Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations.

Identifieur interne : 000C13 ( Main/Corpus ); précédent : 000C12; suivant : 000C14

Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations.

Auteurs : Eleni Karatza ; George Ismailos ; Markos Marangos ; Vangelis Karalis

Source :

RBID : pubmed:32933365

English descriptors

Abstract

During the recent COVID-19 outbreak hydroxychloroquine (HCQ) has been proposed as a safe and effective therapeutic option. However, a wide variety of dosing schemes has been applied in the clinical practice and tested in clinical studies. An extended literature survey was performed investigating the pharmacokinetics, the efficacy and safety of HCQ in COVID-19 treatment. Population pharmacokinetic models were retrieved from the literature and after evaluation and assessment one was selected in order to perform simulations. The most commonly applied dosing schemes were explored for patients with different weights and different levels of HCQ clearance impairment. Model-based simulations of HCQ concentrations revealed that high initial doses followed by low and sparse doses may offer significant benefits to patients by decreasing the viral load without reaching levels considered to produce adverse effects. For instance, the dosing scheme proposed for a 70 kg adult with moderate COVID-19 symptoms would be 600 mg upon diagnosis, 400 mg after 12 h, 300 mg after 24 h, 200 mg after 36 h, followed by 200 mg BID for 4 d, followed by 200 mg OD for 5 d. Based on the results from simulations performed and the currently published knowledge regarding HCQ in COVID-19 treatment, this study provides evidence that a high loading dose followed by sparse doses could offer significant benefits to the patients.

