Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic interactions of G-quadruplexes in humans

Identifieur interne : 000841 ( Pmc/Corpus ); précédent : 000840; suivant : 000842

Genetic interactions of G-quadruplexes in humans

Auteurs : Katherine G. Zyner ; Darcie S. Mulhearn ; Santosh Adhikari ; Sergio Martínez Cuesta ; Marco Di Antonio ; Nicolas Erard ; Gregory J. Hannon ; David Tannahill ; Shankar Balasubramanian

Source :

RBID : PMC:6615864

Abstract

G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.


Url:
DOI: 10.7554/eLife.46793
PubMed: 31287417
PubMed Central: 6615864

Links to Exploration step

PMC:6615864

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic interactions of G-quadruplexes in humans</title>
<author>
<name sortKey="Zyner, Katherine G" sort="Zyner, Katherine G" uniqKey="Zyner K" first="Katherine G" last="Zyner">Katherine G. Zyner</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mulhearn, Darcie S" sort="Mulhearn, Darcie S" uniqKey="Mulhearn D" first="Darcie S" last="Mulhearn">Darcie S. Mulhearn</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Adhikari, Santosh" sort="Adhikari, Santosh" uniqKey="Adhikari S" first="Santosh" last="Adhikari">Santosh Adhikari</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martinez Cuesta, Sergio" sort="Martinez Cuesta, Sergio" uniqKey="Martinez Cuesta S" first="Sergio" last="Martínez Cuesta">Sergio Martínez Cuesta</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Di Antonio, Marco" sort="Di Antonio, Marco" uniqKey="Di Antonio M" first="Marco" last="Di Antonio">Marco Di Antonio</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Erard, Nicolas" sort="Erard, Nicolas" uniqKey="Erard N" first="Nicolas" last="Erard">Nicolas Erard</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hannon, Gregory J" sort="Hannon, Gregory J" uniqKey="Hannon G" first="Gregory J" last="Hannon">Gregory J. Hannon</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tannahill, David" sort="Tannahill, David" uniqKey="Tannahill D" first="David" last="Tannahill">David Tannahill</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balasubramanian, Shankar" sort="Balasubramanian, Shankar" uniqKey="Balasubramanian S" first="Shankar" last="Balasubramanian">Shankar Balasubramanian</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">School of Clinical Medicine</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31287417</idno>
<idno type="pmc">6615864</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615864</idno>
<idno type="RBID">PMC:6615864</idno>
<idno type="doi">10.7554/eLife.46793</idno>
<date when="????">????</date>
<idno type="wicri:Area/Pmc/Corpus">000841</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000841</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Genetic interactions of G-quadruplexes in humans</title>
<author>
<name sortKey="Zyner, Katherine G" sort="Zyner, Katherine G" uniqKey="Zyner K" first="Katherine G" last="Zyner">Katherine G. Zyner</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mulhearn, Darcie S" sort="Mulhearn, Darcie S" uniqKey="Mulhearn D" first="Darcie S" last="Mulhearn">Darcie S. Mulhearn</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Adhikari, Santosh" sort="Adhikari, Santosh" uniqKey="Adhikari S" first="Santosh" last="Adhikari">Santosh Adhikari</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martinez Cuesta, Sergio" sort="Martinez Cuesta, Sergio" uniqKey="Martinez Cuesta S" first="Sergio" last="Martínez Cuesta">Sergio Martínez Cuesta</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Di Antonio, Marco" sort="Di Antonio, Marco" uniqKey="Di Antonio M" first="Marco" last="Di Antonio">Marco Di Antonio</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Erard, Nicolas" sort="Erard, Nicolas" uniqKey="Erard N" first="Nicolas" last="Erard">Nicolas Erard</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hannon, Gregory J" sort="Hannon, Gregory J" uniqKey="Hannon G" first="Gregory J" last="Hannon">Gregory J. Hannon</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tannahill, David" sort="Tannahill, David" uniqKey="Tannahill D" first="David" last="Tannahill">David Tannahill</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balasubramanian, Shankar" sort="Balasubramanian, Shankar" uniqKey="Balasubramanian S" first="Shankar" last="Balasubramanian">Shankar Balasubramanian</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">School of Clinical Medicine</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="????">????</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abed, Da" uniqKey="Abed D">DA Abed</name>
</author>
<author>
<name sortKey="Goldstein, M" uniqKey="Goldstein M">M Goldstein</name>
</author>
<author>
<name sortKey="Albanyan, H" uniqKey="Albanyan H">H Albanyan</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="Hu, L" uniqKey="Hu L">L Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrews, S" uniqKey="Andrews S">S Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashburner, M" uniqKey="Ashburner M">M Ashburner</name>
</author>
<author>
<name sortKey="Ball, Ca" uniqKey="Ball C">CA Ball</name>
</author>
<author>
<name sortKey="Blake, Ja" uniqKey="Blake J">JA Blake</name>
</author>
<author>
<name sortKey="Botstein, D" uniqKey="Botstein D">D Botstein</name>
</author>
<author>
<name sortKey="Butler, H" uniqKey="Butler H">H Butler</name>
</author>
<author>
<name sortKey="Cherry, Jm" uniqKey="Cherry J">JM Cherry</name>
</author>
<author>
<name sortKey="Davis, Ap" uniqKey="Davis A">AP Davis</name>
</author>
<author>
<name sortKey="Dolinski, K" uniqKey="Dolinski K">K Dolinski</name>
</author>
<author>
<name sortKey="Dwight, Ss" uniqKey="Dwight S">SS Dwight</name>
</author>
<author>
<name sortKey="Eppig, Jt" uniqKey="Eppig J">JT Eppig</name>
</author>
<author>
<name sortKey="Harris, Ma" uniqKey="Harris M">MA Harris</name>
</author>
<author>
<name sortKey="Hill, Dp" uniqKey="Hill D">DP Hill</name>
</author>
<author>
<name sortKey="Issel Tarver, L" uniqKey="Issel Tarver L">L Issel-Tarver</name>
</author>
<author>
<name sortKey="Kasarskis, A" uniqKey="Kasarskis A">A Kasarskis</name>
</author>
<author>
<name sortKey="Lewis, S" uniqKey="Lewis S">S Lewis</name>
</author>
<author>
<name sortKey="Matese, Jc" uniqKey="Matese J">JC Matese</name>
</author>
<author>
<name sortKey="Richardson, Je" uniqKey="Richardson J">JE Richardson</name>
</author>
<author>
<name sortKey="Ringwald, M" uniqKey="Ringwald M">M Ringwald</name>
</author>
<author>
<name sortKey="Rubin, Gm" uniqKey="Rubin G">GM Rubin</name>
</author>
<author>
<name sortKey="Sherlock, G" uniqKey="Sherlock G">G Sherlock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azorsa, Do" uniqKey="Azorsa D">DO Azorsa</name>
</author>
<author>
<name sortKey="Gonzales, Im" uniqKey="Gonzales I">IM Gonzales</name>
</author>
<author>
<name sortKey="Basu, Gd" uniqKey="Basu G">GD Basu</name>
</author>
<author>
<name sortKey="Choudhary, A" uniqKey="Choudhary A">A Choudhary</name>
</author>
<author>
<name sortKey="Arora, S" uniqKey="Arora S">S Arora</name>
</author>
<author>
<name sortKey="Bisanz, Km" uniqKey="Bisanz K">KM Bisanz</name>
</author>
<author>
<name sortKey="Kiefer, Ja" uniqKey="Kiefer J">JA Kiefer</name>
</author>
<author>
<name sortKey="Henderson, Mc" uniqKey="Henderson M">MC Henderson</name>
</author>
<author>
<name sortKey="Trent, Jm" uniqKey="Trent J">JM Trent</name>
</author>
<author>
<name sortKey="Von Hoff, Dd" uniqKey="Von Hoff D">DD Von Hoff</name>
</author>
<author>
