Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.

Identifieur interne : 000D50 ( Main/Corpus ); précédent : 000D49; suivant : 000D51

Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.

Auteurs : Katya Uzunova ; Elena Filipova ; Velichka Pavlova ; Toni Vekov

Source :

RBID : pubmed:32861965

English descriptors

Abstract

Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is currently no licensed antiviral treatment available to prevent human CoV infection. The widespread clinical use and existing knowledge on antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine in the treatment of previous epidemic diseases, namely, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), may be helpful in the combat with novel SARS-CoV-2 infection. Recent clinical evidence didn't confirm the beneficial role of lopinavir/ritonavir and chloroquine/hydroxychloroquine for COVID-19 patients and their use was reassessed. We provide an overview of the current evidence into the mechanisms of action of these available drugs which are repurposed for treatment of the new virus. Available data identifies remdesivir as an adenosine analogue that can target the RNA-dependent RNA polymerase and block viral RNA synthesis. It has been a promising antiviral drug against a wide array of RNA viruses. 3CLpro is a major CoV protease that cleaves the large replicase polyproteins during viral replication and can be targeted by the protease inhibitor lopinavir/ritonavir but the clinical effects are controversial. Chloroquine/Hydroxychloroquine could impair the replication of SARSCoV-2 by multiple mechanisms and their immunomodulatory properties could ameliorate clinical manifestations that are mediated by immune reactions of the host although its beneficial effects are under question and need to be proven at the clinical level. Existing in vitro and in vivo evidence delineate the molecular mechanisms of these drugs in CoV-infected cells. Numerous studies demonstrated the ability of remdesivir to inhibit SARS-CoV-2 replication but future research would be needed to understand the exact mode of action of lopinavir/ritonavir and chloroquine/hydroxychloroquine in SARS-CoV-2 infected cells and to use this knowledge in the treatment of the current COVID-19.

