Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned.

Identifieur interne : 000450 ( Main/Exploration ); précédent : 000449; suivant : 000451

Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned.

Auteurs : Akrithi Udupa [États-Unis] ; David Leverenz [États-Unis] ; Stephen J. Balevic [États-Unis] ; Rebecca E. Sadun [États-Unis] ; Teresa K. Tarrant [États-Unis] ; Jennifer L. Rogers [États-Unis]

Source :

RBID : pubmed:33475900

Descripteurs français

English descriptors

Abstract

PURPOSE OF REVIEW

Told from the viewpoint of rheumatologists, this review tells the story of hydroxychloroquine and its swift ascent to become a household name as a therapeutic strategy against the novel SARS-CoV-2 virus. This review describes the history, mechanisms, pharmacokinetics, therapeutic applications, and safety profile of hydroxychloroquine as an immunomodulatory and antiviral agent. It also summarizes the major studies that launched and assessed the use of hydroxychloroquine against COVID-19 infection.

RECENT FINDINGS

More recent literature calls into question the long-held dogma that endolysosomal alkalinization is the primary mode of action of hydroxychloroquine. Ongoing uncertainty about the multiple potential mechanisms contributing to the therapeutic effect of hydroxychloroquine in rheumatic and viral disease led to a natural avenue for exploration in the treatment of COVID-19. Taken as a whole, the literature does not support utilizing hydroxychloroquine to treat or prevent infection from the SARS-CoV-2 virus. This is, at least in part, due to the wide variability in hydroxychloroquine pharmacokinetics between patients and difficulty achieving adequate target tissue concentrations of hydroxychloroquine without encountering unacceptable toxicities. Hydroxychloroquine continues to be a routinely prescribed, well-tolerated, effective, and low-cost treatment for rheumatic disease. Its therapeutic versatility has led to frequent repurposing for other conditions, most recently as an investigative treatment against the SARS-CoV-2 virus. Despite overall negative findings, the intense study of hydroxychloroquine against COVID-19 infection has enhanced our overall understanding of how hydroxychloroquine operates in autoimmune disease and beyond.


