Growth rate</term>
<term>Implant</term>
<term>Inner span</term>
<term>Inverse power model</term>
<term>Likelihood values</term>
<term>Long axis</term>
<term>Mater</term>
<term>Mechanical properties</term>
<term>Microvoid dimples</term>
<term>Model parameters</term>
<term>Online</term>
<term>Online issue</term>
<term>Oral maxillofac impl</term>
<term>Orthopaedic implant applications</term>
<term>Outer span</term>
<term>Parallel orientation</term>
<term>Peak stress plots</term>
<term>Peak stresses</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Processing parameters</term>
<term>Prototyping</term>
<term>Rapid prototyping</term>
<term>Rectangular beam specimens</term>
<term>Rmax</term>
<term>Selective electron beam</term>
<term>Selective laser</term>
<term>Selective laser sintering</term>
<term>Statistical models</term>
<term>Statistical power</term>
<term>Stress graph</term>
<term>Target peak stress</term>
<term>Tensile surface</term>
<term>Titanium</term>
<term>Titanium alloy</term>
<term>Torsional fatigue resistance</term>
<term>Various stress amplitudes</term>
<term>Weibull</term>
<term>Weibull distribution</term>
<term>Wiley periodicals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Customized one‐component dental implants have been fabricated using Electron Beam Melting® (EBM®), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σmax, 5% and σmax, 63%). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σmax, 63% (p ≤ 0.05), but there was no significant difference in the σmax, 5% (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>rmax</json:string>
<json:string>implant</json:string>
<json:string>fatigue resistance</json:string>
<json:string>weibull</json:string>
<json:string>cyclic</json:string>
<json:string>electron beam orientation</json:string>
<json:string>dental implants</json:string>
<json:string>fracture</json:string>
<json:string>online</json:string>
<json:string>prototyping</json:string>
<json:string>electron beam</json:string>
<json:string>failure probability</json:string>
<json:string>online issue</json:string>
<json:string>long axis</json:string>
<json:string>mechanical properties</json:string>
<json:string>fatigue properties</json:string>
<json:string>fatigue testing</json:string>
<json:string>processing parameters</json:string>
<json:string>rapid prototyping</json:string>
<json:string>fracture surface</json:string>
<json:string>cyclic fatigue</json:string>
<json:string>tensile surface</json:string>
<json:string>alloy</json:string>
<json:string>biomed mater</json:string>
<json:string>weibull distribution</json:string>
<json:string>peak stresses</json:string>
<json:string>oral maxillofac impl</json:string>
<json:string>selective electron beam</json:string>
<json:string>statistical power</json:string>
<json:string>stress graph</json:string>
<json:string>biomedical materials research</json:string>
<json:string>fracture origin</json:string>
<json:string>mater</json:string>
<json:string>fatigue</json:string>
<json:string>clinical situation</json:string>
<json:string>cumulative damage model</json:string>
<json:string>data analyses</json:string>
<json:string>characteristic lifetime</json:string>
<json:string>alloy blocks</json:string>
<json:string>crack growth</json:string>
<json:string>crack growth exponent</json:string>
<json:string>parallel orientation</json:string>
<json:string>outer span</json:string>
<json:string>inner span</json:string>
<json:string>crack propagation</json:string>
<json:string>wiley periodicals</json:string>
<json:string>target peak stress</json:string>
<json:string>rectangular beam specimens</json:string>
<json:string>ambient conditions</json:string>
<json:string>orthopaedic implant applications</json:string>
<json:string>statistical models</json:string>
<json:string>likelihood values</json:string>
<json:string>titanium alloy</json:string>
<json:string>model parameters</json:string>
<json:string>selective laser sintering</json:string>
<json:string>peak stress plots</json:string>
<json:string>various stress amplitudes</json:string>
<json:string>inverse power model</json:string>
<json:string>entire fracture surface</json:string>
<json:string>fatigue striations</json:string>
<json:string>failure origin</json:string>
<json:string>cyclic loading</json:string>
<json:string>microvoid dimples</json:string>
<json:string>crack path</json:string>
<json:string>fractographic analysis</json:string>
<json:string>abrupt change</json:string>
<json:string>coronoradicular direction</json:string>
<json:string>previous studies</json:string>
<json:string>selective laser</json:string>
<json:string>torsional fatigue resistance</json:string>
<json:string>present study</json:string>
<json:string>current study</json:string>
<json:string>cellular titanium</json:string>
<json:string>elastic modulus</json:string>
<json:string>failure probabilities</json:string>
<json:string>growth rate</json:string>
<json:string>titanium</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Gaurav V. Joshi</name>
<affiliations>