<name sortKey="Mousses, S" uniqKey="Mousses S">S Mousses</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Backert, S" uniqKey="Backert S">S Backert</name>
</author>
<author>
<name sortKey="Gelos, M" uniqKey="Gelos M">M Gelos</name>
</author>
<author>
<name sortKey="Kobalz, U" uniqKey="Kobalz U">U Kobalz</name>
</author>
<author>
<name sortKey="Hanski, Ml" uniqKey="Hanski M">ML Hanski</name>
</author>
<author>
<name sortKey="Bohm, C" uniqKey="Bohm C">C Böhm</name>
</author>
<author>
<name sortKey="Mann, B" uniqKey="Mann B">B Mann</name>
</author>
<author>
<name sortKey="Lovin, N" uniqKey="Lovin N">N Lövin</name>
</author>
<author>
<name sortKey="Gratchev, A" uniqKey="Gratchev A">A Gratchev</name>
</author>
<author>
<name sortKey="Mansmann, U" uniqKey="Mansmann U">U Mansmann</name>
</author>
<author>
<name sortKey="Moyer, Mp" uniqKey="Moyer M">MP Moyer</name>
</author>
<author>
<name sortKey="Riecken, Eo" uniqKey="Riecken E">EO Riecken</name>
</author>
<author>
<name sortKey="Hanski, C" uniqKey="Hanski C">C Hanski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bajrami, I" uniqKey="Bajrami I">I Bajrami</name>
</author>
<author>
<name sortKey="Frankum, Jr" uniqKey="Frankum J">JR Frankum</name>
</author>
<author>
<name sortKey="Konde, A" uniqKey="Konde A">A Konde</name>
</author>
<author>
<name sortKey="Miller, Re" uniqKey="Miller R">RE Miller</name>
</author>
<author>
<name sortKey="Rehman, Fl" uniqKey="Rehman F">FL Rehman</name>
</author>
<author>
<name sortKey="Brough, R" uniqKey="Brough R">R Brough</name>
</author>
<author>
<name sortKey="Campbell, J" uniqKey="Campbell J">J Campbell</name>
</author>
<author>
<name sortKey="Sims, D" uniqKey="Sims D">D Sims</name>
</author>
<author>
<name sortKey="Rafiq, R" uniqKey="Rafiq R">R Rafiq</name>
</author>
<author>
<name sortKey="Hooper, S" uniqKey="Hooper S">S Hooper</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Kozarewa, I" uniqKey="Kozarewa I">I Kozarewa</name>
</author>
<author>
<name sortKey="Assiotis, I" uniqKey="Assiotis I">I Assiotis</name>
</author>
<author>
<name sortKey="Fenwick, K" uniqKey="Fenwick K">K Fenwick</name>
</author>
<author>
<name sortKey="Natrajan, R" uniqKey="Natrajan R">R Natrajan</name>
</author>
<author>
<name sortKey="Lord, Cj" uniqKey="Lord C">CJ Lord</name>
</author>
<author>
<name sortKey="Ashworth, A" uniqKey="Ashworth A">A Ashworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
<author>
<name sortKey="Hurley, Lh" uniqKey="Hurley L">LH Hurley</name>
</author>
<author>
<name sortKey="Neidle, S" uniqKey="Neidle S">S Neidle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barber, Td" uniqKey="Barber T">TD Barber</name>
</author>
<author>
<name sortKey="Mcmanus, K" uniqKey="Mcmanus K">K McManus</name>
</author>
<author>
<name sortKey="Yuen, Kw" uniqKey="Yuen K">KW Yuen</name>
</author>
<author>
<name sortKey="Reis, M" uniqKey="Reis M">M Reis</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Shen, D" uniqKey="Shen D">D Shen</name>
</author>
<author>
<name sortKey="Barrett, I" uniqKey="Barrett I">I Barrett</name>
</author>
<author>
<name sortKey="Nouhi, Y" uniqKey="Nouhi Y">Y Nouhi</name>
</author>
<author>
<name sortKey="Spencer, F" uniqKey="Spencer F">F Spencer</name>
</author>
<author>
<name sortKey="Markowitz, S" uniqKey="Markowitz S">S Markowitz</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Lengauer, C" uniqKey="Lengauer C">C Lengauer</name>
</author>
<author>
<name sortKey="Hieter, P" uniqKey="Hieter P">P Hieter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Rl" uniqKey="Bennett R">RL Bennett</name>
</author>
<author>
<name sortKey="Swaroop, A" uniqKey="Swaroop A">A Swaroop</name>
</author>
<author>
<name sortKey="Troche, C" uniqKey="Troche C">C Troche</name>
</author>
<author>
<name sortKey="Licht, Jd" uniqKey="Licht J">JD Licht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Besnard, E" uniqKey="Besnard E">E Besnard</name>
</author>
<author>
<name sortKey="Babled, A" uniqKey="Babled A">A Babled</name>
</author>
<author>
<name sortKey="Lapasset, L" uniqKey="Lapasset L">L Lapasset</name>
</author>
<author>
<name sortKey="Milhavet, O" uniqKey="Milhavet O">O Milhavet</name>
</author>
<author>
<name sortKey="Parrinello, H" uniqKey="Parrinello H">H Parrinello</name>
</author>
<author>
<name sortKey="Dantec, C" uniqKey="Dantec C">C Dantec</name>
</author>
<author>
<name sortKey="Marin, Jm" uniqKey="Marin J">JM Marin</name>
</author>
<author>
<name sortKey="Lemaitre, Jm" uniqKey="Lemaitre J">JM Lemaitre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biffi, G" uniqKey="Biffi G">G Biffi</name>
</author>
<author>
<name sortKey="Tannahill, D" uniqKey="Tannahill D">D Tannahill</name>
</author>
<author>
<name sortKey="Mccafferty, J" uniqKey="Mccafferty J">J McCafferty</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biffi, G" uniqKey="Biffi G">G Biffi</name>
</author>
<author>
<name sortKey="Tannahill, D" uniqKey="Tannahill D">D Tannahill</name>
</author>
<author>
<name sortKey="Miller, J" uniqKey="Miller J">J Miller</name>
</author>
<author>
<name sortKey="Howat, Wj" uniqKey="Howat W">WJ Howat</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bindea, G" uniqKey="Bindea G">G Bindea</name>
</author>
<author>
<name sortKey="Mlecnik, B" uniqKey="Mlecnik B">B Mlecnik</name>
</author>
<author>
<name sortKey="Hackl, H" uniqKey="Hackl H">H Hackl</name>
</author>
<author>
<name sortKey="Charoentong, P" uniqKey="Charoentong P">P Charoentong</name>
</author>
<author>
<name sortKey="Tosolini, M" uniqKey="Tosolini M">M Tosolini</name>
</author>
<author>
<name sortKey="Kirilovsky, A" uniqKey="Kirilovsky A">A Kirilovsky</name>
</author>
<author>
<name sortKey="Fridman, Wh" uniqKey="Fridman W">WH Fridman</name>
</author>
<author>
<name sortKey="Pages, F" uniqKey="Pages F">F Pagès</name>
</author>
<author>
<name sortKey="Trajanoski, Z" uniqKey="Trajanoski Z">Z Trajanoski</name>
</author>
<author>
<name sortKey="Galon, J" uniqKey="Galon J">J Galon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bindea, G" uniqKey="Bindea G">G Bindea</name>
</author>
<author>
<name sortKey="Galon, J" uniqKey="Galon J">J Galon</name>
</author>
<author>
<name sortKey="Mlecnik, B" uniqKey="Mlecnik B">B Mlecnik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bochman, Ml" uniqKey="Bochman M">ML Bochman</name>
</author>
<author>
<name sortKey="Paeschke, K" uniqKey="Paeschke K">K Paeschke</name>
</author>
<author>
<name sortKey="Zakian, Va" uniqKey="Zakian V">VA Zakian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brazda, V" uniqKey="Brazda V">V Brázda</name>
</author>
<author>
<name sortKey="Haronikova, L" uniqKey="Haronikova L">L Hároníková</name>
</author>
<author>
<name sortKey="Liao, Jc" uniqKey="Liao J">JC Liao</name>
</author>
<author>
<name sortKey="Fojta, M" uniqKey="Fojta M">M Fojta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brosh, Rm" uniqKey="Brosh R">RM Brosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bryant, He" uniqKey="Bryant H">HE Bryant</name>
</author>
<author>
<name sortKey="Schultz, N" uniqKey="Schultz N">N Schultz</name>
</author>
<author>
<name sortKey="Thomas, Hd" uniqKey="Thomas H">HD Thomas</name>
</author>
<author>
<name sortKey="Parker, Km" uniqKey="Parker K">KM Parker</name>
</author>
<author>
<name sortKey="Flower, D" uniqKey="Flower D">D Flower</name>
</author>
<author>
<name sortKey="Lopez, E" uniqKey="Lopez E">E Lopez</name>
</author>
<author>
<name sortKey="Kyle, S" uniqKey="Kyle S">S Kyle</name>
</author>
<author>
<name sortKey="Meuth, M" uniqKey="Meuth M">M Meuth</name>
