Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

It is time to drop hydroxychloroquine from our COVID-19 armamentarium.

Identifieur interne : 000748 ( Main/Corpus ); précédent : 000747; suivant : 000749

It is time to drop hydroxychloroquine from our COVID-19 armamentarium.

Auteurs : Tarek Kashour ; Imad M. Tleyjeh

Source :

RBID : pubmed:33254507

English descriptors

Abstract

Chloroquine (CQ) and hydroxychloroquine (HCQ) were among the first drugs repurposed for the treatment of SARS-CoV-2 infection. A few in vitro studies confirmed that both drugs exhibited dose dependent anti-SARS-CoV-2 activities. These observations and the encouraging results from early poorly conducted observational studies created a major hype about the therapeutic potential of these drugs in the treatment of COVID-19 disease. This was further catalyzed by media and political influences leading to a widespread use of these agents. Subsequent randomized trials revealed lack of efficacy of these agents in improving the outcomes of COVID-19 or in preventing infection in post-exposure prophylaxis studies. Nevertheless, many ongoing trials continue to actively recruit tens of thousands of patients to receive HCQ worldwide. In this perspective, we address the possible mechanisms behind the lack of efficacy and the increased risk of cardiac toxicity of HCQ in COVID-19 disease. For the lack of efficacy, we discuss the fundamental differences of treatment initiation between in vitro and in vivo studies, the pitfalls of the pharmacological calculations of effective blood drug concentrations and related dosing regimens, and the possible negative effect of HCQ on the antiviral type-I interferon response. Although it has been repeatedly claimed that HCQ has a longstanding safety track record for many decades in use, we present counterarguments for this contention due to disease-drug and drug-drug interactions. We discuss the molecular mechanisms and the cumulative epidemiological evidence of HCQ cardiac toxicity.