DOI: 10.1007/s11882-020-00983-9
PubMed: 33475900
PubMed Central: PMC7818062


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned.</title>
<author>
<name sortKey="Udupa, Akrithi" sort="Udupa, Akrithi" uniqKey="Udupa A" first="Akrithi" last="Udupa">Akrithi Udupa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA. akrithi.udupa@duke.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leverenz, David" sort="Leverenz, David" uniqKey="Leverenz D" first="David" last="Leverenz">David Leverenz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Balevic, Stephen J" sort="Balevic, Stephen J" uniqKey="Balevic S" first="Stephen J" last="Balevic">Stephen J. Balevic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sadun, Rebecca E" sort="Sadun, Rebecca E" uniqKey="Sadun R" first="Rebecca E" last="Sadun">Rebecca E. Sadun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tarrant, Teresa K" sort="Tarrant, Teresa K" uniqKey="Tarrant T" first="Teresa K" last="Tarrant">Teresa K. Tarrant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rogers, Jennifer L" sort="Rogers, Jennifer L" uniqKey="Rogers J" first="Jennifer L" last="Rogers">Jennifer L. Rogers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33475900</idno>
<idno type="pmid">33475900</idno>
<idno type="doi">10.1007/s11882-020-00983-9</idno>
<idno type="pmc">PMC7818062</idno>
<idno type="wicri:Area/Main/Corpus">000460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000460</idno>
<idno type="wicri:Area/Main/Curation">000460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000460</idno>
<idno type="wicri:Area/Main/Exploration">000460</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned.</title>
<author>
<name sortKey="Udupa, Akrithi" sort="Udupa, Akrithi" uniqKey="Udupa A" first="Akrithi" last="Udupa">Akrithi Udupa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA. akrithi.udupa@duke.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leverenz, David" sort="Leverenz, David" uniqKey="Leverenz D" first="David" last="Leverenz">David Leverenz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Balevic, Stephen J" sort="Balevic, Stephen J" uniqKey="Balevic S" first="Stephen J" last="Balevic">Stephen J. Balevic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sadun, Rebecca E" sort="Sadun, Rebecca E" uniqKey="Sadun R" first="Rebecca E" last="Sadun">Rebecca E. Sadun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tarrant, Teresa K" sort="Tarrant, Teresa K" uniqKey="Tarrant T" first="Teresa K" last="Tarrant">Teresa K. Tarrant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rogers, Jennifer L" sort="Rogers, Jennifer L" uniqKey="Rogers J" first="Jennifer L" last="Rogers">Jennifer L. Rogers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Duke University Medical Center, Box 2978, Durham, NC, 27710</wicri:regionArea>
<wicri:noRegion>27710</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current allergy and asthma reports</title>
<idno type="eISSN">1534-6315</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antiviral Agents (pharmacokinetics)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>COVID-19 (drug therapy)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (pharmacokinetics)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Rheumatologists (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antiviraux (pharmacocinétique)</term>
<term>Antiviraux (usage thérapeutique)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (pharmacocinétique)</term>
<term>Hydroxychloroquine (usage thérapeutique)</term>
<term>Rhumatologues (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Antiviraux</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antiviraux</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Rheumatologists</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Rhumatologues</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>PURPOSE OF REVIEW</b>
</p>
<p>Told from the viewpoint of rheumatologists, this review tells the story of hydroxychloroquine and its swift ascent to become a household name as a therapeutic strategy against the novel SARS-CoV-2 virus. This review describes the history, mechanisms, pharmacokinetics, therapeutic applications, and safety profile of hydroxychloroquine as an immunomodulatory and antiviral agent. It also summarizes the major studies that launched and assessed the use of hydroxychloroquine against COVID-19 infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT FINDINGS</b>
</p>
