Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of CD4+FoxP3+ regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.

Identifieur interne : 000075 ( Main/Corpus ); précédent : 000074; suivant : 000076

The role of CD4+FoxP3+ regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.

Auteurs : Yifei Wang ; Jingbin Zheng ; Md Sahidul Islam ; Yang Yang ; Yuanjia Hu ; Xin Chen

Source :

RBID : pubmed:33907514

English descriptors

Abstract

The severe cases of Coronavirus Disease 2019 (COVID-19) frequently exhibit excessive inflammatory responses, acute respiratory distress syndrome (ARDS), coagulopathy, and organ damage. The most striking immunopathology of advanced COVID-19 is cytokine release syndrome or "cytokine storm" that is attributable to the deficiencies in immune regulatory mechanisms. CD4+FoxP3+ regulatory T cells (Tregs) are central regulators of immune responses and play an indispensable role in the maintenance of immune homeostasis. Tregs are likely involved in the attenuation of antiviral defense at the early stage of infection and ameliorating inflammation-induced organ injury at the late stage of COVID-19. In this article, we review and summarize the current understanding of the change of Tregs in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss the potential role of Tregs in the immunopathology of COVID-19. The emerging concept of Treg-targeted therapies, including both adoptive Treg transfer and low dose of IL-2 treatment, is introduced. Furthermore, the potential Treg-boosting effect of therapeutic agents used in the treatment of COVID-19, including dexamethasone, vitamin D, tocilizumab and sarilumab, chloroquine, hydroxychloroquine, azithromycin, adalimumab and tetrandrine, is discussed. The problems in the current study of Treg cells in COVID-19 and future perspectives are also addressed.