</author>
<author>
<name sortKey="Curtin, Nj" uniqKey="Curtin N">NJ Curtin</name>
</author>
<author>
<name sortKey="Helleday, T" uniqKey="Helleday T">T Helleday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bugaut, A" uniqKey="Bugaut A">A Bugaut</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cammas, A" uniqKey="Cammas A">A Cammas</name>
</author>
<author>
<name sortKey="Millevoi, S" uniqKey="Millevoi S">S Millevoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbone, M" uniqKey="Carbone M">M Carbone</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Pass, Hi" uniqKey="Pass H">HI Pass</name>
</author>
<author>
<name sortKey="Krausz, T" uniqKey="Krausz T">T Krausz</name>
</author>
<author>
<name sortKey="Testa, Jr" uniqKey="Testa J">JR Testa</name>
</author>
<author>
<name sortKey="Gaudino, G" uniqKey="Gaudino G">G Gaudino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakraborty, P" uniqKey="Chakraborty P">P Chakraborty</name>
</author>
<author>
<name sortKey="Grosse, F" uniqKey="Grosse F">F Grosse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chambers, Vs" uniqKey="Chambers V">VS Chambers</name>
</author>
<author>
<name sortKey="Marsico, G" uniqKey="Marsico G">G Marsico</name>
</author>
<author>
<name sortKey="Boutell, Jm" uniqKey="Boutell J">JM Boutell</name>
</author>
<author>
<name sortKey="Di Antonio, M" uniqKey="Di Antonio M">M Di Antonio</name>
</author>
<author>
<name sortKey="Smith, Gp" uniqKey="Smith G">GP Smith</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Da" uniqKey="Chan D">DA Chan</name>
</author>
<author>
<name sortKey="Giaccia, Aj" uniqKey="Giaccia A">AJ Giaccia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D Chen</name>
</author>
<author>
<name sortKey="Frezza, M" uniqKey="Frezza M">M Frezza</name>
</author>
<author>
<name sortKey="Schmitt, S" uniqKey="Schmitt S">S Schmitt</name>
</author>
<author>
<name sortKey="Kanwar, J" uniqKey="Kanwar J">J Kanwar</name>
</author>
<author>
<name sortKey="Dou, Qp" uniqKey="Dou Q">QP Dou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Dexheimer, Ts" uniqKey="Dexheimer T">TS Dexheimer</name>
</author>
<author>
<name sortKey="Ai, Y" uniqKey="Ai Y">Y Ai</name>
</author>
<author>
<name sortKey="Liang, Q" uniqKey="Liang Q">Q Liang</name>
</author>
<author>
<name sortKey="Villamil, Ma" uniqKey="Villamil M">MA Villamil</name>
</author>
<author>
<name sortKey="Inglese, J" uniqKey="Inglese J">J Inglese</name>
</author>
<author>
<name sortKey="Maloney, Dj" uniqKey="Maloney D">DJ Maloney</name>
</author>
<author>
<name sortKey="Jadhav, A" uniqKey="Jadhav A">A Jadhav</name>
</author>
<author>
<name sortKey="Simeonov, A" uniqKey="Simeonov A">A Simeonov</name>
</author>
<author>
<name sortKey="Zhuang, Z" uniqKey="Zhuang Z">Z Zhuang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Mc" uniqKey="Chen M">MC Chen</name>
</author>
<author>
<name sortKey="Tippana, R" uniqKey="Tippana R">R Tippana</name>
</author>
<author>
<name sortKey="Demeshkina, Na" uniqKey="Demeshkina N">NA Demeshkina</name>
</author>
<author>
<name sortKey="Murat, P" uniqKey="Murat P">P Murat</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
<author>
<name sortKey="Myong, S" uniqKey="Myong S">S Myong</name>
</author>
<author>
<name sortKey="Ferre D Amare, Ar" uniqKey="Ferre D Amare A">AR Ferré-D'Amaré</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung, Pk" uniqKey="Cheung P">PK Cheung</name>
</author>
<author>
<name sortKey="Horhant, D" uniqKey="Horhant D">D Horhant</name>
</author>
<author>
<name sortKey="Bandy, Le" uniqKey="Bandy L">LE Bandy</name>
</author>
<author>
<name sortKey="Zamiri, M" uniqKey="Zamiri M">M Zamiri</name>
</author>
<author>
<name sortKey="Rabea, Sm" uniqKey="Rabea S">SM Rabea</name>
</author>
<author>
<name sortKey="Karagiosov, Sk" uniqKey="Karagiosov S">SK Karagiosov</name>
</author>
<author>
<name sortKey="Matloobi, M" uniqKey="Matloobi M">M Matloobi</name>
</author>
<author>
<name sortKey="Mcarthur, S" uniqKey="Mcarthur S">S McArthur</name>
</author>
<author>
<name sortKey="Harrigan, Pr" uniqKey="Harrigan P">PR Harrigan</name>
</author>
<author>
<name sortKey="Chabot, B" uniqKey="Chabot B">B Chabot</name>
</author>
<author>
<name sortKey="Grierson, Ds" uniqKey="Grierson D">DS Grierson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coussens, Np" uniqKey="Coussens N">NP Coussens</name>
</author>
<author>
<name sortKey="Kales, Sc" uniqKey="Kales S">SC Kales</name>
</author>
<author>
<name sortKey="Henderson, Mj" uniqKey="Henderson M">MJ Henderson</name>
</author>
<author>
<name sortKey="Lee, Ow" uniqKey="Lee O">OW Lee</name>
</author>
<author>
<name sortKey="Horiuchi, Ky" uniqKey="Horiuchi K">KY Horiuchi</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Hall, Md" uniqKey="Hall M">MD Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creacy, Sd" uniqKey="Creacy S">SD Creacy</name>
</author>
<author>
<name sortKey="Routh, Ed" uniqKey="Routh E">ED Routh</name>
</author>
<author>
<name sortKey="Iwamoto, F" uniqKey="Iwamoto F">F Iwamoto</name>
</author>
<author>
<name sortKey="Nagamine, Y" uniqKey="Nagamine Y">Y Nagamine</name>
</author>
<author>
<name sortKey="Akman, Sa" uniqKey="Akman S">SA Akman</name>
</author>
<author>
<name sortKey="Vaughn, Jp" uniqKey="Vaughn J">JP Vaughn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crozat, A" uniqKey="Crozat A">A Crozat</name>
</author>
<author>
<name sortKey="Aman, P" uniqKey="Aman P">P Aman</name>
</author>
<author>
<name sortKey="Mandahl, N" uniqKey="Mandahl N">N Mandahl</name>
</author>
<author>
<name sortKey="Ron, D" uniqKey="Ron D">D Ron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, Z" uniqKey="Dai Z">Z Dai</name>
</author>
<author>
<name sortKey="Sheridan, Jm" uniqKey="Sheridan J">JM Sheridan</name>
</author>
<author>
<name sortKey="Gearing, Lj" uniqKey="Gearing L">LJ Gearing</name>
</author>
<author>
<name sortKey="Moore, Dl" uniqKey="Moore D">DL Moore</name>
</author>
<author>
<name sortKey="Su, S" uniqKey="Su S">S Su</name>
</author>
<author>
<name sortKey="Wormald, S" uniqKey="Wormald S">S Wormald</name>
</author>
<author>
<name sortKey="Wilcox, S" uniqKey="Wilcox S">S Wilcox</name>
</author>
<author>
<name sortKey="O Connor, L" uniqKey="O Connor L">L O'Connor</name>
</author>
<author>
<name sortKey="Dickins, Ra" uniqKey="Dickins R">RA Dickins</name>
</author>
<author>
<name sortKey="Blewitt, Me" uniqKey="Blewitt M">ME Blewitt</name>
</author>
<author>
<name sortKey="Ritchie, Me" uniqKey="Ritchie M">ME Ritchie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Damerla, Rr" uniqKey="Damerla R">RR Damerla</name>
</author>
<author>
<name sortKey="Knickelbein, Ke" uniqKey="Knickelbein K">KE Knickelbein</name>
</author>
<author>
<name sortKey="Strutt, S" uniqKey="Strutt S">S Strutt</name>
</author>
<author>
<name sortKey="Liu, Fj" uniqKey="Liu F">FJ Liu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Opresko, Pl" uniqKey="Opresko P">PL Opresko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Cian, A" uniqKey="De Cian A">A De Cian</name>
</author>
<author>
<name sortKey="Cristofari, G" uniqKey="Cristofari G">G Cristofari</name>
</author>
<author>
<name sortKey="Reichenbach, P" uniqKey="Reichenbach P">P Reichenbach</name>
</author>
<author>
<name sortKey="De Lemos, E" uniqKey="De Lemos E">E De Lemos</name>
</author>
<author>
<name sortKey="Monchaud, D" uniqKey="Monchaud D">D Monchaud</name>
</author>
<author>
<name sortKey="Teulade Fichou, Mp" uniqKey="Teulade Fichou M">MP Teulade-Fichou</name>
</author>
<author>
