Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications

Identifieur interne : 000A71 ( Pmc/Corpus ); précédent : 000A70; suivant : 000A72

A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications

Auteurs : Ema Burlacu ; Corneliu Tanase ; N Staca-Alina Coman ; Lavinia Berta

Source :

RBID : PMC:6930476

Abstract

Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.


Url:
DOI: 10.3390/molecules24234354
PubMed: 31795265
PubMed Central: 6930476

Links to Exploration step

PMC:6930476

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications</title>
<author>
<name sortKey="Burlacu, Ema" sort="Burlacu, Ema" uniqKey="Burlacu E" first="Ema" last="Burlacu">Ema Burlacu</name>
<affiliation>
<nlm:aff id="af1-molecules-24-04354">Residency Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>morariuemma@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanase, Corneliu" sort="Tanase, Corneliu" uniqKey="Tanase C" first="Corneliu" last="Tanase">Corneliu Tanase</name>
<affiliation>
<nlm:aff id="af2-molecules-24-04354">Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>alinacoman2194@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coman, N Staca Alina" sort="Coman, N Staca Alina" uniqKey="Coman N" first="N Staca-Alina" last="Coman">N Staca-Alina Coman</name>
<affiliation>
<nlm:aff id="af2-molecules-24-04354">Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>alinacoman2194@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berta, Lavinia" sort="Berta, Lavinia" uniqKey="Berta L" first="Lavinia" last="Berta">Lavinia Berta</name>
<affiliation>
<nlm:aff id="af3-molecules-24-04354">Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>lavinia.berta@umfst.ro</email>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31795265</idno>
<idno type="pmc">6930476</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930476</idno>
<idno type="RBID">PMC:6930476</idno>
<idno type="doi">10.3390/molecules24234354</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A71</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications</title>
<author>
<name sortKey="Burlacu, Ema" sort="Burlacu, Ema" uniqKey="Burlacu E" first="Ema" last="Burlacu">Ema Burlacu</name>
<affiliation>
<nlm:aff id="af1-molecules-24-04354">Residency Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>morariuemma@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanase, Corneliu" sort="Tanase, Corneliu" uniqKey="Tanase C" first="Corneliu" last="Tanase">Corneliu Tanase</name>
<affiliation>
<nlm:aff id="af2-molecules-24-04354">Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>alinacoman2194@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coman, N Staca Alina" sort="Coman, N Staca Alina" uniqKey="Coman N" first="N Staca-Alina" last="Coman">N Staca-Alina Coman</name>
<affiliation>
<nlm:aff id="af2-molecules-24-04354">Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>alinacoman2194@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berta, Lavinia" sort="Berta, Lavinia" uniqKey="Berta L" first="Lavinia" last="Berta">Lavinia Berta</name>
<affiliation>
<nlm:aff id="af3-molecules-24-04354">Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>lavinia.berta@umfst.ro</email>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hasna, A S" uniqKey="Hasna A">A.S. Hasna</name>
</author>
<author>
<name sortKey="Rajiv, P" uniqKey="Rajiv P">P. Rajiv</name>
</author>
<author>
<name sortKey="Kamaraj, M" uniqKey="Kamaraj M">M. Kamaraj</name>
</author>
<author>
<name sortKey="Jagadeeswaran, P" uniqKey="Jagadeeswaran P">P. Jagadeeswaran</name>
</author>
<author>
<name sortKey="Sangeetha, G" uniqKey="Sangeetha G">G. Sangeetha</name>
</author>
<author>
<name sortKey="Rajeshwari, S" uniqKey="Rajeshwari S">S. Rajeshwari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iravani, S" uniqKey="Iravani S">S. Iravani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, S" uniqKey="Ahmed S">S. Ahmed</name>
</author>
<author>
<name sortKey="Ahmad, M" uniqKey="Ahmad M">M. Ahmad</name>
</author>
<author>
<name sortKey="Swami, B L" uniqKey="Swami B">B.L. Swami</name>
</author>
<author>
<name sortKey="Ikram, S" uniqKey="Ikram S">S. Ikram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhtar, M S" uniqKey="Akhtar M">M.S. Akhtar</name>
</author>
<author>
<name sortKey="Panwar, J" uniqKey="Panwar J">J. Panwar</name>
</author>
<author>
<name sortKey="Yun, Y S" uniqKey="Yun Y">Y.-S. Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kavitha, K S" uniqKey="Kavitha K">K.S. Kavitha</name>
</author>
<author>
<name sortKey="Syed, B" uniqKey="Syed B">B. Syed</name>
</author>
<author>
<name sortKey="Rakshith, D" uniqKey="Rakshith D">D. Rakshith</name>
</author>
<author>
<name sortKey="Kavitha, H U" uniqKey="Kavitha H">H.U. Kavitha</name>
</author>
<author>
<name sortKey="Yashwantha Rao, H C" uniqKey="Yashwantha Rao H">H.C. Yashwantha Rao</name>
</author>
<author>
<name sortKey="Harini, B P" uniqKey="Harini B">B.P. Harini</name>
</author>
<author>
<name sortKey="Satish, S" uniqKey="Satish S">S. Satish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajan, R" uniqKey="Rajan R">R. Rajan</name>
</author>
<author>
<name sortKey="Chandran, K" uniqKey="Chandran K">K. Chandran</name>
</author>
<author>
<name sortKey="Harper, S L" uniqKey="Harper S">S.L. Harper</name>
</author>
<author>
<name sortKey="Yun, S I" uniqKey="Yun S">S.-I. Yun</name>
</author>
<author>
<name sortKey="Kalaichelvan, P T" uniqKey="Kalaichelvan P">P.T. Kalaichelvan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferreres, F" uniqKey="Ferreres F">F. Ferreres</name>
</author>
<author>
<name sortKey="Gomes, N G M" uniqKey="Gomes N">N.G.M. Gomes</name>
</author>
<author>
<name sortKey="Valentao, P" uniqKey="Valentao P">P. Valentão</name>
</author>
<author>
<name sortKey="Pereira, D M" uniqKey="Pereira D">D.M. Pereira</name>
</author>
<author>
<name sortKey="Gil Izquierdo, A" uniqKey="Gil Izquierdo A">A. Gil-Izquierdo</name>
</author>
<author>
<name sortKey="Araujo, L" uniqKey="Araujo L">L. Araújo</name>
</author>
<author>
<name sortKey="Silva, T C" uniqKey="Silva T">T.C. Silva</name>
</author>
<author>
<name sortKey="Andrade, P B" uniqKey="Andrade P">P.B. Andrade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanase, C" uniqKey="Tanase C">C. Tanase</name>
</author>
<author>
<name sortKey="Berta, L" uniqKey="Berta L">L. Berta</name>
</author>
<author>
<name sortKey="Coman, A N" uniqKey="Coman A">A.N. Coman</name>
</author>
<author>
<name sortKey="Ro Ca, I" uniqKey="Ro Ca I">I. Roșca</name>
</author>
<author>
<name sortKey="Man, A" uniqKey="Man A">A. Man</name>
</author>
<author>
<name sortKey="Toma, F" uniqKey="Toma F">F. Toma</name>
</author>
<author>
<name sortKey="Mocan, A" uniqKey="Mocan A">A. Mocan</name>
</author>
<author>
<name sortKey="Jakab Farkas, L" uniqKey="Jakab Farkas L">L. Jakab-Farkas</name>
</author>
<author>
<name sortKey="Bir, D" uniqKey="Bir D">D. Biró</name>
</author>
<author>
<name sortKey="Mare, A" uniqKey="Mare A">A. Mare</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanase, C" uniqKey="Tanase C">C. Tanase</name>
</author>
<author>
<name sortKey="Berta, L" uniqKey="Berta L">L. Berta</name>
</author>
<author>
<name sortKey="Coman, A N" uniqKey="Coman A">A.N. Coman</name>
</author>
<author>
<name sortKey="Ro Ca, I" uniqKey="Ro Ca I">I. Roșca</name>
</author>
<author>
<name sortKey="Man, A" uniqKey="Man A">A. Man</name>
</author>
<author>
<name sortKey="Toma, F" uniqKey="Toma F">F. Toma</name>
</author>
<author>
<name sortKey="Mocan, A" uniqKey="Mocan A">A. Mocan</name>
</author>
<author>
<name sortKey="Nicolescu, A" uniqKey="Nicolescu A">A. Nicolescu</name>
</author>
<author>
<name sortKey="Jakab Farkas, L" uniqKey="Jakab Farkas L">L. Jakab-Farkas</name>
</author>
<author>
<name sortKey="Bir, D" uniqKey="Bir D">D. Biró</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanase, C" uniqKey="Tanase C">C. Tanase</name>
</author>
<author>
<name sortKey="Mocan, A" uniqKey="Mocan A">A. Mocan</name>
</author>
<author>
<name sortKey="Co Arc, S" uniqKey="Co Arc S">S. Coșarcă</name>
</author>
<author>
<name sortKey="Gavan, A" uniqKey="Gavan A">A. Gavan</name>
</author>
<author>
<name sortKey="Nicolescu, A" uniqKey="Nicolescu A">A. Nicolescu</name>
</author>
<author>
<name sortKey="Gheldiu, A M" uniqKey="Gheldiu A">A.-M. Gheldiu</name>
</author>
<author>
<name sortKey="Vodnar, C D" uniqKey="Vodnar C">C.D. Vodnar</name>
</author>
<author>
<name sortKey="Muntean, D L" uniqKey="Muntean D">D.-L. Muntean</name>
</author>
<author>
<name sortKey="Cri An, O" uniqKey="Cri An O">O. Crișan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alfredsen, G" uniqKey="Alfredsen G">G. Alfredsen</name>
</author>
<author>
<name sortKey="Solheim, H" uniqKey="Solheim H">H. Solheim</name>
</author>
<author>
<name sortKey="Slimestad, R" uniqKey="Slimestad R">R. Slimestad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verica, D U" uniqKey="Verica D">D.-U. Verica</name>
</author>
<author>
<name sortKey="Levaj, B" uniqKey="Levaj B">B. Levaj</name>
</author>
<author>
<name sortKey="Mrkic, V" uniqKey="Mrkic V">V. Mrkic</name>
</author>
<author>
<name sortKey="Bursa Kova Evi, D" uniqKey="Bursa Kova Evi D">D. Bursać Kovačević</name>
</author>
<author>
<name sortKey="Boras, M" uniqKey="Boras M">M. Boras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majumdar, R" uniqKey="Majumdar R">R. Majumdar</name>
</author>
<author>
<name sortKey="Bag, B G" uniqKey="Bag B">B.G. Bag</name>
</author>
<author>
<name sortKey="Ghosh, P" uniqKey="Ghosh P">P. Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, B" uniqKey="Singh B">B. Singh</name>
</author>
<author>
<name sortKey="Sharma, R A" uniqKey="Sharma R">R.A. Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prakash, D" uniqKey="Prakash D">D. Prakash</name>
</author>
<author>
<name sortKey="Kumar, N" uniqKey="Kumar N">N. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yallappa, S" uniqKey="Yallappa S">S. Yallappa</name>
</author>
<author>
<name sortKey="Manjanna, J" uniqKey="Manjanna J">J. Manjanna</name>
</author>
<author>
<name sortKey="Dhananjaya, B L" uniqKey="Dhananjaya B">B.L. Dhananjaya</name>
</author>
<author>
<name sortKey="Vishwanatha, U" uniqKey="Vishwanatha U">U. Vishwanatha</name>
</author>
<author>
<name sortKey="Ravishankar, B" uniqKey="Ravishankar B">B. Ravishankar</name>
</author>
<author>
<name sortKey="Gururaj, H" uniqKey="Gururaj H">H. Gururaj</name>
</author>
<author>
<name sortKey="Niranjana, P" uniqKey="Niranjana P">P. Niranjana</name>
</author>
<author>
<name sortKey="Hungund, B S" uniqKey="Hungund B">B.S. Hungund</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedreschi, F" uniqKey="Pedreschi F">F. Pedreschi</name>
</author>
<author>
<name sortKey="Mariotti, M S" uniqKey="Mariotti M">M.S. Mariotti</name>
</author>
<author>
<name sortKey="Granby, K" uniqKey="Granby K">K. Granby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santos, S" uniqKey="Santos S">S. Santos</name>
</author>
<author>
<name sortKey="Pinto, R" uniqKey="Pinto R">R. Pinto</name>
</author>
<author>
<name sortKey="Rocha, S" uniqKey="Rocha S">S. Rocha</name>
</author>
<author>
<name sortKey="Marques, P" uniqKey="Marques P">P. Marques</name>
</author>
<author>
<name sortKey="Neto, C" uniqKey="Neto C">C. Neto</name>
</author>
<author>
<name sortKey="Silvestre, A" uniqKey="Silvestre A">A. Silvestre</name>
</author>
<author>
<name sortKey="Freire, C" uniqKey="Freire C">C. Freire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murugan, K" uniqKey="Murugan K">K. Murugan</name>
</author>
<author>
<name sortKey="Senthilkumar, B" uniqKey="Senthilkumar B">B. Senthilkumar</name>
</author>
<author>
<name sortKey="Senbagam, D" uniqKey="Senbagam D">D. Senbagam</name>
</author>
<author>
<name sortKey="Al Sohaibani, S" uniqKey="Al Sohaibani S">S. Al-Sohaibani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moyo, M" uniqKey="Moyo M">M. Moyo</name>
</author>
<author>
<name sortKey="Gomba, M" uniqKey="Gomba M">M. Gomba</name>
</author>
<author>
<name sortKey="Nharingo, T" uniqKey="Nharingo T">T. Nharingo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Z" uniqKey="Lin Z">Z. Lin</name>
</author>
<author>
<name sortKey="Jianming, W" uniqKey="Jianming W">W. Jianming</name>
</author>
<author>
<name sortKey="Xue, R" uniqKey="Xue R">R. Xue</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miri, A" uniqKey="Miri A">A. Miri</name>
</author>
<author>
<name sortKey="Dorani, N" uniqKey="Dorani N">N. Dorani</name>
</author>
<author>
<name sortKey="Darroudi, M" uniqKey="Darroudi M">M. Darroudi</name>
</author>
<author>
<name sortKey="Sarani, M" uniqKey="Sarani M">M. Sarani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kabera, J" uniqKey="Kabera J">J. Kabera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geethalakshmi, R" uniqKey="Geethalakshmi R">R. Geethalakshmi</name>
</author>
<author>
<name sortKey="Sarada, D V L" uniqKey="Sarada D">D.V.L. Sarada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vasanth, K" uniqKey="Vasanth K">K. Vasanth</name>
</author>
<author>
<name sortKey="Ilango, K" uniqKey="Ilango K">K. Ilango</name>
</author>
<author>
<name sortKey="Ramasamy, M" uniqKey="Ramasamy M">M. Ramasamy</name>
</author>
<author>
<name sortKey="Agrawal, A" uniqKey="Agrawal A">A. Agrawal</name>
</author>
<author>
<name sortKey="Dubey, G P" uniqKey="Dubey G">G.P. Dubey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saravanakumar, K" uniqKey="Saravanakumar K">K. Saravanakumar</name>
</author>
<author>
<name sortKey="Chelliah, R" uniqKey="Chelliah R">R. Chelliah</name>
</author>
<author>
<name sortKey="Mubarakali, D" uniqKey="Mubarakali D">D. MubarakAli</name>
</author>
<author>
<name sortKey="Oh, D H" uniqKey="Oh D">D.-H. Oh</name>
</author>
<author>
<name sortKey="Kathiresan, K" uniqKey="Kathiresan K">K. Kathiresan</name>
</author>
<author>
<name sortKey="Wang, M H" uniqKey="Wang M">M.-H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dash, S S" uniqKey="Dash S">S.S. Dash</name>
</author>
<author>
<name sortKey="Majumdar, R" uniqKey="Majumdar R">R. Majumdar</name>
</author>
<author>
<name sortKey="Sikder, A K" uniqKey="Sikder A">A.K. Sikder</name>
</author>
<author>
<name sortKey="Bag, B G" uniqKey="Bag B">B.G. Bag</name>
</author>
<author>
<name sortKey="Patra, B K" uniqKey="Patra B">B.K. Patra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dutta, P P" uniqKey="Dutta P">P.P. Dutta</name>
</author>
<author>
<name sortKey="Bordoloi, M" uniqKey="Bordoloi M">M. Bordoloi</name>
</author>
<author>
<name sortKey="Gogoi, K" uniqKey="Gogoi K">K. Gogoi</name>
</author>
<author>
<name sortKey="Roy, S" uniqKey="Roy S">S. Roy</name>
</author>
<author>
<name sortKey="Narzary, B" uniqKey="Narzary B">B. Narzary</name>
</author>
<author>
<name sortKey="Bhattacharyya, D R" uniqKey="Bhattacharyya D">D.R. Bhattacharyya</name>
</author>
<author>
<name sortKey="Mohapatra, P K" uniqKey="Mohapatra P">P.K. Mohapatra</name>
</author>
<author>
<name sortKey="Mazumder, B" uniqKey="Mazumder B">B. Mazumder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivakumar, S" uniqKey="Sivakumar S">S. Sivakumar</name>
</author>
<author>
<name sortKey="Vijayan, S R" uniqKey="Vijayan S">S.R. Vijayan</name>
</author>
<author>
<name sortKey="Pugazhendhi, A" uniqKey="Pugazhendhi A">A. Pugazhendhi</name>
</author>
<author>
<name sortKey="Benelli, G" uniqKey="Benelli G">G. Benelli</name>
</author>
<author>
<name sortKey="Archunan, G" uniqKey="Archunan G">G. Archunan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, S" uniqKey="Khan S">S. Khan</name>
</author>
<author>
<name sortKey="Bello, B" uniqKey="Bello B">B. Bello</name>
</author>
<author>
<name sortKey="Khan, J" uniqKey="Khan J">J. Khan</name>
</author>
<author>
<name sortKey="Anwar, Y" uniqKey="Anwar Y">Y. Anwar</name>
</author>
<author>
<name sortKey="Mirza, M" uniqKey="Mirza M">M. Mirza</name>
</author>
<author>
<name sortKey="Qadri, F" uniqKey="Qadri F">F. Qadri</name>
</author>
<author>
<name sortKey="Farooq, A" uniqKey="Farooq A">A. Farooq</name>
</author>
<author>
<name sortKey="Adam, I K" uniqKey="Adam I">I.K. Adam</name>
</author>
<author>
<name sortKey="Asiri, A M" uniqKey="Asiri A">A.M. Asiri</name>
</author>
<author>
<name sortKey="Khan, S" uniqKey="Khan S">S. Khan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shetty, P" uniqKey="Shetty P">P. Shetty</name>
</author>
<author>
<name sortKey="Supraja, N" uniqKey="Supraja N">N. Supraja</name>
</author>
<author>
<name sortKey="Garud, M" uniqKey="Garud M">M. Garud</name>
</author>
<author>
<name sortKey="Prasad, T N V K V" uniqKey="Prasad T">T.N.V.K.V. Prasad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdullah, N" uniqKey="Abdullah N">N. Abdullah</name>
</author>
<author>
<name sortKey="Ahmad, M" uniqKey="Ahmad M">M. Ahmad</name>
</author>
<author>
<name sortKey="Kamyar, S" uniqKey="Kamyar S">S. Kamyar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nahak, G" uniqKey="Nahak G">G. Nahak</name>
</author>
<author>
<name sortKey="Sahu, R" uniqKey="Sahu R">R. Sahu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soni, N" uniqKey="Soni N">N. Soni</name>
</author>
<author>
<name sortKey="Prakash, S" uniqKey="Prakash S">S. Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehmood, A" uniqKey="Mehmood A">A. Mehmood</name>
</author>
<author>
<name sortKey="Murtaza, G" uniqKey="Murtaza G">G. Murtaza</name>
</author>
<author>
<name sortKey="Bhatti, T" uniqKey="Bhatti T">T. Bhatti</name>
</author>
<author>
<name sortKey="Kausar, R" uniqKey="Kausar R">R. Kausar</name>
</author>
<author>
<name sortKey="Ahmed, M" uniqKey="Ahmed M">M. Ahmed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pattanayak, S" uniqKey="Pattanayak S">S. Pattanayak</name>
</author>
<author>
<name sortKey="Mollick, M M R" uniqKey="Mollick M">M.M.R. Mollick</name>
</author>
<author>
<name sortKey="Maity, D" uniqKey="Maity D">D. Maity</name>
</author>
<author>
<name sortKey="Chakraborty, S" uniqKey="Chakraborty S">S. Chakraborty</name>
</author>
<author>
<name sortKey="Dash, S K" uniqKey="Dash S">S.K. Dash</name>
</author>
<author>
<name sortKey="Chattopadhyay, S" uniqKey="Chattopadhyay S">S. Chattopadhyay</name>
</author>
<author>
<name sortKey="Roy, S" uniqKey="Roy S">S. Roy</name>
</author>
<author>
<name sortKey="Chattopadhyay, D" uniqKey="Chattopadhyay D">D. Chattopadhyay</name>
</author>
<author>
<name sortKey="Chakraborty, M" uniqKey="Chakraborty M">M. Chakraborty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daisy, P" uniqKey="Daisy P">P. Daisy</name>
</author>
<author>
<name sortKey="Saipriya, K" uniqKey="Saipriya K">K. Saipriya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fatima, M" uniqKey="Fatima M">M. Fatima</name>
</author>
<author>
<name sortKey="Zaidi, N U S" uniqKey="Zaidi N">N.-U.-S. Zaidi</name>
</author>
<author>
<name sortKey="Amraiz, D" uniqKey="Amraiz D">D. Amraiz</name>
</author>
<author>
<name sortKey="Afzal, F" uniqKey="Afzal F">F. Afzal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soni, N" uniqKey="Soni N">N. Soni</name>
</author>
<author>
<name sortKey="Prakash, S" uniqKey="Prakash S">S. Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Xia, R" uniqKey="Xia R">R. Xia</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H. Hu</name>
</author>
<author>
<name sortKey="Peng, T" uniqKey="Peng T">T. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasikala, A" uniqKey="Sasikala A">A. Sasikala</name>
</author>
<author>
<name sortKey="Linga Rao, M" uniqKey="Linga Rao M">M. Linga Rao</name>
</author>
<author>
<name sortKey="Savithramma, N" uniqKey="Savithramma N">N. Savithramma</name>
</author>
<author>
<name sortKey="Prasad, T N V K V" uniqKey="Prasad T">T.N.V.K.V. Prasad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ali, S" uniqKey="Ali S">S. Ali</name>
</author>
<author>
<name sortKey="Ansari, M" uniqKey="Ansari M">M. Ansari</name>
</author>
<author>
<name sortKey="Khan, H" uniqKey="Khan H">H. Khan</name>
</author>
<author>
<name sortKey="Jalal, M" uniqKey="Jalal M">M. Jalal</name>
</author>
<author>
<name sortKey="Mahdi, A A" uniqKey="Mahdi A">A.A. Mahdi</name>
</author>
<author>
<name sortKey="Cameotra, S" uniqKey="Cameotra S">S. Cameotra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohanty, A" uniqKey="Mohanty A">A. Mohanty</name>
</author>
<author>
<name sortKey="Jena, B S" uniqKey="Jena B">B.S. Jena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Devaraj, B" uniqKey="Devaraj B">B. Devaraj</name>
</author>
<author>
<name sortKey="Josebin, M" uniqKey="Josebin M">M. Josebin</name>
</author>
<author>
<name sortKey="Seerangaraj, V" uniqKey="Seerangaraj V">V. Seerangaraj</name>
</author>
<author>
<name sortKey="Veluswamy, B" uniqKey="Veluswamy B">B. Veluswamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vasantharaj, S" uniqKey="Vasantharaj S">S. Vasantharaj</name>
</author>
<author>
<name sortKey="Sripriya, N" uniqKey="Sripriya N">N. Sripriya</name>
</author>
<author>
<name sortKey="Shanmugavel, M" uniqKey="Shanmugavel M">M. Shanmugavel</name>
</author>
<author>
<name sortKey="Manikandan, E" uniqKey="Manikandan E">E. Manikandan</name>
</author>
<author>
<name sortKey="Gnanamani, A" uniqKey="Gnanamani A">A. Gnanamani</name>
</author>
<author>
<name sortKey="Senthilkumar, P" uniqKey="Senthilkumar P">P. Senthilkumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Odeyemi, S" uniqKey="Odeyemi S">S. Odeyemi</name>