DOI: 10.7150/ijbs.59534
PubMed: 33907514
PubMed Central: PMC8071774

Links to Exploration step

pubmed:33907514

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of CD4
<sup>+</sup>
FoxP3
<sup>+</sup>
regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.</title>
<author>
<name sortKey="Wang, Yifei" sort="Wang, Yifei" uniqKey="Wang Y" first="Yifei" last="Wang">Yifei Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jingbin" sort="Zheng, Jingbin" uniqKey="Zheng J" first="Jingbin" last="Zheng">Jingbin Zheng</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Islam, Md Sahidul" sort="Islam, Md Sahidul" uniqKey="Islam M" first="Md Sahidul" last="Islam">Md Sahidul Islam</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yuanjia" sort="Hu, Yuanjia" uniqKey="Hu Y" first="Yuanjia" last="Hu">Yuanjia Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33907514</idno>
<idno type="pmid">33907514</idno>
<idno type="doi">10.7150/ijbs.59534</idno>
<idno type="pmc">PMC8071774</idno>
<idno type="wicri:Area/Main/Corpus">000075</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of CD4
<sup>+</sup>
FoxP3
<sup>+</sup>
regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.</title>
<author>
<name sortKey="Wang, Yifei" sort="Wang, Yifei" uniqKey="Wang Y" first="Yifei" last="Wang">Yifei Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jingbin" sort="Zheng, Jingbin" uniqKey="Zheng J" first="Jingbin" last="Zheng">Jingbin Zheng</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Islam, Md Sahidul" sort="Islam, Md Sahidul" uniqKey="Islam M" first="Md Sahidul" last="Islam">Md Sahidul Islam</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yuanjia" sort="Hu, Yuanjia" uniqKey="Hu Y" first="Yuanjia" last="Hu">Yuanjia Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of biological sciences</title>
<idno type="eISSN">1449-2288</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CD4 Antigens (immunology)</term>
<term>COVID-19 (immunology)</term>
<term>COVID-19 (therapy)</term>
<term>COVID-19 (virology)</term>
<term>Cytokine Release Syndrome (MeSH)</term>
<term>Forkhead Transcription Factors (immunology)</term>
<term>Humans (MeSH)</term>
<term>SARS-CoV-2 (isolation & purification)</term>
<term>T-Lymphocytes, Regulatory (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>CD4 Antigens</term>
<term>Forkhead Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>COVID-19</term>
<term>T-Lymphocytes, Regulatory</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cytokine Release Syndrome</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The severe cases of Coronavirus Disease 2019 (COVID-19) frequently exhibit excessive inflammatory responses, acute respiratory distress syndrome (ARDS), coagulopathy, and organ damage. The most striking immunopathology of advanced COVID-19 is cytokine release syndrome or "cytokine storm" that is attributable to the deficiencies in immune regulatory mechanisms. CD4
<sup>+</sup>
FoxP3
<sup>+</sup>
regulatory T cells (Tregs) are central regulators of immune responses and play an indispensable role in the maintenance of immune homeostasis. Tregs are likely involved in the attenuation of antiviral defense at the early stage of infection and ameliorating inflammation-induced organ injury at the late stage of COVID-19. In this article, we review and summarize the current understanding of the change of Tregs in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss the potential role of Tregs in the immunopathology of COVID-19. The emerging concept of Treg-targeted therapies, including both adoptive Treg transfer and low dose of IL-2 treatment, is introduced. Furthermore, the potential Treg-boosting effect of therapeutic agents used in the treatment of COVID-19, including dexamethasone, vitamin D, tocilizumab and sarilumab, chloroquine, hydroxychloroquine, azithromycin, adalimumab and tetrandrine, is discussed. The problems in the current study of Treg cells in COVID-19 and future perspectives are also addressed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33907514</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>05</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1449-2288</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2021</Year>
</PubDate>
</JournalIssue>
<Title>International journal of biological sciences</Title>
<ISOAbbreviation>Int J Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of CD4
<sup>+</sup>
FoxP3
<sup>+</sup>
regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.</ArticleTitle>
<Pagination>
<MedlinePgn>1507-1520</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7150/ijbs.59534</ELocationID>
<Abstract>
<AbstractText>The severe cases of Coronavirus Disease 2019 (COVID-19) frequently exhibit excessive inflammatory responses, acute respiratory distress syndrome (ARDS), coagulopathy, and organ damage. The most striking immunopathology of advanced COVID-19 is cytokine release syndrome or "cytokine storm" that is attributable to the deficiencies in immune regulatory mechanisms. CD4
<sup>+</sup>
FoxP3
<sup>+</sup>
regulatory T cells (Tregs) are central regulators of immune responses and play an indispensable role in the maintenance of immune homeostasis. Tregs are likely involved in the attenuation of antiviral defense at the early stage of infection and ameliorating inflammation-induced organ injury at the late stage of COVID-19. In this article, we review and summarize the current understanding of the change of Tregs in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss the potential role of Tregs in the immunopathology of COVID-19. The emerging concept of Treg-targeted therapies, including both adoptive Treg transfer and low dose of IL-2 treatment, is introduced. Furthermore, the potential Treg-boosting effect of therapeutic agents used in the treatment of COVID-19, including dexamethasone, vitamin D, tocilizumab and sarilumab, chloroquine, hydroxychloroquine, azithromycin, adalimumab and tetrandrine, is discussed. The problems in the current study of Treg cells in COVID-19 and future perspectives are also addressed.</AbstractText>
<CopyrightInformation>© The author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yifei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Jingbin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Islam</LastName>
<ForeName>Md Sahidul</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yuanjia</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Int J Biol Sci</MedlineTA>
<NlmUniqueID>101235568</NlmUniqueID>
<ISSNLinking>1449-2288</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015704">CD4 Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C418974">FOXP3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051858">Forkhead Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015704" MajorTopicYN="N">CD4 Antigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000080424" MajorTopicYN="N">Cytokine Release Syndrome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051858" MajorTopicYN="N">Forkhead Transcription Factors</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050378" MajorTopicYN="N">T-Lymphocytes, Regulatory</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">CD4+FoxP3+ regulatory T cells</Keyword>
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">immunopathology</Keyword>
</KeywordList>
<CoiStatement>Competing Interests: The authors have declared that no competing interest exists.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2021</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>19</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33907514</ArticleId>
<ArticleId IdType="doi">10.7150/ijbs.59534</ArticleId>
<ArticleId IdType="pii">ijbsv17p1507</ArticleId>