DOI: 10.1016/j.mehy.2020.110198
PubMed: 33254507
PubMed Central: PMC7430273

Links to Exploration step

pubmed:33254507

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">It is time to drop hydroxychloroquine from our COVID-19 armamentarium.</title>
<author>
<name sortKey="Kashour, Tarek" sort="Kashour, Tarek" uniqKey="Kashour T" first="Tarek" last="Kashour">Tarek Kashour</name>
<affiliation>
<nlm:affiliation>Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia. Electronic address: tkashour@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tleyjeh, Imad M" sort="Tleyjeh, Imad M" uniqKey="Tleyjeh I" first="Imad M" last="Tleyjeh">Imad M. Tleyjeh</name>
<affiliation>
<nlm:affiliation>Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia; Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; College of Medicine, Al Faisal University, Riyadh, Saudi Arabia. Electronic address: Tleyjeh.Imad@mayo.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33254507</idno>
<idno type="pmid">33254507</idno>
<idno type="doi">10.1016/j.mehy.2020.110198</idno>
<idno type="pmc">PMC7430273</idno>
<idno type="wicri:Area/Main/Corpus">000748</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000748</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">It is time to drop hydroxychloroquine from our COVID-19 armamentarium.</title>
<author>
<name sortKey="Kashour, Tarek" sort="Kashour, Tarek" uniqKey="Kashour T" first="Tarek" last="Kashour">Tarek Kashour</name>
<affiliation>
<nlm:affiliation>Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia. Electronic address: tkashour@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tleyjeh, Imad M" sort="Tleyjeh, Imad M" uniqKey="Tleyjeh I" first="Imad M" last="Tleyjeh">Imad M. Tleyjeh</name>
<affiliation>
<nlm:affiliation>Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia; Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; College of Medicine, Al Faisal University, Riyadh, Saudi Arabia. Electronic address: Tleyjeh.Imad@mayo.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medical hypotheses</title>
<idno type="eISSN">1532-2777</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antiviral Agents (MeSH)</term>
<term>Arrhythmias, Cardiac (chemically induced)</term>
<term>Arrhythmias, Cardiac (mortality)</term>
<term>Azithromycin (pharmacology)</term>
<term>Bradycardia (chemically induced)</term>
<term>Bradycardia (mortality)</term>
<term>COVID-19 (drug therapy)</term>
<term>Death, Sudden, Cardiac (MeSH)</term>
<term>Drug Interactions (MeSH)</term>
<term>Heart (drug effects)</term>
<term>Heart Failure (chemically induced)</term>
<term>Heart Failure (mortality)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Interferon Type I (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Observational Studies as Topic (MeSH)</term>
<term>Randomized Controlled Trials as Topic (MeSH)</term>
<term>Risk (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Interferon Type I</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Azithromycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Arrhythmias, Cardiac</term>
<term>Bradycardia</term>
<term>Heart Failure</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Heart</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>Arrhythmias, Cardiac</term>
<term>Bradycardia</term>
<term>Heart Failure</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Death, Sudden, Cardiac</term>
<term>Drug Interactions</term>
<term>Humans</term>
<term>Mice</term>
<term>Observational Studies as Topic</term>
<term>Randomized Controlled Trials as Topic</term>
<term>Risk</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chloroquine (CQ) and hydroxychloroquine (HCQ) were among the first drugs repurposed for the treatment of SARS-CoV-2 infection. A few in vitro studies confirmed that both drugs exhibited dose dependent anti-SARS-CoV-2 activities. These observations and the encouraging results from early poorly conducted observational studies created a major hype about the therapeutic potential of these drugs in the treatment of COVID-19 disease. This was further catalyzed by media and political influences leading to a widespread use of these agents. Subsequent randomized trials revealed lack of efficacy of these agents in improving the outcomes of COVID-19 or in preventing infection in post-exposure prophylaxis studies. Nevertheless, many ongoing trials continue to actively recruit tens of thousands of patients to receive HCQ worldwide. In this perspective, we address the possible mechanisms behind the lack of efficacy and the increased risk of cardiac toxicity of HCQ in COVID-19 disease. For the lack of efficacy, we discuss the fundamental differences of treatment initiation between in vitro and in vivo studies, the pitfalls of the pharmacological calculations of effective blood drug concentrations and related dosing regimens, and the possible negative effect of HCQ on the antiviral type-I interferon response. Although it has been repeatedly claimed that HCQ has a longstanding safety track record for many decades in use, we present counterarguments for this contention due to disease-drug and drug-drug interactions. We discuss the molecular mechanisms and the cumulative epidemiological evidence of HCQ cardiac toxicity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33254507</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2777</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Medical hypotheses</Title>
<ISOAbbreviation>Med Hypotheses</ISOAbbreviation>
</Journal>
<ArticleTitle>It is time to drop hydroxychloroquine from our COVID-19 armamentarium.</ArticleTitle>
<Pagination>
<MedlinePgn>110198</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0306-9877(20)32456-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mehy.2020.110198</ELocationID>
<Abstract>
<AbstractText>Chloroquine (CQ) and hydroxychloroquine (HCQ) were among the first drugs repurposed for the treatment of SARS-CoV-2 infection. A few in vitro studies confirmed that both drugs exhibited dose dependent anti-SARS-CoV-2 activities. These observations and the encouraging results from early poorly conducted observational studies created a major hype about the therapeutic potential of these drugs in the treatment of COVID-19 disease. This was further catalyzed by media and political influences leading to a widespread use of these agents. Subsequent randomized trials revealed lack of efficacy of these agents in improving the outcomes of COVID-19 or in preventing infection in post-exposure prophylaxis studies. Nevertheless, many ongoing trials continue to actively recruit tens of thousands of patients to receive HCQ worldwide. In this perspective, we address the possible mechanisms behind the lack of efficacy and the increased risk of cardiac toxicity of HCQ in COVID-19 disease. For the lack of efficacy, we discuss the fundamental differences of treatment initiation between in vitro and in vivo studies, the pitfalls of the pharmacological calculations of effective blood drug concentrations and related dosing regimens, and the possible negative effect of HCQ on the antiviral type-I interferon response. Although it has been repeatedly claimed that HCQ has a longstanding safety track record for many decades in use, we present counterarguments for this contention due to disease-drug and drug-drug interactions. We discuss the molecular mechanisms and the cumulative epidemiological evidence of HCQ cardiac toxicity.</AbstractText>