</author>
<author>
<name sortKey="Mare, J A" uniqKey="Mare J">J.-A. Mare</name>
</author>
<author>
<name sortKey="Edkins, A" uniqKey="Edkins A">A. Edkins</name>
</author>
<author>
<name sortKey="Afolayan, A" uniqKey="Afolayan A">A. Afolayan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulkarni, N" uniqKey="Kulkarni N">N. Kulkarni</name>
</author>
<author>
<name sortKey="Muddapur, U" uniqKey="Muddapur U">U. Muddapur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Logeswari, P" uniqKey="Logeswari P">P. Logeswari</name>
</author>
<author>
<name sortKey="Silambarasan, S" uniqKey="Silambarasan S">S. Silambarasan</name>
</author>
<author>
<name sortKey="Abraham, J" uniqKey="Abraham J">J. Abraham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, M" uniqKey="Guo M">M. Guo</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F. Yang</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Duan, L" uniqKey="Duan L">L. Duan</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Campoy, A H" uniqKey="Garcia Campoy A">A.H. Garcia Campoy</name>
</author>
<author>
<name sortKey="Perez Gutierrez, R M" uniqKey="Perez Gutierrez R">R.M. Perez Gutierrez</name>
</author>
<author>
<name sortKey="Manriquez Alvirde, G" uniqKey="Manriquez Alvirde G">G. Manriquez-Alvirde</name>
</author>
<author>
<name sortKey="Mu Iz Ramirez, A" uniqKey="Mu Iz Ramirez A">A. Muñiz Ramirez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanjikar, A" uniqKey="Kanjikar A">A. Kanjikar</name>
</author>
<author>
<name sortKey="Lingappa Hugar, A" uniqKey="Lingappa Hugar A">A. Lingappa Hugar</name>
</author>
<author>
<name sortKey="Londonkar, R" uniqKey="Londonkar R">R. Londonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nayagam, V" uniqKey="Nayagam V">V. Nayagam</name>
</author>
<author>
<name sortKey="Melchias, G" uniqKey="Melchias G">G. Melchias</name>
</author>
<author>
<name sortKey="Kumaravel, P" uniqKey="Kumaravel P">P. Kumaravel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nayak, D" uniqKey="Nayak D">D. Nayak</name>
</author>
<author>
<name sortKey="Ashe, S" uniqKey="Ashe S">S. Ashe</name>
</author>
<author>
<name sortKey="Rauta, P" uniqKey="Rauta P">P. Rauta</name>
</author>
<author>
<name sortKey="Kumari, M" uniqKey="Kumari M">M. Kumari</name>
</author>
<author>
<name sortKey="Nayak, B" uniqKey="Nayak B">B. Nayak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Xiao, C" uniqKey="Xiao C">C. Xiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karthika, V" uniqKey="Karthika V">V. Karthika</name>
</author>
<author>
<name sortKey="Arumugam, A" uniqKey="Arumugam A">A. Arumugam</name>
</author>
<author>
<name sortKey="Gopinath, K" uniqKey="Gopinath K">K. Gopinath</name>
</author>
<author>
<name sortKey="Periyannan, K" uniqKey="Periyannan K">K. Periyannan</name>
</author>
<author>
<name sortKey="Govindarajan, M" uniqKey="Govindarajan M">M. Govindarajan</name>
</author>
<author>
<name sortKey="Alharbi, N" uniqKey="Alharbi N">N. Alharbi</name>
</author>
<author>
<name sortKey="Km, S" uniqKey="Km S">S. Km</name>
</author>
<author>
<name sortKey="Khaled, J" uniqKey="Khaled J">J. Khaled</name>
</author>
<author>
<name sortKey="Benelli, G" uniqKey="Benelli G">G. Benelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, D" uniqKey="Kumar D">D. Kumar</name>
</author>
<author>
<name sortKey="Kumar, G" uniqKey="Kumar G">G. Kumar</name>
</author>
<author>
<name sortKey="Agrawal, V" uniqKey="Agrawal V">V. Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehmood, A" uniqKey="Mehmood A">A. Mehmood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Deng, J" uniqKey="Deng J">J. Deng</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, S V" uniqKey="Kumar S">S.V. Kumar</name>
</author>
<author>
<name sortKey="Sanghai, D B" uniqKey="Sanghai D">D.B. Sanghai</name>
</author>
<author>
<name sortKey="Rao, C M" uniqKey="Rao C">C.M. Rao</name>
</author>
<author>
<name sortKey="Shreedhara, C S" uniqKey="Shreedhara C">C.S. Shreedhara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pani, A" uniqKey="Pani A">A. Pani</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Yun, S I" uniqKey="Yun S">S.-I. Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barai, A" uniqKey="Barai A">A. Barai</name>
</author>
<author>
<name sortKey="Paul, K" uniqKey="Paul K">K. Paul</name>
</author>
<author>
<name sortKey="Dey, A" uniqKey="Dey A">A. Dey</name>
</author>
<author>
<name sortKey="Manna, S" uniqKey="Manna S">S. Manna</name>
</author>
<author>
<name sortKey="Roy, S" uniqKey="Roy S">S. Roy</name>
</author>
<author>
<name sortKey="Bag, B" uniqKey="Bag B">B. Bag</name>
</author>
<author>
<name sortKey="Mukhopadhyay, C" uniqKey="Mukhopadhyay C">C. Mukhopadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ignat, I" uniqKey="Ignat I">I. Ignat</name>
</author>
<author>
<name sortKey="Radu, D" uniqKey="Radu D">D. Radu</name>
</author>
<author>
<name sortKey="Volf, I" uniqKey="Volf I">I. Volf</name>
</author>
<author>
<name sortKey="Pag, A" uniqKey="Pag A">A. Pag</name>
</author>
<author>
<name sortKey="Popa, V" uniqKey="Popa V">V. Popa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iravani, S" uniqKey="Iravani S">S. Iravani</name>
</author>
<author>
<name sortKey="Zolfaghari, B" uniqKey="Zolfaghari B">B. Zolfaghari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shanmugam, R" uniqKey="Shanmugam R">R. Shanmugam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arya, G" uniqKey="Arya G">G. Arya</name>
</author>
<author>
<name sortKey="Kumari, M" uniqKey="Kumari M">M. Kumari</name>
</author>
<author>
<name sortKey="Gupta, N" uniqKey="Gupta N">N. Gupta</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Chandra, R" uniqKey="Chandra R">R. Chandra</name>
</author>
<author>
<name sortKey="Nimesh, S" uniqKey="Nimesh S">S. Nimesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puiso, J" uniqKey="Puiso J">J. Puiso</name>
</author>
<author>
<name sortKey="Ma Ionien, I" uniqKey="Ma Ionien I">I. Mačionienė</name>
</author>
<author>
<name sortKey="Jonkuvien, D" uniqKey="Jonkuvien D">D. Jonkuvienė</name>
</author>
<author>
<name sortKey="Salomskien, J" uniqKey="Salomskien J">J. Šalomskienė</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahram, M" uniqKey="Bahram M">M. Bahram</name>
</author>
<author>
<name sortKey="Mohammadzadeh, E" uniqKey="Mohammadzadeh E">E. Mohammadzadeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subramanian, R" uniqKey="Subramanian R">R. Subramanian</name>
</author>
<author>
<name sortKey="Subbramaniyan, P" uniqKey="Subbramaniyan P">P. Subbramaniyan</name>
</author>
<author>
<name sortKey="Raj, V" uniqKey="Raj V">V. Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Francis, S" uniqKey="Francis S">S. Francis</name>
</author>
<author>
<name sortKey="Koshy, E" uniqKey="Koshy E">E. Koshy</name>
</author>
<author>
<name sortKey="Mathew, B" uniqKey="Mathew B">B. Mathew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yugandhar, P" uniqKey="Yugandhar P">P. Yugandhar</name>
</author>
<author>
<name sortKey="Haribabu, R" uniqKey="Haribabu R">R. Haribabu</name>
</author>
<author>
<name sortKey="Savithramma, N" uniqKey="Savithramma N">N. Savithramma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, R" uniqKey="Prasad R">R. Prasad</name>
</author>
<author>
<name sortKey="Satyanarayana Swamy, V" uniqKey="Satyanarayana Swamy V">V. Satyanarayana Swamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, Q" uniqKey="Ahmed Q">Q. Ahmed</name>
</author>
<author>
<name sortKey="Gupta, N" uniqKey="Gupta N">N. Gupta</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Nimesh, S" uniqKey="Nimesh S">S. Nimesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yallappa, S" uniqKey="Yallappa S">S. Yallappa</name>
</author>
<author>
<name sortKey="Manjanna, J" uniqKey="Manjanna J">J. Manjanna</name>
</author>
<author>
<name sortKey="Sindhe, M A" uniqKey="Sindhe M">M.A. Sindhe</name>
</author>
<author>
<name sortKey="Satyanarayan, N D" uniqKey="Satyanarayan N">N.D. Satyanarayan</name>
</author>
<author>
<name sortKey="Pramod, S N" uniqKey="Pramod S">S.N. Pramod</name>
</author>
<author>
<name sortKey="Nagaraja, K" uniqKey="Nagaraja K">K. Nagaraja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edison, T N J I" uniqKey="Edison T">T.N.J.I. Edison</name>
</author>
<author>
<name sortKey="Lee, Y R" uniqKey="Lee Y">Y.R. Lee</name>
</author>
<author>
<name sortKey="Sethuraman, M G" uniqKey="Sethuraman M">M.G. Sethuraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babu, S" uniqKey="Babu S">S. Babu</name>
</author>
<author>
<name sortKey="Devadiga, A" uniqKey="Devadiga A">A. Devadiga</name>
</author>
<author>
<name sortKey="Shetty, K V" uniqKey="Shetty K">K.V. Shetty</name>
</author>
<author>
<name sortKey="Saidutta, M B" uniqKey="Saidutta M">M.B. Saidutta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prashanth, G K" uniqKey="Prashanth G">G.K. Prashanth</name>
</author>
<author>
<name sortKey="Prashanth, P A" uniqKey="Prashanth P">P.A. Prashanth</name>
</author>
<author>
<name sortKey="Bora, U" uniqKey="Bora U">U. Bora</name>
</author>
<author>
<name sortKey="Gadewar, M" uniqKey="Gadewar M">M. Gadewar</name>
</author>
<author>
<name sortKey="Nagabhushana, B M" uniqKey="Nagabhushana B">B.M. Nagabhushana</name>
</author>
<author>
<name sortKey="Ananda, S" uniqKey="Ananda S">S. Ananda</name>
</author>
<author>
<name sortKey="Krishnaiah, G M" uniqKey="Krishnaiah G">G.M. Krishnaiah</name>
</author>
<author>
<name sortKey="Sathyananda, H M" uniqKey="Sathyananda H">H.M. Sathyananda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pietta, P G" uniqKey="Pietta P">P.-G. Pietta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, J J" uniqKey="Guo J">J.-J. Guo</name>
</author>
<author>
<name sortKey="Hsieh, H Y" uniqKey="Hsieh H">H.-Y. Hsieh</name>
</author>
<author>
<name sortKey="Hu, C H" uniqKey="Hu C">C.-H. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, H Y" uniqKey="Lin H">H.-Y. Lin</name>
</author>
<author>
<name sortKey="Chou, C C" uniqKey="Chou C">C.-C. Chou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phull, A R" uniqKey="Phull A">A.-R. Phull</name>
</author>
<author>
<name sortKey="Abbas, Q" uniqKey="Abbas Q">Q. Abbas</name>
</author>
<author>
<name sortKey="Ali, A" uniqKey="Ali A">A. Ali</name>
</author>
<author>
<name sortKey="Raza, H" uniqKey="Raza H">H. Raza</name>
</author>
<author>
<name sortKey="Kim, S J" uniqKey="Kim S">S.J. Kim</name>
</author>
<author>
<name sortKey="Zia, M" uniqKey="Zia M">M. Zia</name>
</author>
<author>
<name sortKey="Haq, I" uniqKey="Haq I">I. Haq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramamurthy, C" uniqKey="Ramamurthy C">C. Ramamurthy</name>
</author>
<author>
<name sortKey="Padma, M" uniqKey="Padma M">M. Padma</name>
</author>
<author>
<name sortKey="Samadanam, I" uniqKey="Samadanam I">I. Samadanam</name>
</author>
<author>
<name sortKey="Ramachandran, M" uniqKey="Ramachandran M">M. Ramachandran</name>
</author>
<author>
<name sortKey="Suyavaran, A" uniqKey="Suyavaran A">A. Suyavaran</name>
</author>
<author>
<name sortKey="Kumar, M" uniqKey="Kumar M">M. Kumar</name>
</author>
<author>
<name sortKey="Premkumar, K" uniqKey="Premkumar K">K. Premkumar</name>
</author>
<author>
<name sortKey="Thirunavukkarasu, C" uniqKey="Thirunavukkarasu C">C. Thirunavukkarasu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X. He</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Tan, W" uniqKey="Tan W">W. Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yudha, S S" uniqKey="Yudha S">S.S. Yudha</name>
</author>
<author>
<name sortKey="Notriawan, D" uniqKey="Notriawan D">D. Notriawan</name>
</author>
<author>
<name sortKey="Angasa, E" uniqKey="Angasa E">E. Angasa</name>
</author>
<author>
<name sortKey="Suharto, T" uniqKey="Suharto T">T. Suharto</name>
</author>
<author>
<name sortKey="Hendri, J" uniqKey="Hendri J">J. Hendri</name>
</author>
<author>
<name sortKey="Nisina, Y" uniqKey="Nisina Y">Y. Nisina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wijnhoven, S" uniqKey="Wijnhoven S">S. Wijnhoven</name>
</author>
<author>
<name sortKey="Peijnenburg, W" uniqKey="Peijnenburg W">W. Peijnenburg</name>
</author>
<author>
<name sortKey="Herberts, C" uniqKey="Herberts C">C. Herberts</name>
</author>
<author>
<name sortKey="Hagens, W" uniqKey="Hagens W">W. Hagens</name>
</author>
<author>
<name sortKey="Oomen, A" uniqKey="Oomen A">A. Oomen</name>
</author>
<author>
<name sortKey="Heugens, E" uniqKey="Heugens E">E. Heugens</name>
</author>
<author>
<name sortKey="Roszek, B" uniqKey="Roszek B">B. Roszek</name>
</author>
<author>
<name sortKey="Bisschops, J" uniqKey="Bisschops J">J. Bisschops</name>
</author>
<author>
<name sortKey="Gosens, I" uniqKey="Gosens I">I. Gosens</name>
</author>
<author>
<name sortKey="Van De Meent, D" uniqKey="Van De Meent D">D. Van de meent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Yang, P" uniqKey="Yang P">P. Yang</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mirzajani, F" uniqKey="Mirzajani F">F. Mirzajani</name>
</author>
<author>
<name sortKey="Ghassempour, A" uniqKey="Ghassempour A">A. Ghassempour</name>
</author>
<author>
<name sortKey="Aliahmadi, A" uniqKey="Aliahmadi A">A. Aliahmadi</name>
</author>
<author>
<name sortKey="Esmaeili, M A" uniqKey="Esmaeili M">M.A. Esmaeili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savithramma, N" uniqKey="Savithramma N">N. Savithramma</name>
</author>
<author>
<name sortKey="Lingarao, M" uniqKey="Lingarao M">M. Lingarao</name>
</author>
<author>
<name sortKey="Ankanna, S" uniqKey="Ankanna S">S. Ankanna</name>
</author>
<author>
<name sortKey="Venkateswarlu, P" uniqKey="Venkateswarlu P">P. Venkateswarlu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dibrov, P" uniqKey="Dibrov P">P. Dibrov</name>
</author>
<author>
<name sortKey="Dzioba, J" uniqKey="Dzioba J">J. Dzioba</name>
</author>
<author>
<name sortKey="Gosink, K" uniqKey="Gosink K">K. Gosink</name>
</author>
<author>
<name sortKey="H Se, C" uniqKey="H Se C">C. Häse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Q" uniqKey="Feng Q">Q. Feng</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Chen, G Q" uniqKey="Chen G">G.-Q. Chen</name>
</author>
<author>
<name sortKey="Cui, F Z" uniqKey="Cui F">F.-Z. Cui</name>
</author>
<author>
<name sortKey="Kim, T" uniqKey="Kim T">T. Kim</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsumura, Y" uniqKey="Matsumura Y">Y. Matsumura</name>
</author>
<author>
<name sortKey="Yoshikata, K" uniqKey="Yoshikata K">K. Yoshikata</name>
</author>
<author>
<name sortKey="Kunisaki, S" uniqKey="Kunisaki S">S. Kunisaki</name>
</author>
<author>
<name sortKey="Tsuchido, T" uniqKey="Tsuchido T">T. Tsuchido</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nazeruddin, G M" uniqKey="Nazeruddin G">G.M. Nazeruddin</name>
</author>
<author>
<name sortKey="Prasad, N R" uniqKey="Prasad N">N.R. Prasad</name>
</author>
<author>
<name sortKey="Prasad, S R" uniqKey="Prasad S">S.R. Prasad</name>
</author>
<author>
<name sortKey="Shaikh, Y I" uniqKey="Shaikh Y">Y.I. Shaikh</name>
</author>
<author>
<name sortKey="Waghmare, S R" uniqKey="Waghmare S">S.R. Waghmare</name>
</author>
<author>
<name sortKey="Adhyapak, P" uniqKey="Adhyapak P">P. Adhyapak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, G" uniqKey="Cooper G">G. Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R. Singh</name>
</author>
<author>
<name sortKey="Shedbalkar, U" uniqKey="Shedbalkar U">U. Shedbalkar</name>
</author>
<author>
<name sortKey="Wadhwani, S" uniqKey="Wadhwani S">S. Wadhwani</name>
</author>
<author>
<name sortKey="Chopade, P B" uniqKey="Chopade P">P.B. Chopade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sondi, I" uniqKey="Sondi I">I. Sondi</name>
</author>
<author>
<name sortKey="Salopek Sondi, B" uniqKey="Salopek Sondi B">B. Salopek-Sondi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asharani, P V" uniqKey="Asharani P">P.V. Asharani</name>
</author>
<author>
<name sortKey="Hande, M P" uniqKey="Hande M">M.P. Hande</name>
</author>
<author>
<name sortKey="Valiyaveettil, S" uniqKey="Valiyaveettil S">S. Valiyaveettil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X F" uniqKey="Zhang X">X.-F. Zhang</name>
</author>
<author>
<name sortKey="Choi, Y J" uniqKey="Choi Y">Y.-J. Choi</name>
</author>
<author>
<name sortKey="Han, J W" uniqKey="Han J">J.W. Han</name>
</author>
<author>
<name sortKey="Kim, E" uniqKey="Kim E">E. Kim</name>
</author>
<author>
<name sortKey="Park, J H" uniqKey="Park J">J.H. Park</name>
</author>
<author>
<name sortKey="Gurunathan, S" uniqKey="Gurunathan S">S. Gurunathan</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.-H. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M. Yu</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Jon, S" uniqKey="Jon S">S. Jon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medhat, D" uniqKey="Medhat D">D. Medhat</name>
</author>
<author>
<name sortKey="Hussein, J" uniqKey="Hussein J">J. Hussein</name>
</author>
<author>
<name sortKey="El Naggar, M" uniqKey="El Naggar M">M. El-naggar</name>
</author>
<author>
<name sortKey="Attia, M" uniqKey="Attia M">M. Attia</name>
</author>
<author>
<name sortKey="Anwar, M" uniqKey="Anwar M">M. Anwar</name>
</author>
<author>
<name sortKey="Latif, Y" uniqKey="Latif Y">Y. Latif</name>
</author>
<author>
<name sortKey="Booles, H" uniqKey="Booles H">H. Booles</name>
</author>
<author>
<name sortKey="Morsy, S" uniqKey="Morsy S">S. Morsy</name>
</author>
<author>
<name sortKey="Farrag, A R" uniqKey="Farrag A">A.R. Farrag</name>
</author>
<author>
<name sortKey="Khalil, W" uniqKey="Khalil W">W. Khalil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herrera Melian, J A" uniqKey="Herrera Melian J">J.A. Herrera-Melián</name>
</author>
<author>
<name sortKey="Martin Rodriguez, A J" uniqKey="Martin Rodriguez A">A.J. Martín-Rodríguez</name>
</author>
<author>
<name sortKey="Ortega Mendez, A" uniqKey="Ortega Mendez A">A. Ortega-Méndez</name>
</author>
<author>
<name sortKey="Ara A, J" uniqKey="Ara A J">J. Araña</name>
</author>
<author>
<name sortKey="Do A Rodriguez, J M" uniqKey="Do A Rodriguez J">J.M. Doña-Rodríguez</name>
</author>
<author>
<name sortKey="Perez Pe A, J" uniqKey="Perez Pe A J">J. Pérez-Peña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Kuang, D" uniqKey="Kuang D">D. Kuang</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z. Xu</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wunder, S" uniqKey="Wunder S">S. Wunder</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Albrecht, M" uniqKey="Albrecht M">M. Albrecht</name>
</author>
<author>
<name sortKey="Ballauff, M" uniqKey="Ballauff M">M. Ballauff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velayutham, K" uniqKey="Velayutham K">K. Velayutham</name>
</author>
<author>
<name sortKey="Rahuman, A A" uniqKey="Rahuman A">A.A. Rahuman</name>
</author>
<author>
<name sortKey="Rajakumar, G" uniqKey="Rajakumar G">G. Rajakumar</name>
</author>
<author>
<name sortKey="Roopan, S M" uniqKey="Roopan S">S.M. Roopan</name>
</author>
<author>
<name sortKey="Elango, G" uniqKey="Elango G">G. Elango</name>
</author>
<author>
<name sortKey="Kamaraj, C" uniqKey="Kamaraj C">C. Kamaraj</name>
</author>
<author>
<name sortKey="Marimuthu, S" uniqKey="Marimuthu S">S. Marimuthu</name>
</author>
<author>
<name sortKey="Santhoshkumar, T" uniqKey="Santhoshkumar T">T. Santhoshkumar</name>
</author>
<author>
<name sortKey="Iyappan, M" uniqKey="Iyappan M">M. Iyappan</name>
</author>
<author>
<name sortKey="Siva, C" uniqKey="Siva C">C. Siva</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Molecules</journal-id>
<journal-id journal-id-type="iso-abbrev">Molecules</journal-id>
<journal-id journal-id-type="publisher-id">molecules</journal-id>
<journal-title-group>
<journal-title>Molecules</journal-title>
</journal-title-group>
<issn pub-type="epub">1420-3049</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31795265</article-id>
<article-id pub-id-type="pmc">6930476</article-id>
<article-id pub-id-type="doi">10.3390/molecules24234354</article-id>
<article-id pub-id-type="publisher-id">molecules-24-04354</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Burlacu</surname>
<given-names>Ema</given-names>
</name>
<xref ref-type="aff" rid="af1-molecules-24-04354">1</xref>
<xref ref-type="author-notes" rid="fn1-molecules-24-04354"></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-5900-743X</contrib-id>
<name>
<surname>Tanase</surname>
<given-names>Corneliu</given-names>
</name>
<xref ref-type="aff" rid="af2-molecules-24-04354">2</xref>
<xref rid="c1-molecules-24-04354" ref-type="corresp">*</xref>
<xref ref-type="author-notes" rid="fn1-molecules-24-04354"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Coman</surname>
<given-names>Năstaca-Alina</given-names>
</name>
<xref ref-type="aff" rid="af2-molecules-24-04354">2</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-2563-8946</contrib-id>
<name>
<surname>Berta</surname>
<given-names>Lavinia</given-names>
</name>
<xref ref-type="aff" rid="af3-molecules-24-04354">3</xref>
</contrib>
</contrib-group>
<aff id="af1-molecules-24-04354">
<label>1</label>
Residency Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>morariuemma@yahoo.com</email>
