Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer

Identifieur interne : 001192 ( Istex/Checkpoint ); précédent : 001191; suivant : 001193

Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer

Auteurs : So-Hee Moon [Corée du Sud] ; Seung-Jae Lee [Corée du Sud] ; Il-Song Park [Corée du Sud] ; Min-Ho Lee [Corée du Sud] ; Yun-Jo Soh [Corée du Sud] ; Tae-Sung Bae [Corée du Sud] ; Hyung-Seop Kim [Corée du Sud]

Source :

RBID : ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0

Descripteurs français

English descriptors

Abstract

Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS. In vitro, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

Url:
DOI: 10.1002/jbm.b.32769


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer</title>
<author>
<name sortKey="Moon, So Ee" sort="Moon, So Ee" uniqKey="Moon S" first="So-Hee" last="Moon">So-Hee Moon</name>
</author>
<author>
<name sortKey="Lee, Seung Ae" sort="Lee, Seung Ae" uniqKey="Lee S" first="Seung-Jae" last="Lee">Seung-Jae Lee</name>
</author>
<author>
<name sortKey="Park, Il Ong" sort="Park, Il Ong" uniqKey="Park I" first="Il-Song" last="Park">Il-Song Park</name>
</author>
<author>
<name sortKey="Lee, Min O" sort="Lee, Min O" uniqKey="Lee M" first="Min-Ho" last="Lee">Min-Ho Lee</name>
</author>
<author>
<name sortKey="Soh, Yun O" sort="Soh, Yun O" uniqKey="Soh Y" first="Yun-Jo" last="Soh">Yun-Jo Soh</name>
</author>
<author>
<name sortKey="Bae, Tae Ung" sort="Bae, Tae Ung" uniqKey="Bae T" first="Tae-Sung" last="Bae">Tae-Sung Bae</name>
</author>
<author>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/jbm.b.32769</idno>
<idno type="url">https://api.istex.fr/document/B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005958</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005958</idno>
<idno type="wicri:Area/Istex/Curation">005958</idno>
<idno type="wicri:Area/Istex/Checkpoint">001192</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001192</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO
<hi rend="subscript">2</hi>
layer
<ref type="note" target="#fn1"></ref>
</title>
<author>
<name sortKey="Moon, So Ee" sort="Moon, So Ee" uniqKey="Moon S" first="So-Hee" last="Moon">So-Hee Moon</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Ae" sort="Lee, Seung Ae" uniqKey="Lee S" first="Seung-Jae" last="Lee">Seung-Jae Lee</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Il Ong" sort="Park, Il Ong" uniqKey="Park I" first="Il-Song" last="Park">Il-Song Park</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Min O" sort="Lee, Min O" uniqKey="Lee M" first="Min-Ho" last="Lee">Min-Ho Lee</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Soh, Yun O" sort="Soh, Yun O" uniqKey="Soh Y" first="Yun-Jo" last="Soh">Yun-Jo Soh</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Dental Pharmacology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bae, Tae Ung" sort="Bae, Tae Ung" uniqKey="Bae T" first="Tae-Sung" last="Bae">Tae-Sung Bae</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Dental Biomaterials, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Corée du Sud</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Correspondence address: Department of Periodontology, School of Dentistry, Institute of Oral Bioscience and Brain Korea 21, Chonbuk National University, Jeonju</wicri:regionArea>
<wicri:noRegion>Jeonju</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">100B</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2053">2053</biblScope>
<biblScope unit="page" to="2059">2059</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-11">2012-11</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjacent bones</term>
<term>Alloy</term>
<term>Alloy implants</term>
<term>Alloy surface</term>
<term>Alloy surfaces</term>
<term>Anodic</term>
<term>Anodic oxidation</term>
<term>Anodic oxidation treatment</term>
<term>Anodized</term>
<term>Anodizing</term>
<term>Anodizing oxidation</term>
<term>Appl biomater</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bisphosphonates</term>
<term>Bisphosphonates family drug</term>
<term>Bone area</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone response</term>
<term>Brain korea</term>
<term>Cellular reactions</term>
<term>Control group</term>
<term>Current density</term>
<term>Dense nanotube tio2 layer</term>
<term>Dental implants</term>
<term>Drug loading capacity</term>
<term>Drug release</term>
<term>Drug treatment group</term>
<term>Electrolyte solution</term>
<term>Experimental animals</term>
<term>Glycerol solution</term>
<term>Heat treatments</term>
<term>Ibandronate</term>
<term>Implant</term>
<term>Implant material</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>Implant surface layer</term>
<term>Mater</term>
<term>Nanostructure surface</term>
<term>Nanotube</term>
<term>Nanotube structure</term>