<CopyrightInformation>Copyright © 2020. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kashour</LastName>
<ForeName>Tarek</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia. Electronic address: tkashour@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tleyjeh</LastName>
<ForeName>Imad M</ForeName>
<Initials>IM</Initials>
<AffiliationInfo>
<Affiliation>Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia; Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; College of Medicine, Al Faisal University, Riyadh, Saudi Arabia. Electronic address: Tleyjeh.Imad@mayo.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Med Hypotheses</MedlineTA>
<NlmUniqueID>7505668</NlmUniqueID>
<ISSNLinking>0306-9877</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007370">Interferon Type I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83905-01-5</RegistryNumber>
<NameOfSubstance UI="D017963">Azithromycin</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001145" MajorTopicYN="N">Arrhythmias, Cardiac</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017963" MajorTopicYN="N">Azithromycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001919" MajorTopicYN="N">Bradycardia</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016757" MajorTopicYN="N">Death, Sudden, Cardiac</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004347" MajorTopicYN="N">Drug Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006321" MajorTopicYN="N">Heart</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006333" MajorTopicYN="N">Heart Failure</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007370" MajorTopicYN="N">Interferon Type I</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064887" MajorTopicYN="N">Observational Studies as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012306" MajorTopicYN="N">Risk</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>1</Hour>
<Minute>2</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33254507</ArticleId>
<ArticleId IdType="pii">S0306-9877(20)32456-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.mehy.2020.110198</ArticleId>
<ArticleId IdType="pmc">PMC7430273</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mayo Clin Proc. 2013 Apr;88(4):315-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23541006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2020 May;34(5):6027-6037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32350928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Korean J Intern Med. 2020 Jul;35(4):782-787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32460458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2020 Mar;16(3):155-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32034323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart Rhythm. 2020 Sep;17(9):1445-1451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32479900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 2012 Feb;40(2):394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22001585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Netw Open. 2020 Apr 24;3(4):e208857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32330277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 16;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32674126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2017 Nov;31(11):5068-5077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28784631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Pharmacol Ther. 2020 Aug;108(2):253-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32285930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Arrhythm Electrophysiol. 2017 Apr;10(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28408648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 1993 Nov;20(11):1874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Mar 14;14(3):e0212614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30870459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 May 21;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32435791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Aug 7;369(6504):718-724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32661059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 May 17;366(20):1881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22591294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Dec 6;13(12):e0208321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30521586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2010 Dec;62(4):760-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Feb 10;19(2):181-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mayo Clin Proc. 2020 Jun;95(6):1213-1221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32359771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mayo Clin Proc Innov Qual Outcomes. 2020 Nov 2;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33163895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Nov 19;71(16):2227-2229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32255489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Jun 23;323(24):2524-2526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32463459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 Oct 20;173(8):623-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32673060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2019 Apr 15;115(5):895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30689740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nephrol Dial Transplant. 2018 Sep 1;33(9):1604-1610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29186572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 May - Jun;35:101735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32387694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(4):e60579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sleep. 2016 Sep 01;39(9):1631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27306264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 2020 May 11;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32393664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 2017 Apr;37(4):513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28220623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 May;26(5):672-675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32296168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):565-574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32213337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jun 13;13(6):e0199028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29898002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2020 Oct 08;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33031488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart Rhythm. 2020 Sep;17(9):1487-1492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32380288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Agents Actions Suppl. 1993;44:139-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8372722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Ther. 1995 Jul-Aug;17(4):622-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8565026</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000748 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000748 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33254507
   |texte=   It is time to drop hydroxychloroquine from our COVID-19 armamentarium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33254507" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021