Serveur d'exploration Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Environmental persistence of porcine coronaviruses in feed and feed ingredients.

Identifieur interne : 000612 ( PubMed/Checkpoint ); précédent : 000611; suivant : 000613

Environmental persistence of porcine coronaviruses in feed and feed ingredients.

Auteurs : Michaela P. Trudeau [États-Unis] ; Harsha Verma [États-Unis] ; Fernando Sampedro [États-Unis] ; Pedro E. Urriola [États-Unis] ; Gerald C. Shurson [États-Unis] ; Sagar M. Goyal [États-Unis]

Source :

RBID : pubmed:28542235

Descripteurs français

English descriptors

Abstract

Porcine Epidemic Diarrhea Virus (PEDV), Porcine Delta Corona Virus (PDCoV), and Transmissible Gastroenteritis Virus (TGEV) are major threats to swine health and contaminated feed plays a role in virus transmission. The objective of our study was to characterize inactivation of PEDV, PDCoV, and TGEV in various feed ingredient matrices. Samples of complete feed, spray dried porcine plasma, meat meal, meat and bone meal, blood meal, corn, soybean meal, and corn dried distillers grains with solubles were weighed (5 g/sample) into scintillation vials and inoculated with 1 mL of PEDV, PDCoV, or TGEV. Samples were incubated at room temperature for up to 56 days. Aliquots were removed at various time points followed by preparing serial 10-fold dilutions and inoculating in cell cultures to determine the amount of surviving virus. Inactivation kinetics were determined using the Weibull model, which estimates a delta value indicating the time necessary to reduce virus concentration by 1 log. Delta values of various ingredients were compared and analyzed as to their nutrient composition. Soybean meal had the greatest delta value (7.50 days) for PEDV (P < 0.06) as compared with all other ingredients. High delta values (P < 0.001) were observed in soybean meal for PDCoV (42.04 days) and TGEV (42.00 days). There was a moderate correlation between moisture content and the delta value for PDCoV (r = 0.49, P = 0.01) and TGEV (r = 0.41, P = 0.02). There was also a moderate negative correlation between TGEV survival and ether extract content (r = -0.51, P = 0.01). In conclusion, these results indicate that the first log reduction of PDCoV and TGEV takes the greatest amount of time in soybean meal. In addition to this, moisture and ether content appear to be an important determinant of virus survival in feed ingredients.