<ArticleId IdType="pmc">PMC8071774</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int Immunopharmacol. 2019 Apr;69:307-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30769211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2020 May 1;130(5):2620-2629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):270-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 11;441(7090):235-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 Dec 09;11:590459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33362771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2012 Mar 21;3:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22566933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 22;395(10224):565-574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2015 Dec 04;7(12):10189-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26690210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2012 Nov 15;186(10):989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 Oct 08;11:589380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33178221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2016 Nov;12(11):625-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27586383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Jul 09;9:1545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30038616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 Apr;8(4):420-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32085846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2021 Feb;99(2):303-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33392632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2018 Nov;75:30-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30121440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2020 Jul;72(7):1059-1063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32293098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2011 Jul;41(7):2010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21491419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 04;8(9):e74955</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):221-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31987001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2020 Sep 3;56(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32616599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiothorac Vasc Anesth. 2021 Jan 7;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33423911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2020 Sep 18;11(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32948688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2007 Dec 15;7(13):1819-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Oct 1;183(1):158-168.e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32979941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2017;44(1):412-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29141242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2021 Feb;19(2):147-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32853038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cancer. 2020 Nov;139:70-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32977223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 30;282(13):9358-9363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2010 Jun;40(6):1577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20352624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2020 Apr 26;38:541-566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32017635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Diabetes Endocrinol. 2013 Dec;1(4):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24622415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 30;382(18):1708-1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 25;11(5):e0156311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27224512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2020 Jul;108(1):17-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32534467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2011 Oct;11(10):1489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21635972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2016 Jun 27;213(7):1241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27270893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2011;27(5):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21691076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>R I Med J (2013). 2020 Jun 19;103(6):39-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32570995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2015 Nov 25;7(315):315ra189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26606968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2017 Jul 12;8:460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28785220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2004 Mar;34(3):859-869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14991616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2007 Jan 30;319(1-2):41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jul 6;11(1):3434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32632085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2020 Dec;216:107672</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32910933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jul;92(7):814-818</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32253759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 2;395(10234):1407-1409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32278362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):762-768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32161940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 May;30(5):656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Iran J Allergy Asthma Immunol. 2020 Oct 18;19(5):509-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33463118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Feb 1;190(3):1076-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23277487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Nutr. 2014 Apr;53(3):751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23999998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Nov 25;183(5):1340-1353.e16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33096020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Mar 15;109(6):2649-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2017 Jan 17;10(462):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Oct 6;324(13):1307-1316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32876695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Nutr. 2013 Jun;52(4):1405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23015061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Jul 1;179(1):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2003 Apr;4(4):330-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2020 Dec 08;9(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33302366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Nov 1;183(9):5458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2021 Jan 29;538:204-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33220925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Netw Open. 2020 Sep 1;3(9):e2019722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32880651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2020 Jun 16;52(6):910-941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32505227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 Nov 17;173(10):852-853</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32628535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Endocrinol. 2012 Apr;166(4):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2020 Oct;20(10):587-588</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32778829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 17;5(12):e15150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol Sin. 2020 Dec;35(6):734-743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32699972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JCI Insight. 2020 May 21;5(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32324595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2016 Aug;12(8):438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27334207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 30;133(5):775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioDrugs. 2017 Aug;31(4):335-347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28540499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1084-H1090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32228252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2009 Oct;119(10):2898-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2021 Jan;147(1):81-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32979342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Transplant. 2019 Dec;28(12):1603-1613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31512504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Res. 2020 Aug;192:3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32407937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterol Hepatol Bed Bench. 2020 Fall;13(4):388-392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33244382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 2020 Dec 1;105(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32844222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2020 Jan;79(1):141-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31537547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Sep 24;14(9):e0222313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31550254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eur Acad Dermatol Venereol. 