</aff>
<aff id="af2-molecules-24-04354">
<label>2</label>
Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>alinacoman2194@yahoo.com</email>
</aff>
<aff id="af3-molecules-24-04354">
<label>3</label>
Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, 540139 Mureș, Romania;
<email>lavinia.berta@umfst.ro</email>
</aff>
<author-notes>
<corresp id="c1-molecules-24-04354">
<label>*</label>
Correspondence:
<email>corneliu.tanase@umfst.ro</email>
or
<email>tanase.corneliu@yahoo.com</email>
; Tel.: +40-744215543</corresp>
<fn id="fn1-molecules-24-04354">
<label></label>
<p>These authors share the first authorship.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>28</day>
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>12</month>
<year>2019</year>
</pub-date>
<volume>24</volume>
<issue>23</issue>
<elocation-id>4354</elocation-id>
<history>
<date date-type="received">
<day>01</day>
<month>11</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>11</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.</p>
</abstract>
<kwd-group>
<kwd>metallic nanoparticles</kwd>
<kwd>bark extract</kwd>
<kwd>woody vascular plants</kwd>
<kwd>phytoconstituents</kwd>
<kwd>antioxidant</kwd>
<kwd>antimicrobial</kwd>
<kwd>anticancer</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-molecules-24-04354">
<title>1. Introduction</title>
<p>In recent years, nanobiotechnology has attracted considerable research, which has had an impact on all life forms [
<xref rid="B1-molecules-24-04354" ref-type="bibr">1</xref>
]. Nanoparticles (NPs) have shown notable advances owing to a wide range of applications in biomedicine, sensors, antimicrobial agents, catalysts, electronics, optical fibers, agricultural, biolabeling, and other areas [
<xref rid="B2-molecules-24-04354" ref-type="bibr">2</xref>
]. Due to their particle size, various shapes, and increased surface area, nanoparticles present very different properties than their bulk materials. The interest in NPs’ applicability in different fields, especially in biomedical science, is increasing with every new research study in this domain [
<xref rid="B3-molecules-24-04354" ref-type="bibr">3</xref>
].</p>
<p>NPs can be prepared and stabilized by physical and chemical methods. Chemicals used in chemical synthesis are toxic and lead to non-ecofriendly by-products. This is the reason for the need for green synthesis of NPs without employing toxic chemicals [
<xref rid="B4-molecules-24-04354" ref-type="bibr">4</xref>
]. However, with the rapid development of the timber industry, the use of biological methods to protect the environment has been proposed. An advancement in green synthesis of NPs was the use of biological entities such as microorganisms or plant extracts for the production of NPs in an eco-friendly manner [
<xref rid="B5-molecules-24-04354" ref-type="bibr">5</xref>
,
<xref rid="B6-molecules-24-04354" ref-type="bibr">6</xref>
]. The use of plant extracts in the production assembly of metallic NPs is rapid, eco-friendly, non-pathogenic, and economical. The reduction and stabilization of metallic ions can be achieved with a combination of biomolecules with medicinal values, such as enzymes, polysaccharides, tannins, phenolics, saponins, terpenoids, among others [
<xref rid="B4-molecules-24-04354" ref-type="bibr">4</xref>
].</p>
<p>The green synthesis of nanoparticles has been improved in order to design new materials that are ecological, valuable, and stable [
<xref rid="B5-molecules-24-04354" ref-type="bibr">5</xref>
,
<xref rid="B6-molecules-24-04354" ref-type="bibr">6</xref>
]. In this context, bark extracts have excellent properties as bioreductants. This is mainly due to their content of phenolic compounds, from which NPs can be synthesized with controlled size and shape, greater stability, and more biocompatibility [
<xref rid="B7-molecules-24-04354" ref-type="bibr">7</xref>
,
<xref rid="B8-molecules-24-04354" ref-type="bibr">8</xref>
]. Thus, a work plan for obtaining nanoparticles mediated by bark extracts, their characterization, and their applicability was developed (
<xref ref-type="fig" rid="molecules-24-04354-f001">Figure 1</xref>
).</p>
<p>The aim of this review is to summarize the literature data (2012–2019) on metallic nanoparticles mediated by plant bark extracts, the nanoparticles’ characteristics, and to discuss their properties, including anticancer, antimicrobial, antioxidant, and other activities. The literature data used in this paper was collected via PubMed and Google Academic (2012–2019). The search terms were: metallic nanoparticles, bark extract, woody vascular plants, phytoconstituents, reducing agents, antioxidants, antimicrobial, and anticancer.</p>
</sec>
<sec id="sec2-molecules-24-04354">
<title>2. The Bark of Woody Vascular Plants—A Source of Phytoconstituents Responsible for Reduction of Metallic Ions in Nanoparticle Synthesis</title>
<p>In the timber industry, bark is considered a waste product used for combustion and as garden mulch. Some studies have developed a different process to remove valuable biocompounds from bark in order to produce high-tech, valuable materials [
<xref rid="B9-molecules-24-04354" ref-type="bibr">9</xref>
,
<xref rid="B10-molecules-24-04354" ref-type="bibr">10</xref>
,
<xref rid="B11-molecules-24-04354" ref-type="bibr">11</xref>
]. The bark of woody vascular plants play important roles in plant protection because of their content of bioactive compounds with antimicrobial effects [
<xref rid="B12-molecules-24-04354" ref-type="bibr">12</xref>
]. In a recent study, it was found that bark extracts may be a good source of reducing agents in synthesized metallic NPs [
<xref rid="B9-molecules-24-04354" ref-type="bibr">9</xref>
].</p>
<p>Studies cited in this review established that regarding the composition of the majority of plant bark extracts, the bioactive compounds are polyphenols, alkaloids, terpenoids, carbohydrates, proteins, saponins, and vitamins (
<xref rid="molecules-24-04354-t001" ref-type="table">Table 1</xref>
).</p>
<p>The polyphenols (
<xref ref-type="fig" rid="molecules-24-04354-f002">Figure 2</xref>
) are divided into sub-groups, such as phenolic acids (benzoic acid and cinnamic acid), flavonoids (flavan-3-ols, flavones, flavanones, and flavonols), anthocyanins, tannins, stilbenes (resveratrol), and lignans [
<xref rid="B13-molecules-24-04354" ref-type="bibr">13</xref>
]. Majumdar et al. [
<xref rid="B14-molecules-24-04354" ref-type="bibr">14</xref>
] showed the presence of phenolic compounds in the bark extract of
<italic>Mimusops elengi</italic>
L. (Sapotaceae) from a positive ferric chloride test. The phenolic compounds present in the bark extract of the plant can reduce Au (III) to Au (0), with concomitant oxidation of the phenolic compounds to the corresponding quinones. The stabilization of the gold nanoparticles (AuNPs) is done by the resulting quinone derivatives and other coordinating ligands present in the bark extract.</p>
<p>Terpenes (
<xref ref-type="fig" rid="molecules-24-04354-f002">Figure 2</xref>
) represent the biggest group of bioactive compounds found in plants, including monoterpenes (carvone, geraniol,
<sc>d</sc>
-limonene, peril alcohol), diterpenes (retinol and retinoic acid), triterpenes (boswellic acid, betulinic acid, lupeol, oleanolic acid, and ursolic acid), and tetraterpene (α-carotene, β-carotene, lutein, and lycopene). It has been found that this class of phytoconstituents act as a biological antioxidants [
<xref rid="B15-molecules-24-04354" ref-type="bibr">15</xref>
,
<xref rid="B16-molecules-24-04354" ref-type="bibr">16</xref>
].</p>
<p>For example, stem bark extract from
<italic>Terminalia arjuna</italic>
Wight and Arn (Combretaceae) showed phytoconstituents such as polyphenols, flavonoids, terpenoids, and reducing sugars [
<xref rid="B17-molecules-24-04354" ref-type="bibr">17</xref>
]. The term reducing sugars refers to monosaccharides (glucose and fructose), along with some disaccharides, oligosaccharides, and polysaccharides [
<xref rid="B18-molecules-24-04354" ref-type="bibr">18</xref>
]. Santos et al. [
<xref rid="B19-molecules-24-04354" ref-type="bibr">19</xref>
] concluded that the reduction power is higher when the reducing sugars and phenolic compounds are present together in the plant extract. To better understand these compounds’ involvement, a mixed solution of pure glucose, fructose, gallic and ellagic acids, and isorhamnetin was tested, and the prompt formation of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) was observed. The NPs synthesized were more stable than those formed by an aqueous solution of polyphenols only.</p>
<p>In another study, it was shown that the
<italic>Acacia leucophloea</italic>
Roxb. (Fabaceae) stem bark extract contained aldehyde/ketone, aromatic, azo, and nitro compounds. These compounds act as reducing and stabilizing agents of the AgNPs. Interestingly, plants have the incredible ability to enclose nanoparticles, forming a membrane around them and stopping the nanoparticles from forming aggregates, and in doing so stabilize the solution [
<xref rid="B20-molecules-24-04354" ref-type="bibr">20</xref>
].</p>
<p>Moyo et al. [
<xref rid="B21-molecules-24-04354" ref-type="bibr">21</xref>
] reported that
<italic>Afzelia quanzensis</italic>
Welw. (Fabaceae) bark extract contains phytochemical functional groups (carboxyl, amine). Such functional groups that are specific for polyphenols and proteins are confirmed reducing agents for nanoparticle formation.</p>
<p>The role of the proteins as reducing agents is still being discussed, and in the context, Santos et al. [
<xref rid="B19-molecules-24-04354" ref-type="bibr">19</xref>
] decided to verify the content of proteins in the bark extract of
<italic>Eucalyptus globulus</italic>
Labill. (Myrtiaceae) and the role of proteins in nanoparticle reduction. Through elemental analysis they found that the protein content of the
<italic>E. globulus</italic>
bark extract represented approximately 0.8 wt% of the total extract, which corresponded to a concentration of approximately 19.0 mg/mL of the aqueous extract. They affirmed that proteins with a low concentration could not participate in the nanoparticle synthesis. However, proteins have great importance when it comes to the stabilization of NPs due to the affinity of binding metals with the carbonyl group of amino acid residues of proteins [
<xref rid="B22-molecules-24-04354" ref-type="bibr">22</xref>
].</p>
<p>Miri et al. [
<xref rid="B23-molecules-24-04354" ref-type="bibr">23</xref>
] suggested that various sizes of AgNPs can be related to diverse reducing factors present in different parts of the plant, such as tannins, flavonoids, enzymes, and alkaloids. Some examples of alkaloids are well-known in the medical world and are represented by atropine, codeine, morphine, and nicotine [
<xref rid="B24-molecules-24-04354" ref-type="bibr">24</xref>
].</p>
<p>Saponins are less common as reducing agents in metallic nanoparticle formation, but in a previous paper [
<xref rid="B25-molecules-24-04354" ref-type="bibr">25</xref>
] these phytoconstituents were isolated from
<italic>Trianthema decandra</italic>
L. and obtained rapidly stable silver and gold nanoparticles.</p>
<p>The clear mechanism and the phytoconstituents responsible for metallic ion reduction in nanoparticle synthesis remains to be elucidated. It has been proposed (
<xref rid="molecules-24-04354-t001" ref-type="table">Table 1</xref>
) that flavonoids, alkaloids, polyphenols, terpenoids, heterocyclic compounds, and polysaccharides have significant roles in metal salt reduction, and furthermore, act as capping and stabilizing agents for NP synthesis.</p>
</sec>
<sec id="sec3-molecules-24-04354">
<title>3. Characteristics of Metallic Nanoparticles Mediated by the Bark Extracts of Woody Plants</title>
<p>Silver nanoparticles mediated by bark extracts revealed dimensions of 10–100 nm and spherical shapes with face-centered-cubic (FCC) structures in almost all of the variants (
<xref rid="molecules-24-04354-t001" ref-type="table">Table 1</xref>
). For example, the AgNPs mediated by
<italic>Moringa oleifera</italic>
Lam. (Moringaceae) bark extract revealed a spherical-pentagonal shape [
<xref rid="B26-molecules-24-04354" ref-type="bibr">26</xref>
]. A spherical-oval shape was characteristic for AgNPs mediated by
<italic>Toxicodendron vernicifluum</italic>
(Stokes) F. Barkley bark extract [
<xref rid="B27-molecules-24-04354" ref-type="bibr">27</xref>
].</p>
<p>Gold nanoparticles have dimensions of 3–98 nm (
<xref rid="molecules-24-04354-t001" ref-type="table">Table 1</xref>
). The shape of the obtained nanoparticles is generally spherical. For example, the shapes of NPs reduced by
<italic>Saraca indica</italic>
L. (Fabaceae) bark extract were triangular, tetragonal, pentagonal, hexagonal, and spherical [
<xref rid="B28-molecules-24-04354" ref-type="bibr">28</xref>
]. The ellipsoidal shape was characteristic for NPs extracted with
<italic>Syzygium jambos</italic>
(L.) Alston (Myrtaceae) stem bark extract [
<xref rid="B29-molecules-24-04354" ref-type="bibr">29</xref>
] and a triangular shape was observed in AuNPs obtained with
<italic>Terminalia arjuna</italic>
Wigh and Arn (Combretaceae) bark extract [
<xref rid="B30-molecules-24-04354" ref-type="bibr">30</xref>
].</p>
<p>Other metallic NPs mediated by bark extracts are: Palladium nanoparticles (PdNPs), with 12.6 nm dimensions, a spherical and quasi-spherical shape, and FCC structure; and copper nanoparticles (CuNPs), with ~20 nm dimensions and a spherical shape. As for the combination of silver and gold nanoparticles, studies showed dimensions of about 15–80 nm and hexagonal, elliptical, and spherical shapes. More details about nanoparticle types, sizes, and shapes, and the phytoconstituents responsible for reduction are revealed in
<xref rid="molecules-24-04354-t001" ref-type="table">Table 1</xref>
.</p>
<table-wrap id="molecules-24-04354-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">molecules-24-04354-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Synthesis of metallic nanoparticles mediated by the bark of woody plants.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Source of Bark: Scientific Name (Family)—Common Name</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">NP Type</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Size (nm)</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Shape</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Phytoconstituents Responsible for the Reduction</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Acacia leucophloea</italic>
Roxb. (Fabaceae)—White kabesak</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">17–29</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Aldehyde/ketone, aromatic, azo, and nitro compounds</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B20-molecules-24-04354" ref-type="bibr">20</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Afzelia quanzensis</italic>
Welw. (Fabaceae)—Pod mahogany </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"> Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"> 10–80 </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phytochemical functional groups (carboxyl, amine)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B21-molecules-24-04354" ref-type="bibr">21</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Albizia chevalieri</italic>
Harms. (Fabaceae) </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">~30</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Alkaloids, terpenoids, flavonoids, and phenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B31-molecules-24-04354" ref-type="bibr">31</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Alstonia scholaris</italic>
(L.) R.Br. (Apocynaceae)—Devil’s tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">FCC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B32-molecules-24-04354" ref-type="bibr">32</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Artocarpus elasticus</italic>
Reinw. (Moraceae)—Benda</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">19.74 ± 9.70 </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">FCC </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Flavonoids, phenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B33-molecules-24-04354" ref-type="bibr">33</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Azadirachta indica</italic>
A. Juss (Meliaceae)—Nimtree or Indian lillac </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">19.22</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B34-molecules-24-04354" ref-type="bibr">34</xref>
,
<xref rid="B35-molecules-24-04354" ref-type="bibr">35</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Berberis lycium</italic>
Royle. (Berberidaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10–100</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B36-molecules-24-04354" ref-type="bibr">36</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Butea monosperma</italic>
(Lam.) Laum. (Fabaceae)—Flame-of-the-forest </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">35</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">FCC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Carboxylic acid group</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B37-molecules-24-04354" ref-type="bibr">37</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cassia fistula</italic>
L. (Fabaceae)—Golden tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">55.2–98.4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reducing sugars and terpenoids, secondary metabolites, such as lupeol, β-sitosterol, and hexacosanol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B38-molecules-24-04354" ref-type="bibr">38</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cinnamomum cassia</italic>
L. J. Presl (Lauraceae)—Chinese cinnamon</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">25–55</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenol, aldehydes, ketones, carboxylic acids, alkyl halides, aromatic groups</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B39-molecules-24-04354" ref-type="bibr">39</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cinnamomum zeylanicum</italic>
J. Presl (Lauraceae)—True cinnamon</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">~11.77
<break></break>
~46.48</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B40-molecules-24-04354" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Coccinia grandis</italic>
L.Voigt (Curcubitaceae)—ivy gourd</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B41-molecules-24-04354" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cochlospermum religiosum</italic>
(L.) Alston (Bixaceae)—Silk-cotton tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20–35</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Carbohydrate, polyphenols, and protein molecules</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B42-molecules-24-04354" ref-type="bibr">42</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Crataeva nurvala</italic>
Buch.-Ham (Capparaceae)—Varuna</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15.2 ± 1.01</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lupeol, lupenone, hexadecanoic ester, methyl ester</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B43-molecules-24-04354" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Dillenia indica</italic>
L. (Dilleniaceae)—Elephant apple</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15–35</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">flavonol, flavonoids, phenolic compounds, stigmasterol, glycosides, and sulfates of flavonoid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B44-molecules-24-04354" ref-type="bibr">44</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Diospyros montana</italic>
Roxb. (Ebenaceae)—Bombay ebony</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">28</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">--</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Amides, phenol, nitrogen, and aromatic compounds</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B45-molecules-24-04354" ref-type="bibr">45</xref>
,
<xref rid="B46-molecules-24-04354" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Elaeodendron croceum</italic>
Thunb. DC. (Celastraceae)—Saffron wood</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12.6–41.4</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Amino acids, proteins, polysaccharides, alkaloids, polyphenols, terpenoids or triterpenes, tannins, saponins, and vitamins</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B4-molecules-24-04354" ref-type="bibr">4</xref>
,
<xref rid="B47-molecules-24-04354" ref-type="bibr">47</xref>
,
<xref rid="B48-molecules-24-04354" ref-type="bibr">48</xref>
,
<xref rid="B49-molecules-24-04354" ref-type="bibr">49</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Eucalyptus globulus</italic>
Labill. (Myrtiaceae)—Southern blue gum </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">21 ± 4
<break></break>
