Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood.

Identifieur interne : 000C43 ( Main/Corpus ); précédent : 000C42; suivant : 000C44

Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood.

Auteurs : Donna Austin ; Catharine John ; Beverley J. Hunt ; Rachel S. Carling

Source :

RBID : pubmed:32915766

English descriptors

Abstract

Objectives Hydroxychloroquine (HCQ) is an anti-malarial and immunomodulatory drug reported to inhibit the Corona virus, SARS-CoV-2, in vitro. At present there is insufficient evidence from clinical trials to determine the safety and efficacy of HCQ as a treatment for COVID-19. However, since the World Health Organisation declared COVID-19 a pandemic in March 2020, the US Food and Drug Administration issued an Emergency Use Authorisation to allow HCQ and Chloroquine (CQ) to be distributed and used for certain hospitalised patients with COVID-19 and numerous clinical trials are underway around the world, including the UK based RECOVERY trial, with over 1000 volunteers. The validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of HCQ and two of its major metabolites, desethylchloroquine (DCQ) and di-desethylchloroquine (DDCQ), in whole blood is described. Methods Blood samples were deproteinised using acetonitrile. HCQ, DCQ and DDCQ were chromatographically separated on a biphenyl column with gradient elution, at a flow rate of 500 μL/min. The analysis time was 8 min. Results For each analyte linear calibration curves were obtained over the concentration range 50-2000 μg/L, the lower limit of quantification (LLOQ) was 13 μg/L, the inter-assay relative standard deviation (RSD) was <10% at 25, 800 and 1750 μg/L and mean recoveries were 80, 81, 78 and 62% for HCQ, d4-HCQ, DCQ and DDCQ, respectively. Conclusion This method has acceptable analytical performance and is applicable to the therapeutic monitoring of HCQ, evaluating the pharmacokinetics of HCQ in COVID-19 patients and supporting clinical trials.