<p>More recent literature calls into question the long-held dogma that endolysosomal alkalinization is the primary mode of action of hydroxychloroquine. Ongoing uncertainty about the multiple potential mechanisms contributing to the therapeutic effect of hydroxychloroquine in rheumatic and viral disease led to a natural avenue for exploration in the treatment of COVID-19. Taken as a whole, the literature does not support utilizing hydroxychloroquine to treat or prevent infection from the SARS-CoV-2 virus. This is, at least in part, due to the wide variability in hydroxychloroquine pharmacokinetics between patients and difficulty achieving adequate target tissue concentrations of hydroxychloroquine without encountering unacceptable toxicities. Hydroxychloroquine continues to be a routinely prescribed, well-tolerated, effective, and low-cost treatment for rheumatic disease. Its therapeutic versatility has led to frequent repurposing for other conditions, most recently as an investigative treatment against the SARS-CoV-2 virus. Despite overall negative findings, the intense study of hydroxychloroquine against COVID-19 infection has enhanced our overall understanding of how hydroxychloroquine operates in autoimmune disease and beyond.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">33475900</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1534-6315</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2021</Year>
<Month>01</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Current allergy and asthma reports</Title>
<ISOAbbreviation>Curr Allergy Asthma Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned.</ArticleTitle>
<Pagination>
<MedlinePgn>5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11882-020-00983-9</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE OF REVIEW">Told from the viewpoint of rheumatologists, this review tells the story of hydroxychloroquine and its swift ascent to become a household name as a therapeutic strategy against the novel SARS-CoV-2 virus. This review describes the history, mechanisms, pharmacokinetics, therapeutic applications, and safety profile of hydroxychloroquine as an immunomodulatory and antiviral agent. It also summarizes the major studies that launched and assessed the use of hydroxychloroquine against COVID-19 infection.</AbstractText>
<AbstractText Label="RECENT FINDINGS">More recent literature calls into question the long-held dogma that endolysosomal alkalinization is the primary mode of action of hydroxychloroquine. Ongoing uncertainty about the multiple potential mechanisms contributing to the therapeutic effect of hydroxychloroquine in rheumatic and viral disease led to a natural avenue for exploration in the treatment of COVID-19. Taken as a whole, the literature does not support utilizing hydroxychloroquine to treat or prevent infection from the SARS-CoV-2 virus. This is, at least in part, due to the wide variability in hydroxychloroquine pharmacokinetics between patients and difficulty achieving adequate target tissue concentrations of hydroxychloroquine without encountering unacceptable toxicities. Hydroxychloroquine continues to be a routinely prescribed, well-tolerated, effective, and low-cost treatment for rheumatic disease. Its therapeutic versatility has led to frequent repurposing for other conditions, most recently as an investigative treatment against the SARS-CoV-2 virus. Despite overall negative findings, the intense study of hydroxychloroquine against COVID-19 infection has enhanced our overall understanding of how hydroxychloroquine operates in autoimmune disease and beyond.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Udupa</LastName>
<ForeName>Akrithi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA. akrithi.udupa@duke.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leverenz</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Balevic</LastName>
<ForeName>Stephen J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sadun</LastName>
<ForeName>Rebecca E</ForeName>
<Initials>RE</Initials>
<AffiliationInfo>
<Affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tarrant</LastName>
<ForeName>Teresa K</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rogers</LastName>
<ForeName>Jennifer L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Duke University Medical Center, Box 2978, Durham, NC, 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K23 AR075874</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Allergy Asthma Rep</MedlineTA>
<NlmUniqueID>101096440</NlmUniqueID>
<ISSNLinking>1529-7322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072140" MajorTopicYN="N">Rheumatologists</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="Y">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="Y">Immunomodulation</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>12</Hour>
<Minute>20</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33475900</ArticleId>
<ArticleId IdType="doi">10.1007/s11882-020-00983-9</ArticleId>
<ArticleId IdType="pii">10.1007/s11882-020-00983-9</ArticleId>
<ArticleId IdType="pmc">PMC7818062</ArticleId>
</ArticleIdList>