<json:string>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yuanyuan Duan</name>
<affiliations>
<json:string>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</json:string>
</affiliations>
</json:item>
<json:item>
<name>John Neidigh</name>
<affiliations>
<json:string>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mari Koike</name>
<affiliations>
<json:string>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gilbert Chahine</name>
<affiliations>
<json:string>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</json:string>
</affiliations>
</json:item>
<json:item>
<name>Radovan Kovacevic</name>
<affiliations>
<json:string>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</json:string>
</affiliations>
</json:item>
<json:item>
<name>Toru Okabe</name>
<affiliations>
<json:string>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jason A. Griggs</name>
<affiliations>
<json:string>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</json:string>
<json:string>E-mail: jgriggs@umc.edu</json:string>
<json:string>Correspondence address: Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rapid prototyping</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>titanium alloy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>powder metallurgy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>accelerated lifetime testing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fractography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inverse power law‐Weibull model</value>
</json:item>
</subject>
<articleId>
<json:string>JBM32825</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-90M6J0PH-1</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Customized one‐component dental implants have been fabricated using Electron Beam Melting® (EBM®), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σmax, 5% and σmax, 63%). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σmax, 63% (p ≤ 0.05), but there was no significant difference in the σmax, 5% (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.</abstract>
<qualityIndicators>
<score>8.918</score>
<pdfWordCount>4146</pdfWordCount>
<pdfCharCount>25584</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>231</abstractWordCount>
<abstractCharCount>1422</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants</title>
<pmid>
<json:string>23077086</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1552-4981</json:string>
</doi>
<issn>
<json:string>1552-4973</json:string>
</issn>
<eissn>
<json:string>1552-4981</json:string>
</eissn>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<volume>101B</volume>
<issue>1</issue>
<pages>
<first>124</first>
<last>130</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2013</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>WILEY PERIODICALS, INC.</json:string>
<json:string>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas Received</json:string>
<json:string>ORIGINAL RESEARCH REPORT FIGURE</json:string>
<json:string>Department of Biomaterials Science, Baylor College of Dentistry, Texas A</json:string>
<json:string>ORIGINAL RESEARCH REPORT</json:string>
<json:string>M Health Science Center, Dallas</json:string>
<json:string>Wiley Periodicals, Inc</json:string>
<json:string>ORIGINAL RESEARCH REPORT TABLE</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. A. Griggs</json:string>
<json:string>Mari Koike</json:string>
<json:string>Jason A. Griggs</json:string>
<json:string>Carl Zeiss</json:string>
<json:string>John Neidigh</json:string>
<json:string>Gilbert Chahine</json:string>
</persName>
<placeName>
<json:string>ALTA</json:string>
<json:string>AZ</json:string>
<json:string>Cleveland</json:string>
<json:string>OH</json:string>
<json:string>Tucson</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Christensen et al.</json:string>
<json:string>Laoui et al.</json:string>
<json:string>Santos et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-90M6J0PH-1</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/jbm.b.32825</json:string>
</doi>
<id>68223FB7F3A64430B53A1064EE328526843D39CE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
<ref type="note" target="#fn2"></ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2012 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2013-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
<ref type="note" target="#fn2"></ref>
</title>
<title level="a" type="short" xml:lang="en">Fatigue Testing of Electron Beam Melted Ti‐6Al‐4V Eli Alloy</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Gaurav V.</forename>
<surname>Joshi</surname>
</persName>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Yuanyuan</forename>
<surname>Duan</surname>
</persName>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">John</forename>
<surname>Neidigh</surname>
</persName>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Mari</forename>
<surname>Koike</surname>
</persName>
<affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Gilbert</forename>
<surname>Chahine</surname>
