Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts.

Identifieur interne : 000468 ( PubMed/Checkpoint ); précédent : 000467; suivant : 000469

Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts.

Auteurs : D C Rishikof [États-Unis] ; D A Ricupero ; C F Poliks ; R H Goldstein

Source :

RBID : pubmed:10462711

Descripteurs français

English descriptors

Abstract

Fibrotic lung diseases are characterized by excessive deposition of type I collagen. Amino acid availability regulates type I collagen mRNA levels in quiescent human lung fibroblasts. In these studies, the effect of amino acid availability on type I collagen protein accumulation in quiescent human lung fibroblasts was examined. Following amino acid deprivation, alpha1(I) procollagen protein levels were not detected by Western blot analysis in either the intracellular or the extracellular compartments. Fibronectin levels and total protein levels were not affected. Amino acid deprivation resulted in a more pronounced decrease in alpha1(I) procollagen protein levels than in alpha1(I) procollagen mRNA levels, suggesting that post-transcriptional events were responsible for the further decrease inalpha1(I) procollagen protein levels. The addition of transforming growth factor-beta to amino acid deprived fibroblasts increased alpha1(I) procollagen mRNA levels without affecting alpha1(I) procollagen protein levels, confirming a post-transcriptional site for regulatory control by amino acid deprivation. In the absence of ascorbic acid, alpha1(I) procollagen protein levels increased in amino acid deprived fibroblasts, but alpha1(I) procollagen mRNA levels were not affected. The absence of ascorbic acid likely resulted in the accumulation of nonhelical procollagen in the endoplasmic reticulum, indicating that translational mechanisms for alpha1(I) procollagen were intact. The addition of chloroquine, an inhibitor of lysosomal degradation of proteins, increased alpha1(I) procollagen protein levels in amino acid deprived fibroblasts. These data suggest that following amino acid deprivation of quiescent fibroblasts, newly synthesized type I collagen was degraded intracellularly, primarily by a process that involved lysosomal proteinases.