<ReferenceList>
<ReferenceList>
<Title>Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance</Title>
<Reference>
<Citation>WHO. Timeline of WHO’s response to COVID-19: World Health Organization [Internet]. 2020. Available from: https://www.who.int/news-room/detail/29-06-2020-covidtimeline .</Citation>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. Available from: https://doi.org/10.1038/s41422-020-0282-0 .</Citation>
</Reference>
<Reference>
<Citation>Isaacson D, Elgart M, Turner ML. Anti-malarials in dermatology. Int J Dermatol. 1982;21(7):379-95. Available from: https://doi.org/10.1111/j.1365-4362.1982.tb03155.x , 1982.</Citation>
</Reference>
<Reference>
<Citation>Page F. Treatment of lupus erythematosus with mepacrine. Lancet. 1951;2(6687):755-8. Available from: https://doi.org/10.1016/S0140-6736(51)91643-1 , 1951.</Citation>
</Reference>
<Reference>
<Citation>Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30(4):297-308. Available from: https://doi.org/10.1016/j.ijantimicag.2007.05.015 , 2007.</Citation>
</Reference>
<Reference>
<Citation>Surrey AR, Hammer HF. Some 7-substituted 4-aminoquinoline derivatives. J Am Chem Soc. 1946;68:113-6. Available from: https://doi.org/10.1021/ja01205a036 .</Citation>
</Reference>
<Reference>
<Citation>Avdic E. Hydroxychloroquine [Internet]. In: Johns Hopkins ABX Guide. The Johns Hopkins University; 2020. Available from: https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540748/all/Hydroxychloroquine .</Citation>
</Reference>
<Reference>
<Citation>Concordia Pharmaceuticals Inc. Plaquenil, Hydroxychloroquine Sulfate Tablets, USP [Internet]. U.S. Food and Drug Administration website; 2015. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009768s037s045s047lbl.pdf .</Citation>
</Reference>
<Reference>
<Citation>Wallace DJ. Antimalarial drugs in the treatment of rheumatic disease [internet]. UpToDate; 2020. Available from: https://www.uptodate.com/contents/antimalarial-drugs-in-the-treatment-of-rheumatic-disease .</Citation>
</Reference>
<Reference>
<Citation>Singal AK, Anderson KE. Porphyria cutanea tarda and hepatoerythropoietic porphyria: management and prognosis [Internet]. UpToDate; 2019. Available from: https://www.uptodate.com/contents/porphyria-cutanea-tarda-and-hepatoerythropoietic-porphyria-pathogenesis-clinical-manifestations-and-diagnosis .</Citation>
</Reference>
<Reference>
<Citation>Anderson, A et. al. Diagnosis and Management of Q Fever — United States, 2013: Recommendations from CDC and the Q Fever Working Group [Internet]. CDC; 2013. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6203a1.htm .</Citation>
</Reference>
<Reference>
<Citation>Lexicomp. Hydroxychloroquine: Drug Information [Internet]. UpToDate; 2020. Available from: https://www.uptodate.com/contents/hydroxychloroquine-drug-information .</Citation>
</Reference>
<Reference>
<Citation>Tett SE, Cutler DJ, Day RO, Brown KF. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br J Clin Pharmacol. 1989;27(6):771-9. Available from: https://doi.org/10.1111/j.1365-2125.1989.tb03439.x , 1989.</Citation>
</Reference>
<Reference>
<Citation>Schrezenmeier, E., Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020; 155–166. Available from: https://doi.org/10.1038/s41584-020-0372-x .</Citation>
</Reference>
<Reference>
<Citation>Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23(5):231-69. Available form: https://doi.org/10.1007/s10787-015-0239-y , 2015.</Citation>
</Reference>
<Reference>
<Citation>Ophthalmology AAo. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy – 2016 [Internet]. AAO Quality of Care Secretariat, Hoskins Center for Quality Eye Care: American Academy of Ophthalmology; 2016. p. 1386–1394. Available from: https://www.aao.org/clinical-statement/revised-recommendations-on-screening-chloroquine-h .</Citation>
</Reference>
<Reference>
<Citation>Browning, DJ et. al. Pharmacology of chloroquine and hydroxychloroquine. In: Hydroxychloroquine and chloroquine retinopathy. Springer, New York, NY; 2014. Available from: https://doi.org/10.1007/978-1-4939-0597-3_2 .</Citation>
</Reference>
<Reference>
<Citation>Mackenzie AH. Pharmacologic actions of 4-aminoquinoline compounds. Am J Med. 1983;75(1A):5-10. Available from: https://doi.org/10.1016/0002-9343(83)91264-0 , 1983.</Citation>
</Reference>
<Reference>
<Citation>McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983;75(1A):11-8. Available from: https://doi.org/10.1016/0002-9343(83)91265-2 , 1983.</Citation>
</Reference>
<Reference>
<Citation>Tett SE, Cutler DJ, Day RO, Brown KF. A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers. Br J Clin Pharmacol. 1988;26(3):303-13. Available from: https://doi.org/10.1111/j.1365-2125.1988.tb05281.x , 1988.</Citation>
</Reference>
<Reference>