DOI: 10.1515/cclm-2020-0610
PubMed: 32915766

Links to Exploration step

pubmed:32915766

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood.</title>
<author>
<name sortKey="Austin, Donna" sort="Austin, Donna" uniqKey="Austin D" first="Donna" last="Austin">Donna Austin</name>
<affiliation>
<nlm:affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="John, Catharine" sort="John, Catharine" uniqKey="John C" first="Catharine" last="John">Catharine John</name>
<affiliation>
<nlm:affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunt, Beverley J" sort="Hunt, Beverley J" uniqKey="Hunt B" first="Beverley J" last="Hunt">Beverley J. Hunt</name>
<affiliation>
<nlm:affiliation>Thrombosis & Haemophilia Centre, Guy's & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carling, Rachel S" sort="Carling, Rachel S" uniqKey="Carling R" first="Rachel S" last="Carling">Rachel S. Carling</name>
<affiliation>
<nlm:affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>GKT Medical School, Kings College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32915766</idno>
<idno type="pmid">32915766</idno>
<idno type="doi">10.1515/cclm-2020-0610</idno>
<idno type="wicri:Area/Main/Corpus">000C43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood.</title>
<author>
<name sortKey="Austin, Donna" sort="Austin, Donna" uniqKey="Austin D" first="Donna" last="Austin">Donna Austin</name>
<affiliation>
<nlm:affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="John, Catharine" sort="John, Catharine" uniqKey="John C" first="Catharine" last="John">Catharine John</name>
<affiliation>
<nlm:affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunt, Beverley J" sort="Hunt, Beverley J" uniqKey="Hunt B" first="Beverley J" last="Hunt">Beverley J. Hunt</name>
<affiliation>
<nlm:affiliation>Thrombosis & Haemophilia Centre, Guy's & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carling, Rachel S" sort="Carling, Rachel S" uniqKey="Carling R" first="Rachel S" last="Carling">Rachel S. Carling</name>
<affiliation>
<nlm:affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>GKT Medical School, Kings College London, London, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Clinical chemistry and laboratory medicine</title>
<idno type="eISSN">1437-4331</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blood Chemical Analysis (methods)</term>
<term>Calibration (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (blood)</term>
<term>Hydroxychloroquine (metabolism)</term>
<term>Limit of Detection (MeSH)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Blood Chemical Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Calibration</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Humans</term>
<term>Limit of Detection</term>
<term>Tandem Mass Spectrometry</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Objectives Hydroxychloroquine (HCQ) is an anti-malarial and immunomodulatory drug reported to inhibit the Corona virus, SARS-CoV-2, in vitro. At present there is insufficient evidence from clinical trials to determine the safety and efficacy of HCQ as a treatment for COVID-19. However, since the World Health Organisation declared COVID-19 a pandemic in March 2020, the US Food and Drug Administration issued an Emergency Use Authorisation to allow HCQ and Chloroquine (CQ) to be distributed and used for certain hospitalised patients with COVID-19 and numerous clinical trials are underway around the world, including the UK based RECOVERY trial, with over 1000 volunteers. The validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of HCQ and two of its major metabolites, desethylchloroquine (DCQ) and di-desethylchloroquine (DDCQ), in whole blood is described. Methods Blood samples were deproteinised using acetonitrile. HCQ, DCQ and DDCQ were chromatographically separated on a biphenyl column with gradient elution, at a flow rate of 500 μL/min. The analysis time was 8 min. Results For each analyte linear calibration curves were obtained over the concentration range 50-2000 μg/L, the lower limit of quantification (LLOQ) was 13 μg/L, the inter-assay relative standard deviation (RSD) was <10% at 25, 800 and 1750 μg/L and mean recoveries were 80, 81, 78 and 62% for HCQ, d4-HCQ, DCQ and DDCQ, respectively. Conclusion This method has acceptable analytical performance and is applicable to the therapeutic monitoring of HCQ, evaluating the pharmacokinetics of HCQ in COVID-19 patients and supporting clinical trials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32915766</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>02</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1437-4331</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>58</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Clinical chemistry and laboratory medicine</Title>
<ISOAbbreviation>Clin Chem Lab Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood.</ArticleTitle>
<Pagination>
<MedlinePgn>2047-2061</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1515/cclm-2020-0610</ELocationID>