52 ± 16</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">FCC </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenolic compounds, particularly galloyl derivatives, glucose and fructose, hydrolyzable tannins</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B19-molecules-24-04354" ref-type="bibr">19</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<italic>Eucommia ulmoides</italic>
Oliv. (Eucommiaceae)—Hardy rubber tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15–40</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical FCC </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B50-molecules-24-04354" ref-type="bibr">50</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pd</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12.6</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical and quasi-spherical with FCC</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Polyphenols, phytosterol, flavonoids, alkaloids, triterpenoids, aminoacids, and proteins</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B51-molecules-24-04354" ref-type="bibr">51</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Eysenhardtia polystachya</italic>
Ort. Sarg. (Fabaceae)—Kidneywood tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10–12</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Arylnaphthalenes, chalcones, flavonoids, and dihydrochalcones</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B52-molecules-24-04354" ref-type="bibr">52</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Fagus sylvatica</italic>
L. (Fagaceae)—Beech</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">32</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">spherical </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tannins and polyphenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B9-molecules-24-04354" ref-type="bibr">9</xref>
,
<xref rid="B11-molecules-24-04354" ref-type="bibr">11</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Ficus benghalensis</italic>
var.
<italic>krishnae</italic>
(Moraceae)—Krishna butter cup</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15–28</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenols, flavonoids, tannins, terpenoids, proteins, alkaloids, saponins, and vitamines</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B53-molecules-24-04354" ref-type="bibr">53</xref>
,
<xref rid="B54-molecules-24-04354" ref-type="bibr">54</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Ficus benghalensis</italic>
(Moraceae)—Banyan tree
<break></break>
<italic>Azadirachta indica</italic>
A. Juss (Meliaceae)—Nimtree or Indian lilac</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">40–50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Flavonoids, terpenoids, and phenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B55-molecules-24-04354" ref-type="bibr">55</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Garcinia mangostana</italic>
L. (Clusiaceae)—Mangosteen</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12–15</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Polyphenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B56-molecules-24-04354" ref-type="bibr">56</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Guazuma ulmifolia</italic>
Lam. (Malvaceae)—Bay cedar </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au
<break></break>
Ag–Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10–15
<break></break>
20–25
<break></break>
10–20</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tannins</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B57-molecules-24-04354" ref-type="bibr">57</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Holarrhena antidysenterica</italic>
L. (Aponycaceae) Wall.—Tellicherry bark or conessi </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">32</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Terpenoids, alkaloids, flavonoids, and phenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B58-molecules-24-04354" ref-type="bibr">58</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<italic>Melia azedarach</italic>
L. (Meliaceae)—Indian lilac</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30–45</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenolic compounds</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B59-molecules-24-04354" ref-type="bibr">59</xref>
,
<xref rid="B60-molecules-24-04354" ref-type="bibr">60</xref>
,
<xref rid="B61-molecules-24-04354" ref-type="bibr">61</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Ag–Au </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4–30
<break></break>
15–80</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical, hexagonal, elliptical </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Triterpenoids, flavonoids, glycosides steroids, and carbohydrates</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B62-molecules-24-04354" ref-type="bibr">62</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Mimusops elengi</italic>
L. (Sapotaceae)—Bullet wood</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">9–14</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Gallic acid, pinocembrin, quercetin, chlorogenic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B14-molecules-24-04354" ref-type="bibr">14</xref>
] </td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Moringa oleifera</italic>
Lam. (Moringaceae)—Moringa</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">40</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical, pentagon</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Terpenoids, flavonoids, and polysaccharides</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B26-molecules-24-04354" ref-type="bibr">26</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Nerium oleander</italic>
L. (Apocynaceae)—Karabi</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20–40</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Flavonoids, steroids, and other secondary metabolites</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B63-molecules-24-04354" ref-type="bibr">63</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Picea abies</italic>
L. (Pinaceae)—Spruce</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">44</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">spherical or rarely polygonal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catechin, vanillic and gallic acids</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B10-molecules-24-04354" ref-type="bibr">10</xref>
,
<xref rid="B64-molecules-24-04354" ref-type="bibr">64</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Pinus eldarica</italic>
(Pinaceae)—Eldarica pine</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10–40</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catechin, taxifolin, procyanidins, and phenolic acids</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B65-molecules-24-04354" ref-type="bibr">65</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Pongamia pinnata</italic>
(L.) Pierre (Fabaceae)—Karum tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5–55</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenolic amides, piperine, polysaccharides, and other reducing sugars</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B66-molecules-24-04354" ref-type="bibr">66</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Prosopis juliflora</italic>
Sw.DC. (Fabaceae)—Mesquite</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10–50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Flavonoids, alkaloids, and other phenolic compounds</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B67-molecules-24-04354" ref-type="bibr">67</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Quercus</italic>
sp. (Fagaceae)—Oak </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tannic acid, glucose, gallic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B68-molecules-24-04354" ref-type="bibr">68</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Salix alba</italic>
L. (Salicaceae)—Willow tree </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">~15</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tannins, alkanoids, flavonoids</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B69-molecules-24-04354" ref-type="bibr">69</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Saraca indica</italic>
L. (Fabaceae)—Asoka tree </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">15–23</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Triangular, polygonal, spherical </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Quercetin, epicatechin, catechin, leucopelargoni- din-3-O-p-D-glucoside, gallic acid, leucocyanidin</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B28-molecules-24-04354" ref-type="bibr">28</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Salvadora persica</italic>
L. (Salvadoraceae)—Toothbrush tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tannins, flavonoids, alkaloids, </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B23-molecules-24-04354" ref-type="bibr">23</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Shorea roxburghii</italic>
D. Don (Dipterocarpaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4–50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenolic compounds</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B70-molecules-24-04354" ref-type="bibr">70</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Stereospermum suaveolens</italic>
Roxb. DC (Bignoniaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">11.11
<break></break>
12.67</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lignans, polyphenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B71-molecules-24-04354" ref-type="bibr">71</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Syzygium alternifolium</italic>
(Wt.) Walp (Myrtiaceae) </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4–48</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ascorbic acid</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B72-molecules-24-04354" ref-type="bibr">72</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Syzygium cumini</italic>
L. (Myrtiaceae)—Black plum</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20–60</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Phenols, tannins, alkaloids, glycosides, amino acids, and flavones</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B73-molecules-24-04354" ref-type="bibr">73</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Syzygium jambos</italic>
(L.) Alston (Myrtaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3–10
<break></break>
4–11</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical, ellipsoidal</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Saccharides and phenolics</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B29-molecules-24-04354" ref-type="bibr">29</xref>
]</td>
</tr>
<tr>
<td rowspan="4" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<italic>Terminalia arjuna</italic>
Wigh and Arn (Combretaceae)—Arjuna tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30–50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Polyphenols and proteins</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B74-molecules-24-04354" ref-type="bibr">74</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3–70</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical, triangular FCC </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catechin, gallic acid, ellagic acid </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B30-molecules-24-04354" ref-type="bibr">30</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cu</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">~23</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Polyphenols (flavonoids), terpenoids, ketones, aldehydes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B75-molecules-24-04354" ref-type="bibr">75</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cu–Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">~20–30</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Polyphenols, flavonoids, terpenoids, and reducing sugars</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B17-molecules-24-04354" ref-type="bibr">17</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Terminalia cuneata</italic>
Roth. (Combretaceae)—White murdah</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">20–50</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hydrolyzable tannins, gallic acid, polyphenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B76-molecules-24-04354" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Toxicodendron vernicifluum</italic>
(Stokes) F. Barkley (Anacardiaceae)—Chinese Lacquer tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2–40</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical, oval </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Amine, amide, phenolic, and alcoholic aromatics</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B27-molecules-24-04354" ref-type="bibr">27</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Zizyphus xylopyrus</italic>
Retz. Willd (Rhamnaceae)—Kath ber</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">60–70</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Spherical</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">-</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B77-molecules-24-04354" ref-type="bibr">77</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Note: Ag—silver nanoparticles; Au—gold nanoparticles; Ag–Au—combination between silver and gold nanoparticles; Cu—copper nanoparticles; Pd—palladium nanoparticles; FCC—face-centered-cubic structure.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="sec4-molecules-24-04354">
<title>4. Applications of Metallic NPs Mediated by Plant Bark Extracts</title>
<sec id="sec4dot1-molecules-24-04354">
<title>4.1. Antioxidant Activity</title>
<p>Phytochemicals present in plants are of great interest. Because of their antioxidant activity, they have beneficial effects on human health and can offer protection against oxidative stress [
<xref rid="B16-molecules-24-04354" ref-type="bibr">16</xref>
]. Parashant et al. [
<xref rid="B78-molecules-24-04354" ref-type="bibr">78</xref>
] revealed that the phenolic compounds present in plant extracts might have a great role in the green synthesis of nanoparticles due to their high antioxidant activity. It was observed that polyphenols are potent antioxidants that can neutralize free radicals because they either donate their electrons or their hydrogen atoms. The generation of free radicals is stopped because of inhibition of the precursors of free radicals or deactivation of active species. Most often, they act as direct radical scavengers of the lipid peroxidation chain reaction (chain breakers). Chain breakers donate an electron to the free radical, making the radical become more stable and interrupting the chain reactions [
<xref rid="B79-molecules-24-04354" ref-type="bibr">79</xref>
,
<xref rid="B80-molecules-24-04354" ref-type="bibr">80</xref>
].</p>
<p>There are many ways to demonstrate the antioxidant activity of certain compounds. One of the well-known methods is measuring the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. This compound is a stable nitrogen-centered free radical and shows a characteristic absorption at 517 nm, whose color changes from violet to yellow upon reduction [
<xref rid="B81-molecules-24-04354" ref-type="bibr">81</xref>
]. Yallapa et al. [
<xref rid="B75-molecules-24-04354" ref-type="bibr">75</xref>
] showed that CuNPs obtained by
<italic>Terminalia arjuna</italic>
Wight and Arn (Combretaceae) bark extract has antioxidant activity. By donating its electron, it halted the activity of DPPH.</p>
<p>Total reducing power (antioxidant potential) was expressed as ascorbic acid equivalent (AAE) [
<xref rid="B82-molecules-24-04354" ref-type="bibr">82</xref>
]. It was observed that antioxidant activity exhibited by metallic nanoparticles is attributed to polyphenols present in the plant extracts. Silver nanoparticles have more significant antioxidant activity than gold nanoparticles because of their susceptibility to losing electrons [
<xref rid="B83-molecules-24-04354" ref-type="bibr">83</xref>
].</p>
</sec>
<sec id="sec4dot2-molecules-24-04354">
<title>4.2. Antibacterial Activity</title>
<p>The mechanism of the antibacterial activity of metallic nanoparticles has been intensely investigated. After binding of NPs on the bacterial cell membrane through electrostatic interactions, the cell wall is disrupted. The intracellular processes, such as DNA, RNA, and protein synthesis, are also affected [
<xref rid="B84-molecules-24-04354" ref-type="bibr">84</xref>
,
<xref rid="B85-molecules-24-04354" ref-type="bibr">85</xref>
,
<xref rid="B86-molecules-24-04354" ref-type="bibr">86</xref>
,
<xref rid="B87-molecules-24-04354" ref-type="bibr">87</xref>
]. The bacteria’s cell membrane is negatively charged, and that may interact with the positively charged metal ion [
<xref rid="B88-molecules-24-04354" ref-type="bibr">88</xref>
].</p>
<p>The synthesized NPs are highly toxic to bacteria when compared to fungus. It was demonstrated that they interact with proteins or possibly phospholipids associated with the proton pump of the bacterial cell wall [
<xref rid="B89-molecules-24-04354" ref-type="bibr">89</xref>
]. That interaction between microorganisms and NPs was commented on by Dibrov et al. [
<xref rid="B90-molecules-24-04354" ref-type="bibr">90</xref>
]. They found that the disruption of the membrane proton gradient could lead to cell death through perturbation of the cellular metabolism mechanisms.</p>
<p>Feng et al. [
<xref rid="B91-molecules-24-04354" ref-type="bibr">91</xref>
] and Matsumura et al. [
<xref rid="B92-molecules-24-04354" ref-type="bibr">92</xref>
] proposed that silver nanoparticles are attached to the cell membrane by sulfur-containing proteins. The AgNPs penetrate inside the bacteria and release silver ions, which interact with the thiol groups of many enzymes. Thus, most of the respiratory chain enzymes are inactivated, leading to the formation of reactive oxygen species (ROS), which causes the self-destruction of the bacterial cell [
<xref rid="B54-molecules-24-04354" ref-type="bibr">54</xref>
].</p>
<p>Ali et al. [
<xref rid="B43-molecules-24-04354" ref-type="bibr">43</xref>
] found that AgNPs obtained by
<italic>Crataeva nurvala</italic>
Buch.-Ham (Capparaceae) bark extract were internalized inside the
<italic>Pseudomonas aeruginosa</italic>
bacterial cells, leading to cell death. The metallic nanoparticles can restrict the bacterial colonization and also inhibit the biofilm formation produced by bacterial quorum sensing activity (quorum sensing virulence factors responsible for multidrug resistance), a fact that is can be evidenced by confocal laser scanning microscopes.</p>
<p>Many studies have looked at the NP effects against
<italic>Escherichia coli</italic>
and
<italic>Staphylococcus aureus</italic>
, the models for Gram-negative and Gram-positive bacteria. Moreover, they have been studied because of the contrast between the cell wall structures of the two bacterial cell types. The cell walls of Gram-positive bacteria have a rigid layer of liner polysaccharide that does not exist in Gram-negative bacteria [
<xref rid="B93-molecules-24-04354" ref-type="bibr">93</xref>
]. However, the principal component of the cell walls of both Gram-positive and Gram-negative bacteria is a peptidoglycan consisting of linear polysaccharide chains crosslinked by short peptides [
<xref rid="B94-molecules-24-04354" ref-type="bibr">94</xref>
]. The antibacterial activity was also revealed by Miri et al. [
<xref rid="B23-molecules-24-04354" ref-type="bibr">23</xref>
]. The AgNPs obtained with
<italic>Salvadora persica</italic>
L. (Salvadoraceae) in
<italic>Escherichia coli</italic>
and
<italic>Staphylococcus aureus</italic>
showed inhibition zones of 14 and 12 mm, respectively. The minimum inhibitory concentration (MIC) results against studied bacteria were 100 and 400 μg/mL for
<italic>Escherichia coli</italic>
and
<italic>Staphylococcus aureus</italic>
, respectively. As an observation, in this study, it was found that the synthesized AgNPs not only inhibited the growth of
<italic>Escherichia coli</italic>
but also had a bactericidal effect.</p>
<p>The study by Arya et al. [
<xref rid="B67-molecules-24-04354" ref-type="bibr">67</xref>
] showed that
<italic>Escherichia coli</italic>
and
<italic>Pseudomonas aeruginosa</italic>
were susceptible to
<italic>Prosopis juliflora</italic>
Sw.DC. (Fabaceae)-obtained AgNPs. The small nanoparticles (10–55 nm) could easily enter into the bacterial cells and disturb their usual organization. This study revealed that the power of synthesized AgNPs is dose-dependent, and that they can also overcome the multidrug resistance problem.</p>
<p>Francis et al. [
<xref rid="B71-molecules-24-04354" ref-type="bibr">71</xref>
] evaluated the antimicrobial effect of AgNPs and AuNPs obtained from
<italic>Stereospermum suaveolens</italic>