<Citation>Costedoat-Chalumeau N, LE Guern V, Piette JC. Routine hydroxychloroquine blood concentration measurement in systemic lupus erythematosus reaches adulthood. J Rheumatol. 2015;42(11):1997-9. Available from: https://doi.org/10.3899/jrheum.151094 , 2015.</Citation>
</Reference>
<Reference>
<Citation>Tett S, Day R, Cutler D. Hydroxychloroquine relative bioavailability: within subject reproducibility. Br J Clin Pharmacol. 1996;41(3):244-6. Available from: https://doi.org/10.1111/j.1365-2125.1996.tb00190.x , 1996.</Citation>
</Reference>
<Reference>
<Citation>Wallace DJ, Gudsoorkar VS, Weisman MH, Venuturupalli SR. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol. 2012;8(9):522-33. Available: https://doi.org/10.1038/nrrheum.2012.106 , 2012.</Citation>
</Reference>
<Reference>
<Citation>Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med. 2020;12(8):e12476. Available from: https://doi.org/10.15252/emmm.202012476 .</Citation>
</Reference>
<Reference>
<Citation>Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2 Suppl 1):82-91. Available from: https://doi.org/10.1016/S0049-0172(10)80012-5 , 1993.</Citation>
</Reference>
<Reference>
<Citation>An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol. 2015;194(9):4089-93. Available from: https://doi.org/10.4049/jimmunol.1402793 , 2015.</Citation>
</Reference>
<Reference>
<Citation>de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495-531. Available from: https://doi.org/10.1016/0006-2952(74)90174-9 , 1974.</Citation>
</Reference>
<Reference>
<Citation>Perera RM, Zoncu R. The lysosome as a regulatory hub. Annu Rev Cell Dev Biol. 2016;32:223-53. Available from: https://doi.org/10.1146/annurev-cellbio-111315-125125 , 2016.</Citation>
</Reference>
<Reference>
<Citation>• Lamming DW, Bar-Peled L. Lysosome: the metabolic signaling hub. Traffic. 2019;20(1):27–38. Available from: https://doi.org/10.1111/tra.12617 . Identifies the lysosome as a dynamic organelle that is integral to coordinating numerous signaling pathways. If the lysosome is dysregulated, human pathology can result.</Citation>
</Reference>
<Reference>
<Citation>•• Lu S, Sung T, Lin N, Abraham RT, Jessen BA. Lysosomal adaptation: how cells respond to lysosomotropic compounds. PLoS one. 2017;12(3):e0173771. Available from: https://doi.org/10.1371/journal.pone.0173771 . Demonstrates the transience of lysosomal pH increase and proposes alternative HCQ mechanisms.</Citation>
</Reference>
<Reference>
<Citation>Monteith AJ, Vincent HA, Kang S, Li P, Claiborne TM, Rajfur Z, et al. mTORC2 activity disrupts lysosome acidification in systemic lupus erythematosus by impairing caspase-1 cleavage of Rab39a. J Immunol. 2018;201(2):371-82. Available from: https://doi.org/10.4049/jimmunol.1701712 , 2018.</Citation>
</Reference>
<Reference>
<Citation>Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42. Available from: https://doi.org/10.1016/j.cell.2007.12.018 , 2008.</Citation>
</Reference>
<Reference>
<Citation>• Monteith AJ, Kang S, Scott E, Hillman K, Rajfur Z, Jacobson K, et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc Natl Acad Sci U S a. 2016;113(15):E2142-51. Available from: https://doi.org/10.1073/pnas.1513943113 . Lysosomal defects may contribute to the pathogenesis of autoimmunity in lupus.</Citation>
</Reference>
<Reference>
<Citation>• Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–55. Available from: https://doi.org/10.1080/15548627.2018.1474314 . Antimalarials may disrupt endosome-lysosome fusion, preventing autophagic flux.</Citation>
</Reference>
<Reference>
<Citation>Yin H, Wu H, Chen Y, Zhang J, Zheng M, Chen G, et al. The therapeutic and pathogenic role of autophagy in autoimmune diseases. Front Immunol. 2018;9:1512. Available from: https://doi.org/10.3389/fimmu.2018.01512 , 2018.</Citation>
</Reference>
<Reference>
<Citation>Costedoat-Chalumeau N, Amoura Z, Huong DL, Lechat P, Piette JC. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun Rev. 2005;4(2):111-5. Available from: https://doi.org/10.1016/j.autrev.2004.11.009 , 2005.</Citation>
</Reference>
<Reference>
<Citation>Sammartino et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis & Rheumatology. 2020; 72(4): 529–556. Available from: https://doi.org/10.1002/art.41191</Citation>
</Reference>
<Reference>
<Citation>Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55(5):105938. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105938 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Wallace DJ, Linker-Israeli M, Metzger AL, Stecher VJ. The relevance of antimalarial therapy with regard to thrombosis, hypercholesterolemia and cytokines in SLE. Lupus. 1993;2 Suppl 1:S13-5. Available from: https://doi.org/10.1177/0961203393002001041 , 1993.</Citation>
</Reference>
<Reference>
<Citation>van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol. 1997;24(1):55–60. Available from: https://pubmed.ncbi.nlm.nih.gov/9002011/ .</Citation>