<name sortKey="Shin Ya, K" uniqKey="Shin Ya K">K Shin-Ya</name>
</author>
<author>
<name sortKey="Lacroix, L" uniqKey="Lacroix L">L Lacroix</name>
</author>
<author>
<name sortKey="Lingner, J" uniqKey="Lingner J">J Lingner</name>
</author>
<author>
<name sortKey="Mergny, Jl" uniqKey="Mergny J">JL Mergny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Cian, A" uniqKey="De Cian A">A De Cian</name>
</author>
<author>
<name sortKey="Delemos, E" uniqKey="Delemos E">E Delemos</name>
</author>
<author>
<name sortKey="Mergny, Jl" uniqKey="Mergny J">JL Mergny</name>
</author>
<author>
<name sortKey="Teulade Fichou, Mp" uniqKey="Teulade Fichou M">MP Teulade-Fichou</name>
</author>
<author>
<name sortKey="Monchaud, D" uniqKey="Monchaud D">D Monchaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demagny, H" uniqKey="Demagny H">H Demagny</name>
</author>
<author>
<name sortKey="De Robertis, Em" uniqKey="De Robertis E">EM De Robertis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Veroli, Gy" uniqKey="Di Veroli G">GY Di Veroli</name>
</author>
<author>
<name sortKey="Fornari, C" uniqKey="Fornari C">C Fornari</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Mollard, S" uniqKey="Mollard S">S Mollard</name>
</author>
<author>
<name sortKey="Bramhall, Jl" uniqKey="Bramhall J">JL Bramhall</name>
</author>
<author>
<name sortKey="Richards, Fm" uniqKey="Richards F">FM Richards</name>
</author>
<author>
<name sortKey="Jodrell, Di" uniqKey="Jodrell D">DI Jodrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dos Santos, Pc" uniqKey="Dos Santos P">PC Dos Santos</name>
</author>
<author>
<name sortKey="Panero, J" uniqKey="Panero J">J Panero</name>
</author>
<author>
<name sortKey="Stanganelli, C" uniqKey="Stanganelli C">C Stanganelli</name>
</author>
<author>
<name sortKey="Palau Nagore, V" uniqKey="Palau Nagore V">V Palau Nagore</name>
</author>
<author>
<name sortKey="Stella, F" uniqKey="Stella F">F Stella</name>
</author>
<author>
<name sortKey="Bezares, R" uniqKey="Bezares R">R Bezares</name>
</author>
<author>
<name sortKey="Slavutsky, I" uniqKey="Slavutsky I">I Slavutsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dvinge, H" uniqKey="Dvinge H">H Dvinge</name>
</author>
<author>
<name sortKey="Kim, E" uniqKey="Kim E">E Kim</name>
</author>
<author>
<name sortKey="Abdel Wahab, O" uniqKey="Abdel Wahab O">O Abdel-Wahab</name>
</author>
<author>
<name sortKey="Bradley, Rk" uniqKey="Bradley R">RK Bradley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edelmann, Mj" uniqKey="Edelmann M">MJ Edelmann</name>
</author>
<author>
<name sortKey="Nicholson, B" uniqKey="Nicholson B">B Nicholson</name>
</author>
<author>
<name sortKey="Kessler, Bm" uniqKey="Kessler B">BM Kessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farmer, H" uniqKey="Farmer H">H Farmer</name>
</author>
<author>
<name sortKey="Mccabe, N" uniqKey="Mccabe N">N McCabe</name>
</author>
<author>
<name sortKey="Lord, Cj" uniqKey="Lord C">CJ Lord</name>
</author>
<author>
<name sortKey="Tutt, An" uniqKey="Tutt A">AN Tutt</name>
</author>
<author>
<name sortKey="Johnson, Da" uniqKey="Johnson D">DA Johnson</name>
</author>
<author>
<name sortKey="Richardson, Tb" uniqKey="Richardson T">TB Richardson</name>
</author>
<author>
<name sortKey="Santarosa, M" uniqKey="Santarosa M">M Santarosa</name>
</author>
<author>
<name sortKey="Dillon, Kj" uniqKey="Dillon K">KJ Dillon</name>
</author>
<author>
<name sortKey="Hickson, I" uniqKey="Hickson I">I Hickson</name>
</author>
<author>
<name sortKey="Knights, C" uniqKey="Knights C">C Knights</name>
</author>
<author>
<name sortKey="Martin, Nm" uniqKey="Martin N">NM Martin</name>
</author>
<author>
<name sortKey="Jackson, Sp" uniqKey="Jackson S">SP Jackson</name>
</author>
<author>
<name sortKey="Smith, Gc" uniqKey="Smith G">GC Smith</name>
</author>
<author>
<name sortKey="Ashworth, A" uniqKey="Ashworth A">A Ashworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finn, Rd" uniqKey="Finn R">RD Finn</name>
</author>
<author>
<name sortKey="Coggill, P" uniqKey="Coggill P">P Coggill</name>
</author>
<author>
<name sortKey="Eberhardt, Ry" uniqKey="Eberhardt R">RY Eberhardt</name>
</author>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
<author>
<name sortKey="Mistry, J" uniqKey="Mistry J">J Mistry</name>
</author>
<author>
<name sortKey="Mitchell, Al" uniqKey="Mitchell A">AL Mitchell</name>
</author>
<author>
<name sortKey="Potter, Sc" uniqKey="Potter S">SC Potter</name>
</author>
<author>
<name sortKey="Punta, M" uniqKey="Punta M">M Punta</name>
</author>
<author>
<name sortKey="Qureshi, M" uniqKey="Qureshi M">M Qureshi</name>
</author>
<author>
<name sortKey="Sangrador Vegas, A" uniqKey="Sangrador Vegas A">A Sangrador-Vegas</name>
</author>
<author>
<name sortKey="Salazar, Ga" uniqKey="Salazar G">GA Salazar</name>
</author>
<author>
<name sortKey="Tate, J" uniqKey="Tate J">J Tate</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A Bateman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forbes, Sa" uniqKey="Forbes S">SA Forbes</name>
</author>
<author>
<name sortKey="Beare, D" uniqKey="Beare D">D Beare</name>
</author>
<author>
<name sortKey="Gunasekaran, P" uniqKey="Gunasekaran P">P Gunasekaran</name>
</author>
<author>
<name sortKey="Leung, K" uniqKey="Leung K">K Leung</name>
</author>
<author>
<name sortKey="Bindal, N" uniqKey="Bindal N">N Bindal</name>
</author>
<author>
<name sortKey="Boutselakis, H" uniqKey="Boutselakis H">H Boutselakis</name>
</author>
<author>
<name sortKey="Ding, M" uniqKey="Ding M">M Ding</name>
</author>
<author>
<name sortKey="Bamford, S" uniqKey="Bamford S">S Bamford</name>
</author>
<author>
<name sortKey="Cole, C" uniqKey="Cole C">C Cole</name>
</author>
<author>
<name sortKey="Ward, S" uniqKey="Ward S">S Ward</name>
</author>
<author>
<name sortKey="Kok, Cy" uniqKey="Kok C">CY Kok</name>
</author>
<author>
<name sortKey="Jia, M" uniqKey="Jia M">M Jia</name>
</author>
<author>
<name sortKey="De, T" uniqKey="De T">T De</name>
</author>
<author>
<name sortKey="Teague, Jw" uniqKey="Teague J">JW Teague</name>
</author>
<author>
<name sortKey="Stratton, Mr" uniqKey="Stratton M">MR Stratton</name>
</author>
<author>
<name sortKey="Mcdermott, U" uniqKey="Mcdermott U">U McDermott</name>
</author>
<author>
<name sortKey="Campbell, Pj" uniqKey="Campbell P">PJ Campbell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Froimchuk, E" uniqKey="Froimchuk E">E Froimchuk</name>
</author>
<author>
<name sortKey="Jang, Y" uniqKey="Jang Y">Y Jang</name>
</author>
<author>
<name sortKey="Ge, K" uniqKey="Ge K">K Ge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, C" uniqKey="Gao C">C Gao</name>
</author>
<author>
<name sortKey="Pang, L" uniqKey="Pang L">L Pang</name>
</author>
<author>
<name sortKey="Ren, C" uniqKey="Ren C">C Ren</name>
</author>
<author>
<name sortKey="Ma, T" uniqKey="Ma T">T Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Santisteban, I" uniqKey="Garcia Santisteban I">I García-Santisteban</name>
</author>
<author>
<name sortKey="Peters, Gj" uniqKey="Peters G">GJ Peters</name>
</author>
<author>
<name sortKey="Giovannetti, E" uniqKey="Giovannetti E">E Giovannetti</name>
</author>
<author>
<name sortKey="Rodriguez, Ja" uniqKey="Rodriguez J">JA Rodríguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giri, B" uniqKey="Giri B">B Giri</name>
</author>
<author>
<name sortKey="Smaldino, Pj" uniqKey="Smaldino P">PJ Smaldino</name>
</author>
<author>
<name sortKey="Thys, Rg" uniqKey="Thys R">RG Thys</name>
</author>
<author>