Roxb. DC (Bignoniaceae). They were evaluated using the disc diffusion method by adding 50 µL of the samples. It was observed that the effect of inhibition was more pronounced in the case of Gram-negative bacteria than Gram-positive bacteria because of their cell wall differences. Silver nanoparticles possessed a higher degree of microbial inhibition than the gold nanoparticles. This higher degree is because silver is a soft acid that preferably binds sulfur and phosphorus fragments in the cell, leading to DNA damage and cell death [
<xref rid="B25-molecules-24-04354" ref-type="bibr">25</xref>
,
<xref rid="B93-molecules-24-04354" ref-type="bibr">93</xref>
,
<xref rid="B95-molecules-24-04354" ref-type="bibr">95</xref>
].</p>
<p>A study by Yallapa et al. [
<xref rid="B17-molecules-24-04354" ref-type="bibr">17</xref>
] presented the antibacterial properties of AgNPs and CuNPs obtained with
<italic>Terminalia arjuna</italic>
Wight and Arn (Combretaceae) bark extract against Gram-positive and Gram-negative bacteria. The structural changes induced in the bacterial cell wall and the nuclear membrane led to cell death. All this was due to the extremely reactive action of silver and copper nanoparticles and because of the ease of binding to tissue proteins [
<xref rid="B96-molecules-24-04354" ref-type="bibr">96</xref>
]. More metallic nanoparticles obtained with bark extract constituents and their antimicrobial activity are presented in
<xref rid="molecules-24-04354-t002" ref-type="table">Table 2</xref>
.</p>
</sec>
<sec id="sec4dot3-molecules-24-04354">
<title>4.3. Anticancer Activity</title>
<p>With a wide range of applications, including medical and therapeutic assistance, nanoparticles have been reported as having excellent anticancer activity. This is due to the involvement in the selective interruption of the mitochondrial respiratory chain, which results in the production of ROS. ROS species induce the expression of genes associated with DNA disruption and produces apoptosis of tumor cells [
<xref rid="B97-molecules-24-04354" ref-type="bibr">97</xref>
]. Considering the size of metallic nanoparticles and sample concentration, it was observed that silver nanoparticles induce damage to a cancer cell in a dose- and size-dependent manner [
<xref rid="B98-molecules-24-04354" ref-type="bibr">98</xref>
]. Higher doses of smaller size particles create more cytotoxic effects on the tumoral tissue. The tumoral cells present a characteristic acid pH, and metallic nanoparticles have an affinity for this specific environment. Because of this reason it is believed that treatment with these nanoparticles has the advantage of targeting the tumoral cells and minimizing side effects on the healthy cells [
<xref rid="B99-molecules-24-04354" ref-type="bibr">99</xref>
,
<xref rid="B100-molecules-24-04354" ref-type="bibr">100</xref>
].</p>
</sec>
<sec id="sec4dot4-molecules-24-04354">
<title>4.4. Other Activities</title>
<p>One of the applications of nanoparticles is the deterioration of pollutants as nitroaromatic compounds and dyes. Because of the hazardous and toxic effect of the majority of organic compounds on humans, there are many studies about their removal from nature. Many industrial compounds, such as pharmaceuticals, pigments, dyes, plastics, pesticides, fungicides, explosive, and industrial solvents, contain these pollutant solvents [
<xref rid="B101-molecules-24-04354" ref-type="bibr">101</xref>
]. The U.S. Environmental Protection Agency concluded that of all the studied nitroaromatic compounds, 4-nitrophenol is a priority pollutant because it is very stable and resistant to biodegradation [
<xref rid="B101-molecules-24-04354" ref-type="bibr">101</xref>
,
<xref rid="B102-molecules-24-04354" ref-type="bibr">102</xref>
].</p>
<p>To study the catalytic activity of the synthesized gold nanoparticles using the extract of
<italic>Mimusops elengi</italic>
L. (Sapotaceae), two model reactions were carried out, both monitored by UV-visible spectroscopy: the reduction of 3-nitrophenol to 3-aminophenol and 4-nitrophenol to 4-aminophenol [
<xref rid="B14-molecules-24-04354" ref-type="bibr">14</xref>
]. The catalytic activity of AuNPs was demonstrated. The reduction was observed over 300 s via UV spectroscopy, indicating completion of the reduction. Interestingly, with the addition of a double amount of AuNPs, the reaction was completed much faster (in 30 s), and the catalytic rate constant could not be calculated for this reduction reaction. The excellent catalytic activity was demonstrated in the reduction reaction of 4-nitrophenol in the same way [
<xref rid="B14-molecules-24-04354" ref-type="bibr">14</xref>
].</p>
<p>One of the most harmful actions of dyes is that they form a foam on the surface of water. The foam blocks the diffusion of light and oxygen, with consequences on the biological phenomena of the aquatic medium. Another effect of these chemicals and dyes is that they are very poisonous and strongly oncogenic [
<xref rid="B103-molecules-24-04354" ref-type="bibr">103</xref>
].</p>
<p>Because of the undesirable effect of the insecticides on human health and other non-targeted organisms, Velayutham et al. [
<xref rid="B104-molecules-24-04354" ref-type="bibr">104</xref>
] noted the larvicidal effect of aqueous crude bark extract and synthesized AgNPs of
<italic>Ficus racemosa</italic>
L. (Moraceae). The highest mortality was found in synthesized AgNPs against the larvae
<italic>Culex quinquefasciatus</italic>
and
<italic>Culex gelidus</italic>
at the concentration of 25 mg/L. All tested samples showed that lethal effects and mortality were positively dose-dependent.</p>
<p>Daisy and Sapriya [
<xref rid="B38-molecules-24-04354" ref-type="bibr">38</xref>
] concluded that AuNPs mediated by
<italic>Cassia fistula</italic>
bark extract have potential anti-diabetic properties. These NPs showed a glucose reduction in blood serum concentration, induced favorable changes in body weight, improved transaminase activity, achieved a better lipid profile, and reversed renal dysfunction to a greater extent.</p>
<p>Garcia Campoy et al. [
<xref rid="B52-molecules-24-04354" ref-type="bibr">52</xref>
] found that AuNPs obtained with
<italic>Eysenhardtia polystachya</italic>
Ort. Sarg. (Fabaceae) bark extract promoted pancreatic β-cell survival, insulin secretion, and enhanced hyperglycemia and hyperlipidemia in glucose-induced diabetic zebrafish. These studies show promising results, but other studies may be needed to develop new methods for practical disease treatment. Other applications of metallic nanoparticles can be found in
<xref rid="molecules-24-04354-t002" ref-type="table">Table 2</xref>
.</p>
<table-wrap id="molecules-24-04354-t002" orientation="portrait" position="float">
<object-id pub-id-type="pii">molecules-24-04354-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>Applications of nanoparticles mediated by the bark of woody plants.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Source of Bark: Scientific Name (Family)—Common Name</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">NP Type</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Activity</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Acacia leucophloea</italic>
Roxb. (Fabaceae)—White kabesak</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against the common pathogens, such as
<italic>Staphylococcus aureus</italic>
,
<italic>Bacillus cereus</italic>
,
<italic>Listeria monocytogenes</italic>
, and
<italic>Shigella flexneri</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B20-molecules-24-04354" ref-type="bibr">20</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Afzelia quanzensis</italic>
Welw. (Fabaceae)—pod mahogany </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Escherichia coli</italic>
,
<italic>Staphylococcus aureus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B21-molecules-24-04354" ref-type="bibr">21</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Albizia chevalieri</italic>
Harms. (Fabaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Escherichia coli</italic>
,
<italic>Staphylococcus aureus</italic>
;
<break></break>
Anticancer against
<italic>MDA-MB231</italic>
,
<italic>MCF-7</italic>
breast cancer cell line, and
<italic>HepG2</italic>
liver cancer cell line</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B31-molecules-24-04354" ref-type="bibr">31</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Alstonia scholaris</italic>
(L.) R.Br. (Apocynaceae)—Devil’s tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antimicrobial activity against fungal species, and Gram-positive and Gram-negative bacteria</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B32-molecules-24-04354" ref-type="bibr">32</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Azadirachta indica</italic>
A. Juss (Meliaceae)—Nimtree or Indian lillac</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Larvicidal against the larvae, pupae, and adults of malaria vector
<italic>Anopheles stephensi</italic>
and filariasis vector
<italic>Culex quinquefasciatus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B35-molecules-24-04354" ref-type="bibr">35</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Berberis lycium Royle.</italic>
(Berberidaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antimicrobial activities against both Gram-negative bacteria (
<italic>Escherichia coli</italic>
,
<italic>Klebseilla pneumoniae</italic>
,
<italic>Pseudomonas aeruginosa</italic>
) and Gram-positive bacteria (
<italic>Staphylococcus aureus and Bacillus subtilis</italic>
)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B36-molecules-24-04354" ref-type="bibr">36</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Butea monosperma</italic>
(Lam.) Laum. (Fabaceae)—Flame-of-the-forest </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against Gram-positive (
<italic>Bacillus subtilis</italic>
) and Gram-negative (
<italic>Escherichia coli</italic>
)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B37-molecules-24-04354" ref-type="bibr">37</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cassia fistula</italic>
L. (Fabaceae)—Golden tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antidiabetic: reduces serum blood glucose concentrations, induces favorable changes in body weight, improves transaminase activity, achieves a better lipid profile, and reverses renal dysfunction to a greater extent</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B38-molecules-24-04354" ref-type="bibr">38</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cinnamomum cassia</italic>
L. J. Presl (Lauraceae)—Chinese cinnamon</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Non-toxic against
<italic>Vero</italic>
cells
<break></break>
Antiviral activity against
<italic>H7N3 influenza virus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B39-molecules-24-04354" ref-type="bibr">39</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cinnamomum zeylanicum</italic>
J.Presl (Lauraceae)—True cinnamon</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial: EC50 value of 11 ± 1.72 mg/L
<break></break>
against
<italic>Escherichia coli</italic>
BL-21 strain</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B40-molecules-24-04354" ref-type="bibr">40</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Coccinia grandis</italic>
L.Voigt (Curcubitaceae)—ivy gourd</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Increasing biocompatibility and bioavailability of N-acetylcysteine drug molecule that is used for cataract treatment, which was successfully encapsulated into AuNPs</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B41-molecules-24-04354" ref-type="bibr">41</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Cochlospermum religiosum</italic>
(L.) Alston (Bixaceae)—Silk-cotton tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against
<italic>Staphylococcus aureus</italic>
, followed by
<italic>Pseudomonas, Escherichia coli, Bacillus</italic>
, and lowest activity toward
<italic>Proteus</italic>
<break></break>
Antifungal against
<italic>Aspergillus flavus</italic>
, followed by
<italic>Rhizopus</italic>
,
<italic>Fusarium</italic>
, and
<italic>Curvularia</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B42-molecules-24-04354" ref-type="bibr">42</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Crataeva nurvala</italic>
Buch.-Ham (Capparaceae)—Varuna</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibiofilm properties in
<italic>Pseudomonas aeruginosa</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B43-molecules-24-04354" ref-type="bibr">43</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Dillenia indica</italic>
L. (Dilleniaceae)—Elephant apple</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catalytic degradation of 4-Nitrophenol, methylene blue;
<break></break>
radical scavenging activity</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B44-molecules-24-04354" ref-type="bibr">44</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Diospyros montana</italic>
Roxb. (Ebenaceae)—Bombay ebony</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity in vitro against Gram-positive (
<italic>Bacillus subtilis</italic>
,
<italic>Staphylococcus aureus</italic>
) and Gram-negative (
<italic>Escherichia coli</italic>
,
<italic>Klebsiella aerogenes</italic>
); antioxidant activity</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B45-molecules-24-04354" ref-type="bibr">45</xref>
,
<xref rid="B46-molecules-24-04354" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Elaeodendron croceum</italic>
Thunb. DC. (Celastraceae)—Saffron wood</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cytotoxic activity against the MDA-MB-231 cell line </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B47-molecules-24-04354" ref-type="bibr">47</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<italic>Eucommia ulmoides</italic>
Oliv. (Eucommiaceae)—Hardy rubber tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Excellent performance for the catalytic decoloration of reactive yellow 179 and Congo red by NaBH4 in aqueous solution</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B50-molecules-24-04354" ref-type="bibr">50</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pd</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catalytic activity for the electro-catalytic oxidation of hydrazine and the catalytic reducing degradation of p-Aminoazobenzene</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B51-molecules-24-04354" ref-type="bibr">51</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Eysenhardtia polystachya</italic>
Ort. Sarg. (Fabaceae)—Kidneywood tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Promote pancreatic β-cell survival, insulin secretion
<break></break>
Enhances hyperglycemia and hyperlipidemia in glucose-induced diabetic zebrafish</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B52-molecules-24-04354" ref-type="bibr">52</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Fagus sylvatica L.</italic>
(Fagaceae)—Beech</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antioxidant and antibacterial against Gram-positive and Gram-negative bacteria</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B9-molecules-24-04354" ref-type="bibr">9</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Ficus benghalensis</italic>
var.
<italic>krishnae</italic>
(Moraceae)—Krishna butter cup</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antimicrobial activity against
<italic>Staphylococcus aureus</italic>
(ATCC 29122),
<italic>Escherichia coli</italic>
(MTCC 45) and
<italic>Salmonella typhimurium</italic>
(MTCC 98)
<break></break>
Cytotoxicity on ovarian cancer cell lines (
<italic>SKOV-3 cells</italic>
)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B53-molecules-24-04354" ref-type="bibr">53</xref>
,
<xref rid="B54-molecules-24-04354" ref-type="bibr">54</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Ficus benghalensis</italic>
(Moraceae)—Banyan trees
<break></break>
<italic>Azadirachta indica</italic>
A. Juss (Meliaceae)—Nimtree or Indian lilac</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Escherichia coli</italic>
,
<italic>Pseudomonas aeruginosa</italic>
,
<italic>Bacillus subtilis</italic>
, and
<italic>Vibrio cholerae</italic>
<break></break>
Antiproliferative against
<italic>MG-63</italic>
ostheosarcoma cell line</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B55-molecules-24-04354" ref-type="bibr">55</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Ficus racemosa</italic>
L. (Moraceae)—Indian fig tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">The larvicidal activity results showed the highest mortality in synthesized AgNPs compared with the aqueous bark extract of
<italic>F. racemosa</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B104-molecules-24-04354" ref-type="bibr">104</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Garcinia mangostana</italic>
L. (Clusiaceae)—Mangosteen</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Anticancer activity in lung cancer cells (A549)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B56-molecules-24-04354" ref-type="bibr">56</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Guazuma ulmifolia</italic>
Lam. (Malvaceae)—Bay cedar</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag–Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Anticancer activity against HeLa cells
<break></break>
Antibacterial and antifungal activity
<break></break>
Catalityc activity against Congo red and 4-nitrophenol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B57-molecules-24-04354" ref-type="bibr">57</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Holarrhena antidysenterica</italic>
L. (Aponycaceae) Wall.—Tellicherry bark or conessi </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Larvicidal activity against the larvae of
<italic>Aedes aegypti</italic>
and
<italic>Culex quinquefasciatus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B58-molecules-24-04354" ref-type="bibr">58</xref>
]</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<italic>Melia azedarach</italic>
L. (Meliaceae)—Indian lilac</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Esherichia coli, Klebsiella pneumoniae</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B59-molecules-24-04354" ref-type="bibr">59</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Ag–Au </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Bacillus cereus</italic>
,
<italic>Cronobacter sakazakii</italic>
,
<italic>Salmonella enterica</italic>
,
<italic>Escherichia coli</italic>
,
<italic>Listeria monocytogenes</italic>
,
<italic>Candida albicans</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B62-molecules-24-04354" ref-type="bibr">62</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Mimusops elengi</italic>
L. (Sapotaceae)—Bullet wood</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B14-molecules-24-04354" ref-type="bibr">14</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Moringa oleifera</italic>
Lam. (Moringaceae)—Moringa</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Anticancer activity against HeLa cell type (human cervical carcinoma)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B26-molecules-24-04354" ref-type="bibr">26</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Nerium oleander</italic>
L. (Apocynaceae)—Karabi</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">In vitro anticancer activity of the stabilized AuNPs on MCF-7 cell lines;
<break></break>
catalytic activities demonstrated for borohydride reduction of 3- and 4-nitrophenols</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B60-molecules-24-04354" ref-type="bibr">60</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Picea abies</italic>
L. (Pinaceae)—Spruce</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antioxidant and Antibacterial against Gram-positive and Gram-negative bacteria</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B10-molecules-24-04354" ref-type="bibr">10</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Pongamia pinnata</italic>
(L.) Pierre (Fabaceae)—Karum tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against
<italic>Klebsiella planticola</italic>
and
<italic>Staphylococcus aureus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B66-molecules-24-04354" ref-type="bibr">66</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Prosopis juliflora</italic>
Sw.DC. (Fabaceae)—Mesquite</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against
<italic>Escherichia coli</italic>
and
<italic>Pseudomonas Aeruginosa</italic>
;
<break></break>
Anticancer activity against
<italic>A549</italic>
cells (adenocarcinomic human alveolar basal epithelial cells);
<break></break>
photocatalytic degradation of 4-nitrophenol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B67-molecules-24-04354" ref-type="bibr">67</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Quercus</italic>
sp. (Fagaceae)—Oak </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial effect against
<italic>Staphylococcus aureus ATCC 25923</italic>
,
<italic>Listeria monocytogenes ATCC 19111</italic>
,
<italic>Bacillus cereus ATCC 11778</italic>
,
<italic>Escherichia coli ATCC 25922</italic>
,
<italic>Salmonella enterica</italic>
subsp.