2020 Aug;34(8):e360-e361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2012 Aug;64(8):2499-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22488116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2013 Apr;14(4):307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23507634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2015 Feb;29(2):443-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25376833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2013 Sep;34(9):518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2010 Sep;40(9):2528-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20690182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2013 Sep;255(1):182-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23947355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Nov;587(7833):270-274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32726801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2013 Jul 12;11:163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Aug 1;185(3):1412-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20574005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2015;38(5):575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 14;8(6):e65913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2011 Sep 22;118(12):3263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21576701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2020 Jun 8;11(6):429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32513989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 2009 May;70(5):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19405173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2017 Jan;27(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27714929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Feb 27;347(6225):995-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25722412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2020 Jun;53(3):368-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2020 Sep;287(17):3693-3702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32700398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2016 May;125:5-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26899361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Blood Marrow Transplant. 2015 Jan;21(1):30-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22235276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2016 Jan;96(1):365-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26681795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2021 Apr;236(4):2829-2839</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32926425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22390970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Inst Med Trop Sao Paulo. 2020 Dec 18;62:e102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33331521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Endocrinol. 2010;2010:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20871847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res Perspect. 2020 Oct;8(5):e00653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32930523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2020 Jul;160(3):261-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32460357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mark Access Health Policy. 2020 Oct 8;8(1):1818446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33133431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Ther Med. 2021 Mar;21(3):227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33603836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 May 01;11:827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32425950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2009 Apr 13;206(4):751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 18;382(25):2411-2418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 1983 Dec;57(6):1308-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6313738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EBioMedicine. 2020 Jul;57:102833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32574956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 Jul 1;370:m2516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32611558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2016 Aug 22;213(9):1881-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27526711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Aug;584(7821):463-469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32717743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Mar 15;385(2):358-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19141357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2009 Nov;39(11):3147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19688742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2020 Sep 30;6(40):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32998896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 Nov 1;260:118400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32918975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Iran J Med Sci. 2017 Mar;42(2):115-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28360437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2015 Jan 21;17:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25604867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2020 Jul;21(7):708-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32577010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Mar 27;11(1):1620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32221306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 2020 Dec;81(12):702-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32950268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Transl Med. 2020 Apr 14;18(1):164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32290839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 May 28;181(5):1036-1045.e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32416070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut. 2020 Jul;69(7):1364-1365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32312788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1995 Aug 1;155(3):1151-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7636184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2010 Apr;40(4):1099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20127680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2018 Oct 1;201(7):1899-1906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30143591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2020 Nov 12;16(11):e1008949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33180882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Oct 29;9(1):15559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31664129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2012;52:199-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32320677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Med Res. 2020 Aug;51(6):482-491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32493627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2018 Sep;142(3):978-980.e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29935955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Arch Allergy Immunol. 2021;182(3):195-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33486489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MedComm (Beijing). 2020 Aug 06;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32838397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2006 Aug;36(8):2139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16841298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2020 Jun;17(6):650-652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32346099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2020 Aug 18;12(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32824839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Med Chem. 2017 Feb;9(2):169-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28128003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Allergy. 2021 Mar;76(3):751-765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33128792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2014 Apr 15;20(8):2215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24573552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2020 Oct;203:105751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32871238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Signal Transduct Target Ther. 2018 Jan 19;3:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29527328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2020 Aug;17(8):878-880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32587367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2020 Jul;146(1):18-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32389590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2014 Apr 21;5:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Arch Allergy Immunol. 2021;182(3):254-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33498051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33907514
   |texte=   The role of CD4+FoxP3+ regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33907514" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021