<name sortKey="Creacy, Sd" uniqKey="Creacy S">SD Creacy</name>
</author>
<author>
<name sortKey="Routh, Ed" uniqKey="Routh E">ED Routh</name>
</author>
<author>
<name sortKey="Hantgan, Rr" uniqKey="Hantgan R">RR Hantgan</name>
</author>
<author>
<name sortKey="Lattmann, S" uniqKey="Lattmann S">S Lattmann</name>
</author>
<author>
<name sortKey="Nagamine, Y" uniqKey="Nagamine Y">Y Nagamine</name>
</author>
<author>
<name sortKey="Akman, Sa" uniqKey="Akman S">SA Akman</name>
</author>
<author>
<name sortKey="Vaughn, Jp" uniqKey="Vaughn J">JP Vaughn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez, V" uniqKey="Gonzalez V">V González</name>
</author>
<author>
<name sortKey="Hurley, Lh" uniqKey="Hurley L">LH Hurley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, A" uniqKey="Gordon A">A Gordon</name>
</author>
<author>
<name sortKey="Hannon, G" uniqKey="Hannon G">G Hannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffith, M" uniqKey="Griffith M">M Griffith</name>
</author>
<author>
<name sortKey="Griffith, Ol" uniqKey="Griffith O">OL Griffith</name>
</author>
<author>
<name sortKey="Coffman, Ac" uniqKey="Coffman A">AC Coffman</name>
</author>
<author>
<name sortKey="Weible, Jv" uniqKey="Weible J">JV Weible</name>
</author>
<author>
<name sortKey="Mcmichael, Jf" uniqKey="Mcmichael J">JF McMichael</name>
</author>
<author>
<name sortKey="Spies, Nc" uniqKey="Spies N">NC Spies</name>
</author>
<author>
<name sortKey="Koval, J" uniqKey="Koval J">J Koval</name>
</author>
<author>
<name sortKey="Das, I" uniqKey="Das I">I Das</name>
</author>
<author>
<name sortKey="Callaway, Mb" uniqKey="Callaway M">MB Callaway</name>
</author>
<author>
<name sortKey="Eldred, Jm" uniqKey="Eldred J">JM Eldred</name>
</author>
<author>
<name sortKey="Miller, Ca" uniqKey="Miller C">CA Miller</name>
</author>
<author>
<name sortKey="Subramanian, J" uniqKey="Subramanian J">J Subramanian</name>
</author>
<author>
<name sortKey="Govindan, R" uniqKey="Govindan R">R Govindan</name>
</author>
<author>
<name sortKey="Kumar, Rd" uniqKey="Kumar R">RD Kumar</name>
</author>
<author>
<name sortKey="Bose, R" uniqKey="Bose R">R Bose</name>
</author>
<author>
<name sortKey="Ding, L" uniqKey="Ding L">L Ding</name>
</author>
<author>
<name sortKey="Walker, Jr" uniqKey="Walker J">JR Walker</name>
</author>
<author>
<name sortKey="Larson, De" uniqKey="Larson D">DE Larson</name>
</author>
<author>
<name sortKey="Dooling, Dj" uniqKey="Dooling D">DJ Dooling</name>
</author>
<author>
<name sortKey="Smith, Sm" uniqKey="Smith S">SM Smith</name>
</author>
<author>
<name sortKey="Ley, Tj" uniqKey="Ley T">TJ Ley</name>
</author>
<author>
<name sortKey="Mardis, Er" uniqKey="Mardis E">ER Mardis</name>
</author>
<author>
<name sortKey="Wilson, Rk" uniqKey="Wilson R">RK Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guzman, C" uniqKey="Guzman C">C Guzmán</name>
</author>
<author>
<name sortKey="Bagga, M" uniqKey="Bagga M">M Bagga</name>
</author>
<author>
<name sortKey="Kaur, A" uniqKey="Kaur A">A Kaur</name>
</author>
<author>
<name sortKey="Westermarck, J" uniqKey="Westermarck J">J Westermarck</name>
</author>
<author>
<name sortKey="Abankwa, D" uniqKey="Abankwa D">D Abankwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hahn, Sa" uniqKey="Hahn S">SA Hahn</name>
</author>
<author>
<name sortKey="Schutte, M" uniqKey="Schutte M">M Schutte</name>
</author>
<author>
<name sortKey="Hoque, At" uniqKey="Hoque A">AT Hoque</name>
</author>
<author>
<name sortKey="Moskaluk, Ca" uniqKey="Moskaluk C">CA Moskaluk</name>
</author>
<author>
<name sortKey="Da Costa, Lt" uniqKey="Da Costa L">LT da Costa</name>
</author>
<author>
<name sortKey="Rozenblum, E" uniqKey="Rozenblum E">E Rozenblum</name>
</author>
<author>
<name sortKey="Weinstein, Cl" uniqKey="Weinstein C">CL Weinstein</name>
</author>
<author>
<name sortKey="Fischer, A" uniqKey="Fischer A">A Fischer</name>
</author>
<author>
<name sortKey="Yeo, Cj" uniqKey="Yeo C">CJ Yeo</name>
</author>
<author>
<name sortKey="Hruban, Rh" uniqKey="Hruban R">RH Hruban</name>
</author>
<author>
<name sortKey="Kern, Se" uniqKey="Kern S">SE Kern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halder, R" uniqKey="Halder R">R Halder</name>
</author>
<author>
<name sortKey="Riou, Jf" uniqKey="Riou J">JF Riou</name>
</author>
<author>
<name sortKey="Teulade Fichou, Mp" uniqKey="Teulade Fichou M">MP Teulade-Fichou</name>
</author>
<author>
<name sortKey="Frickey, T" uniqKey="Frickey T">T Frickey</name>
</author>
<author>
<name sortKey="Hartig, Js" uniqKey="Hartig J">JS Hartig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="H Nsel Hertsch, R" uniqKey="H Nsel Hertsch R">R Hänsel-Hertsch</name>
</author>
<author>
<name sortKey="Beraldi, D" uniqKey="Beraldi D">D Beraldi</name>
</author>
<author>
<name sortKey="Lensing, Sv" uniqKey="Lensing S">SV Lensing</name>
</author>
<author>
<name sortKey="Marsico, G" uniqKey="Marsico G">G Marsico</name>
</author>
<author>
<name sortKey="Zyner, K" uniqKey="Zyner K">K Zyner</name>
</author>
<author>
<name sortKey="Parry, A" uniqKey="Parry A">A Parry</name>
</author>
<author>
<name sortKey="Di Antonio, M" uniqKey="Di Antonio M">M Di Antonio</name>
</author>
<author>
<name sortKey="Pike, J" uniqKey="Pike J">J Pike</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H Kimura</name>
</author>
<author>
<name sortKey="Narita, M" uniqKey="Narita M">M Narita</name>
</author>
<author>
<name sortKey="Tannahill, D" uniqKey="Tannahill D">D Tannahill</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrigan, Ja" uniqKey="Harrigan J">JA Harrigan</name>
</author>
<author>
<name sortKey="Jacq, X" uniqKey="Jacq X">X Jacq</name>
</author>
<author>
<name sortKey="Martin, Nm" uniqKey="Martin N">NM Martin</name>
</author>
<author>
<name sortKey="Jackson, Sp" uniqKey="Jackson S">SP Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henderson, A" uniqKey="Henderson A">A Henderson</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y Wu</name>
</author>
<author>
<name sortKey="Huang, Yc" uniqKey="Huang Y">YC Huang</name>
</author>
<author>
<name sortKey="Chavez, Ea" uniqKey="Chavez E">EA Chavez</name>
</author>
<author>
<name sortKey="Platt, J" uniqKey="Platt J">J Platt</name>
</author>
<author>
<name sortKey="Johnson, Fb" uniqKey="Johnson F">FB Johnson</name>
</author>
<author>
<name sortKey="Brosh, Rm" uniqKey="Brosh R">RM Brosh</name>
</author>
<author>
<name sortKey="Sen, D" uniqKey="Sen D">D Sen</name>
</author>
<author>
<name sortKey="Lansdorp, Pm" uniqKey="Lansdorp P">PM Lansdorp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herdy, B" uniqKey="Herdy B">B Herdy</name>
</author>
<author>
<name sortKey="Mayer, C" uniqKey="Mayer C">C Mayer</name>
</author>
<author>
<name sortKey="Varshney, D" uniqKey="Varshney D">D Varshney</name>
</author>
<author>
<name sortKey="Marsico, G" uniqKey="Marsico G">G Marsico</name>
</author>
<author>
<name sortKey="Murat, P" uniqKey="Murat P">P Murat</name>
</author>
<author>
<name sortKey="Taylor, C" uniqKey="Taylor C">C Taylor</name>
</author>
<author>
<name sortKey="D Santos, C" uniqKey="D Santos C">C D'Santos</name>
</author>
<author>
<name sortKey="Tannahill, D" uniqKey="Tannahill D">D Tannahill</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Tt" uniqKey="Huang T">TT Huang</name>
</author>
<author>
<name sortKey="Nijman, Smb" uniqKey="Nijman S">SMB Nijman</name>
</author>
<author>
<name sortKey="Mirchandani, Kd" uniqKey="Mirchandani K">KD Mirchandani</name>
</author>
<author>
<name sortKey="Galardy, Pj" uniqKey="Galardy P">PJ Galardy</name>
</author>