<italic>enterica Serovar typhimurium ATCC 13076</italic>
reference strains —cultures were isolated from food products</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B68-molecules-24-04354" ref-type="bibr">68</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Salix alba</italic>
L. (Salicaceae)—Willow tree </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Used in colorimetric detection of cysteine</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B69-molecules-24-04354" ref-type="bibr">69</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Saraca indica</italic>
L. (Fabaceae)—Asoka tree </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catalyst for the reduction of 4-nitrophenol to 4-aminophenol</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B28-molecules-24-04354" ref-type="bibr">28</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Salvadora persica</italic>
L. (Salvadoraceae)—Toothbrush tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against
<italic>Escherichia coli</italic>
and
<italic>Staphylococcus aureus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B23-molecules-24-04354" ref-type="bibr">23</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Stereospermum suaveolens</italic>
Roxb. DC (Bignoniaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Anticancer activity against lung carcinoma cell lines A549
<break></break>
Antibacterial against
<italic>Escherichia coli</italic>
,
<italic>Staphylococcus aureus</italic>
,
<italic>Pseudomonas aeruginosa</italic>
,
<italic>Bacillus subtilis</italic>
<break></break>
Antifungal against
<italic>Aspergillus flavus</italic>
,
<italic>Aspergillus nidulans</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B71-molecules-24-04354" ref-type="bibr">71</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Syzygium alternifolium</italic>
(Wt.) Walp (Myrtiaceae) </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial activity against
<italic>Salmonella typhimurium</italic>
,
<italic>Proteus vulgaris</italic>
,
<italic>Klebsiella pneumoniae</italic>
,
<italic>Escherichia coli</italic>
,
<italic>Pseudomonas aeruginosa</italic>
,
<italic>Staphylococcus aureus</italic>
, and
<italic>Bacillus subtilis</italic>
<break></break>
Antifungal: highest inhibition zones are observed in
<italic>Aspergillus flavus</italic>
followed by
<italic>Penicillium chrysogenum</italic>
,
<italic>Trichoderma harzianum</italic>
,
<italic>Alternaria solani</italic>
, and
<italic>Aspergillus Niger</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B72-molecules-24-04354" ref-type="bibr">72</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Syzygium cumini</italic>
L.(Myrtiaceae)—Black plum</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Escherichia coli</italic>
,
<italic>Staphylococcus aureus</italic>
,
<italic>Bacillus licheniformis</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B73-molecules-24-04354" ref-type="bibr">73</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Syzygium jambos</italic>
(L.) Alston (Myrtaceae)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag
<break></break>
Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antiplasmodial effect (AgNPs > AuNPs) against both chloroquine sensitive (3D7) and resistant (Dd2) strain of
<italic>Plasmodium falciparum</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B29-molecules-24-04354" ref-type="bibr">29</xref>
]</td>
</tr>
<tr>
<td rowspan="4" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">
<italic>Terminalia arjuna</italic>
Wigh and Arn (Combretaceae)—Arjuna tree </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antibacterial against
<italic>Escherichia coli</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B74-molecules-24-04354" ref-type="bibr">74</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Au</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Reducing and capping agent; acetylcholinesterase and Butyrylcholinesterase inhibitory activities; excellent free radical scavenging and metal chelating activity, suitable for Alzheimer’s disease therapy.</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B30-molecules-24-04354" ref-type="bibr">30</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cu</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antioxidant properties; Antibacterial activity against
<italic>Escherichia coli</italic>
and
<italic>Staphylococcus aureus</italic>
and less effective against both
<italic>Pseudomonas aeruginosa</italic>
and
<italic>Salmonella typhium</italic>
;
<break></break>
Effective against
<italic>Candida albicans</italic>
,
<italic>Trichophyton rubrum</italic>
,
<italic>Chrisosporium indicum</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B75-molecules-24-04354" ref-type="bibr">75</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cu–Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cytotoxic effect of biohybrid nanomaterials on different cell lines, MDA-MB-231 (poorly differentiated triple-negative breast cancer), HeLa (cervical cancer cells), SiHa (squamous cell carcinoma), and He-G2 (liver cancer cells), and non-toxic against Vero (normal epithelial cells); antibacterial activity against bacterial strains
<italic>Escherichia coli</italic>
,
<italic>Staphylococcus aureus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B17-molecules-24-04354" ref-type="bibr">17</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Terminalia cuneata</italic>
Roth. (Combretaceae)—White murdah</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Catalytic activity in the reduction of direct yellow-12</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B76-molecules-24-04354" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Toxicodendron vernicifluum</italic>
(Stokes) F.Barkley (Anacardiaceae)—Chinese Lacquer tree</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Anticancer activity in human lung cancer A549 cells Antibacterial activity against STEC (
<italic>Shiga Toxina Escherichia Coli</italic>
) and
<italic>Helicobacter pylori</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B27-molecules-24-04354" ref-type="bibr">27</xref>
]</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Zizyphus xylopyrus</italic>
Retz. Willd (Rhamnaceae)—Kath ber</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ag</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Antimicrobial agents in water purification systems </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">[
<xref rid="B77-molecules-24-04354" ref-type="bibr">77</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Ag—silver nanoparticles; Au—gold nanoparticles; Ag–Au—combination of silver and gold nanoparticles; Cu—copper nanoparticles; Pd—palladium nanoparticles.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec sec-type="conclusions" id="sec5-molecules-24-04354">
<title>5. Conclusions</title>
<p>The bark of woody vascular plants can be a source of phytoconstituents responsible for the reduction of metallic ions in nanoparticle synthesis. In this review, the presented metallic NPs mediated by bark extracts are rich in phytoconstituents responsible for the reduction of metal salts. The synthesis of NPs using crude plant bark extracts and purified compounds are novel substrates for industrial production.</p>
<p>In the future, plant bark has a wide potential for the synthesis of NPs in health care and commercial products. Implementing green synthesis methods with proven advantages has great potential. The yield of synthesized nanoparticles remains to be elucidated, and the synthesis parameters still require optimization. Furthermore, the lack of knowledge about chemical components responsible for the synthesis and stabilization process of NPs remains a challenge for researchers. It is important to understand how bioactive groups attach to the surface of NPs and which bioactive groups are involved in order to mediate NPs with higher efficacy. However, issues relating to the biomedical applications of NPs in vivo need to be developed. At the same time, considerable research on the biocompatibility and bioavailability of NPs is needed.</p>
</sec>
</body>
<back>
<notes>
<title>Author Contributions</title>
<p>Conceptualization, C.T. and L.B.; writing—original draft preparation, E.B. and N.-A.C.; writing—review and editing, C.T. and L.B.</p>
</notes>
<notes>
<title>Funding</title>
<p>This research received no external funding.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-molecules-24-04354">
<label>1.</label>
<element-citation publication-type="journal">
<article-title>Endophytes: Toward a Vision in Synthesis of Nanoparticle for Future Therapeutic Agents</article-title>
<source>Int. J. Bio-Inorg. Hybrid. Nanomater.</source>
<year>2012</year>
<volume>1</volume>
<fpage>67</fpage>
<lpage>77</lpage>
</element-citation>
</ref>
<ref id="B2-molecules-24-04354">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hasna</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Rajiv</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kamaraj</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jagadeeswaran</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sangeetha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Rajeshwari</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Plants: Green Route for Nanoparticle Synthesis</article-title>
<source>Int. Res. J. Biol. Sci.</source>
<year>2012</year>
<volume>1</volume>
<fpage>85</fpage>
<lpage>90</lpage>
</element-citation>
</ref>
<ref id="B3-molecules-24-04354">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iravani</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Metal Nanoparticles Using Plants</article-title>
<source>Green Chem.</source>
<year>2011</year>
<volume>13</volume>
<fpage>2638</fpage>
<lpage>2650</lpage>
<pub-id pub-id-type="doi">10.1039/c1gc15386b</pub-id>
</element-citation>
</ref>
<ref id="B4-molecules-24-04354">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmed</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Swami</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Ikram</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise</article-title>
<source>J. Adv. Res.</source>
<year>2016</year>
<volume>7</volume>
<fpage>17</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1016/j.jare.2015.02.007</pub-id>
<pub-id pub-id-type="pmid">26843966</pub-id>
</element-citation>
</ref>
<ref id="B5-molecules-24-04354">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhtar</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Panwar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>Y.-S.</given-names>
</name>
</person-group>
<article-title>Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts</article-title>
<source>ACS Sustain. Chem. Eng.</source>
<year>2013</year>
<volume>1</volume>
<fpage>591</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1021/sc300118u</pub-id>
</element-citation>
</ref>
<ref id="B6-molecules-24-04354">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kavitha</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Syed</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rakshith</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kavitha</surname>
<given-names>H.U.</given-names>
</name>
<name>
<surname>Yashwantha Rao</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Harini</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Satish</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Plants as Green Source towards Synthesis of Nanoparticles</article-title>
<source>Int. Res. J. Biol. Sci.</source>
<year>2013</year>
<volume>2</volume>
<fpage>66</fpage>
<lpage>76</lpage>
</element-citation>
</ref>
<ref id="B7-molecules-24-04354">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chandran</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Harper</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>S.-I.</given-names>
</name>
<name>
<surname>Kalaichelvan</surname>
<given-names>P.T.</given-names>
</name>
</person-group>
<article-title>Plant Extract Synthesized Silver Nanoparticles: An Ongoing Source of Novel Biocompatible Materials</article-title>
<source>Ind. Crop. Prod.</source>
<year>2015</year>
<volume>70</volume>
<fpage>356</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2015.03.015</pub-id>
</element-citation>
</ref>
<ref id="B8-molecules-24-04354">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferreres</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>N.G.M.</given-names>
</name>
<name>
<surname>Valentão</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Gil-Izquierdo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Araújo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Andrade</surname>
<given-names>P.B.</given-names>
</name>
</person-group>
<article-title>Leaves and Stem Bark from Allophylus Africanus P. Beauv.: An Approach to Anti-Inflammatory Properties and Characterization of Their Flavonoid Profile</article-title>
<source>Food Chem. Toxicol.</source>
<year>2018</year>
<volume>118</volume>
<fpage>430</fpage>
<lpage>438</lpage>
<pub-id pub-id-type="doi">10.1016/j.fct.2018.05.045</pub-id>
<pub-id pub-id-type="pmid">29787847</pub-id>
</element-citation>
</ref>
<ref id="B9-molecules-24-04354">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanase</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Berta</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Coman</surname>
<given-names>A.N.</given-names>
</name>
<name>
<surname>Roșca</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Man</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Toma</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mocan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jakab-Farkas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Biró</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mare</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Investigation of In Vitro Antioxidant and Antibacterial Potential of Silver Nanoparticles Obtained by Biosynthesis Using Beech Bark Extract</article-title>
<source>Antioxidants</source>
<year>2019</year>
<volume>8</volume>
<elocation-id>459</elocation-id>
<pub-id pub-id-type="doi">10.3390/antiox8100459</pub-id>
<pub-id pub-id-type="pmid">31597312</pub-id>
</element-citation>
</ref>
<ref id="B10-molecules-24-04354">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanase</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Berta</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Coman</surname>
<given-names>A.N.</given-names>
</name>
<name>
<surname>Roșca</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Man</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Toma</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mocan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nicolescu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jakab-Farkas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Biró</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract</article-title>
<source>Nanomaterials</source>
<year>2019</year>
<volume>9</volume>
<elocation-id>1541</elocation-id>
<pub-id pub-id-type="doi">10.3390/nano9111541</pub-id>
</element-citation>
</ref>
<ref id="B11-molecules-24-04354">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanase</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mocan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Coșarcă</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gavan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nicolescu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gheldiu</surname>
<given-names>A.-M.</given-names>
</name>
<name>
<surname>Vodnar</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Muntean</surname>
<given-names>D.-L.</given-names>
</name>
<name>
<surname>Crișan</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Biological and Chemical Insights of Beech (
<italic>Fagus sylvatica</italic>
L.) Bark: A Source of Bioactive Compounds with Functional Properties</article-title>
<source>Antioxidants</source>
<year>2019</year>
<volume>8</volume>
<elocation-id>417</elocation-id>
<pub-id pub-id-type="doi">10.3390/antiox8090417</pub-id>
<pub-id pub-id-type="pmid">31546945</pub-id>
</element-citation>
</ref>
<ref id="B12-molecules-24-04354">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alfredsen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Solheim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Slimestad</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Antifungal Effect of Bark Extracts from Some European Tree Species</article-title>
<source>Eur. J. Res.</source>
<year>2008</year>
<volume>127</volume>
<fpage>387</fpage>
<pub-id pub-id-type="doi">10.1007/s10342-008-0222-x</pub-id>
</element-citation>
</ref>
<ref id="B13-molecules-24-04354">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verica</surname>
<given-names>D.-U.</given-names>
</name>
<name>
<surname>Levaj</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mrkic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bursać Kovačević</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Boras</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The Content of Polyphenols and Carotenoids in Three Apricot Cultivars Depending on Stage of Maturity and Geographical Region</article-title>
<source>Food Chem.</source>
<year>2007</year>
<volume>102</volume>
<fpage>966</fpage>
<lpage>975</lpage>
<pub-id pub-id-type="doi">10.1016/j.foodchem.2006.04.001</pub-id>
</element-citation>
</ref>
<ref id="B14-molecules-24-04354">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Majumdar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bag</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Mimusops Elengi Bark Extract Mediated Green Synthesis of Gold Nanoparticles and Study of Its Catalytic Activity</article-title>
<source>Appl. Nanosci.</source>
<year>2016</year>
<volume>6</volume>
<fpage>521</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="doi">10.1007/s13204-015-0454-2</pub-id>
</element-citation>
</ref>
<ref id="B15-molecules-24-04354">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Plant Terpenes: Defense Responses, Phylogenetic Analysis, Regulation and Clinical Applications</article-title>
<source>3 Biotech</source>
<year>2015</year>
<volume>5</volume>
<fpage>129</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="doi">10.1007/s13205-014-0220-2</pub-id>
</element-citation>
</ref>
<ref id="B16-molecules-24-04354">
<label>16.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Prakash</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Cost Effective Natural Antioxidants</article-title>
<source>Nutrients, Dietary Supplements, and Nutriceuticals: Cost Analysis Versus Clinical Benefits</source>
<person-group person-group-type="editor">
<name>
<surname>Gerald</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>R.R.</given-names>
</name>
<name>
<surname>Preedy</surname>
<given-names>V.R.</given-names>
</name>
</person-group>
<publisher-name>Humana Press</publisher-name>
<publisher-loc>Totowa, NJ, USA</publisher-loc>
<year>2011</year>
<fpage>163</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="doi">10.1007/978-1-60761-308-4_12</pub-id>
</element-citation>
</ref>
<ref id="B17-molecules-24-04354">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yallappa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manjanna</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dhananjaya</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Vishwanatha</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Ravishankar</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gururaj</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Niranjana</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hungund</surname>
<given-names>B.S.</given-names>
</name>
</person-group>
<article-title>Phytochemically Functionalized Cu and Ag Nanoparticles Embedded in MWCNTs for Enhanced Antimicrobial and Anticancer Properties</article-title>
<source>Nano-Micro Lett.</source>
<year>2016</year>
<volume>8</volume>
<fpage>120</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1007/s40820-015-0066-0</pub-id>
</element-citation>
</ref>
<ref id="B18-molecules-24-04354">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedreschi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mariotti</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Granby</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Current Issues in Dietary Acrylamide: Formation, Mitigation and Risk Assessment</article-title>
<source>J. Sci. Food Agric.</source>
<year>2014</year>
<volume>94</volume>
<fpage>9</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1002/jsfa.6349</pub-id>
<pub-id pub-id-type="pmid">23939985</pub-id>
</element-citation>
</ref>
<ref id="B19-molecules-24-04354">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santos</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Marques</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Neto</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Silvestre</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Freire</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Unveiling the Chemistry behind the Green Synthesis of Metal Nanoparticles</article-title>
<source>ChemSusChem</source>
<year>2014</year>
<volume>7</volume>
<fpage>2704</fpage>
<lpage>2711</lpage>
<pub-id pub-id-type="doi">10.1002/cssc.201402126</pub-id>
<pub-id pub-id-type="pmid">25088383</pub-id>
</element-citation>
</ref>
<ref id="B20-molecules-24-04354">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murugan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Senthilkumar</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Senbagam</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Al-Sohaibani</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Biosynthesis of Silver Nanoparticles Using
<italic>Acacia leucophloea</italic>
Extract and Their Antibacterial Activity</article-title>
<source>Int. J. Nanomed.</source>
<year>2014</year>
<volume>9</volume>
<fpage>2431</fpage>
<lpage>2438</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S61779</pub-id>
</element-citation>
</ref>
<ref id="B21-molecules-24-04354">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moyo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gomba</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nharingo</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>
<italic>Afzelia quanzensis</italic>
Bark Extract for Green Synthesis of Silver Nanoparticles and Study of Their Antibacterial Activity</article-title>
<source>Int. J. Ind. Chem.</source>
<year>2015</year>
<volume>6</volume>
<fpage>329</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="doi">10.1007/s40090-015-0055-7</pub-id>
</element-citation>
</ref>
<ref id="B22-molecules-24-04354">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jianming</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Spectroscopic Characterization of Au3+ Biosorption by Waste Biomass of
<italic>Saccharomyces cerevisiae</italic>
</article-title>
<source>Spectrochim. Acta A Mol. Biomol. Spectrosc.</source>
<year>2005</year>
<volume>61</volume>
<fpage>761</fpage>
<lpage>765</lpage>
<pub-id pub-id-type="doi">10.1016/j.saa.2004.03.029</pub-id>
<pub-id pub-id-type="pmid">15649812</pub-id>
</element-citation>
</ref>
<ref id="B23-molecules-24-04354">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dorani</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Darroudi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sarani</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Silver Nanoparticles Using
<italic>Salvadora persica</italic>
L. and Its Antibacterial Activity</article-title>
<source>Cell. Mol. Biol.</source>
<year>2016</year>
<volume>62</volume>
<fpage>46</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.14715/cmb/2016.62.9.8</pub-id>
</element-citation>
</ref>
<ref id="B24-molecules-24-04354">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kabera</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Classification, Function and Pharmacological Properties</article-title>
<source>J. Pharm. Pharmacol.</source>
<year>2014</year>
<volume>2</volume>
<fpage>377</fpage>
<lpage>392</lpage>
</element-citation>
</ref>
<ref id="B25-molecules-24-04354">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geethalakshmi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sarada</surname>
<given-names>D.V.L.</given-names>
</name>
</person-group>
<article-title>Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles Synthesized Using Saponin Isolated from
<italic>Trianthema decandra</italic>
L.</article-title>
<source>Ind. Crop. Prod.</source>
<year>2013</year>
<volume>51</volume>
<fpage>107</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2013.08.055</pub-id>
</element-citation>
</ref>
<ref id="B26-molecules-24-04354">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vasanth</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ilango</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ramasamy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>G.P.</given-names>
</name>
</person-group>
<article-title>Anticancer Activity of
<italic>Moringa oleifera</italic>
Mediated Silver Nanoparticles on Human Cervical Carcinoma Cells by Apoptosis Induction</article-title>
<source>Colloids Surf. B Biointerfaces</source>
<year>2014</year>
<volume>117</volume>
<fpage>354</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2014.02.052</pub-id>
<pub-id pub-id-type="pmid">24681047</pub-id>
</element-citation>
</ref>