DOI: 10.1016/j.biopha.2020.110668
PubMed: 32861965
PubMed Central: PMC7444940

Links to Exploration step

pubmed:32861965

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.</title>
<author>
<name sortKey="Uzunova, Katya" sort="Uzunova, Katya" uniqKey="Uzunova K" first="Katya" last="Uzunova">Katya Uzunova</name>
<affiliation>
<nlm:affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: k.uzunova.hq@tchaikapharma.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filipova, Elena" sort="Filipova, Elena" uniqKey="Filipova E" first="Elena" last="Filipova">Elena Filipova</name>
<affiliation>
<nlm:affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: e.filipova.hq@tchaikapharma.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pavlova, Velichka" sort="Pavlova, Velichka" uniqKey="Pavlova V" first="Velichka" last="Pavlova">Velichka Pavlova</name>
<affiliation>
<nlm:affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: v.pavlova.hq@tchaikapharma.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vekov, Toni" sort="Vekov, Toni" uniqKey="Vekov T" first="Toni" last="Vekov">Toni Vekov</name>
<affiliation>
<nlm:affiliation>Medical University, Dean of Faculty of Pharmacy, 1 Sv. Kliment Ohriski Str., 5800, Pleven, Bulgaria. Electronic address: t.vekov.mu.pleven@abv.bg.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32861965</idno>
<idno type="pmid">32861965</idno>
<idno type="doi">10.1016/j.biopha.2020.110668</idno>
<idno type="pmc">PMC7444940</idno>
<idno type="wicri:Area/Main/Corpus">000D50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.</title>
<author>
<name sortKey="Uzunova, Katya" sort="Uzunova, Katya" uniqKey="Uzunova K" first="Katya" last="Uzunova">Katya Uzunova</name>
<affiliation>
<nlm:affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: k.uzunova.hq@tchaikapharma.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filipova, Elena" sort="Filipova, Elena" uniqKey="Filipova E" first="Elena" last="Filipova">Elena Filipova</name>
<affiliation>
<nlm:affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: e.filipova.hq@tchaikapharma.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pavlova, Velichka" sort="Pavlova, Velichka" uniqKey="Pavlova V" first="Velichka" last="Pavlova">Velichka Pavlova</name>
<affiliation>
<nlm:affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: v.pavlova.hq@tchaikapharma.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vekov, Toni" sort="Vekov, Toni" uniqKey="Vekov T" first="Toni" last="Vekov">Toni Vekov</name>
<affiliation>
<nlm:affiliation>Medical University, Dean of Faculty of Pharmacy, 1 Sv. Kliment Ohriski Str., 5800, Pleven, Bulgaria. Electronic address: t.vekov.mu.pleven@abv.bg.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie</title>
<idno type="eISSN">1950-6007</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Monophosphate (analogs & derivatives)</term>
<term>Adenosine Monophosphate (pharmacology)</term>
<term>Alanine (analogs & derivatives)</term>
<term>Alanine (pharmacology)</term>
<term>Animals (MeSH)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (isolation & purification)</term>
<term>COVID-19 (MeSH)</term>
<term>Chloroquine (pharmacology)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (virology)</term>
<term>Drug Combinations (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (pharmacology)</term>
<term>Lopinavir (pharmacology)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Ritonavir (pharmacology)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Adenosine Monophosphate</term>
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adenosine Monophosphate</term>
<term>Alanine</term>
<term>Antiviral Agents</term>
<term>Chloroquine</term>
<term>Hydroxychloroquine</term>
<term>Lopinavir</term>
<term>Ritonavir</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Drug Combinations</term>
<term>Humans</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is currently no licensed antiviral treatment available to prevent human CoV infection. The widespread clinical use and existing knowledge on antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine in the treatment of previous epidemic diseases, namely, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), may be helpful in the combat with novel SARS-CoV-2 infection. Recent clinical evidence didn't confirm the beneficial role of lopinavir/ritonavir and chloroquine/hydroxychloroquine for COVID-19 patients and their use was reassessed. We provide an overview of the current evidence into the mechanisms of action of these available drugs which are repurposed for treatment of the new virus. Available data identifies remdesivir as an adenosine analogue that can target the RNA-dependent RNA polymerase and block viral RNA synthesis. It has been a promising antiviral drug against a wide array of RNA viruses. 3CLpro is a major CoV protease that cleaves the large replicase polyproteins during viral replication and can be targeted by the protease inhibitor lopinavir/ritonavir but the clinical effects are controversial. Chloroquine/Hydroxychloroquine could impair the replication of SARSCoV-2 by multiple mechanisms and their immunomodulatory properties could ameliorate clinical manifestations that are mediated by immune reactions of the host although its beneficial effects are under question and need to be proven at the clinical level. Existing in vitro and in vivo evidence delineate the molecular mechanisms of these drugs in CoV-infected cells. Numerous studies demonstrated the ability of remdesivir to inhibit SARS-CoV-2 replication but future research would be needed to understand the exact mode of action of lopinavir/ritonavir and chloroquine/hydroxychloroquine in SARS-CoV-2 infected cells and to use this knowledge in the treatment of the current COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32861965</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1950-6007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>131</Volume>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie</Title>
<ISOAbbreviation>Biomed Pharmacother</ISOAbbreviation>
</Journal>
<ArticleTitle>Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.</ArticleTitle>
<Pagination>
<MedlinePgn>110668</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0753-3322(20)30861-1</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.biopha.2020.110668</ELocationID>
<Abstract>
<AbstractText>Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is currently no licensed antiviral treatment available to prevent human CoV infection. The widespread clinical use and existing knowledge on antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine in the treatment of previous epidemic diseases, namely, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), may be helpful in the combat with novel SARS-CoV-2 infection. Recent clinical evidence didn't confirm the beneficial role of lopinavir/ritonavir and chloroquine/hydroxychloroquine for COVID-19 patients and their use was reassessed. We provide an overview of the current evidence into the mechanisms of action of these available drugs which are repurposed for treatment of the new virus. Available data identifies remdesivir as an adenosine analogue that can target the RNA-dependent RNA polymerase and block viral RNA synthesis. It has been a promising antiviral drug against a wide array of RNA viruses. 3CLpro is a major CoV protease that cleaves the large replicase polyproteins during viral replication and can be targeted by the protease inhibitor lopinavir/ritonavir but the clinical effects are controversial. Chloroquine/Hydroxychloroquine could impair the replication of SARSCoV-2 by multiple mechanisms and their immunomodulatory properties could ameliorate clinical manifestations that are mediated by immune reactions of the host although its beneficial effects are under question and need to be proven at the clinical level. Existing in vitro and in vivo evidence delineate the molecular mechanisms of these drugs in CoV-infected cells. Numerous studies demonstrated the ability of remdesivir to inhibit SARS-CoV-2 replication but future research would be needed to understand the exact mode of action of lopinavir/ritonavir and chloroquine/hydroxychloroquine in SARS-CoV-2 infected cells and to use this knowledge in the treatment of the current COVID-19.</AbstractText>
<CopyrightInformation>Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uzunova</LastName>
<ForeName>Katya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: k.uzunova.hq@tchaikapharma.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filipova</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: e.filipova.hq@tchaikapharma.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pavlova</LastName>
<ForeName>Velichka</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Tchaikapharma High Quality Medicines Inc., Science Department, 1 G.M. Dimitrov Blvd, 1172, Sofia, Bulgaria. Electronic address: v.pavlova.hq@tchaikapharma.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vekov</LastName>
<ForeName>Toni</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Medical University, Dean of Faculty of Pharmacy, 1 Sv. Kliment Ohriski Str., 5800, Pleven, Bulgaria. Electronic address: t.vekov.mu.pleven@abv.bg.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Biomed Pharmacother</MedlineTA>
<NlmUniqueID>8213295</NlmUniqueID>
<ISSNLinking>0753-3322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C558899">lopinavir-ritonavir drug combination</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2494G1JF75</RegistryNumber>
<NameOfSubstance UI="D061466">Lopinavir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3QKI37EEHE</RegistryNumber>
<NameOfSubstance UI="C000606551">remdesivir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>415SHH325A</RegistryNumber>