DOI: 10.1371/journal.pone.0178094
PubMed: 28542235


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28542235

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Environmental persistence of porcine coronaviruses in feed and feed ingredients.</title>
<author>
<name sortKey="Trudeau, Michaela P" sort="Trudeau, Michaela P" uniqKey="Trudeau M" first="Michaela P" last="Trudeau">Michaela P. Trudeau</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Animal Science, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verma, Harsha" sort="Verma, Harsha" uniqKey="Verma H" first="Harsha" last="Verma">Harsha Verma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sampedro, Fernando" sort="Sampedro, Fernando" uniqKey="Sampedro F" first="Fernando" last="Sampedro">Fernando Sampedro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Urriola, Pedro E" sort="Urriola, Pedro E" uniqKey="Urriola P" first="Pedro E" last="Urriola">Pedro E. Urriola</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Animal Science, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shurson, Gerald C" sort="Shurson, Gerald C" uniqKey="Shurson G" first="Gerald C" last="Shurson">Gerald C. Shurson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Animal Science, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goyal, Sagar M" sort="Goyal, Sagar M" uniqKey="Goyal S" first="Sagar M" last="Goyal">Sagar M. Goyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28542235</idno>
<idno type="pmid">28542235</idno>
<idno type="doi">10.1371/journal.pone.0178094</idno>
<idno type="wicri:Area/PubMed/Corpus">000612</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000612</idno>
<idno type="wicri:Area/PubMed/Curation">000612</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000612</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000612</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000612</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Environmental persistence of porcine coronaviruses in feed and feed ingredients.</title>
<author>
<name sortKey="Trudeau, Michaela P" sort="Trudeau, Michaela P" uniqKey="Trudeau M" first="Michaela P" last="Trudeau">Michaela P. Trudeau</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Animal Science, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verma, Harsha" sort="Verma, Harsha" uniqKey="Verma H" first="Harsha" last="Verma">Harsha Verma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sampedro, Fernando" sort="Sampedro, Fernando" uniqKey="Sampedro F" first="Fernando" last="Sampedro">Fernando Sampedro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Urriola, Pedro E" sort="Urriola, Pedro E" uniqKey="Urriola P" first="Pedro E" last="Urriola">Pedro E. Urriola</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Animal Science, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shurson, Gerald C" sort="Shurson, Gerald C" uniqKey="Shurson G" first="Gerald C" last="Shurson">Gerald C. Shurson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Animal Science, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goyal, Sagar M" sort="Goyal, Sagar M" uniqKey="Goyal S" first="Sagar M" last="Goyal">Sagar M. Goyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal Feed (analysis)</term>
<term>Animal Feed (virology)</term>
<term>Animals</term>
<term>Coronavirus (isolation & purification)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Food Contamination</term>
<term>Gastroenteritis, Transmissible, of Swine (transmission)</term>
<term>Porcine epidemic diarrhea virus (isolation & purification)</term>
<term>Soybeans (chemistry)</term>
<term>Sus scrofa</term>
<term>Swine</term>
<term>Swine Diseases (transmission)</term>
<term>Swine Diseases (virology)</term>
<term>Transmissible gastroenteritis virus (isolation & purification)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aliment pour animaux (analyse)</term>
<term>Aliment pour animaux (virologie)</term>
<term>Animaux</term>
<term>Contamination des aliments</term>
<term>Coronavirus (isolement et purification)</term>
<term>Gastroentérite transmissible du porc (transmission)</term>
<term>Infections à coronavirus (médecine vétérinaire)</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Maladies des porcs (transmission)</term>
<term>Maladies des porcs (virologie)</term>
<term>Soja ()</term>
<term>Suidae</term>
<term>Sus scrofa</term>
<term>Virus de la diarrhée porcine épidémique (isolement et purification)</term>
<term>Virus de la gastroentérite transmissible (isolement et purification)</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Aliment pour animaux</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Animal Feed</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Coronavirus</term>
<term>Porcine epidemic diarrhea virus</term>
<term>Transmissible gastroenteritis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Coronavirus</term>
<term>Virus de la diarrhée porcine épidémique</term>
<term>Virus de la gastroentérite transmissible</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Gastroenteritis, Transmissible, of Swine</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Aliment pour animaux</term>
<term>Infections à coronavirus</term>
<term>Maladies des porcs</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Animal Feed</term>
<term>Coronavirus Infections</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Food Contamination</term>
<term>Sus scrofa</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Contamination des aliments</term>
<term>Gastroentérite transmissible du porc</term>
<term>Infections à coronavirus</term>
<term>Maladies des porcs</term>
<term>Soja</term>
<term>Suidae</term>
<term>Sus scrofa</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Porcine Epidemic Diarrhea Virus (PEDV), Porcine Delta Corona Virus (PDCoV), and Transmissible Gastroenteritis Virus (TGEV) are major threats to swine health and contaminated feed plays a role in virus transmission. The objective of our study was to characterize inactivation of PEDV, PDCoV, and TGEV in various feed ingredient matrices. Samples of complete feed, spray dried porcine plasma, meat meal, meat and bone meal, blood meal, corn, soybean meal, and corn dried distillers grains with solubles were weighed (5 g/sample) into scintillation vials and inoculated with 1 mL of PEDV, PDCoV, or TGEV. Samples were incubated at room temperature for up to 56 days. Aliquots were removed at various time points followed by preparing serial 10-fold dilutions and inoculating in cell cultures to determine the amount of surviving virus. Inactivation kinetics were determined using the Weibull model, which estimates a delta value indicating the time necessary to reduce virus concentration by 1 log. Delta values of various ingredients were compared and analyzed as to their nutrient composition. Soybean meal had the greatest delta value (7.50 days) for PEDV (P < 0.06) as compared with all other ingredients. High delta values (P < 0.001) were observed in soybean meal for PDCoV (42.04 days) and TGEV (42.00 days). There was a moderate correlation between moisture content and the delta value for PDCoV (r = 0.49, P = 0.01) and TGEV (r = 0.41, P = 0.02). There was also a moderate negative correlation between TGEV survival and ether extract content (r = -0.51, P = 0.01). In conclusion, these results indicate that the first log reduction of PDCoV and TGEV takes the greatest amount of time in soybean meal. In addition to this, moisture and ether content appear to be an important determinant of virus survival in feed ingredients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28542235</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Environmental persistence of porcine coronaviruses in feed and feed ingredients.</ArticleTitle>