<author>
<name sortKey="Cohn, Ma" uniqKey="Cohn M">MA Cohn</name>
</author>
<author>
<name sortKey="Haas, W" uniqKey="Haas W">W Haas</name>
</author>
<author>
<name sortKey="Gygi, Sp" uniqKey="Gygi S">SP Gygi</name>
</author>
<author>
<name sortKey="Ploegh, Hl" uniqKey="Ploegh H">HL Ploegh</name>
</author>
<author>
<name sortKey="Bernards, R" uniqKey="Bernards R">R Bernards</name>
</author>
<author>
<name sortKey="D Andrea, Ad" uniqKey="D Andrea A">AD D'Andrea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Daw" uniqKey="Huang D">daW Huang</name>
</author>
<author>
<name sortKey="Sherman, Bt" uniqKey="Sherman B">BT Sherman</name>
</author>
<author>
<name sortKey="Lempicki, Ra" uniqKey="Lempicki R">RA Lempicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Daw" uniqKey="Huang D">daW Huang</name>
</author>
<author>
<name sortKey="Sherman, Bt" uniqKey="Sherman B">BT Sherman</name>
</author>
<author>
<name sortKey="Lempicki, Ra" uniqKey="Lempicki R">RA Lempicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Dixit, Vm" uniqKey="Dixit V">VM Dixit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huppert, Jl" uniqKey="Huppert J">JL Huppert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huppert, Jl" uniqKey="Huppert J">JL Huppert</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kadoch, C" uniqKey="Kadoch C">C Kadoch</name>
</author>
<author>
<name sortKey="Hargreaves, Dc" uniqKey="Hargreaves D">DC Hargreaves</name>
</author>
<author>
<name sortKey="Hodges, C" uniqKey="Hodges C">C Hodges</name>
</author>
<author>
<name sortKey="Elias, L" uniqKey="Elias L">L Elias</name>
</author>
<author>
<name sortKey="Ho, L" uniqKey="Ho L">L Ho</name>
</author>
<author>
<name sortKey="Ranish, J" uniqKey="Ranish J">J Ranish</name>
</author>
<author>
<name sortKey="Crabtree, Gr" uniqKey="Crabtree G">GR Crabtree</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kikuma, T" uniqKey="Kikuma T">T Kikuma</name>
</author>
<author>
<name sortKey="Ohtsu, M" uniqKey="Ohtsu M">M Ohtsu</name>
</author>
<author>
<name sortKey="Utsugi, T" uniqKey="Utsugi T">T Utsugi</name>
</author>
<author>
<name sortKey="Koga, S" uniqKey="Koga S">S Koga</name>
</author>
<author>
<name sortKey="Okuhara, K" uniqKey="Okuhara K">K Okuhara</name>
</author>
<author>
<name sortKey="Eki, T" uniqKey="Eki T">T Eki</name>
</author>
<author>
<name sortKey="Fujimori, F" uniqKey="Fujimori F">F Fujimori</name>
</author>
<author>
<name sortKey="Murakami, Y" uniqKey="Murakami Y">Y Murakami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knott, Srv" uniqKey="Knott S">SRV Knott</name>
</author>
<author>
<name sortKey="Maceli, A" uniqKey="Maceli A">A Maceli</name>
</author>
<author>
<name sortKey="Erard, N" uniqKey="Erard N">N Erard</name>
</author>
<author>
<name sortKey="Chang, K" uniqKey="Chang K">K Chang</name>
</author>
<author>
<name sortKey="Marran, K" uniqKey="Marran K">K Marran</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Gordon, A" uniqKey="Gordon A">A Gordon</name>
</author>
<author>
<name sortKey="Demerdash, Oe" uniqKey="Demerdash O">OE Demerdash</name>
</author>
<author>
<name sortKey="Wagenblast, E" uniqKey="Wagenblast E">E Wagenblast</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S Kim</name>
</author>
<author>
<name sortKey="Fellmann, C" uniqKey="Fellmann C">C Fellmann</name>
</author>
<author>
<name sortKey="Hannon, Gj" uniqKey="Hannon G">GJ Hannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotake, Y" uniqKey="Kotake Y">Y Kotake</name>
</author>
<author>
<name sortKey="Sagane, K" uniqKey="Sagane K">K Sagane</name>
</author>
<author>
<name sortKey="Owa, T" uniqKey="Owa T">T Owa</name>
</author>
<author>
<name sortKey="Mimori Kiyosue, Y" uniqKey="Mimori Kiyosue Y">Y Mimori-Kiyosue</name>
</author>
<author>
<name sortKey="Shimizu, H" uniqKey="Shimizu H">H Shimizu</name>
</author>
<author>
<name sortKey="Uesugi, M" uniqKey="Uesugi M">M Uesugi</name>
</author>
<author>
<name sortKey="Ishihama, Y" uniqKey="Ishihama Y">Y Ishihama</name>
</author>
<author>
<name sortKey="Iwata, M" uniqKey="Iwata M">M Iwata</name>
</author>
<author>
<name sortKey="Mizui, Y" uniqKey="Mizui Y">Y Mizui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumari, S" uniqKey="Kumari S">S Kumari</name>
</author>
<author>
<name sortKey="Bugaut, A" uniqKey="Bugaut A">A Bugaut</name>
</author>
<author>
<name sortKey="Huppert, Jl" uniqKey="Huppert J">JL Huppert</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwok, Ck" uniqKey="Kwok C">CK Kwok</name>
</author>
<author>
<name sortKey="Marsico, G" uniqKey="Marsico G">G Marsico</name>
</author>
<author>
<name sortKey="Sahakyan, Ab" uniqKey="Sahakyan A">AB Sahakyan</name>
</author>
<author>
<name sortKey="Chambers, Vs" uniqKey="Chambers V">VS Chambers</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langmead, B" uniqKey="Langmead B">B Langmead</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le, Dd" uniqKey="Le D">DD Le</name>
</author>
<author>
<name sortKey="Di Antonio, M" uniqKey="Di Antonio M">M Di Antonio</name>
</author>
<author>
<name sortKey="Chan, Lkm" uniqKey="Chan L">LKM Chan</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jm" uniqKey="Lee J">JM Lee</name>
</author>
<author>
<name sortKey="Ledermann, Ja" uniqKey="Ledermann J">JA Ledermann</name>
</author>
<author>
<name sortKey="Kohn, Ec" uniqKey="Kohn E">EC Kohn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, Sp" uniqKey="Lim S">SP Lim</name>
</author>
<author>
<name sortKey="Wong, Nc" uniqKey="Wong N">NC Wong</name>
</author>
<author>
<name sortKey="Suetani, Rj" uniqKey="Suetani R">RJ Suetani</name>
</author>
<author>
<name sortKey="Ho, K" uniqKey="Ho K">K Ho</name>
</author>
<author>
<name sortKey="Ng, Jl" uniqKey="Ng J">JL Ng</name>
</author>
<author>
<name sortKey="Neilsen, Pm" uniqKey="Neilsen P">PM Neilsen</name>
</author>
<author>
<name sortKey="Gill, Pg" uniqKey="Gill P">PG Gill</name>
</author>
<author>
<name sortKey="Kumar, R" uniqKey="Kumar R">R Kumar</name>
</author>
<author>
<name sortKey="Callen, Df" uniqKey="Callen D">DF Callen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Shaik, S" uniqKey="Shaik S">S Shaik</name>
</author>
<author>
<name sortKey="Dai, X" uniqKey="Dai X">X Dai</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Wei, W" uniqKey="Wei W">W Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y Liang</name>
</author>
<author>
<name sortKey="Wishart, D" uniqKey="Wishart D">D Wishart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Hy" uniqKey="Liu H">HY Liu</name>
</author>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q Zhao</name>
</author>
<author>
<name sortKey="Zhang, Tp" uniqKey="Zhang T">TP Zhang</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y Wu</name>
</author>
<author>
<name sortKey="Xiong, Yx" uniqKey="Xiong Y">YX Xiong</name>
</author>
<author>
<name sortKey="Wang, Sk" uniqKey="Wang S">SK Wang</name>
</author>
<author>
<name sortKey="Ge, Yl" uniqKey="Ge Y">YL Ge</name>
</author>
<author>
<name sortKey="He, Jh" uniqKey="He J">JH He</name>
</author>
<author>
<name sortKey="Lv, P" uniqKey="Lv P">P Lv</name>
</author>
<author>
<name sortKey="Ou, Tm" uniqKey="Ou T">TM Ou</name>
</author>
<author>
<name sortKey="Tan, Jh" uniqKey="Tan J">JH Tan</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Gu, Lq" uniqKey="Gu L">LQ Gu</name>
</author>
<author>
<name sortKey="Ren, J" uniqKey="Ren J">J Ren</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Huang, Zs" uniqKey="Huang Z">ZS Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Mc" uniqKey="Lu M">MC Lu</name>