<term>Nanotube tio2 layer</term>
<term>Nanotubular</term>
<term>Nanotubular structure</term>
<term>Nanotubular tio2 layer</term>
<term>Nontreatment group</term>
<term>Oral bioscience</term>
<term>Osseointegration</term>
<term>Osteoblast</term>
<term>Osteoblast adhesion</term>
<term>Osteoclast</term>
<term>Osteoclastic activity</term>
<term>Oxidative</term>
<term>Pilot study</term>
<term>Present study</term>
<term>Pulse power</term>
<term>Pure titanium</term>
<term>Recent publication</term>
<term>Removal torque</term>
<term>Removal torque values</term>
<term>Surface analysis</term>
<term>Surface characteristics</term>
<term>Surface layer</term>
<term>Surface topography</term>
<term>Surface treatments</term>
<term>Surgery area</term>
<term>Test group</term>
<term>Tibia</term>
<term>Tio2</term>
<term>Tio2 nanotubes</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Total bone area</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adjacent bones</term>
<term>Alloy</term>
<term>Alloy implants</term>
<term>Alloy surface</term>
<term>Alloy surfaces</term>
<term>Anodic</term>
<term>Anodic oxidation</term>
<term>Anodic oxidation treatment</term>
<term>Anodized</term>
<term>Anodizing</term>
<term>Anodizing oxidation</term>
<term>Appl biomater</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bisphosphonates</term>
<term>Bisphosphonates family drug</term>
<term>Bone area</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone response</term>
<term>Brain korea</term>
<term>Cellular reactions</term>
<term>Control group</term>
<term>Current density</term>
<term>Dense nanotube tio2 layer</term>
<term>Dental implants</term>
<term>Drug loading capacity</term>
<term>Drug release</term>
<term>Drug treatment group</term>
<term>Electrolyte solution</term>
<term>Experimental animals</term>
<term>Glycerol solution</term>
<term>Heat treatments</term>
<term>Ibandronate</term>
<term>Implant</term>
<term>Implant material</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>Implant surface layer</term>
<term>Mater</term>
<term>Nanostructure surface</term>
<term>Nanotube</term>
<term>Nanotube structure</term>
<term>Nanotube tio2 layer</term>
<term>Nanotubular</term>
<term>Nanotubular structure</term>
<term>Nanotubular tio2 layer</term>
<term>Nontreatment group</term>
<term>Oral bioscience</term>
<term>Osseointegration</term>
<term>Osteoblast</term>
<term>Osteoblast adhesion</term>
<term>Osteoclast</term>
<term>Osteoclastic activity</term>
<term>Oxidative</term>
<term>Pilot study</term>
<term>Present study</term>
<term>Pulse power</term>
<term>Pure titanium</term>
<term>Recent publication</term>
<term>Removal torque</term>
<term>Removal torque values</term>
<term>Surface analysis</term>
<term>Surface characteristics</term>
<term>Surface layer</term>
<term>Surface topography</term>
<term>Surface treatments</term>
<term>Surgery area</term>
<term>Test group</term>
<term>Tibia</term>
<term>Tio2</term>
<term>Tio2 nanotubes</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Total bone area</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Alliage</term>
<term>Biomatériau</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti‐6Al‐4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti‐6Al‐4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti‐6Al‐4V alloy surface in tibiae of rats. Ti‐6Al‐4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat‐, and bisphosphonate‐treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE‐SEM and EDS. In vitro, the drug loading capacity of the Ti‐6Al‐4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate‐treated Ti‐6Al‐4V alloy implants with nanotubular surfaces have positive effects in bone‐to‐implant contact. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Moon, So Ee" sort="Moon, So Ee" uniqKey="Moon S" first="So-Hee" last="Moon">So-Hee Moon</name>
</noRegion>
<name sortKey="Bae, Tae Ung" sort="Bae, Tae Ung" uniqKey="Bae T" first="Tae-Sung" last="Bae">Tae-Sung Bae</name>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
<name sortKey="Kim, Hyung Eop" sort="Kim, Hyung Eop" uniqKey="Kim H" first="Hyung-Seop" last="Kim">Hyung-Seop Kim</name>
<name sortKey="Lee, Min O" sort="Lee, Min O" uniqKey="Lee M" first="Min-Ho" last="Lee">Min-Ho Lee</name>
<name sortKey="Lee, Seung Ae" sort="Lee, Seung Ae" uniqKey="Lee S" first="Seung-Jae" last="Lee">Seung-Jae Lee</name>
<name sortKey="Park, Il Ong" sort="Park, Il Ong" uniqKey="Park I" first="Il-Song" last="Park">Il-Song Park</name>
<name sortKey="Soh, Yun O" sort="Soh, Yun O" uniqKey="Soh Y" first="Yun-Jo" last="Soh">Yun-Jo Soh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001192 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 001192 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:B386BEDAB7806D8D16CFAF5A3156CC00A8B367C0
   |texte=   Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022