Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine.

Identifieur interne : 001439 ( Main/Curation ); précédent : 001438; suivant : 001440

Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine.

Auteurs : Srinivasa Reddy Bonam [France] ; Sylviane Muller [France] ; Jagadeesh Bayry [France] ; Daniel J. Klionsky [États-Unis]

Source :

RBID : pubmed:32522067

Descripteurs français

English descriptors

Abstract

During the last week of December 2019, Wuhan (China) was confronted with the first case of respiratory tract disease 2019 (coronavirus disease 2019, COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid outbreak of the transmission (~3.64 million positive cases and high mortality as of 5 May 2020), the world is looking for immediate and better therapeutic options. Still, much information is not known, including origin of the disease, complete genomic characterization, mechanism of transmission dynamics, extent of spread, possible genetic predisposition, clinical and biological diagnosis, complete details of disease-induced pathogenicity, and possible therapeutic options. Although several known drugs are already under clinical evaluation with many in repositioning strategies, much attention has been paid to the aminoquinoline derivates, chloroquine (CQ) and hydroxychloroquine (HCQ). These molecules are known regulators of endosomes/lysosomes, which are subcellular organelles central to autophagy processes. By elevating the pH of acidic endosomes/lysosomes, CQ/HCQ inhibit the autophagic process. In this short perspective, we discuss the roles of CQ/HCQ in the treatment of COVID-19 patients and propose new ways of possible treatment for SARS-CoV-2 infection based on the molecules that selectivity target autophagy.Abbreviation: ACE2: angiotensin I converting enzyme 2; CoV: coronavirus; CQ: chloroquine; ER: endoplasmic reticulum; HCQ: hydroxychloroquine; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