</Reference>
<Reference>
<Citation>Paton NI, Goodall RL, Dunn DT, Franzen S, Collaco-Moraes Y, Gazzard BG, et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA. 2012;308(4):353–61. https://doi.org/10.1001/jama.2012.6936 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2012.6936</ArticleId>
<ArticleId IdType="pubmed">22820788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K. Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther. 1996;18(6):1080-92. Available from: https://doi.org/10.1016/S0149-2918(96)80063-4 , 1996.</Citation>
</Reference>
<Reference>
<Citation>Ooi EE, Chew JS, Loh JP, Chua RC. In vitro inhibition of human influenza A virus replication by chloroquine. Virol J. 2006;3:39. Available from: https://doi.org/10.1186/1743-422X-3-39 , 2006.</Citation>
</Reference>
<Reference>
<Citation>Shibata M, Aoki H, Tsurumi T, Sugiura Y, Nishiyama Y, Suzuki S, et al. Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine. J Gen Virol. 1983;64(Pt 5):1149-56. Available from: https://doi.org/10.1099/0022-1317-64-5-1149 , 1983.</Citation>
</Reference>
<Reference>
<Citation>Wu L, Dai J, Zhao X, Chen Y, Wang G, Li K. Chloroquine enhances replication of influenza A virus A/WSN/33 (H1N1) in dose-, time-, and MOI-dependent manners in human lung epithelial cells A549. J Med Virol. 2015;87(7):1096-103. Available from: https://doi.org/10.1002/jmv.24135 , 2015.</Citation>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. Availble from: https://doi.org/10.1186/1743-422X-2-69 , 2005.</Citation>
</Reference>
<Reference>
<Citation>Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. Available from: https://doi.org/10.1038/nature02145 , 2003.</Citation>
</Reference>
<Reference>
<Citation>Takayama K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol Sci. 2020 Aug;41(8):513–517. Available from: https://doi.org/10.1016/j.tips.2020.05.005</Citation>
</Reference>
<Reference>
<Citation>CDC. CDC SARS Response Timeline [Internet}. 2020. Available from: https://www.cdc.gov/about/history/sars/timeline.htm .</Citation>
</Reference>
<Reference>
<Citation>Johns Hopkins University of Medicine. Coronavirus Resource Center [Internet]. 2020. Available on: https://coronavirus.jhu.edu/map.html .</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-9. Available from: https://doi.org/10.1093/cid/ciaa237 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41421-020-0156-0</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>•• Fan J, Zhang X, Liu J, Yang Y, Zheng N, Liu Q, et al. Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: a critical step in treating COVID-19 patients. Clin Infect Dis. 2020. Available form: https://doi.org/10.1093/cid/ciaa623 . Early SARS-CoV-2 in vitro studies to establish the HCQ dose necessary to achieve antiviral activity in vivo likely did not account for differences between the in vitro assay and the in vivo target tissue.</Citation>
</Reference>
<Reference>
<Citation>Balevic, S et al. Dr. Balevic, et al, reply. The Journal of Rheumatology. May 2020. Available from: https://doi.org/10.3899/jrheum.200681 .</Citation>
</Reference>
<Reference>
<Citation>Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-47. Available from: https://doi.org/10.2353/ajpath.2007.061088 , 2007.</Citation>
</Reference>
<Reference>
<Citation>Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. Available from: https://doi.org/10.1016/S0140-6736(20)30183-5 , 2020.</Citation>
</Reference>
<Reference>
<Citation>• Chen et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020;130(5):2620–2629. Available from: https://doi.org/10.1172/JCI137244 . Highlights role of hyperinflammation and immune system dysregulation in the pathogenesis of COVID-19.</Citation>
</Reference>
<Reference>
<Citation>Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: role of chloroquine and anti-IL-6 monoclonal antibodies. Int J Antimicrob Agents. 2020;55(6):105982. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105982 .</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105949 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Mahévas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:1–9. Available from: https://doi.org/10.1136/bmj.m1844 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020;382:2411–8. https://doi.org/10.1056/NEJMoa2012410 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2012410</ArticleId>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA - J Am Med Assoc. 2020;323:2493–502. https://doi.org/10.1001/jama.2020.8630 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2020.8630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paccoud O, Tubach F, Baptiste A, Bleibtreu A, Hajage D, Monsel G, Tebano G, Boutolleau D, Klement E, Godefroy N, Palich R, Itani O, Fayssal A, Valantin MA, Tubiana R, Burrel S, Calvez V, Caumes E, Marcelin AG, Pourcher V Compassionate use of hydroxychloroquine in clinical practice for patients with mild to severe Covid-19 in a French university hospital. Clin Infect Dis. Oxford University Press (OUP); 2020 [cited 2020 Sep 28]; Available from: https://doi.org/10.1093/cid/ciaa791 .</Citation>