DOI: 10.1080/00498254.2020.1824301
PubMed: 32933365
PubMed Central: PMC7544961

Links to Exploration step

pubmed:32933365

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations.</title>
<author>
<name sortKey="Karatza, Eleni" sort="Karatza, Eleni" uniqKey="Karatza E" first="Eleni" last="Karatza">Eleni Karatza</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ismailos, George" sort="Ismailos, George" uniqKey="Ismailos G" first="George" last="Ismailos">George Ismailos</name>
<affiliation>
<nlm:affiliation>Experimental-Research Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marangos, Markos" sort="Marangos, Markos" uniqKey="Marangos M" first="Markos" last="Marangos">Markos Marangos</name>
<affiliation>
<nlm:affiliation>Division of Infectious Diseases, University Hospital of Patras, Rio, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karalis, Vangelis" sort="Karalis, Vangelis" uniqKey="Karalis V" first="Vangelis" last="Karalis">Vangelis Karalis</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:32933365</idno>
<idno type="pmid">32933365</idno>
<idno type="doi">10.1080/00498254.2020.1824301</idno>
<idno type="pmc">PMC7544961</idno>
<idno type="wicri:Area/Main/Corpus">000C13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations.</title>
<author>
<name sortKey="Karatza, Eleni" sort="Karatza, Eleni" uniqKey="Karatza E" first="Eleni" last="Karatza">Eleni Karatza</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ismailos, George" sort="Ismailos, George" uniqKey="Ismailos G" first="George" last="Ismailos">George Ismailos</name>
<affiliation>
<nlm:affiliation>Experimental-Research Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marangos, Markos" sort="Marangos, Markos" uniqKey="Marangos M" first="Markos" last="Marangos">Markos Marangos</name>
<affiliation>
<nlm:affiliation>Division of Infectious Diseases, University Hospital of Patras, Rio, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karalis, Vangelis" sort="Karalis, Vangelis" uniqKey="Karalis V" first="Vangelis" last="Karalis">Vangelis Karalis</name>
<affiliation>
<nlm:affiliation>Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Xenobiotica; the fate of foreign compounds in biological systems</title>
<idno type="eISSN">1366-5928</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (administration & dosage)</term>
<term>Antiviral Agents (pharmacokinetics)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>COVID-19 (drug therapy)</term>
<term>Computer Simulation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (administration & dosage)</term>
<term>Hydroxychloroquine (pharmacokinetics)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During the recent COVID-19 outbreak hydroxychloroquine (HCQ) has been proposed as a safe and effective therapeutic option. However, a wide variety of dosing schemes has been applied in the clinical practice and tested in clinical studies. An extended literature survey was performed investigating the pharmacokinetics, the efficacy and safety of HCQ in COVID-19 treatment. Population pharmacokinetic models were retrieved from the literature and after evaluation and assessment one was selected in order to perform simulations. The most commonly applied dosing schemes were explored for patients with different weights and different levels of HCQ clearance impairment. Model-based simulations of HCQ concentrations revealed that high initial doses followed by low and sparse doses may offer significant benefits to patients by decreasing the viral load without reaching levels considered to produce adverse effects. For instance, the dosing scheme proposed for a 70 kg adult with moderate COVID-19 symptoms would be 600 mg upon diagnosis, 400 mg after 12 h, 300 mg after 24 h, 200 mg after 36 h, followed by 200 mg BID for 4 d, followed by 200 mg OD for 5 d. Based on the results from simulations performed and the currently published knowledge regarding HCQ in COVID-19 treatment, this study provides evidence that a high loading dose followed by sparse doses could offer significant benefits to the patients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32933365</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1366-5928</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2021</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Xenobiotica; the fate of foreign compounds in biological systems</Title>
<ISOAbbreviation>Xenobiotica</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations.</ArticleTitle>
<Pagination>
<MedlinePgn>127-138</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/00498254.2020.1824301</ELocationID>
<Abstract>
<AbstractText>During the recent COVID-19 outbreak hydroxychloroquine (HCQ) has been proposed as a safe and effective therapeutic option. However, a wide variety of dosing schemes has been applied in the clinical practice and tested in clinical studies. An extended literature survey was performed investigating the pharmacokinetics, the efficacy and safety of HCQ in COVID-19 treatment. Population pharmacokinetic models were retrieved from the literature and after evaluation and assessment one was selected in order to perform simulations. The most commonly applied dosing schemes were explored for patients with different weights and different levels of HCQ clearance impairment. Model-based simulations of HCQ concentrations revealed that high initial doses followed by low and sparse doses may offer significant benefits to patients by decreasing the viral load without reaching levels considered to produce adverse effects. For instance, the dosing scheme proposed for a 70 kg adult with moderate COVID-19 symptoms would be 600 mg upon diagnosis, 400 mg after 12 h, 300 mg after 24 h, 200 mg after 36 h, followed by 200 mg BID for 4 d, followed by 200 mg OD for 5 d. Based on the results from simulations performed and the currently published knowledge regarding HCQ in COVID-19 treatment, this study provides evidence that a high loading dose followed by sparse doses could offer significant benefits to the patients.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Karatza</LastName>
<ForeName>Eleni</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8406-4121</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ismailos</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1466-4978</Identifier>
<AffiliationInfo>
<Affiliation>Experimental-Research Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marangos</LastName>
<ForeName>Markos</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5030-2398</Identifier>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, University Hospital of Patras, Rio, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karalis</LastName>
<ForeName>Vangelis</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0492-0712</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Xenobiotica</MedlineTA>
<NlmUniqueID>1306665</NlmUniqueID>
<ISSNLinking>0049-8254</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">efficacy and safety</Keyword>
<Keyword MajorTopicYN="N">hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">modeling and simulation</Keyword>
<Keyword MajorTopicYN="N">precision dosing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>27</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32933365</ArticleId>
<ArticleId IdType="doi">10.1080/00498254.2020.1824301</ArticleId>
<ArticleId IdType="pmc">PMC7544961</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2014 Aug;10(8):1359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24991840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 14;369:m1849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(2):215-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32391667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Public Health. 2020 May;13(5):667-673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32340833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):762-768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32161940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Transl Sci. 2020 Jul;13(4):642-645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32268005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2020 Oct 1;130(10):5112-5114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32634126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ther Drug Monit. 2003 Dec;25(6):671-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14639053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Nov 19;383(21):2041-2052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32706953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 2007 Oct-Nov;37(10-11):1295-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17968746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2020 Apr 27;192(17):E450-E453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32269021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 2015 Nov;42(11):2092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26428205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DICP. 1991 Dec;25(12):1302-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1815421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2020 Oct 1;130(10):5235-5244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32634129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Nov 19;71(16):2227-2229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32255489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 Sep;8(9):e70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32771081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2002 Jun;46(6):1460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12115175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Aug;97:396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32623082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart Rhythm. 2020 Sep;17(9):1472-1479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32438018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saf Sci. 2020 Sep;129:104842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32501367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 Mar - Apr;34:101663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32289548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Aug;10(8):1380-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24991834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Aug;10(8):1369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24991839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Jun;20(6):656-657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32199493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lupus. 2018 Apr;27(5):847-852</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28862574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Emerg Med. 2019 Dec;37(12):2264.e5-2264.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31477360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Resist Updat. 2020 Dec;53:100719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32717568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Pharmacokinet. 2019 Apr;58(4):525-533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30255310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Arrhythm Electrophysiol. 2020 Jun;13(6):e008662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32347743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AACN Adv Crit Care. 2018 Fall;29(3):246-258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30185491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2019 Apr 1;25(7):2080-2087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30635337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2020 May;97(5):829-838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2020 May;97(5):824-828</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32204907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Apr;53(4):1468-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mal Infect. 2020 Jun;50(4):384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Metab Syndr. 2020 May - Jun;14(3):241-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Pharmacol Ther. 2020 Aug;108(2):253-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32285930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Pharmacol Ther. 2020 Aug;108(2):182-184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32311763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ther Drug Monit. 2016 Apr;38(2):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26587870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ophthalmology. 2016 Jun;123(6):1386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26992838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Nephrol. 2020 Jun;16(6):308-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32273593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Sci. 2019 Jun 10;16(7):1018-1022</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31341415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rep. 2020 Dec;72(6):1479-1508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32889701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 2007 Oct-Nov;37(10-11):1331-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17968748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Rheumatol. 2018 May;30(3):249-255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29517495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2020 Sep 3;17(9):e1003252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32881895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2016 Jan;68(1):184-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26316040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Crit Care. 2020 Jun;57:279-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Apr 21;369:m1443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32317267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Care Res (Hoboken). 2017 Apr;69(4):536-542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27390146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Dec 15;71(12):3232-3236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32435791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lupus. 1996 Jun;5 Suppl 1:S11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8803904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiology. 2011;120(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32933365
   |texte=   Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32933365" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021