<Abstract>
<AbstractText>Objectives Hydroxychloroquine (HCQ) is an anti-malarial and immunomodulatory drug reported to inhibit the Corona virus, SARS-CoV-2, in vitro. At present there is insufficient evidence from clinical trials to determine the safety and efficacy of HCQ as a treatment for COVID-19. However, since the World Health Organisation declared COVID-19 a pandemic in March 2020, the US Food and Drug Administration issued an Emergency Use Authorisation to allow HCQ and Chloroquine (CQ) to be distributed and used for certain hospitalised patients with COVID-19 and numerous clinical trials are underway around the world, including the UK based RECOVERY trial, with over 1000 volunteers. The validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of HCQ and two of its major metabolites, desethylchloroquine (DCQ) and di-desethylchloroquine (DDCQ), in whole blood is described. Methods Blood samples were deproteinised using acetonitrile. HCQ, DCQ and DDCQ were chromatographically separated on a biphenyl column with gradient elution, at a flow rate of 500 μL/min. The analysis time was 8 min. Results For each analyte linear calibration curves were obtained over the concentration range 50-2000 μg/L, the lower limit of quantification (LLOQ) was 13 μg/L, the inter-assay relative standard deviation (RSD) was <10% at 25, 800 and 1750 μg/L and mean recoveries were 80, 81, 78 and 62% for HCQ, d4-HCQ, DCQ and DDCQ, respectively. Conclusion This method has acceptable analytical performance and is applicable to the therapeutic monitoring of HCQ, evaluating the pharmacokinetics of HCQ in COVID-19 patients and supporting clinical trials.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Austin</LastName>
<ForeName>Donna</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>John</LastName>
<ForeName>Catharine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hunt</LastName>
<ForeName>Beverley J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Thrombosis & Haemophilia Centre, Guy's & St Thomas' NHSFT, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carling</LastName>
<ForeName>Rachel S</ForeName>
<Initials>RS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1988-3088</Identifier>
<AffiliationInfo>
<Affiliation>Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>GKT Medical School, Kings College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D023361">Validation Study</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Clin Chem Lab Med</MedlineTA>
<NlmUniqueID>9806306</NlmUniqueID>
<ISSNLinking>1434-6621</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001774" MajorTopicYN="N">Blood Chemical Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002138" MajorTopicYN="N">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="Y">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057230" MajorTopicYN="N">Limit of Detection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="Y">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">human whole blood</Keyword>
<Keyword MajorTopicYN="Y">hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="Y">liquid chromatography tandem mass spectrometry</Keyword>
<Keyword MajorTopicYN="Y">method validation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>17</Hour>
<Minute>12</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32915766</ArticleId>
<ArticleId IdType="doi">10.1515/cclm-2020-0610</ArticleId>
<ArticleId IdType="pii">cclm-2020-0610</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Kalia, S, Dutz, J. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther 2007;20:160–74. https://doi.org/10.1111/j.1529-8019.2007.00131.x.</Citation>
</Reference>
<Reference>
<Citation>Williams, H, Egger, M, Singer, J, Willkens, R, Kalunian, K, Clegg, D, et al. Comparison of hydroxychloroquine and placebo in the treatment of the arthropathy of mild systemic lupus erythematosus. J Rheumatol 1994;21:1457–62.</Citation>
</Reference>
<Reference>
<Citation>Alarcon, G, McGwin, G, Bertoli, A, Fessler, B, Calvo-Alen, J, Bastian, HM, et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). Ann Rheum Dis 2007;66:1168–72. https://doi.org/10.1136/ard.2006.068676.</Citation>
</Reference>
<Reference>
<Citation>Ruiz-Irastorza, G, Ramos-Casals, M, Brito-Zeron, P, Khamashta, M. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 2010;69:20–8. https://doi.org/10.1136/ard.2008.101766.</Citation>
</Reference>
<Reference>
<Citation>Kuhn, A, Ruland, V, Bonsmann, G. Cutaneous lupus erythematosus: update of therapeutic options. Part I. J Am Acad Dermatol 2011;65:179–93. https://doi.org/10.1016/j.jaad.2010.06.017.</Citation>
</Reference>
<Reference>
<Citation>Rolain, J, Colson, P, Raoult, D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 2007;30:297–308. https://doi.org/10.1016/j.ijantimicag.2007.05.015.</Citation>
</Reference>
<Reference>
<Citation>Ben-Zvi, I, Kivity, S, Langevitz, P, Shoenfeld, Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 2012;42:145–53. https://doi.org/10.1007/s12016-010-8243-x.</Citation>