</author>
<author>
<name sortKey="Ji, Ja" uniqKey="Ji J">JA Ji</name>
</author>
<author>
<name sortKey="Jiang, Yl" uniqKey="Jiang Y">YL Jiang</name>
</author>
<author>
<name sortKey="Chen, Zy" uniqKey="Chen Z">ZY Chen</name>
</author>
<author>
<name sortKey="Yuan, Zw" uniqKey="Yuan Z">ZW Yuan</name>
</author>
<author>
<name sortKey="You, Qd" uniqKey="You Q">QD You</name>
</author>
<author>
<name sortKey="Jiang, Zy" uniqKey="Jiang Z">ZY Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martens De Kemp, Sr" uniqKey="Martens De Kemp S">SR Martens-de Kemp</name>
</author>
<author>
<name sortKey="Brink, A" uniqKey="Brink A">A Brink</name>
</author>
<author>
<name sortKey="Van Der Meulen, Ih" uniqKey="Van Der Meulen I">IH van der Meulen</name>
</author>
<author>
<name sortKey="De Menezes, Rx" uniqKey="De Menezes R">RX de Menezes</name>
</author>
<author>
<name sortKey="Te Beest, De" uniqKey="Te Beest D">DE Te Beest</name>
</author>
<author>
<name sortKey="Leemans, Cr" uniqKey="Leemans C">CR Leemans</name>
</author>
<author>
<name sortKey="Van Beusechem, Vw" uniqKey="Van Beusechem V">VW van Beusechem</name>
</author>
<author>
<name sortKey="Braakhuis, Bj" uniqKey="Braakhuis B">BJ Braakhuis</name>
</author>
<author>
<name sortKey="Brakenhoff, Rh" uniqKey="Brakenhoff R">RH Brakenhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Cuesta, S" uniqKey="Martinez Cuesta S">S Martínez Cuesta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matheson, Cj" uniqKey="Matheson C">CJ Matheson</name>
</author>
<author>
<name sortKey="Backos, Ds" uniqKey="Backos D">DS Backos</name>
</author>
<author>
<name sortKey="Reigan, P" uniqKey="Reigan P">P Reigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mattern, Mr" uniqKey="Mattern M">MR Mattern</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Nicholson, B" uniqKey="Nicholson B">B Nicholson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccubrey, Ja" uniqKey="Mccubrey J">JA McCubrey</name>
</author>
<author>
<name sortKey="Steelman, Ls" uniqKey="Steelman L">LS Steelman</name>
</author>
<author>
<name sortKey="Bertrand, Fe" uniqKey="Bertrand F">FE Bertrand</name>
</author>
<author>
<name sortKey="Davis, Nm" uniqKey="Davis N">NM Davis</name>
</author>
<author>
<name sortKey="Sokolosky, M" uniqKey="Sokolosky M">M Sokolosky</name>
</author>
<author>
<name sortKey="Abrams, Sl" uniqKey="Abrams S">SL Abrams</name>
</author>
<author>
<name sortKey="Montalto, G" uniqKey="Montalto G">G Montalto</name>
</author>
<author>
<name sortKey="D Assoro, Ab" uniqKey="D Assoro A">AB D'Assoro</name>
</author>
<author>
<name sortKey="Libra, M" uniqKey="Libra M">M Libra</name>
</author>
<author>
<name sortKey="Nicoletti, F" uniqKey="Nicoletti F">F Nicoletti</name>
</author>
<author>
<name sortKey="Maestro, R" uniqKey="Maestro R">R Maestro</name>
</author>
<author>
<name sortKey="Basecke, J" uniqKey="Basecke J">J Basecke</name>
</author>
<author>
<name sortKey="Rakus, D" uniqKey="Rakus D">D Rakus</name>
</author>
<author>
<name sortKey="Gizak, A" uniqKey="Gizak A">A Gizak</name>
</author>
<author>
<name sortKey="Demidenko, Zn" uniqKey="Demidenko Z">ZN Demidenko</name>
</author>
<author>
<name sortKey="Cocco, L" uniqKey="Cocco L">L Cocco</name>
</author>
<author>
<name sortKey="Martelli, Am" uniqKey="Martelli A">AM Martelli</name>
</author>
<author>
<name sortKey="Cervello, M" uniqKey="Cervello M">M Cervello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcluckie, Ki" uniqKey="Mcluckie K">KI McLuckie</name>
</author>
<author>
<name sortKey="Di Antonio, M" uniqKey="Di Antonio M">M Di Antonio</name>
</author>
<author>
<name sortKey="Zecchini, H" uniqKey="Zecchini H">H Zecchini</name>
</author>
<author>
<name sortKey="Xian, J" uniqKey="Xian J">J Xian</name>
</author>
<author>
<name sortKey="Caldas, C" uniqKey="Caldas C">C Caldas</name>
</author>
<author>
<name sortKey="Krippendorff, Bf" uniqKey="Krippendorff B">BF Krippendorff</name>
</author>
<author>
<name sortKey="Tannahill, D" uniqKey="Tannahill D">D Tannahill</name>
</author>
<author>
<name sortKey="Lowe, C" uniqKey="Lowe C">C Lowe</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendoza, O" uniqKey="Mendoza O">O Mendoza</name>
</author>
<author>
<name sortKey="Bourdoncle, A" uniqKey="Bourdoncle A">A Bourdoncle</name>
</author>
<author>
<name sortKey="Boule, Jb" uniqKey="Boule J">JB Boulé</name>
</author>
<author>
<name sortKey="Brosh, Rm" uniqKey="Brosh R">RM Brosh</name>
</author>
<author>
<name sortKey="Mergny, Jl" uniqKey="Mergny J">JL Mergny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishra, Sk" uniqKey="Mishra S">SK Mishra</name>
</author>
<author>
<name sortKey="Tawani, A" uniqKey="Tawani A">A Tawani</name>
</author>
<author>
<name sortKey="Mishra, A" uniqKey="Mishra A">A Mishra</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morra, F" uniqKey="Morra F">F Morra</name>
</author>
<author>
<name sortKey="Luise, C" uniqKey="Luise C">C Luise</name>
</author>
<author>
<name sortKey="Visconti, R" uniqKey="Visconti R">R Visconti</name>
</author>
<author>
<name sortKey="Staibano, S" uniqKey="Staibano S">S Staibano</name>
</author>
<author>
<name sortKey="Merolla, F" uniqKey="Merolla F">F Merolla</name>
</author>
<author>
<name sortKey="Ilardi, G" uniqKey="Ilardi G">G Ilardi</name>
</author>
<author>
<name sortKey="Guggino, G" uniqKey="Guggino G">G Guggino</name>
</author>
<author>
<name sortKey="Paladino, S" uniqKey="Paladino S">S Paladino</name>
</author>
<author>
<name sortKey="Sarnataro, D" uniqKey="Sarnataro D">D Sarnataro</name>
</author>
<author>
<name sortKey="Franco, R" uniqKey="Franco R">R Franco</name>
</author>
<author>
<name sortKey="Monaco, R" uniqKey="Monaco R">R Monaco</name>
</author>
<author>
<name sortKey="Zitomarino, F" uniqKey="Zitomarino F">F Zitomarino</name>
</author>
<author>
<name sortKey="Pacelli, R" uniqKey="Pacelli R">R Pacelli</name>
</author>
<author>
<name sortKey="Monaco, G" uniqKey="Monaco G">G Monaco</name>
</author>
<author>
<name sortKey="Rocco, G" uniqKey="Rocco G">G Rocco</name>
</author>
<author>
<name sortKey="Cerrato, A" uniqKey="Cerrato A">A Cerrato</name>
</author>
<author>
<name sortKey="Linardopoulos, S" uniqKey="Linardopoulos S">S Linardopoulos</name>
</author>
<author>
<name sortKey="Muller, Mt" uniqKey="Muller M">MT Muller</name>
</author>
<author>
<name sortKey="Celetti, A" uniqKey="Celetti A">A Celetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moyal, L" uniqKey="Moyal L">L Moyal</name>
</author>
<author>
<name sortKey="Lerenthal, Y" uniqKey="Lerenthal Y">Y Lerenthal</name>
</author>
<author>
<name sortKey="Gana Weisz, M" uniqKey="Gana Weisz M">M Gana-Weisz</name>
</author>
<author>
<name sortKey="Mass, G" uniqKey="Mass G">G Mass</name>
</author>
<author>
<name sortKey="So, S" uniqKey="So S">S So</name>
</author>
<author>
<name sortKey="Wang, Sy" uniqKey="Wang S">SY Wang</name>
</author>
<author>
<name sortKey="Eppink, B" uniqKey="Eppink B">B Eppink</name>
</author>
<author>
<name sortKey="Chung, Ym" uniqKey="Chung Y">YM Chung</name>
</author>
<author>
<name sortKey="Shalev, G" uniqKey="Shalev G">G Shalev</name>
</author>
<author>
<name sortKey="Shema, E" uniqKey="Shema E">E Shema</name>
</author>
<author>
<name sortKey="Shkedy, D" uniqKey="Shkedy D">D Shkedy</name>
</author>
<author>
<name sortKey="Smorodinsky, Ni" uniqKey="Smorodinsky N">NI Smorodinsky</name>
</author>
<author>
<name sortKey="Van Vliet, N" uniqKey="Van Vliet N">N van Vliet</name>
</author>
<author>
<name sortKey="Kuster, B" uniqKey="Kuster B">B Kuster</name>