<Pagination>
<MedlinePgn>e0178094</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0178094</ELocationID>
<Abstract>
<AbstractText>Porcine Epidemic Diarrhea Virus (PEDV), Porcine Delta Corona Virus (PDCoV), and Transmissible Gastroenteritis Virus (TGEV) are major threats to swine health and contaminated feed plays a role in virus transmission. The objective of our study was to characterize inactivation of PEDV, PDCoV, and TGEV in various feed ingredient matrices. Samples of complete feed, spray dried porcine plasma, meat meal, meat and bone meal, blood meal, corn, soybean meal, and corn dried distillers grains with solubles were weighed (5 g/sample) into scintillation vials and inoculated with 1 mL of PEDV, PDCoV, or TGEV. Samples were incubated at room temperature for up to 56 days. Aliquots were removed at various time points followed by preparing serial 10-fold dilutions and inoculating in cell cultures to determine the amount of surviving virus. Inactivation kinetics were determined using the Weibull model, which estimates a delta value indicating the time necessary to reduce virus concentration by 1 log. Delta values of various ingredients were compared and analyzed as to their nutrient composition. Soybean meal had the greatest delta value (7.50 days) for PEDV (P < 0.06) as compared with all other ingredients. High delta values (P < 0.001) were observed in soybean meal for PDCoV (42.04 days) and TGEV (42.00 days). There was a moderate correlation between moisture content and the delta value for PDCoV (r = 0.49, P = 0.01) and TGEV (r = 0.41, P = 0.02). There was also a moderate negative correlation between TGEV survival and ether extract content (r = -0.51, P = 0.01). In conclusion, these results indicate that the first log reduction of PDCoV and TGEV takes the greatest amount of time in soybean meal. In addition to this, moisture and ether content appear to be an important determinant of virus survival in feed ingredients.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Trudeau</LastName>
<ForeName>Michaela P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verma</LastName>
<ForeName>Harsha</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sampedro</LastName>
<ForeName>Fernando</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Urriola</LastName>
<ForeName>Pedro E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shurson</LastName>
<ForeName>Gerald C</ForeName>
<Initials>GC</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goyal</LastName>
<ForeName>Sagar M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000821" MajorTopicYN="N">Animal Feed</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005506" MajorTopicYN="Y">Food Contamination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005761" MajorTopicYN="N">Gastroenteritis, Transmissible, of Swine</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053485" MajorTopicYN="N">Porcine epidemic diarrhea virus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034421" MajorTopicYN="N">Sus scrofa</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013553" MajorTopicYN="N">Swine Diseases</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005760" MajorTopicYN="N">Transmissible gastroenteritis virus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28542235</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0178094</ArticleId>
<ArticleId IdType="pii">PONE-D-16-44689</ArticleId>
<ArticleId IdType="pmc">PMC5443540</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2014 Nov 7;174(1-2):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25281254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2006 Jun;35(3):182-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 24;11(6):e0158128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27341670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2015 Dec 31;181(3-4):283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26602207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2014 Jul 14;45:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25017790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Porcine Health Manag. 2017 Jan 20;3:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28405461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2005 Jun 25;102(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15893399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2014 Dec 5;174(3-4):427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25465663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2015 Feb 15;11:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25881144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Porcine Health Manag. 2015 Jul 9;1:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28405416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Apr 10;2(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prev Vet Med. 2011 Feb 1;98(2-3):81-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21145122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2010 Oct;73(10):1919-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21067682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2002 Jan 30;72(1-2):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11843401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Jul;62(7):2212-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8779558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 1972 May;51(3):797-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4646660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2016 Dec 2;226:71-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27270129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transbound Emerg Dis. 2014 Oct;61(5):397-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25098383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2014 Aug 05;10:176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25091641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2014 Sep 25;10:220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2002 Jun;65(6):999-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12092735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Oct 15;4(5):e00737-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Trudeau, Michaela P" sort="Trudeau, Michaela P" uniqKey="Trudeau M" first="Michaela P" last="Trudeau">Michaela P. Trudeau</name>
</region>
<name sortKey="Goyal, Sagar M" sort="Goyal, Sagar M" uniqKey="Goyal S" first="Sagar M" last="Goyal">Sagar M. Goyal</name>
<name sortKey="Sampedro, Fernando" sort="Sampedro, Fernando" uniqKey="Sampedro F" first="Fernando" last="Sampedro">Fernando Sampedro</name>
<name sortKey="Shurson, Gerald C" sort="Shurson, Gerald C" uniqKey="Shurson G" first="Gerald C" last="Shurson">Gerald C. Shurson</name>
<name sortKey="Urriola, Pedro E" sort="Urriola, Pedro E" uniqKey="Urriola P" first="Pedro E" last="Urriola">Pedro E. Urriola</name>
<name sortKey="Verma, Harsha" sort="Verma, Harsha" uniqKey="Verma H" first="Harsha" last="Verma">Harsha Verma</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000612 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000612 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28542235
   |texte=   Environmental persistence of porcine coronaviruses in feed and feed ingredients.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28542235" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Fri Mar 27 18:14:15 2020. Site generation: Sun Jan 31 15:15:08 2021