</Reference>
<Reference>
<Citation>Keyaerts, E, Vijgen, L, Maes, P, Neyts, J, Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004;323:264–8. https://doi.org/10.1016/j.bbrc.2004.08.085.</Citation>
</Reference>
<Reference>
<Citation>Vincent, M, Bergeron, E, Benjannet, S, Erickson, B, Rollin, P, Ksiazek, T, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2 2005;2. https://doi.org/10.1186/1743-422x-2-69.</Citation>
</Reference>
<Reference>
<Citation>Keyaerts, E, Li, S, Vijgen, L, Rysman, E, Verbeeck, J, Van Ranst, M, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother 2009;53:3416–21. https://doi.org/10.1128/aac.01509-08.</Citation>
</Reference>
<Reference>
<Citation>Savarino, A, Boelaert, J, Cassone, A, Majori, G, Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases?. Lancet Infect Dis 2003;3:722–7. https://doi.org/10.1016/s1473-3099(03)00806-5.</Citation>
</Reference>
<Reference>
<Citation>Dyall, J, Coleman, C, Hart, B, Venkataraman, T, Holbrook, M, Kindrechuk, J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014;58:4885–93. https://doi.org/10.1128/aac.03036-14.</Citation>
</Reference>
<Reference>
<Citation>Dyall, J, Gross, R, Kindrachuk, J, Johnson, R, Olinger, G, Hensley, L, et al. Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs 2017;77:1935–66. https://doi.org/10.1007/s40265-017-0830-1.</Citation>
</Reference>
<Reference>
<Citation>Principi, N, Esposito, S. Chloroquine or hydroxychloroquine for prophylaxis of COVID-19. Lancet Infect Dis 2020;20:S1473–3099. 30296-9. https://doi.org/10.1016/s1473-3099(20)30296-6.</Citation>
</Reference>
<Reference>
<Citation>Alhazzani, W, Møller, M, Arabi, YM, Loeb, M, Gong, MN, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020;46:854–87. https://doi.org/10.1007/s00134-020-06022-5.</Citation>
</Reference>
<Reference>
<Citation>Cucinotta, D, Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed 2020;91:157–60. https://doi.org/10.23750/abm.v91i1.9397.</Citation>
</Reference>
<Reference>
<Citation>World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 91. 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200420-sitrep-91-covid-19.pdf?sfvrsn=fcf0670b_10 [Accessed 21 Apr 2020].</Citation>
</Reference>
<Reference>
<Citation>Rosa, S, Santos, W. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Públic 2020;44:1–13. https://doi.org/10.26633/rpsp.2020.40.</Citation>
</Reference>
<Reference>
<Citation>Lythgoe, M, Middleton, P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci 2020;41:363–382. https://doi.org/10.1016/j.tips.2020.03.006.</Citation>
</Reference>
<Reference>
<Citation>Luo, P, Liu, Y, Qiu, L, Liu, X, Liu, D, Li, J. Tocilizumab treatment in COVID‐19: a single center experience. J Med Virol 2020:1–5. https://doi.org/10.1002/jmv.25801.</Citation>
</Reference>
<Reference>
<Citation>Gautret, P, Lagier, JC, Parola, P, Hoang, V, Meddeb, L, Mailhe, M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.</Citation>
</Reference>
<Reference>
<Citation>Villar, J, Ferrando, C, Martínez, D, Ambrós, A, Muñoz, T, Soler, J, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267–76. https://doi.org/10.1016/s2213-2600(19)30417-5.</Citation>
</Reference>
<Reference>
<Citation>Liu, J, Cao, R, Xu, M, Wang, X, Zhang, H, Hu, H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery 2020;6:1–4. https://doi.org/10.1038/s41421-020-0156-0.</Citation>
</Reference>
<Reference>
<Citation>Chen, Z, Hu, J, Zhang, Z, Jiang, S, Han, S, Yan, D. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Int J Infect Dis 2020;97:396–403. https://doi.org/10.1101/2020.03.22.20040758.</Citation>
</Reference>
<Reference>
<Citation>Yao, X, Ye, F, Zhang, M, Cui, C, Huang, B, Niu, P, et al. Vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;71:732–9. https://doi.org/10.1093/cid/ciaa237.</Citation>
</Reference>
<Reference>
<Citation>Taccone, F, Gorham, J, Vincent, J. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med 2020;8:539–41. https://doi.org/10.1016/S2213-2600(20)30172-7.</Citation>
</Reference>
<Reference>
<Citation>Ferner, R, Aronson, J. Chloroquine and hydroxychloroquine in covid-19: use of these drugs is premature and potentially harmful. BMJ 2020;369. https://doi.org/10.1136/bmj.m1432.</Citation>
</Reference>
<Reference>
<Citation>Gbinigie, K, Frie, K. Should chloroquine and hydroxychloroquine be used to treat COVID-19? A rapid review. BJGP Open 2020. https://doi.org/10.3399/bjgpopen20X101069.</Citation>
</Reference>
<Reference>
<Citation>US Food & Drug Administration. Emergency use authorisation. Available from: https://www.fda.gov/media/136534/download [Accessed 27 Apr 2020].</Citation>
</Reference>
<Reference>
<Citation>Lenzer, J. Covid-19: US gives emergency approval to hydroxychloroquine despite lack of evidence. BMJ 2020;369. m1335 2020;369. https://doi.org/10.1136/bmj.m1335.</Citation>
</Reference>
<Reference>
<Citation>O’Laughlin, J, Mehta, P, Wong, B. Case Rep Cardiol 2016. https://doi.org/10.1155/2016/4626279.</Citation>
</Reference>