PubMed: 10462711


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:10462711

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts.</title>
<author>
<name sortKey="Rishikof, D C" sort="Rishikof, D C" uniqKey="Rishikof D" first="D C" last="Rishikof">D C Rishikof</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pulmonary Center and the Department of Biochemistry at the Boston University School of Medicine and the Boston VA Medical Center, Boston, Massachusetts 02118, USA.drishikof@bupula.bu.edu</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>The Pulmonary Center and the Department of Biochemistry at the Boston University School of Medicine and the Boston VA Medical Center, Boston, Massachusetts 02118</wicri:regionArea>
<wicri:noRegion>Massachusetts 02118</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ricupero, D A" sort="Ricupero, D A" uniqKey="Ricupero D" first="D A" last="Ricupero">D A Ricupero</name>
</author>
<author>
<name sortKey="Poliks, C F" sort="Poliks, C F" uniqKey="Poliks C" first="C F" last="Poliks">C F Poliks</name>
</author>
<author>
<name sortKey="Goldstein, R H" sort="Goldstein, R H" uniqKey="Goldstein R" first="R H" last="Goldstein">R H Goldstein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10462711</idno>
<idno type="pmid">10462711</idno>
<idno type="wicri:Area/PubMed/Corpus">000490</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000490</idno>
<idno type="wicri:Area/PubMed/Curation">000490</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000490</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000468</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000468</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts.</title>
<author>
<name sortKey="Rishikof, D C" sort="Rishikof, D C" uniqKey="Rishikof D" first="D C" last="Rishikof">D C Rishikof</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pulmonary Center and the Department of Biochemistry at the Boston University School of Medicine and the Boston VA Medical Center, Boston, Massachusetts 02118, USA.drishikof@bupula.bu.edu</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>The Pulmonary Center and the Department of Biochemistry at the Boston University School of Medicine and the Boston VA Medical Center, Boston, Massachusetts 02118</wicri:regionArea>
<wicri:noRegion>Massachusetts 02118</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ricupero, D A" sort="Ricupero, D A" uniqKey="Ricupero D" first="D A" last="Ricupero">D A Ricupero</name>
</author>
<author>
<name sortKey="Poliks, C F" sort="Poliks, C F" uniqKey="Poliks C" first="C F" last="Poliks">C F Poliks</name>
</author>
<author>
<name sortKey="Goldstein, R H" sort="Goldstein, R H" uniqKey="Goldstein R" first="R H" last="Goldstein">R H Goldstein</name>
</author>
</analytic>
<series>
<title level="j">Journal of cellular biochemistry</title>
<idno type="ISSN">0730-2312</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (deficiency)</term>
<term>Amino Acids (metabolism)</term>
<term>Ascorbic Acid (pharmacology)</term>
<term>Cell Line</term>
<term>Chloroquine (pharmacology)</term>
<term>Cystine (pharmacology)</term>
<term>Fibronectins (metabolism)</term>
<term>Humans</term>
<term>Lung (metabolism)</term>
<term>Lysosomes (metabolism)</term>
<term>Procollagen (metabolism)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Transforming Growth Factor beta (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Acide ascorbique (pharmacologie)</term>
<term>Acides aminés (déficit)</term>
<term>Acides aminés (métabolisme)</term>
<term>Chloroquine (pharmacologie)</term>
<term>Cystine (pharmacologie)</term>
<term>Facteur de croissance transformant bêta (pharmacologie)</term>
<term>Fibronectines (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lysosomes (métabolisme)</term>
<term>Poumon (métabolisme)</term>
<term>Procollagène (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Fibronectins</term>
<term>Procollagen</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Chloroquine</term>
<term>Cystine</term>
<term>Transforming Growth Factor beta</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lung</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acides aminés</term>
<term>Fibronectines</term>
<term>Lysosomes</term>
<term>Poumon</term>
<term>Procollagène</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Chloroquine</term>
<term>Cystine</term>
<term>Facteur de croissance transformant bêta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Lignée cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fibrotic lung diseases are characterized by excessive deposition of type I collagen. Amino acid availability regulates type I collagen mRNA levels in quiescent human lung fibroblasts. In these studies, the effect of amino acid availability on type I collagen protein accumulation in quiescent human lung fibroblasts was examined. Following amino acid deprivation, alpha1(I) procollagen protein levels were not detected by Western blot analysis in either the intracellular or the extracellular compartments. Fibronectin levels and total protein levels were not affected. Amino acid deprivation resulted in a more pronounced decrease in alpha1(I) procollagen protein levels than in alpha1(I) procollagen mRNA levels, suggesting that post-transcriptional events were responsible for the further decrease inalpha1(I) procollagen protein levels. The addition of transforming growth factor-beta to amino acid deprived fibroblasts increased alpha1(I) procollagen mRNA levels without affecting alpha1(I) procollagen protein levels, confirming a post-transcriptional site for regulatory control by amino acid deprivation. In the absence of ascorbic acid, alpha1(I) procollagen protein levels increased in amino acid deprived fibroblasts, but alpha1(I) procollagen mRNA levels were not affected. The absence of ascorbic acid likely resulted in the accumulation of nonhelical procollagen in the endoplasmic reticulum, indicating that translational mechanisms for alpha1(I) procollagen were intact. The addition of chloroquine, an inhibitor of lysosomal degradation of proteins, increased alpha1(I) procollagen protein levels in amino acid deprived fibroblasts. These data suggest that following amino acid deprivation of quiescent fibroblasts, newly synthesized type I collagen was degraded intracellularly, primarily by a process that involved lysosomal proteinases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10462711</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>10</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0730-2312</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>75</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1999</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of cellular biochemistry</Title>
<ISOAbbreviation>J. Cell. Biochem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts.</ArticleTitle>
<Pagination>
<MedlinePgn>130-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Fibrotic lung diseases are characterized by excessive deposition of type I collagen. Amino acid availability regulates type I collagen mRNA levels in quiescent human lung fibroblasts. In these studies, the effect of amino acid availability on type I collagen protein accumulation in quiescent human lung fibroblasts was examined. Following amino acid deprivation, alpha1(I) procollagen protein levels were not detected by Western blot analysis in either the intracellular or the extracellular compartments. Fibronectin levels and total protein levels were not affected. Amino acid deprivation resulted in a more pronounced decrease in alpha1(I) procollagen protein levels than in alpha1(I) procollagen mRNA levels, suggesting that post-transcriptional events were responsible for the further decrease inalpha1(I) procollagen protein levels. The addition of transforming growth factor-beta to amino acid deprived fibroblasts increased alpha1(I) procollagen mRNA levels without affecting alpha1(I) procollagen protein levels, confirming a post-transcriptional site for regulatory control by amino acid deprivation. In the absence of ascorbic acid, alpha1(I) procollagen protein levels increased in amino acid deprived fibroblasts, but alpha1(I) procollagen mRNA levels were not affected. The absence of ascorbic acid likely resulted in the accumulation of nonhelical procollagen in the endoplasmic reticulum, indicating that translational mechanisms for alpha1(I) procollagen were intact. The addition of chloroquine, an inhibitor of lysosomal degradation of proteins, increased alpha1(I) procollagen protein levels in amino acid deprived fibroblasts. These data suggest that following amino acid deprivation of quiescent fibroblasts, newly synthesized type I collagen was degraded intracellularly, primarily by a process that involved lysosomal proteinases.</AbstractText>
<CopyrightInformation>Copyright 1999 Wiley-Liss, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rishikof</LastName>
<ForeName>D C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>The Pulmonary Center and the Department of Biochemistry at the Boston University School of Medicine and the Boston VA Medical Center, Boston, Massachusetts 02118, USA.drishikof@bupula.bu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ricupero</LastName>
<ForeName>D A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poliks</LastName>
<ForeName>C F</ForeName>
<Initials>CF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goldstein</LastName>
<ForeName>R H</ForeName>
<Initials>RH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50HL56386</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Cell Biochem</MedlineTA>
<NlmUniqueID>8205768</NlmUniqueID>
<ISSNLinking>0730-2312</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005353">Fibronectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011347">Procollagen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016212">Transforming Growth Factor beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>48TCX9A1VT</RegistryNumber>
<NameOfSubstance UI="D003553">Cystine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003553" MajorTopicYN="N">Cystine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005353" MajorTopicYN="N">Fibronectins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011347" MajorTopicYN="N">Procollagen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016212" MajorTopicYN="N">Transforming Growth Factor beta</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>8</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10462711</ArticleId>
<ArticleId IdType="pii">10.1002/(SICI)1097-4644(19991001)75:1<130::AID-JCB13>3.0.CO;2-T</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Goldstein, R H" sort="Goldstein, R H" uniqKey="Goldstein R" first="R H" last="Goldstein">R H Goldstein</name>
<name sortKey="Poliks, C F" sort="Poliks, C F" uniqKey="Poliks C" first="C F" last="Poliks">C F Poliks</name>
<name sortKey="Ricupero, D A" sort="Ricupero, D A" uniqKey="Ricupero D" first="D A" last="Ricupero">D A Ricupero</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Rishikof, D C" sort="Rishikof, D C" uniqKey="Rishikof D" first="D C" last="Rishikof">D C Rishikof</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000468 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000468 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:10462711
   |texte=   Amino acid availability regulates type I procollagen accumulation in human lung fibroblasts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:10462711" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021