</persName>
<affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Radovan</forename>
<surname>Kovacevic</surname>
</persName>
<affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Toru</forename>
<surname>Okabe</surname>
</persName>
<affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0007" role="corresp">
<persName>
<forename type="first">Jason A.</forename>
<surname>Griggs</surname>
</persName>
<email>jgriggs@umc.edu</email>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</affiliation>
</author>
<idno type="istex">68223FB7F3A64430B53A1064EE328526843D39CE</idno>
<idno type="ark">ark:/67375/WNG-90M6J0PH-1</idno>
<idno type="DOI">10.1002/jbm.b.32825</idno>
<idno type="unit">JBM32825</idno>
<idno type="toTypesetVersion">file:JBM.JBM32825.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="pISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<idno type="book-DOI">10.1002/(ISSN)1552-4981</idno>
<idno type="book-part-DOI">10.1002/jbm.b.v101b.1</idno>
<idno type="product">JBM</idno>
<imprint>
<biblScope unit="vol">101B</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="124">124</biblScope>
<biblScope unit="page" to="130">130</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Customized one‐component dental implants have been fabricated using Electron Beam Melting
<hi rend="superscript">®</hi>
(EBM
<hi rend="superscript">®</hi>
), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (
<hi rend="italic">R</hi>
= 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σ
<hi rend="subscript">max, 5%</hi>
and σ
<hi rend="subscript">max, 63%</hi>
). Groups A and B did not have significantly different Weibull modulus,
<hi rend="italic">m</hi>
(
<hi rend="italic">p</hi>
> 0.05). The specimens with parallel orientation showed significantly higher σ
<hi rend="subscript">max, 63%</hi>
(
<hi rend="italic">p</hi>
≤ 0.05), but there was no significant difference in the σ
<hi rend="subscript">max, 5%</hi>
(
<hi rend="italic">p</hi>
> 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">rapid prototyping</term>
<term xml:id="kwd2">titanium alloy</term>
<term xml:id="kwd3">powder metallurgy</term>
<term xml:id="kwd4">accelerated lifetime testing</term>
<term xml:id="kwd5">fractography</term>
<term xml:id="kwd6">inverse power law‐Weibull model</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1552-4981</doi>
<issn type="print">1552-4973</issn>
<issn type="electronic">1552-4981</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Journal of Biomedical Materials Research</journalTitle>
<accessionId ref="info:x-wiley/issn/00219304">0021-9304</accessionId>
<accessionId ref="info:x-wiley/issn/10974636">1097-4636</accessionId>
<pubYear year="2004">2004</pubYear>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/jbm.b.v101b.1</doi>
<numberingGroup>
<numbering type="journalVolume" number="101">101B</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2013-01">January 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="150" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jbm.b.32825</doi>
<idGroup>
<id type="unit" value="JBM32825"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-12-14"></event>
<event type="manuscriptRevised" date="2012-06-01"></event>
<event type="manuscriptAccepted" date="2012-07-14"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.9 mode:FullText mathml2tex" date="2012-12-13"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-10-17"></event>
<event type="firstOnline" date="2012-10-17"></event>
<event type="publishedOnlineFinalForm" date="2012-12-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-29"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">124</numbering>
<numbering type="pageLast">130</numbering>
</numberingGroup>
<correspondenceTo>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBM32825.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="34"></count>
<count type="wordTotal" number="5145"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
<link href="#fn2"></link>
</title>
<title type="short" xml:lang="en">Fatigue Testing of Electron Beam Melted Ti‐6Al‐4V Eli Alloy</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Gaurav V.</givenNames>
<familyName>Joshi</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Yuanyuan</givenNames>
<familyName>Duan</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>John</givenNames>
<familyName>Neidigh</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Mari</givenNames>
<familyName>Koike</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Gilbert</givenNames>
<familyName>Chahine</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Radovan</givenNames>
<familyName>Kovacevic</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Toru</givenNames>
<familyName>Okabe</familyName>
</personName>
</creator>
<creator xml:id="au8" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Jason A.</givenNames>
<familyName>Griggs</familyName>
</personName>
<contactDetails>
<email>jgriggs@umc.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">rapid prototyping</keyword>