<Reference>
<Citation>Chen, C, Wang, F, Lin, C. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin Toxicol 2006;44:173–5. https://doi.org/10.1080/15563650500514558.</Citation>
</Reference>
<Reference>
<Citation>Marmor, M, Kellner, U, Lai, T, Lyons, J, Mieler, W. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopthy. Opthalmology 2011;118:415–22. https://doi.org/10.1016/j.ophtha.2010.11.017.</Citation>
</Reference>
<Reference>
<Citation>Marmor, M, Kellner, U, Lai, T, Melles, R, Mieler, W. Recommendations on screening for chloroquine and hydroxychloroquine retinopthy (2016 revision). Opthalmology 2016;123:1386–94. https://doi.org/10.1016/j.ophtha.2016.01.058.</Citation>
</Reference>
<Reference>
<Citation>Tétu, P, Hamelin, A, Lebrun-Vignes, B, Soria, A, Barbaud, A, Francès, C, et al. Prevalence of hydroxychloroquine-induced side-effects in dermatology patients: a retrospective survey of 102 patients. Ann Dermatol Venereol 2018;145:395–404. https://doi.org/10.1016/j.annder.2018.03.168.</Citation>
</Reference>
<Reference>
<Citation>Garcia-Cremades, M, Solans, B, Hughes, E, Ernest, J, Wallender, E, Aweeker, F, et al. Optimizing hydroxychloroquine dosing for patients with COVID-19: an integrative modelling approach for effective drug repurposing. Clin Pharmacol Therapeut 2020;108:253–63. https://doi.org/10.1002/cpt.1856.</Citation>
</Reference>
<Reference>
<Citation>Balevic, S, Green, T, Clowse, M, Eudy, A, Schanberg, L, Cohen-Wolkowiez, M. Pharmacokinetics of hydroxychloroquine in pregnancies with rheumatic diseases. Clin Pharmacokinet 2019;58:525–33. https://doi.org/10.1007/s40262-018-0712-z.</Citation>
</Reference>
<Reference>
<Citation>Munster, T, Gibbs, J, Shen, D, Baethge, BA, Botstein, GR, Caldwell, J, et al. Hydroxychloroquine concentration–response relationships in patients with rheumatoid arthritis. Arthritis & Rheumatology 2002;46:1460–6. https://doi.org/10.1002/art.10307.</Citation>
</Reference>
<Reference>
<Citation>Collins, K, Jackson, M, Gustafson, D. Hydroxychloroquine: a physiologically-based pharmacokinetic model in the context of cancer-related autophagy modulation. J Pharmacol Exp Therapeut 2018;365:447–59. 2018; 365(3): 447-459. https://doi.org/10.1124/jpet.117.245639.</Citation>
</Reference>
<Reference>
<Citation>Petri, M, Elkhalifa, M, Li, J, Magder, L, Goldman, D. Hydroxychloroquine blood levels predict hydroxychloroquine retinopathy. Arthritis & Rheumatology 2020;72:131–7. https://doi.org/10.1002/art.41121.</Citation>
</Reference>
<Reference>
<Citation>Williams, S, Patchen, L, Churchill, F. Analysis of blood and urine samples for hydroxychloroquine and three major metabolites by high-performance liquid chromatography with fluoresence detection. J Chromatogr B Biomed Sci Appl 1988;433:197–206. https://doi.org/10.1016/s0378-4347(00)80598-8.</Citation>
</Reference>
<Reference>
<Citation>Tett, S, Cutler, D, Brown, K. High performance liquid chromatography assay for hydroxychloroquine and metabolites in blood and plasma using a stationary phase of polystyrene divinylbenzene and a mobile phase at pH11 with fluorometric detection. J Chromatogr B Biomed Sci Appl 1985;344:241–8. https://doi.org/10.1016/s0378-4347(00)82024-1.</Citation>
</Reference>
<Reference>
<Citation>Wang, L, Ong, R, Chin, T, Thuya, W, Wan, S, Wong, A, et al. Method development and validation for rapid quantification of hydroxychloroquine in human blood using liquid chromatography–tandem mass spectrometry. J Pharmaceut Biomed Anal 2012;61:86–92. https://doi.org/10.1016/j.jpba.2011.11.034.</Citation>
</Reference>
<Reference>
<Citation>Chambliss, A, Füzéry, A, Clarke, W. Quantification of hydroxychloroquine in blood using turbulent flow liquid chromatography-tandem mass spectrometry (TFLC-MS/MS). Methods Mol Biol 2016;1383:177–84. https://doi.org/10.1007/978-1-4939-3252-8_19.</Citation>
</Reference>
<Reference>
<Citation>Soichot, M, Mégarban, B, Houzé, P, Chevillard, L, Fonsart, J, Baud, F, et al. Development, validation and clinical application of a LC-MS/MS method for the simultaneous quantification of hydroxychloroquine and its active metabolites in human whole blood. J Pharmaceut Biomedical 2014;100:131–7. https://doi.org/10.1016/j.jpba.2014.07.009.</Citation>
</Reference>
<Reference>
<Citation>Food and Drug Administration. Guidance forindustry: bioanalytical method validation. Rockville, MD: US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research and Center for Veterinary Medicine; 2018. https://www.fda.gov/media/70858/download.</Citation>
</Reference>
<Reference>
<Citation>Matuszewski, B, Constanzer, M, Chavez-Eng, C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 2003;75:3019–30. https://doi.org/10.1021/ac020361s.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32915766
   |texte=   Validation of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of hydroxychloroquine and metabolites in human whole blood.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32915766" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021