</Reference>
<Reference>
<Citation>Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396–403. Available from: https://doi.org/10.1016/j.ijid.2020.06.099 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. Available from: https://doi.org/10.1136/bmj.m1849 .</Citation>
</Reference>
<Reference>
<Citation>Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383:517–25. https://doi.org/10.1056/NEJMoa2016638 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2016638</ArticleId>
<ArticleId IdType="pubmed">32492293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitjà O, Corbacho-Monné MB, Ubals MB, Tebe C, Peñafiel J, Tobias A, et al. Hydroxychloroquine for early treatment of adults with mild Covid-19: a randomized-controlled trial. Oriol Mitjà, Omi. Available from: https://doi.org/10.1093/cid/ciaa1009 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Skipper CP, Pastick KA, Engen NW, Bangdiwala AS, Abassi M, Lofgren SM, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19. Ann Intern Med. 2020;0:1–24. Available from: https://doi.org/10.7326/M20-4207 , 2020.</Citation>
</Reference>
<Reference>
<Citation>Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020;383:1–12. https://doi.org/10.1056/NEJMoa2019014 .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2019014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Abella BS, Jolkovsky EL, Biney BT, Uspal JE, Hyman MC, Frank I, et al. Efficacy and safety of hydroxychloroquine vs placebo for pre-exposure SARS-CoV-2 prophylaxis among health care workers. JAMA Intern Med Available from. 2020. https://doi.org/10.1001/jamainternmed.2020.6319 .</Citation>
</Reference>
<Reference>
<Citation>Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Preprint. medRxiv. Apr 10 2020. Available from: https://doi.org/10.1101/2020.03.22.20040758 .</Citation>
</Reference>
<Reference>
<Citation>Magagnoli J, Narendran S, Pereira F, Cummings TH, Hardin JW, Sutton SS, et al. Outcomes of hydroxychloroquine usage in United States Veterans hospitalized with COVID-19. Med (N Y). 2020. Available from: https://doi.org/10.1016/j.medj.2020.06.001 .</Citation>
</Reference>
<Reference>
<Citation>Appelqvist H, Waster P, Kagedal K, Ollinger K. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol. 2013;5:214–226. Available from: https://doi.org/10.1093/jmcb/mjt022 , 2013.</Citation>
</Reference>
<Reference>
<Citation>Furst DE, Lindsley H, Baethge B, Botstein GR, Caldwell J, Dietz F, et al. Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis: a randomized, double-blind six-week trial with eighteen-week extension. Arthritis Rheum. 1999;42(2):357–65. https://doi.org/10.1002/1529-0131(199902)42:2<357::AID-ANR19>3.0.CO;2-J .</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/1529-0131(199902)42:2<357::AID-ANR19>3.0.CO;2-J</ArticleId>
<ArticleId IdType="pubmed">10025931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Balevic SJ, Hornik CP, Green TP, Clowse MEB, Gonzalez D, Maharaj AR, et al. Hydroxychloroquine in patients with rheumatic disease complicated by COVID-19: clarifying target exposures and the need for clinical trials. J Rheumatol. 2020. Available from: https://doi.org/10.3899/jrheum.200493 .</Citation>
</Reference>
</ReferenceList>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Udupa, Akrithi" sort="Udupa, Akrithi" uniqKey="Udupa A" first="Akrithi" last="Udupa">Akrithi Udupa</name>
</noRegion>
<name sortKey="Balevic, Stephen J" sort="Balevic, Stephen J" uniqKey="Balevic S" first="Stephen J" last="Balevic">Stephen J. Balevic</name>
<name sortKey="Leverenz, David" sort="Leverenz, David" uniqKey="Leverenz D" first="David" last="Leverenz">David Leverenz</name>
<name sortKey="Rogers, Jennifer L" sort="Rogers, Jennifer L" uniqKey="Rogers J" first="Jennifer L" last="Rogers">Jennifer L. Rogers</name>
<name sortKey="Sadun, Rebecca E" sort="Sadun, Rebecca E" uniqKey="Sadun R" first="Rebecca E" last="Sadun">Rebecca E. Sadun</name>
<name sortKey="Tarrant, Teresa K" sort="Tarrant, Teresa K" uniqKey="Tarrant T" first="Teresa K" last="Tarrant">Teresa K. Tarrant</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000450 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000450 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33475900
   |texte=   Hydroxychloroquine and COVID-19: a Rheumatologist's Take on the Lessons Learned.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33475900" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021