<keyword xml:id="kwd2">titanium alloy</keyword>
<keyword xml:id="kwd3">powder metallurgy</keyword>
<keyword xml:id="kwd4">accelerated lifetime testing</keyword>
<keyword xml:id="kwd5">fractography</keyword>
<keyword xml:id="kwd6">inverse power law‐Weibull model</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NIH‐NIDCR</fundingAgency>
<fundingNumber>DE017991</fundingNumber>
<fundingNumber>DE013358</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Customized one‐component dental implants have been fabricated using Electron Beam Melting
<sup>®</sup>
(EBM
<sup>®</sup>
), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (
<i>R</i>
= 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σ
<sub>max, 5%</sub>
and σ
<sub>max, 63%</sub>
). Groups A and B did not have significantly different Weibull modulus,
<i>m</i>
(
<i>p</i>
> 0.05). The specimens with parallel orientation showed significantly higher σ
<sub>max, 63%</sub>
(
<i>p</i>
≤ 0.05), but there was no significant difference in the σ
<sub>max, 5%</sub>
(
<i>p</i>
> 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn2">
<p>
<b>How to cite this article</b>
: Joshi G. V., Joshi G. V., Duan Y., Neidigh J., Koike M., Chahine G., Kovacevic R., Okabe T., Griggs J. A., 2013. Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants. J Biomed Mater Res Part B 2013:101B:124–130.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Fatigue Testing of Electron Beam Melted Ti‐6Al‐4V Eli Alloy</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaurav V.</namePart>
<namePart type="family">Joshi</namePart>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanyuan</namePart>
<namePart type="family">Duan</namePart>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Neidigh</namePart>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mari</namePart>
<namePart type="family">Koike</namePart>
<affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gilbert</namePart>
<namePart type="family">Chahine</namePart>
<affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radovan</namePart>
<namePart type="family">Kovacevic</namePart>
<affiliation>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas, Texas</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toru</namePart>
<namePart type="family">Okabe</namePart>
<affiliation>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason A.</namePart>
<namePart type="family">Griggs</namePart>
<affiliation>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</affiliation>
<affiliation>E-mail: jgriggs@umc.edu</affiliation>
<affiliation>Correspondence address: Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2013-01</dateIssued>
<dateCaptured encoding="w3cdtf">2011-12-14</dateCaptured>
<dateValid encoding="w3cdtf">2012-07-14</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">7</extent>
<extent unit="tables">2</extent>
<extent unit="references">34</extent>
<extent unit="words">5145</extent>
</physicalDescription>
<abstract lang="en">Customized one‐component dental implants have been fabricated using Electron Beam Melting® (EBM®), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σmax, 5% and σmax, 63%). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σmax, 63% (p ≤ 0.05), but there was no significant difference in the σmax, 5% (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.</abstract>
<note type="content">*How to cite this article: Joshi G. V., Joshi G. V., Duan Y., Neidigh J., Koike M., Chahine G., Kovacevic R., Okabe T., Griggs J. A., 2013. Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants. J Biomed Mater Res Part B 2013:101B:124–130.</note>
<note type="funding">NIH‐NIDCR - No. DE017991; No. DE013358; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>rapid prototyping</topic>
<topic>titanium alloy</topic>
<topic>powder metallurgy</topic>
<topic>accelerated lifetime testing</topic>
<topic>fractography</topic>
<topic>inverse power law‐Weibull model</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1552-4973</identifier>
<identifier type="eISSN">1552-4981</identifier>
<identifier type="DOI">10.1002/(ISSN)1552-4981</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>101B</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>124</start>
<end>130</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Journal of Biomedical Materials Research</title>
</titleInfo>
<identifier type="ISSN">0021-9304</identifier>
<identifier type="ISSN">1097-4636</identifier>
<part>
<date point="end">2004</date>
</part>
</relatedItem>
<identifier type="istex">68223FB7F3A64430B53A1064EE328526843D39CE</identifier>
<identifier type="ark">ark:/67375/WNG-90M6J0PH-1</identifier>
<identifier type="DOI">10.1002/jbm.b.32825</identifier>
<identifier type="ArticleID">JBM32825</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003349 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003349 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE
   |texte=   Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022