DOI: 10.1080/15548627.2020.1779467
PubMed: 32522067
PubMed Central: PMC7755324

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32522067

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine.</title>
<author>
<name sortKey="Bonam, Srinivasa Reddy" sort="Bonam, Srinivasa Reddy" uniqKey="Bonam S" first="Srinivasa Reddy" last="Bonam">Srinivasa Reddy Bonam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Muller, Sylviane" sort="Muller, Sylviane" uniqKey="Muller S" first="Sylviane" last="Muller">Sylviane Muller</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis , Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis , Strasbourg</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University , Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University , Strasbourg</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS) , Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS) , Strasbourg</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bayry, Jagadeesh" sort="Bayry, Jagadeesh" uniqKey="Bayry J" first="Jagadeesh" last="Bayry">Jagadeesh Bayry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32522067</idno>
<idno type="pmid">32522067</idno>
<idno type="doi">10.1080/15548627.2020.1779467</idno>
<idno type="pmc">PMC7755324</idno>
<idno type="wicri:Area/Main/Corpus">001439</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001439</idno>
<idno type="wicri:Area/Main/Curation">001439</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001439</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine.</title>
<author>
<name sortKey="Bonam, Srinivasa Reddy" sort="Bonam, Srinivasa Reddy" uniqKey="Bonam S" first="Srinivasa Reddy" last="Bonam">Srinivasa Reddy Bonam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Muller, Sylviane" sort="Muller, Sylviane" uniqKey="Muller S" first="Sylviane" last="Muller">Sylviane Muller</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis , Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis , Strasbourg</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University , Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University , Strasbourg</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS) , Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS) , Strasbourg</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bayry, Jagadeesh" sort="Bayry, Jagadeesh" uniqKey="Bayry J" first="Jagadeesh" last="Bayry">Jagadeesh Bayry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (drug effects)</term>
<term>Autophagy (physiology)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (immunology)</term>
<term>COVID-19 (pathology)</term>
<term>COVID-19 (virology)</term>
<term>Chloroquine (pharmacology)</term>
<term>Chloroquine (therapeutic use)</term>
<term>Endosomes (drug effects)</term>
<term>Endosomes (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen-Ion Concentration (drug effects)</term>
<term>Hydroxychloroquine (pharmacology)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Immunity, Innate (physiology)</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (metabolism)</term>
<term>Molecular Targeted Therapy (methods)</term>
<term>Molecular Targeted Therapy (trends)</term>
<term>SARS-CoV-2 (drug effects)</term>
<term>SARS-CoV-2 (immunology)</term>
<term>SARS-CoV-2 (pathogenicity)</term>
<term>Severity of Illness Index (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Autophagie (physiologie)</term>
<term>Chloroquine (pharmacologie)</term>
<term>Chloroquine (usage thérapeutique)</term>
<term>Concentration en ions d'hydrogène (effets des médicaments et des substances chimiques)</term>
<term>Endosomes (effets des médicaments et des substances chimiques)</term>
<term>Endosomes (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (pharmacologie)</term>
<term>Hydroxychloroquine (usage thérapeutique)</term>
<term>Immunité innée (physiologie)</term>
<term>Indice de gravité de la maladie (MeSH)</term>
<term>Lysosomes (effets des médicaments et des substances chimiques)</term>
<term>Lysosomes (métabolisme)</term>
<term>Thérapie moléculaire ciblée (méthodes)</term>
<term>Thérapie moléculaire ciblée (tendances)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Endosomes</term>
<term>Hydrogen-Ion Concentration</term>
<term>Lysosomes</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Autophagie</term>
<term>Concentration en ions d'hydrogène</term>
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>COVID-19</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Molecular Targeted Therapy</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Endosomes</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Thérapie moléculaire ciblée</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Autophagie</term>
<term>Immunité innée</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
<term>Immunity, Innate</term>
</keywords>
<keywords scheme="MESH" qualifier="tendances" xml:lang="fr">
<term>Thérapie moléculaire ciblée</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Molecular Targeted Therapy</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Severity of Illness Index</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Indice de gravité de la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During the last week of December 2019, Wuhan (China) was confronted with the first case of respiratory tract disease 2019 (coronavirus disease 2019, COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid outbreak of the transmission (~3.64 million positive cases and high mortality as of 5 May 2020), the world is looking for immediate and better therapeutic options. Still, much information is not known, including origin of the disease, complete genomic characterization, mechanism of transmission dynamics, extent of spread, possible genetic predisposition, clinical and biological diagnosis, complete details of disease-induced pathogenicity, and possible therapeutic options. Although several known drugs are already under clinical evaluation with many in repositioning strategies, much attention has been paid to the aminoquinoline derivates, chloroquine (CQ) and hydroxychloroquine (HCQ). These molecules are known regulators of endosomes/lysosomes, which are subcellular organelles central to autophagy processes. By elevating the pH of acidic endosomes/lysosomes, CQ/HCQ inhibit the autophagic process. In this short perspective, we discuss the roles of CQ/HCQ in the treatment of COVID-19 patients and propose new ways of possible treatment for SARS-CoV-2 infection based on the molecules that selectivity target autophagy.
<b>Abbreviation:</b>
ACE2: angiotensin I converting enzyme 2; CoV: coronavirus; CQ: chloroquine; ER: endoplasmic reticulum; HCQ: hydroxychloroquine; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32522067</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>04</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine.</ArticleTitle>
<Pagination>
<MedlinePgn>2260-2266</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15548627.2020.1779467</ELocationID>
<Abstract>
<AbstractText>During the last week of December 2019, Wuhan (China) was confronted with the first case of respiratory tract disease 2019 (coronavirus disease 2019, COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid outbreak of the transmission (~3.64 million positive cases and high mortality as of 5 May 2020), the world is looking for immediate and better therapeutic options. Still, much information is not known, including origin of the disease, complete genomic characterization, mechanism of transmission dynamics, extent of spread, possible genetic predisposition, clinical and biological diagnosis, complete details of disease-induced pathogenicity, and possible therapeutic options. Although several known drugs are already under clinical evaluation with many in repositioning strategies, much attention has been paid to the aminoquinoline derivates, chloroquine (CQ) and hydroxychloroquine (HCQ). These molecules are known regulators of endosomes/lysosomes, which are subcellular organelles central to autophagy processes. By elevating the pH of acidic endosomes/lysosomes, CQ/HCQ inhibit the autophagic process. In this short perspective, we discuss the roles of CQ/HCQ in the treatment of COVID-19 patients and propose new ways of possible treatment for SARS-CoV-2 infection based on the molecules that selectivity target autophagy.
<b>Abbreviation:</b>
ACE2: angiotensin I converting enzyme 2; CoV: coronavirus; CQ: chloroquine; ER: endoplasmic reticulum; HCQ: hydroxychloroquine; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bonam</LastName>
<ForeName>Srinivasa Reddy</ForeName>
<Initials>SR</Initials>
<Identifier Source="ORCID">0000-0002-2888-2418</Identifier>
<AffiliationInfo>
<Affiliation>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muller</LastName>
<ForeName>Sylviane</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-0481-0620</Identifier>
<AffiliationInfo>