<ref id="B27-molecules-24-04354">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saravanakumar</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chelliah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>MubarakAli</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>D.-H.</given-names>
</name>
<name>
<surname>Kathiresan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.-H.</given-names>
</name>
</person-group>
<article-title>Unveiling the Potentials of Biocompatible Silver Nanoparticles on Human Lung Carcinoma A549 Cells and
<italic>Helicobacter pylori</italic>
</article-title>
<source>Sci. Rep.</source>
<year>2019</year>
<volume>9</volume>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1038/s41598-019-42112-1</pub-id>
<pub-id pub-id-type="pmid">30626917</pub-id>
</element-citation>
</ref>
<ref id="B28-molecules-24-04354">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dash</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Majumdar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sikder</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Bag</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Patra</surname>
<given-names>B.K.</given-names>
</name>
</person-group>
<article-title>
<italic>Saraca indica</italic>
Bark Extract Mediated Green Synthesis of Polyshaped Gold Nanoparticles and Its Application in Catalytic Reduction</article-title>
<source>Appl. Nanosci.</source>
<year>2014</year>
<volume>4</volume>
<fpage>485</fpage>
<lpage>490</lpage>
<pub-id pub-id-type="doi">10.1007/s13204-013-0223-z</pub-id>
</element-citation>
</ref>
<ref id="B29-molecules-24-04354">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dutta</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Bordoloi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gogoi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Narzary</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bhattacharyya</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Mohapatra</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>Mazumder</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Antimalarial Silver and Gold Nanoparticles: Green Synthesis, Characterization and In Vitro Study</article-title>
<source>Biomed. Pharm.</source>
<year>2017</year>
<volume>91</volume>
<fpage>567</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2017.04.032</pub-id>
</element-citation>
</ref>
<ref id="B30-molecules-24-04354">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sivakumar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vijayan</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Pugazhendhi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Benelli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Archunan</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Biogenic Synthesis of Gold Nanoparticles from
<italic>Terminalia arjuna</italic>
Bark Extract: Assessment of Safety Aspects and Neuroprotective Potential via Antioxidant, Anticholinesterase, and Antiamyloidogenic Effects</article-title>
<source>Environ. Sci. Pollut. Res.</source>
<year>2017</year>
<volume>25</volume>
<fpage>1</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1007/s11356-017-9789-4</pub-id>
</element-citation>
</ref>
<ref id="B31-molecules-24-04354">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bello</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Anwar</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Mirza</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Qadri</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Farooq</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Adam</surname>
<given-names>I.K.</given-names>
</name>
<name>
<surname>Asiri</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>
<italic>Albizia chevalier</italic>
Based Ag Nanoparticles: Anti-Proliferation, Bactericidal and Pollutants Degradation Performance</article-title>
<source>J. Photochem. Photobiol. B</source>
<year>2018</year>
<volume>182</volume>
<fpage>62</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2018.03.020</pub-id>
<pub-id pub-id-type="pmid">29621690</pub-id>
</element-citation>
</ref>
<ref id="B32-molecules-24-04354">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shetty</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Supraja</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Garud</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>T.N.V.K.V.</given-names>
</name>
</person-group>
<article-title>Synthesis, Characterization and Antimicrobial Activity of Alstonia Scholaris Bark-Extract-Mediated Silver Nanoparticles</article-title>
<source>J. Nanostructure Chem.</source>
<year>2014</year>
<volume>4</volume>
<fpage>161</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1007/s40097-014-0132-z</pub-id>
</element-citation>
</ref>
<ref id="B33-molecules-24-04354">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdullah</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kamyar</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Biosynthesis of Silver Nanoparticles Using
<italic>Artocarpus elasticus</italic>
Stem Bark Extract</article-title>
<source>Chem. Cent. J.</source>
<year>2015</year>
<volume>9</volume>
<fpage>61</fpage>
<pub-id pub-id-type="doi">10.1186/s13065-015-0133-0</pub-id>
<pub-id pub-id-type="pmid">26528373</pub-id>
</element-citation>
</ref>
<ref id="B34-molecules-24-04354">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nahak</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sahu</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>In Vitro Antioxidative Acitivity of
<italic>Azadirachta indica</italic>
and
<italic>Melia azedarach</italic>
Leaves by DPPH Scavenging Assay</article-title>
<source>Nat. Sci.</source>
<year>2010</year>
<volume>8</volume>
<fpage>22</fpage>
<lpage>28</lpage>
</element-citation>
</ref>
<ref id="B35-molecules-24-04354">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soni</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Silver Nanoparticles: A Possibility for Malarial and Filarial Vector Control Technology</article-title>
<source>Parasitol. Res.</source>
<year>2014</year>
<volume>113</volume>
<fpage>4015</fpage>
<lpage>4022</lpage>
<pub-id pub-id-type="doi">10.1007/s00436-014-4069-4</pub-id>
<pub-id pub-id-type="pmid">25132567</pub-id>
</element-citation>
</ref>
<ref id="B36-molecules-24-04354">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehmood</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murtaza</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bhatti</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kausar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Biosynthesis, Characterization and Antimicrobial Action of Silver Nanoparticles from Root Bark Extract of
<italic>Berberis lycium</italic>
Royle</article-title>
<source>Pak. J. Pharm. Sci.</source>
<year>2016</year>
<volume>29</volume>
<fpage>131</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="pmid">26826826</pub-id>
</element-citation>
</ref>
<ref id="B37-molecules-24-04354">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pattanayak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mollick</surname>
<given-names>M.M.R.</given-names>
</name>
<name>
<surname>Maity</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chakraborty</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dash</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chakraborty</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>
<italic>Butea monosperma</italic>
Bark Extract Mediated Green Synthesis of Silver Nanoparticles: Characterization and Biomedical Applications</article-title>
<source>J. Saudi Chem. Soc.</source>
<year>2017</year>
<volume>21</volume>
<fpage>673</fpage>
<lpage>684</lpage>
<pub-id pub-id-type="doi">10.1016/j.jscs.2015.11.004</pub-id>
</element-citation>
</ref>
<ref id="B38-molecules-24-04354">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daisy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Saipriya</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Biochemical Analysis of Cassia Fistula Aqueous Extract and Phytochemically Synthesized Gold Nanoparticles as Hypoglycemic Treatment for Diabetes Mellitus</article-title>
<source>Int. J. Nanomed.</source>
<year>2012</year>
<volume>7</volume>
<fpage>1189</fpage>
<lpage>1202</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S26650</pub-id>
</element-citation>
</ref>
<ref id="B39-molecules-24-04354">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fatima</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zaidi</surname>
<given-names>N.-U.-S.</given-names>
</name>
<name>
<surname>Amraiz</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Afzal</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>In Vitro Antiviral Activity of
<italic>Cinnamomum cassia</italic>
and Its Nanoparticles Against H7N3 Influenza A Virus</article-title>
<source>J. Microbiol. Biotechnol.</source>
<year>2015</year>
<volume>26</volume>
<fpage>151</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="doi">10.4014/jmb.1508.08024</pub-id>
</element-citation>
</ref>
<ref id="B40-molecules-24-04354">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soni</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Green Nanoparticles for Mosquito Control</article-title>
<source>Sci. World J.</source>
<year>2014</year>
<volume>2014</volume>
<fpage>496362</fpage>
<pub-id pub-id-type="doi">10.1155/2014/496362</pub-id>
</element-citation>
</ref>
<ref id="B41-molecules-24-04354">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Biosynthesis, Characterization and Cytotoxicity of Gold Nanoparticles and Their Loading with N-Acetylcarnosine for Cataract Treatment</article-title>
<source>J. Photochem. Photobiol. B</source>
<year>2018</year>
<volume>187</volume>
<fpage>180</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2018.08.014</pub-id>
<pub-id pub-id-type="pmid">30172104</pub-id>
</element-citation>
</ref>
<ref id="B42-molecules-24-04354">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sasikala</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Linga Rao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Savithramma</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>T.N.V.K.V.</given-names>
</name>
</person-group>
<article-title>Synthesis of Silver Nanoparticles from Stem Bark of
<italic>Cochlospermum religiosum</italic>
(L.) Alston: An Important Medicinal Plant and Evaluation of Their Antimicrobial Efficacy</article-title>
<source>Appl. Nanosci.</source>
<year>2015</year>
<volume>5</volume>
<fpage>827</fpage>
<lpage>835</lpage>
<pub-id pub-id-type="doi">10.1007/s13204-014-0380-8</pub-id>
</element-citation>
</ref>
<ref id="B43-molecules-24-04354">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ali</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ansari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jalal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mahdi</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Cameotra</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>
<italic>Crataeva nurvala</italic>
Nanoparticles Inhibit Virulence Factors and Biofilm Formation in Clinical Isolates of Pseudomonas Aeruginosa: Nanoparticles as an Antivirulent</article-title>
<source>J. Basic Microbiol.</source>
<year>2016</year>
<volume>57</volume>
<fpage>193</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="doi">10.1002/jobm.201600175</pub-id>
<pub-id pub-id-type="pmid">27874198</pub-id>
</element-citation>
</ref>
<ref id="B44-molecules-24-04354">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mohanty</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jena</surname>
<given-names>B.S.</given-names>
</name>
</person-group>
<article-title>Innate Catalytic and Free Radical Scavenging Activities of Silver Nanoparticles Synthesized Using
<italic>Dillenia indica</italic>
Bark Extract</article-title>
<source>J. Colloid Interface Sci.</source>
<year>2017</year>
<volume>496</volume>
<fpage>513</fpage>
<lpage>521</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcis.2017.02.045</pub-id>
<pub-id pub-id-type="pmid">28259017</pub-id>
</element-citation>
</ref>
<ref id="B45-molecules-24-04354">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Devaraj</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Josebin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Seerangaraj</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Veluswamy</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Biosynthesis of Silver Nanoparticles Using Stem Bark Extracts of
<italic>Diospyros montana</italic>
and Their Antioxidant and Antibacterial Activities</article-title>
<source>J. Nanostructure Chem.</source>
<year>2018</year>
<volume>8</volume>
<fpage>83</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1007/s40097-018-0256-7</pub-id>
</element-citation>
</ref>
<ref id="B46-molecules-24-04354">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vasantharaj</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sripriya</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shanmugavel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Manikandan</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gnanamani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Senthilkumar</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Surface Active Gold Nanoparticles Biosynthesis by New Approach for Bionanocatalytic Activity</article-title>
<source>J. Photochem. Photobiol. B</source>
<year>2018</year>
<volume>179</volume>
<fpage>119</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2018.01.007</pub-id>
<pub-id pub-id-type="pmid">29367146</pub-id>
</element-citation>
</ref>
<ref id="B47-molecules-24-04354">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Odeyemi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mare</surname>
<given-names>J.-A.</given-names>
</name>
<name>
<surname>Edkins</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Afolayan</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>In Vitro and in Vivo Toxicity Assessment of Biologically Synthesized Silver Nanoparticles from
<italic>Elaeodendron Croceum</italic>
</article-title>
<source>J. Complement. Integr. Med.</source>
<year>2019</year>
<volume>16</volume>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1515/jcim-2018-0184</pub-id>
</element-citation>
</ref>
<ref id="B48-molecules-24-04354">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kulkarni</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Muddapur</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Biosynthesis of Metal Nanoparticles: A Review</article-title>
<source>J. Nanotechnol.</source>
<year>2014</year>
<volume>2014</volume>
<fpage>510246</fpage>
<pub-id pub-id-type="doi">10.1155/2014/510246</pub-id>
</element-citation>
</ref>
<ref id="B49-molecules-24-04354">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Logeswari</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Silambarasan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Synthesis of Silver Nanoparticles Using Plants Extract and Analysis of Their Antimicrobial Property</article-title>
<source>J. Saudi Chem. Soc.</source>
<year>2015</year>
<volume>19</volume>
<fpage>311</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1016/j.jscs.2012.04.007</pub-id>
</element-citation>
</ref>
<ref id="B50-molecules-24-04354">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Controllable Biosynthesis of Gold Nanoparticles from a
<italic>Eucommia ulmoides</italic>
Bark Aqueous Extract</article-title>
<source>Spectrochim. Acta A Mol. Biomol. Spectrosc.</source>
<year>2015</year>
<volume>142</volume>
<fpage>73</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1016/j.saa.2015.01.109</pub-id>
<pub-id pub-id-type="pmid">25699695</pub-id>
</element-citation>
</ref>
<ref id="B51-molecules-24-04354">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Biosynthesised Palladium Nanoparticles Using
<italic>Eucommia ulmoides</italic>
Bark Aqueous Extract and Their Catalytic Activity</article-title>
<source>IET Nanobiotechnol.</source>
<year>2015</year>
<volume>9</volume>
<fpage>349</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="doi">10.1049/iet-nbt.2015.0020</pub-id>
<pub-id pub-id-type="pmid">26647810</pub-id>
</element-citation>
</ref>
<ref id="B52-molecules-24-04354">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia Campoy</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Perez Gutierrez</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Manriquez-Alvirde</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Muñiz Ramirez</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Protection of Silver Nanoparticles Using
<italic>Eysenhardtia polystachya</italic>
in Peroxide-Induced Pancreatic β-Cell Damage and Their Antidiabetic Properties in Zebrafish</article-title>
<source>Int. J. Nanomed.</source>
<year>2018</year>
<volume>13</volume>
<fpage>2601</fpage>
<lpage>2612</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S163714</pub-id>
<pub-id pub-id-type="pmid">29750032</pub-id>
</element-citation>
</ref>
<ref id="B53-molecules-24-04354">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanjikar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lingappa Hugar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Londonkar</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Characterization of Phyto-Nanoparticles from
<italic>Ficus krishnae</italic>
for Their Antibacterial and Anticancer Activities</article-title>
<source>Drug Dev. Ind. Pharm.</source>
<year>2017</year>
<volume>44</volume>
<fpage>377</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="doi">10.1080/03639045.2017.1386205</pub-id>
<pub-id pub-id-type="pmid">29098876</pub-id>
</element-citation>
</ref>
<ref id="B54-molecules-24-04354">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nayagam</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Melchias</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kumaravel</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>
<italic>Ficus benghalensis</italic>
Mediates Synthesis of Silver Nanoparticles: The Green Approach Yields NPs that Are Its Anti-Bacterial and Anti-Oxidant</article-title>
<source>World J. Pharm. Sci.</source>
<year>2016</year>
<volume>4</volume>
<fpage>1</fpage>
<lpage>12</lpage>
</element-citation>
</ref>
<ref id="B55-molecules-24-04354">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nayak</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ashe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rauta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kumari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nayak</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Bark Extract Mediated Green Synthesis of Silver Nanoparticles: Evaluation of Antimicrobial Activity and Antiproliferative Response against Osteosarcoma</article-title>
<source>Mater. Sci. Eng. C</source>
<year>2015</year>
<volume>58</volume>
<fpage>44</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/j.msec.2015.08.022</pub-id>
<pub-id pub-id-type="pmid">26478285</pub-id>
</element-citation>
</ref>
<ref id="B56-molecules-24-04354">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Biofabrication of Silver Nanoparticles and Their Combined Effect with Low Intensity Ultrasound for Treatment of Lung Cancer</article-title>
<source>J. Photochem. Photobiol. B</source>
<year>2018</year>
<volume>181</volume>
<fpage>122</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2018.03.004</pub-id>
<pub-id pub-id-type="pmid">29550670</pub-id>
</element-citation>
</ref>
<ref id="B57-molecules-24-04354">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karthika</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Arumugam</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gopinath</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Periyannan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Govindarajan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Alharbi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Km</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Khaled</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Benelli</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>
<italic>Guazuma ulmifolia</italic>
Bark-Synthesized Ag, Au and Ag/Au Alloy Nanoparticles: Photocatalytic Potential, DNA/Protein Interactions, Anticancer Activity and Toxicity against 14 Species of Microbial Pathogens</article-title>
<source>J. Photochem. Photobiol. B</source>
<year>2017</year>
<volume>167</volume>
<fpage>189</fpage>
<lpage>199</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2017.01.008</pub-id>
<pub-id pub-id-type="pmid">28076823</pub-id>
</element-citation>
</ref>
<ref id="B58-molecules-24-04354">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Silver Nanoparticles Using
<italic>Holarrhena antidysenterica</italic>
(L.) Wall.Bark Extract and Their Larvicidal Activity against Dengue and Filariasis Vectors</article-title>
<source>Parasitol. Res.</source>
<year>2017</year>
<volume>117</volume>
<fpage>377</fpage>
<lpage>389</lpage>
<pub-id pub-id-type="doi">10.1007/s00436-017-5711-8</pub-id>
<pub-id pub-id-type="pmid">29250727</pub-id>
</element-citation>
</ref>
<ref id="B59-molecules-24-04354">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehmood</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Antibacterial Efficacy of Silver Nanoparticles Synthesized by a Green Method Using Bark Extract of
<italic>Melia azedarach</italic>
L.</article-title>
<source>J. Pharm. Innov.</source>
<year>2014</year>
<volume>9</volume>
<fpage>238</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1007/s12247-014-9190-5</pub-id>
</element-citation>
</ref>
<ref id="B60-molecules-24-04354">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Minor phenolic constituents of chinaberry-tree (
<italic>Melia azedarach</italic>
)</article-title>
<source>Zhong Cao Yao Chin. Tradit. Herb. Drugs</source>
<year>2000</year>
<volume>31</volume>
<fpage>86</fpage>
<lpage>89</lpage>
</element-citation>
</ref>
<ref id="B61-molecules-24-04354">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Sanghai</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Shreedhara</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Histological and Physiochemical Standardization of
<italic>Melia azedarach</italic>
. Linn Bark</article-title>
<source>Asian Pac. J. Trop. Biomed.</source>
<year>2012</year>
<volume>2</volume>
<fpage>S284</fpage>
<lpage>S289</lpage>
<pub-id pub-id-type="doi">10.1016/S2221-1691(12)60175-0</pub-id>
</element-citation>
</ref>
<ref id="B62-molecules-24-04354">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>S.-I.</given-names>
</name>
</person-group>
<article-title>Autoclave Mediated One-Pot-One-Minute Synthesis of AgNPs and Au–Ag Nanocomposite from
<italic>Melia azedarach</italic>
Bark Extract with Antimicrobial Activity against Food Pathogens</article-title>
<source>Chem. Cent. J.</source>
<year>2016</year>
<volume>10</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1186/s13065-016-0157-0</pub-id>
<pub-id pub-id-type="pmid">26807144</pub-id>
</element-citation>
</ref>
<ref id="B63-molecules-24-04354">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Manna</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bag</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mukhopadhyay</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of
<italic>Nerium oleander</italic>
-Conjugated Gold Nanoparticles and Study of Its in Vitro Anticancer Activity on MCF-7 Cell Lines and Catalytic Activity</article-title>
<source>Nano Converg.</source>
<year>2018</year>
<volume>5</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1186/s40580-018-0142-5</pub-id>
<pub-id pub-id-type="pmid">29375956</pub-id>
</element-citation>
</ref>
<ref id="B64-molecules-24-04354">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ignat</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Radu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Volf</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pag</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Popa</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Antioxidant and Antibacterial Activities of Some Natural Polyphenols</article-title>
<source>Cellul. Chem. Technol.</source>
<year>2013</year>
<volume>47</volume>
<fpage>387</fpage>
<lpage>399</lpage>
</element-citation>
</ref>
<ref id="B65-molecules-24-04354">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iravani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zolfaghari</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Silver Nanoparticles Using
<italic>Pinus eldarica</italic>
Bark Extract</article-title>
<source>Biomed. Res. Int.</source>
<year>2013</year>
<volume>2013</volume>
<fpage>639725</fpage>
<pub-id pub-id-type="doi">10.1155/2013/639725</pub-id>
<pub-id pub-id-type="pmid">24083233</pub-id>
</element-citation>
</ref>
<ref id="B66-molecules-24-04354">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shanmugam</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Synthesis of Silver Nanoparticles Using Fresh Bark of
<italic>Pongamia pinnata</italic>
and Characterization of Its Antibacterial Activity against Gram Positive and Gram Negative Pathogens</article-title>
<source>Resour.-Effic. Technol.</source>
<year>2016</year>
<volume>2</volume>
<fpage>30</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1016/j.reffit.2016.06.003</pub-id>
</element-citation>
</ref>
