Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.

Identifieur interne : 000155 ( Main/Corpus ); précédent : 000154; suivant : 000156

Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.

Auteurs : María Antonela Zígolo ; Matías Rivero Goytia ; Hugo Ramiro Poma ; Ver Nica Beatriz Rajal ; Ver Nica Patricia Irazusta

Source :

RBID : pubmed:33794459

Abstract

The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease Mpro, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol: -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For Mpro were, in kcal/mol: -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for Mpro. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.

DOI: 10.1016/j.scitotenv.2021.146400
PubMed: 33794459
PubMed Central: PMC7967396

Links to Exploration step

pubmed:33794459

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.</title>
<author>
<name sortKey="Zigolo, Maria Antonela" sort="Zigolo, Maria Antonela" uniqKey="Zigolo M" first="María Antonela" last="Zígolo">María Antonela Zígolo</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goytia, Matias Rivero" sort="Goytia, Matias Rivero" uniqKey="Goytia M" first="Matías Rivero" last="Goytia">Matías Rivero Goytia</name>
<affiliation>
<nlm:affiliation>Silentium Apps, Salta, Argentina; Facultad de Economía y Administración, Universidad Católica de Salta (UCASAL), Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poma, Hugo Ramiro" sort="Poma, Hugo Ramiro" uniqKey="Poma H" first="Hugo Ramiro" last="Poma">Hugo Ramiro Poma</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rajal, Ver Nica Beatriz" sort="Rajal, Ver Nica Beatriz" uniqKey="Rajal V" first="Ver Nica Beatriz" last="Rajal">Ver Nica Beatriz Rajal</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore. Electronic address: vbrajal@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Irazusta, Ver Nica Patricia" sort="Irazusta, Ver Nica Patricia" uniqKey="Irazusta V" first="Ver Nica Patricia" last="Irazusta">Ver Nica Patricia Irazusta</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33794459</idno>
<idno type="pmid">33794459</idno>
<idno type="doi">10.1016/j.scitotenv.2021.146400</idno>
<idno type="pmc">PMC7967396</idno>
<idno type="wicri:Area/Main/Corpus">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.</title>
<author>
<name sortKey="Zigolo, Maria Antonela" sort="Zigolo, Maria Antonela" uniqKey="Zigolo M" first="María Antonela" last="Zígolo">María Antonela Zígolo</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goytia, Matias Rivero" sort="Goytia, Matias Rivero" uniqKey="Goytia M" first="Matías Rivero" last="Goytia">Matías Rivero Goytia</name>
<affiliation>
<nlm:affiliation>Silentium Apps, Salta, Argentina; Facultad de Economía y Administración, Universidad Católica de Salta (UCASAL), Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poma, Hugo Ramiro" sort="Poma, Hugo Ramiro" uniqKey="Poma H" first="Hugo Ramiro" last="Poma">Hugo Ramiro Poma</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rajal, Ver Nica Beatriz" sort="Rajal, Ver Nica Beatriz" uniqKey="Rajal V" first="Ver Nica Beatriz" last="Rajal">Ver Nica Beatriz Rajal</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore. Electronic address: vbrajal@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Irazusta, Ver Nica Patricia" sort="Irazusta, Ver Nica Patricia" uniqKey="Irazusta V" first="Ver Nica Patricia" last="Irazusta">Ver Nica Patricia Irazusta</name>
<affiliation>
<nlm:affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="eISSN">1879-1026</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease M
<sup>pro</sup>
, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol: -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For M
<sup>pro</sup>
were, in kcal/mol: -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for M
<sup>pro</sup>
. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33794459</PMID>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1026</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>781</Volume>
<PubDate>
<Year>2021</Year>
<Month>Mar</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.</ArticleTitle>
<Pagination>
<MedlinePgn>146400</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0048-9697(21)01468-6</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.scitotenv.2021.146400</ELocationID>
<Abstract>
<AbstractText>The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease M
<sup>pro</sup>
, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol: -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For M
<sup>pro</sup>
were, in kcal/mol: -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for M
<sup>pro</sup>
. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.</AbstractText>
<CopyrightInformation>Copyright © 2021 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zígolo</LastName>
<ForeName>María Antonela</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goytia</LastName>
<ForeName>Matías Rivero</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Silentium Apps, Salta, Argentina; Facultad de Economía y Administración, Universidad Católica de Salta (UCASAL), Salta, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poma</LastName>
<ForeName>Hugo Ramiro</ForeName>
<Initials>HR</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajal</LastName>
<ForeName>Verónica Beatriz</ForeName>
<Initials>VB</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore. Electronic address: vbrajal@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Irazusta</LastName>
<ForeName>Verónica Patricia</ForeName>
<Initials>VP</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3-Chymotrypsin-like protease</Keyword>
<Keyword MajorTopicYN="N">Antiviral activity</Keyword>
<Keyword MajorTopicYN="N">Docking</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">Spike glycoprotein</Keyword>
</KeywordList>
<CoiStatement>Declaration of competing interest The authors declare no conflict of interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2021</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>20</Hour>
<Minute>15</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33794459</ArticleId>
<ArticleId IdType="pii">S0048-9697(21)01468-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2021.146400</ArticleId>
<ArticleId IdType="pmc">PMC7967396</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2020 Mar 13;367(6483):1260-1263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):595-599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2020 Oct 15;288:198114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32800805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 2006 Feb;29(2):191-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16462017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Mar 27;23(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29584636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2014 Feb 22;383(9918):723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2020 Aug;50:101427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33277154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2021 Feb 5;892:173751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33245898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2020 Apr;5(4):536-544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32123347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jun 14;361(9374):2045-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12814717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Res Rev. 2003 May;23(3):322-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2008 Apr 1;18(7):2301-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Res. 1990 Oct;10(5):469-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1703195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2004 Feb 9;14(3):611-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Jun;89(11):6121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25787280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Dec;30(16):2785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19399780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EClinicalMedicine. 2020 Sep;26:100495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32838242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2011 Nov;11(11):1706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21683808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2011 Mar 24;54(6):1613-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21341743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Public Health. 2020 Oct;13(10):1405-1414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32684351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Res Rev. 2000 Sep;20(5):323-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10934347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2012 Apr 15;20(8):2690-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22405922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Med Hist Adriat. 2016 Aug;14(1):81-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27598955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 May - Jun;35:101646</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32294562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2015 Jul;27(1):65-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25939536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2009 Feb;40(2):e18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2011 Nov 1;21(21):6420-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21920747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2020 Oct 21;38(45):7002-7006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32988688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Feb 20;332(2):498-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 1970 Apr;10(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5441098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2017 Feb 15;127:424-433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28092858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Pharmacol. 2015 Oct;67(10):1325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26060043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Epidemiol Glob Health. 2021 Jan-Mar;9:90-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33521390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Sep;109:54-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Chem. 2018 Aug;78:210-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29602045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasma. 2004;51(6):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):409-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32198291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2018 Nov;119:1204-1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30099043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pharmacother. 2020 Sep;129:110337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32534226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jun;55(6):105982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32305588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jun;582(7811):289-293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32272481</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33794459
   |texte=   Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33794459" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021