<Affiliation>CNRS and Strasbourg University Unit Biotechnology and Cell signalling / Laboratory of excellence Medalis , Strasbourg, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University , Strasbourg, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Chair of Therapeutic Immunology, University of Strasbourg Institute for Advanced Study (USIAS) , Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bayry</LastName>
<ForeName>Jagadeesh</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-0498-9808</Identifier>
<AffiliationInfo>
<Affiliation>Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris , Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klionsky</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
<Identifier Source="ORCID">0000-0002-7828-8118</Identifier>
<AffiliationInfo>
<Affiliation>Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058990" MajorTopicYN="N">Molecular Targeted Therapy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012720" MajorTopicYN="N">Severity of Illness Index</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Autophagy</Keyword>
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">cytokine storm syndrome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32522067</ArticleId>
<ArticleId IdType="doi">10.1080/15548627.2020.1779467</ArticleId>
<ArticleId IdType="pmc">PMC7755324</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet Respir Med. 2020 Apr;8(4):420-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32085846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Feb 20;382(8):727-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31978945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2006 Mar 3;98(4):463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2020 Jun 16;52(6):910-941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32505227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Drug Metab Pharmacokinet. 2020 Dec;45(6):715-723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32780273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):185-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32164085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomedicines. 2020 Mar 01;8(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32121613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):270-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Gastroenterol Hepatol. 2020 May;5(5):428-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 14;369:m1849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Jul 06;9:1497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30034390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 Jun;8(6):539-541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32304640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2020 Jul 1;75(7):1667-1670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32196083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2019 Jul;71:21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30844511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Jan;79(1):175-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6798568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33731711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2018 Jan;149:143-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29175128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1054-1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2020 May;26(5):483-495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32359479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 16;6(1):14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33723226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Arthritis Rheum. 1993 Oct;23(2 Suppl 1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 Mar - Apr;34:101663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Aug 6;383(6):517-525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32492293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lupus. 2006;15(5):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16761500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Rheumatol. 2016 Aug;22(5):287-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27464781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2020 Apr;15(4):247-249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32203437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2019 Jun;26(6):481-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31160783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 14;369:m1844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2020 Mar;16(3):155-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32034323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 1993 Feb-Mar;57(2-3):203-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8361993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Renal Physiol. 2008 May;294(5):F1050-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Med Res. 2020 May;151(5):459-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32611916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 15;186(8):4794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 May 1;248:117477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32119961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2009 Dec 25;625(1-3):220-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19836374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 5;382(10):929-936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32004427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Apr 03;7(4):1700-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Netw Open. 2020 Apr 24;3(4):e208857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32330277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2020 Mar;19(3):149-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32127666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7815):282-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32218527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2020 Apr;5(4):562-569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32094589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2020 Apr 6;30(7):1346-1351.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32197085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2014 Oct;171(19):4337-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24902607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep Med. 2020 May 19;1(2):100016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32562483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Res Cardiol. 2017 Mar;106(3):234-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28004183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2020 May 19;52(5):731-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32325025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 1997 Jan;24(1):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rheumatology (Oxford). 2006 Jun;45(6):703-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 18;382(25):2411-2418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Sep;121(9):3554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Sep;585(7826):584-587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32698191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Aug 1;165(3):1534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10903761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Crit Care. 2020 Jun;57:279-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1033-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32192578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8876229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2020 Oct;63(10):1515-1521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32418114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liver Int. 2015 Mar;35(3):1063-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24990399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Germs. 2019 Mar 01;9(1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31119115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 May;92(5):479-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Apr;10(4):562-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24492472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2006 Feb;6(2):67-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Jun;26(6):808-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32488217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2020 May;27(5):1451-1454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2021 Feb 19;16(2):e0245048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33606702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2019 Dec;18(12):923-948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31477883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001439 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001439 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32522067
   |texte=   Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:32522067" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021