<ref id="B67-molecules-24-04354">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arya</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kumari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chandra</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nimesh</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Artificial Cells, Nanomedicine, and Biotechnology Green Synthesis of Silver Nanoparticles Using
<italic>Prosopis juliflora</italic>
Bark Extract: Reaction Optimization, Antimicrobial and Catalytic Activities</article-title>
<source>Artif. Cells Nanomed. Biotechnol.</source>
<year>2017</year>
<volume>46</volume>
<fpage>985</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="doi">10.1080/21691401.2017.1354302</pub-id>
<pub-id pub-id-type="pmid">28720002</pub-id>
</element-citation>
</ref>
<ref id="B68-molecules-24-04354">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puiso</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mačionienė</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Jonkuvienė</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Šalomskienė</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Antimicrobial Activity of Silver Nanoparticles Synthesized Using Plant Extracts</article-title>
<source>Vet. Ir Zootech.</source>
<year>2014</year>
<volume>65</volume>
<fpage>61</fpage>
<lpage>67</lpage>
</element-citation>
</ref>
<ref id="B69-molecules-24-04354">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahram</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mohammadzadeh</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Gold Nanoparticles with Willow Tree Bark Extract: A Sensitive Colourimetric Sensor for Cysteine Detection</article-title>
<source>Anal. Methods</source>
<year>2014</year>
<volume>6</volume>
<fpage>6916</fpage>
<lpage>6924</lpage>
<pub-id pub-id-type="doi">10.1039/C4AY01362J</pub-id>
</element-citation>
</ref>
<ref id="B70-molecules-24-04354">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subramanian</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Subbramaniyan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Antioxidant Activity of the Stem Bark of
<italic>Shorea roxburghii</italic>
and Its Silver Reducing Power</article-title>
<source>SpringerPlus</source>
<year>2013</year>
<volume>2</volume>
<fpage>28</fpage>
<pub-id pub-id-type="doi">10.1186/2193-1801-2-28</pub-id>
<pub-id pub-id-type="pmid">23519327</pub-id>
</element-citation>
</ref>
<ref id="B71-molecules-24-04354">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Francis</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Koshy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of
<italic>Stereospermum suaveolens</italic>
Capped Silver and Gold Nanoparticles and Assessment of Their Innate Antioxidant, Antimicrobial and Antiproliferative Activities</article-title>
<source>Bioprocess. Biosyst. Eng.</source>
<year>2018</year>
<volume>41</volume>
<fpage>939</fpage>
<lpage>951</lpage>
<pub-id pub-id-type="doi">10.1007/s00449-018-1925-0</pub-id>
<pub-id pub-id-type="pmid">29564534</pub-id>
</element-citation>
</ref>
<ref id="B72-molecules-24-04354">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yugandhar</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Haribabu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Savithramma</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Synthesis, Characterization and Antimicrobial Properties of Green-Synthesised Silver Nanoparticles from Stem Bark Extract of
<italic>Syzygium alternifolium</italic>
(Wt.). Walp</article-title>
<source>3 Biotech</source>
<year>2015</year>
<volume>5</volume>
<fpage>1031</fpage>
<lpage>1039</lpage>
<pub-id pub-id-type="doi">10.1007/s13205-015-0307-4</pub-id>
<pub-id pub-id-type="pmid">28324410</pub-id>
</element-citation>
</ref>
<ref id="B73-molecules-24-04354">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasad</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Satyanarayana Swamy</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Antibacterial Activity of Silver Nanoparticles Synthesized by Bark Extract of
<italic>Syzygium cumini</italic>
</article-title>
<source>J. Nanoparticles</source>
<year>2013</year>
<volume>2013</volume>
<fpage>431218</fpage>
<pub-id pub-id-type="doi">10.1155/2013/431218</pub-id>
</element-citation>
</ref>
<ref id="B74-molecules-24-04354">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmed</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nimesh</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Antibacterial Efficacy of Silver Nanoparticles Synthesized Employing
<italic>Terminalia arjuna</italic>
Bark Extract</article-title>
<source>Artif. Cells Nanomed. Biotechnol.</source>
<year>2016</year>
<volume>45</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1080/21691401.2016.1215328</pub-id>
<pub-id pub-id-type="pmid">27684206</pub-id>
</element-citation>
</ref>
<ref id="B75-molecules-24-04354">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yallappa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manjanna</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sindhe</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Satyanarayan</surname>
<given-names>N.D.</given-names>
</name>
<name>
<surname>Pramod</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Nagaraja</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Microwave Assisted Rapid Synthesis and Biological Evaluation of Stable Copper Nanoparticles Using
<italic>T. arjuna</italic>
Bark Extract</article-title>
<source>Spectrochim. Acta A Mol. Biomol. Spectrosc.</source>
<year>2013</year>
<volume>110</volume>
<fpage>108</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1016/j.saa.2013.03.005</pub-id>
<pub-id pub-id-type="pmid">23562740</pub-id>
</element-citation>
</ref>
<ref id="B76-molecules-24-04354">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edison</surname>
<given-names>T.N.J.I.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.R.</given-names>
</name>
<name>
<surname>Sethuraman</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Silver Nanoparticles Using
<italic>Terminalia cuneata</italic>
and Its Catalytic Action in Reduction of Direct Yellow-12 Dye</article-title>
<source>Spectrochim. Acta A Mol. Biomol. Spectrosc.</source>
<year>2016</year>
<volume>161</volume>
<fpage>122</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="doi">10.1016/j.saa.2016.02.044</pub-id>
<pub-id pub-id-type="pmid">26967513</pub-id>
</element-citation>
</ref>
<ref id="B77-molecules-24-04354">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Devadiga</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shetty</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Saidutta</surname>
<given-names>M.B.</given-names>
</name>
</person-group>
<article-title>Synthesis of Silver Nanoparticles Using Medicinal
<italic>Zizyphus xylopyrus</italic>
Bark Extract</article-title>
<source>Appl. Nanosci.</source>
<year>2014</year>
<volume>5</volume>
<fpage>755</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1007/s13204-014-0372-8</pub-id>
</element-citation>
</ref>
<ref id="B78-molecules-24-04354">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prashanth</surname>
<given-names>G.K.</given-names>
</name>
<name>
<surname>Prashanth</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Bora</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Gadewar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagabhushana</surname>
<given-names>B.M.</given-names>
</name>
<name>
<surname>Ananda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krishnaiah</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Sathyananda</surname>
<given-names>H.M.</given-names>
</name>
</person-group>
<article-title>In Vitro Antibacterial and Cytotoxicity Studies of ZnO Nanopowders Prepared by Combustion Assisted Facile Green Synthesis</article-title>
<source>Karbala Int. J. Mod. Sci.</source>
<year>2015</year>
<volume>1</volume>
<fpage>67</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1016/j.kijoms.2015.10.007</pub-id>
</element-citation>
</ref>
<ref id="B79-molecules-24-04354">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pietta</surname>
<given-names>P.-G.</given-names>
</name>
</person-group>
<article-title>Flavonoids as Antioxidants</article-title>
<source>J. Nat. Prod.</source>
<year>2000</year>
<volume>63</volume>
<fpage>1035</fpage>
<lpage>1042</lpage>
<pub-id pub-id-type="doi">10.1021/np9904509</pub-id>
<pub-id pub-id-type="pmid">10924197</pub-id>
</element-citation>
</ref>
<ref id="B80-molecules-24-04354">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>J.-J.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>H.-Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>C.-H.</given-names>
</name>
</person-group>
<article-title>Chain-Breaking Activity of Carotenes in Lipid Peroxidation: A Theoretical Study</article-title>
<source>J. Phys. Chem. B</source>
<year>2009</year>
<volume>113</volume>
<fpage>15699</fpage>
<lpage>15708</lpage>
<pub-id pub-id-type="doi">10.1021/jp907822h</pub-id>
<pub-id pub-id-type="pmid">19886649</pub-id>
</element-citation>
</ref>
<ref id="B81-molecules-24-04354">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>H.-Y.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>C.-C.</given-names>
</name>
</person-group>
<article-title>Antioxidative Activities of Water-Soluble Disaccharide Chitosan Derivatives</article-title>
<source>Food Res. Int.</source>
<year>2004</year>
<volume>37</volume>
<fpage>883</fpage>
<lpage>889</lpage>
<pub-id pub-id-type="doi">10.1016/j.foodres.2004.04.007</pub-id>
</element-citation>
</ref>
<ref id="B82-molecules-24-04354">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phull</surname>
<given-names>A.-R.</given-names>
</name>
<name>
<surname>Abbas</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Raza</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Zia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haq</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Antioxidant, Cytotoxic and Antimicrobial Activities of Green Synthesized Silver Nanoparticles from Crude Extract of
<italic>Bergenia ciliata</italic>
</article-title>
<source>Future J. Pharm. Sci.</source>
<year>2016</year>
<volume>2</volume>
<fpage>31</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1016/j.fjps.2016.03.001</pub-id>
</element-citation>
</ref>
<ref id="B83-molecules-24-04354">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramamurthy</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Padma</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Samadanam</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ramachandran</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Suyavaran</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Premkumar</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Thirunavukkarasu</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>The Extra Cellular Synthesis of Gold and Silver Nanoparticles and Their Free Radical Scavenging and Antibacterial Properties</article-title>
<source>Colloids Surf. B Biointerfaces</source>
<year>2012</year>
<volume>102C</volume>
<fpage>808</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2012.09.025</pub-id>
</element-citation>
</ref>
<ref id="B84-molecules-24-04354">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Barbated Skullcup Herb Extract-Mediated Biosynthesis of Gold Nanoparticles and Its Primary Application in Electrochemistry</article-title>
<source>Colloids Surf. B Biointerfaces</source>
<year>2009</year>
<volume>73</volume>
<fpage>75</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2009.04.027</pub-id>
<pub-id pub-id-type="pmid">19481910</pub-id>
</element-citation>
</ref>
<ref id="B85-molecules-24-04354">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yudha</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Notriawan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Angasa</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Suharto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hendri</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Nisina</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Green Synthesis of Silver Nanoparticles Using Aqueous Rinds Extract of
<italic>Brucea javanica</italic>
(L.) Merr at Ambient Temperature</article-title>
<source>Mater. Lett.</source>
<year>2013</year>
<volume>97</volume>
<fpage>181</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1016/j.matlet.2013.01.114</pub-id>
</element-citation>
</ref>
<ref id="B86-molecules-24-04354">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wijnhoven</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Peijnenburg</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Herberts</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hagens</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Oomen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Heugens</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Roszek</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bisschops</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gosens</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Van de meent</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nano-Silver—A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment</article-title>
<source>Nanotoxicology</source>
<year>2009</year>
<volume>3</volume>
<fpage>109</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1080/17435390902725914</pub-id>
</element-citation>
</ref>
<ref id="B87-molecules-24-04354">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Biomimetic Synthesis of Gold Nanoparticles and Their Aggregates Using a Polypeptide Sequence</article-title>
<source>Appl. Organomet. Chem.</source>
<year>2007</year>
<volume>21</volume>
<fpage>645</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1002/aoc.1222</pub-id>
</element-citation>
</ref>
<ref id="B88-molecules-24-04354">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mirzajani</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ghassempour</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Aliahmadi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Esmaeili</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Antibacterial Effect of Silver Nanoparticles on
<italic>Staphylococcus Aureus</italic>
</article-title>
<source>Res. Microbiol.</source>
<year>2011</year>
<volume>162</volume>
<fpage>542</fpage>
<lpage>549</lpage>
<pub-id pub-id-type="doi">10.1016/j.resmic.2011.04.009</pub-id>
<pub-id pub-id-type="pmid">21530652</pub-id>
</element-citation>
</ref>
<ref id="B89-molecules-24-04354">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Savithramma</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lingarao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ankanna</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Venkateswarlu</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Screening of Medicinal Plants for Effective Biogenesis of Silver Nanoparticles and Efficient Antimicrobial Activity</article-title>
<source>Int. J. Pharm. Sci. Res.</source>
<year>2012</year>
<volume>3</volume>
<fpage>1141</fpage>
<lpage>1148</lpage>
</element-citation>
</ref>
<ref id="B90-molecules-24-04354">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dibrov</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Dzioba</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gosink</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Häse</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio Cholerae</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2002</year>
<volume>46</volume>
<fpage>2668</fpage>
<lpage>2670</lpage>
<pub-id pub-id-type="doi">10.1128/AAC.46.8.2668-2670.2002</pub-id>
<pub-id pub-id-type="pmid">12121953</pub-id>
</element-citation>
</ref>
<ref id="B91-molecules-24-04354">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.-Q.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>F.-Z.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A Mechanistic Study of the Antibacterial Effect of Silver Ions On
<italic>Escherichia coli</italic>
and
<italic>Staphylococcus aureus</italic>
</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2000</year>
<volume>52</volume>
<fpage>662</fpage>
<lpage>668</lpage>
<pub-id pub-id-type="doi">10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3</pub-id>
<pub-id pub-id-type="pmid">11033548</pub-id>
</element-citation>
</ref>
<ref id="B92-molecules-24-04354">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yoshikata</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kunisaki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tsuchido</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate</article-title>
<source>Appl. Environ. Microbiol.</source>
<year>2003</year>
<volume>69</volume>
<fpage>4278</fpage>
<lpage>4281</lpage>
<pub-id pub-id-type="doi">10.1128/AEM.69.7.4278-4281.2003</pub-id>
<pub-id pub-id-type="pmid">12839814</pub-id>
</element-citation>
</ref>
<ref id="B93-molecules-24-04354">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nazeruddin</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>N.R.</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Shaikh</surname>
<given-names>Y.I.</given-names>
</name>
<name>
<surname>Waghmare</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Adhyapak</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>
<italic>Coriandrum sativum</italic>
Seed Extract Assisted in Situ Green Synthesis of Silver Nanoparticle and Its Anti-Microbial Activity</article-title>
<source>Ind. Crop. Prod.</source>
<year>2014</year>
<volume>60</volume>
<fpage>212</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2014.05.040</pub-id>
</element-citation>
</ref>
<ref id="B94-molecules-24-04354">
<label>94.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Cooper</surname>
<given-names>G.</given-names>
</name>
</person-group>
<source>The Cell: A Molecular Approach</source>
<edition>2nd ed.</edition>
<publisher-name>Sinauer Associates</publisher-name>
<publisher-loc>Sunderland, MA, USA</publisher-loc>
<year>2000</year>
</element-citation>
</ref>
<ref id="B95-molecules-24-04354">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shedbalkar</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Wadhwani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chopade</surname>
<given-names>P.B.</given-names>
</name>
</person-group>
<article-title>Bacteriagenic Silver Nanoparticles: Synthesis, Mechanism, and Applications</article-title>
<source>Appl. Microbiol. Biotechnol.</source>
<year>2015</year>
<volume>99</volume>
<fpage>4579</fpage>
<lpage>4593</lpage>
<pub-id pub-id-type="doi">10.1007/s00253-015-6622-1</pub-id>
<pub-id pub-id-type="pmid">25952110</pub-id>
</element-citation>
</ref>
<ref id="B96-molecules-24-04354">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sondi</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Salopek-Sondi</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Silver Nanoparticles as Antimicrobial Agent: A Case Study on
<italic>E. coli</italic>
as a Model for Gram-Negative Bacteria</article-title>
<source>J. Colloid Interface Sci.</source>
<year>2004</year>
<volume>275</volume>
<fpage>177</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcis.2004.02.012</pub-id>
<pub-id pub-id-type="pmid">15158396</pub-id>
</element-citation>
</ref>
<ref id="B97-molecules-24-04354">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asharani</surname>
<given-names>P.V.</given-names>
</name>
<name>
<surname>Hande</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Valiyaveettil</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Anti-Proliferative Activity of Silver Nanoparticles</article-title>
<source>BMC Cell Biol.</source>
<year>2009</year>
<volume>10</volume>
<fpage>65</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2121-10-65</pub-id>
<pub-id pub-id-type="pmid">19761582</pub-id>
</element-citation>
</ref>
<ref id="B98-molecules-24-04354">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X.-F.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Gurunathan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.-H.</given-names>
</name>
</person-group>
<article-title>Differential Nanoreprotoxicity of Silver Nanoparticles in Male Somatic Cells and Spermatogonial Stem Cells</article-title>
<source>Int. J. Nanomed.</source>
<year>2015</year>
<volume>10</volume>
<fpage>1335</fpage>
<lpage>1357</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S76062</pub-id>
</element-citation>
</ref>
<ref id="B99-molecules-24-04354">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy</article-title>
<source>Theranostics</source>
<year>2012</year>
<volume>2</volume>
<fpage>3</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.7150/thno.3463</pub-id>
<pub-id pub-id-type="pmid">22272217</pub-id>
</element-citation>
</ref>
<ref id="B100-molecules-24-04354">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medhat</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hussein</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>El-naggar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Attia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Anwar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Latif</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Booles</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Morsy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Farrag</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Khalil</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of Au-Dextran NPs as Anti-Tumor Agent against EAC and Solid Tumor in Mice by Biochemical Evaluations and Histopathological Investigations</article-title>
<source>Biomed. Pharm.</source>
<year>2017</year>
<volume>91</volume>
<fpage>1006</fpage>
<lpage>1016</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2017.05.043</pub-id>
<pub-id pub-id-type="pmid">28525943</pub-id>
</element-citation>
</ref>
<ref id="B101-molecules-24-04354">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herrera-Melián</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Martín-Rodríguez</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Ortega-Méndez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Araña</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Doña-Rodríguez</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Pérez-Peña</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Degradation and Detoxification of 4-Nitrophenol by Advanced Oxidation Technologies and Bench-Scale Constructed Wetlands</article-title>
<source>J. Environ. Manag.</source>
<year>2012</year>
<volume>105</volume>
<fpage>53</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/j.jenvman.2012.03.044</pub-id>
</element-citation>
</ref>
<ref id="B102-molecules-24-04354">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kuang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A Graphene Oxide-Based Electrochemical Sensor for Sensitive Determination of 4-Nitrophenol</article-title>
<source>J. Hazard. Mater.</source>
<year>2012</year>
<volume>201–202</volume>
<fpage>250</fpage>
<lpage>259</lpage>
<pub-id pub-id-type="doi">10.1016/j.jhazmat.2011.11.076</pub-id>
</element-citation>
</ref>
<ref id="B103-molecules-24-04354">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wunder</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ballauff</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring</article-title>
<source>ACS Catal.</source>
<year>2011</year>
<volume>1</volume>
<fpage>908</fpage>
<lpage>916</lpage>
<pub-id pub-id-type="doi">10.1021/cs200208a</pub-id>
</element-citation>
</ref>
<ref id="B104-molecules-24-04354">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Velayutham</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rahuman</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Rajakumar</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Roopan</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Elango</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kamaraj</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Marimuthu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Santhoshkumar</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Iyappan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Siva</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Larvicidal Activity of Green Synthesized Silver Nanoparticles Using Bark Aqueous Extract of
<italic>Ficus racemosa</italic>
against
<italic>Culex quinquefasciatus</italic>
and
<italic>Culex gelidus</italic>
</article-title>
<source>Asian Pac. J. Trop. Med.</source>
<year>2013</year>
<volume>6</volume>
<fpage>95</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1016/S1995-7645(13)60002-4</pub-id>
<pub-id pub-id-type="pmid">23339909</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="molecules-24-04354-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Green synthesis and biological activity of metallic nanoparticles mediated by bark extracts.</p>
</caption>
<graphic xlink:href="molecules-24-04354-g001"></graphic>
</fig>
<fig id="molecules-24-04354-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>General structures of bioactive compounds identified in the bark extracts: (
<bold>a</bold>
) benzoic phenolic acids; (
<bold>b</bold>
) cinnamic phenolic acids; (
<bold>c</bold>
) flavonoids; (
<bold>d</bold>
) lignans; (
<bold>e</bold>
) stilbenes; (
<bold>f</bold>
,
<bold>g</bold>
) alkaloids; (
<bold>h</bold>
) monoterpenes; (
<bold>i</bold>
) sesquiterpenes; (
<bold>j</bold>
) triterpenes and saponins.</p>
</caption>
<graphic xlink:href="molecules-24-04354-g002"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6930476
   |texte=   A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31795265" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021