<NameOfSubstance UI="D000249">Adenosine Monophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O3J8G9O825</RegistryNumber>
<NameOfSubstance UI="D019438">Ritonavir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000249" MajorTopicYN="N">Adenosine Monophosphate</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004338" MajorTopicYN="N">Drug Combinations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061466" MajorTopicYN="N">Lopinavir</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019438" MajorTopicYN="N">Ritonavir</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antiviral mechanism</Keyword>
<Keyword MajorTopicYN="N">Chloroquine/hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Lopinavir/ritonavir</Keyword>
<Keyword MajorTopicYN="N">Remdesivir</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32861965</ArticleId>
<ArticleId IdType="pii">S0753-3322(20)30861-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.biopha.2020.110668</ArticleId>
<ArticleId IdType="pmc">PMC7444940</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1983 May;64(Pt 5):1149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6842189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2004 May 15;12(10):2517-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15110833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chest Med. 2017 Mar;38(1):71-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28159163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ther Drug Monit. 2011 Oct;33(5):573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21912331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2014 Feb;35(2):86-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Trace Elem Res. 2021 Feb;199(2):550-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32458149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):270-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Disord Drug Targets. 2009 Apr;9(2):223-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19275708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 22;395(10224):565-574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2020 Jun;178:104786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):221-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31987001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(2):215-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32391667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2001 Nov 23;15(17):2221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 Feb;174(2):450-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Chem Chemother. 2006;17(5):275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2006 May 29;3:39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16729896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 2;395(10234):1417-1418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32325026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 30;382(18):1708-1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2017 Jun 28;9(396):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2003 Jun 15;36(12):1585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2020 Mar 15;16(10):1724-1731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Digit Health. 2020 Jun;2(6):e286-e287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32363333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2010 Oct;14(10):2448-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19583815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med. 1983 Jul 18;75(1A):11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6408923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2016 May;15(5):327-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26868298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2019 Sep;169:104541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31233808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Acad Med Singap. 2007 Jun;36(6):438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17597972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun 24;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32579244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2001 Feb;20(3):137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2019 May 27;16(1):69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31133031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 Mar - Apr;34:101663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2003 Feb 1;94(1-2):36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2020 Mar;16(3):155-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32034323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10012-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Feb;23(2):300-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23208422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thorax. 2004 Mar;59(3):252-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2008 Feb;77(2):150-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 1993 Sep;80(1):127-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8244453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1991 Jul;88(1):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2056129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 May 1;248:117477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32119961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2009 Dec 25;625(1-3):220-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19836374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1997 May 15;158(10):4901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Mar 6;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29511076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Oct 1;290(13):1695-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14519691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lett. 2020 Jul;750:137489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32313296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmaceuticals (Basel). 2020 May 14;13(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32423027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Jun 15;170(12):6006-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12794128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2020 Apr 10;295(15):4773-4779</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32094225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Pathol. 1987 Dec;47(3):346-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3678466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Pediatr. 2020 Apr;63(4):119-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32252141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Feb;18(2):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1981 Sep;90(3):665-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6169733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2020 Jun;53(3):436-443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32307245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 17;531(7594):381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26934220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acquir Immune Defic Syndr. 2004 Mar 1;35(3):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15076236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Nov 17;4(11):e7870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jan 10;11(1):222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31924756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 1990 Apr;6(4):481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1692728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 25;286(8):6602-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 1997 Jan;24(1):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2012 Apr 15;22(8):2705-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Feb 21;5(212):ra16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Sep 19;202(6):817-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Aug 1;165(3):1534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10903761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Oct 8;323(1):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Immunol. 2003 Nov;23(6):477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2020 Jul 8;11(7):512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32641681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Aug 4;198(3):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12900525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2015 Sep 5;386(9997):995-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26049252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2003 Nov;3(11):722-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14592603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2013 Mar 25;31(13):1717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23380456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2020 May 15;295(20):6785-6797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32284326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 May;92(5):479-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2006 Feb;6(2):67-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2004 Sep;31(1):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15288617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Nov;100(2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23994190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2002 Jan;105(1):83-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11849318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res Perspect. 2017 Jan 23;5(1):e00293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2001 Jun 9;322(7299):1410-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32861965
   |texte=   Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32861965" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021