</author>
<author>
<name sortKey="Mann, M" uniqKey="Mann M">M Mann</name>
</author>
<author>
<name sortKey="Ciechanover, A" uniqKey="Ciechanover A">A Ciechanover</name>
</author>
<author>
<name sortKey="Dahm Daphi, J" uniqKey="Dahm Daphi J">J Dahm-Daphi</name>
</author>
<author>
<name sortKey="Kanaar, R" uniqKey="Kanaar R">R Kanaar</name>
</author>
<author>
<name sortKey="Hu, Mc" uniqKey="Hu M">MC Hu</name>
</author>
<author>
<name sortKey="Chen, Dj" uniqKey="Chen D">DJ Chen</name>
</author>
<author>
<name sortKey="Oren, M" uniqKey="Oren M">M Oren</name>
</author>
<author>
<name sortKey="Shiloh, Y" uniqKey="Shiloh Y">Y Shiloh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neidle, S" uniqKey="Neidle S">S Neidle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neidle, S" uniqKey="Neidle S">S Neidle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neilsen, Pm" uniqKey="Neilsen P">PM Neilsen</name>
</author>
<author>
<name sortKey="Cheney, Km" uniqKey="Cheney K">KM Cheney</name>
</author>
<author>
<name sortKey="Li, Cw" uniqKey="Li C">CW Li</name>
</author>
<author>
<name sortKey="Chen, Jd" uniqKey="Chen J">JD Chen</name>
</author>
<author>
<name sortKey="Cawrse, Je" uniqKey="Cawrse J">JE Cawrse</name>
</author>
<author>
<name sortKey="Schulz, Rb" uniqKey="Schulz R">RB Schulz</name>
</author>
<author>
<name sortKey="Powell, Ja" uniqKey="Powell J">JA Powell</name>
</author>
<author>
<name sortKey="Kumar, R" uniqKey="Kumar R">R Kumar</name>
</author>
<author>
<name sortKey="Callen, Df" uniqKey="Callen D">DF Callen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nepomuceno, T" uniqKey="Nepomuceno T">T Nepomuceno</name>
</author>
<author>
<name sortKey="De Gregoriis, G" uniqKey="De Gregoriis G">G De Gregoriis</name>
</author>
<author>
<name sortKey="De Oliveira, Fmb" uniqKey="De Oliveira F">FMB de Oliveira</name>
</author>
<author>
<name sortKey="Suarez Kurtz, G" uniqKey="Suarez Kurtz G">G Suarez-Kurtz</name>
</author>
<author>
<name sortKey="Monteiro, A" uniqKey="Monteiro A">A Monteiro</name>
</author>
<author>
<name sortKey="Carvalho, M" uniqKey="Carvalho M">M Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nijman, Sm" uniqKey="Nijman S">SM Nijman</name>
</author>
<author>
<name sortKey="Huang, Tt" uniqKey="Huang T">TT Huang</name>
</author>
<author>
<name sortKey="Dirac, Am" uniqKey="Dirac A">AM Dirac</name>
</author>
<author>
<name sortKey="Brummelkamp, Tr" uniqKey="Brummelkamp T">TR Brummelkamp</name>
</author>
<author>
<name sortKey="Kerkhoven, Rm" uniqKey="Kerkhoven R">RM Kerkhoven</name>
</author>
<author>
<name sortKey="D Andrea, Ad" uniqKey="D Andrea A">AD D'Andrea</name>
</author>
<author>
<name sortKey="Bernards, R" uniqKey="Bernards R">R Bernards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nijman, Sm" uniqKey="Nijman S">SM Nijman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noll, Je" uniqKey="Noll J">JE Noll</name>
</author>
<author>
<name sortKey="Jeffery, J" uniqKey="Jeffery J">J Jeffery</name>
</author>
<author>
<name sortKey="Al Ejeh, F" uniqKey="Al Ejeh F">F Al-Ejeh</name>
</author>
<author>
<name sortKey="Kumar, R" uniqKey="Kumar R">R Kumar</name>
</author>
<author>
<name sortKey="Khanna, Kk" uniqKey="Khanna K">KK Khanna</name>
</author>
<author>
<name sortKey="Callen, Df" uniqKey="Callen D">DF Callen</name>
</author>
<author>
<name sortKey="Neilsen, Pm" uniqKey="Neilsen P">PM Neilsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, J" uniqKey="Pan J">J Pan</name>
</author>
<author>
<name sortKey="Deng, Q" uniqKey="Deng Q">Q Deng</name>
</author>
<author>
<name sortKey="Jiang, C" uniqKey="Jiang C">C Jiang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Niu, T" uniqKey="Niu T">T Niu</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T Chen</name>
</author>
<author>
<name sortKey="Jin, J" uniqKey="Jin J">J Jin</name>
</author>
<author>
<name sortKey="Pan, W" uniqKey="Pan W">W Pan</name>
</author>
<author>
<name sortKey="Cai, X" uniqKey="Cai X">X Cai</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
<author>
<name sortKey="Lu, M" uniqKey="Lu M">M Lu</name>
</author>
<author>
<name sortKey="Xiao, J" uniqKey="Xiao J">J Xiao</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parry, D" uniqKey="Parry D">D Parry</name>
</author>
<author>
<name sortKey="Guzi, T" uniqKey="Guzi T">T Guzi</name>
</author>
<author>
<name sortKey="Shanahan, F" uniqKey="Shanahan F">F Shanahan</name>
</author>
<author>
<name sortKey="Davis, N" uniqKey="Davis N">N Davis</name>
</author>
<author>
<name sortKey="Prabhavalkar, D" uniqKey="Prabhavalkar D">D Prabhavalkar</name>
</author>
<author>
<name sortKey="Wiswell, D" uniqKey="Wiswell D">D Wiswell</name>
</author>
<author>
<name sortKey="Seghezzi, W" uniqKey="Seghezzi W">W Seghezzi</name>
</author>
<author>
<name sortKey="Paruch, K" uniqKey="Paruch K">K Paruch</name>
</author>
<author>
<name sortKey="Dwyer, Mp" uniqKey="Dwyer M">MP Dwyer</name>
</author>
<author>
<name sortKey="Doll, R" uniqKey="Doll R">R Doll</name>
</author>
<author>
<name sortKey="Nomeir, A" uniqKey="Nomeir A">A Nomeir</name>
</author>
<author>
<name sortKey="Windsor, W" uniqKey="Windsor W">W Windsor</name>
</author>
<author>
<name sortKey="Fischmann, T" uniqKey="Fischmann T">T Fischmann</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Oft, M" uniqKey="Oft M">M Oft</name>
</author>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T Chen</name>
</author>
<author>
<name sortKey="Kirschmeier, P" uniqKey="Kirschmeier P">P Kirschmeier</name>
</author>
<author>
<name sortKey="Lees, Em" uniqKey="Lees E">EM Lees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puxeddu, E" uniqKey="Puxeddu E">E Puxeddu</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G Zhao</name>
</author>
<author>
<name sortKey="Stringer, Jr" uniqKey="Stringer J">JR Stringer</name>
</author>
<author>
<name sortKey="Medvedovic, M" uniqKey="Medvedovic M">M Medvedovic</name>
</author>
<author>
<name sortKey="Moretti, S" uniqKey="Moretti S">S Moretti</name>
</author>
<author>
<name sortKey="Fagin, Ja" uniqKey="Fagin J">JA Fagin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, Rc" uniqKey="Rao R">RC Rao</name>
</author>
<author>
<name sortKey="Dou, Y" uniqKey="Dou Y">Y Dou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rhodes, D" uniqKey="Rhodes D">D Rhodes</name>
</author>
<author>
<name sortKey="Lipps, Hj" uniqKey="Lipps H">HJ Lipps</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richer, Al" uniqKey="Richer A">AL Richer</name>
</author>
<author>
<name sortKey="Cala, Jm" uniqKey="Cala J">JM Cala</name>
</author>
<author>
<name sortKey="O Brien, K" uniqKey="O Brien K">K O'Brien</name>
</author>
<author>
<name sortKey="Carson, Vm" uniqKey="Carson V">VM Carson</name>
</author>
<author>
<name sortKey="Inge, Lj" uniqKey="Inge L">LJ Inge</name>
</author>
<author>
<name sortKey="Whitsett, Tg" uniqKey="Whitsett T">TG Whitsett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, Md" uniqKey="Robinson M">MD Robinson</name>
</author>
<author>
<name sortKey="Mccarthy, Dj" uniqKey="Mccarthy D">DJ McCarthy</name>
</author>
<author>
<name sortKey="Smyth, Gk" uniqKey="Smyth G">GK Smyth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, R" uniqKey="Rodriguez R">R Rodriguez</name>
</author>
<author>
<name sortKey="Muller, S" uniqKey="Muller S">S Müller</name>
</author>
<author>
<name sortKey="Yeoman, Ja" uniqKey="Yeoman J">JA Yeoman</name>
</author>
<author>
<name sortKey="Trentesaux, C" uniqKey="Trentesaux C">C Trentesaux</name>
</author>
<author>
<name sortKey="Riou, Jf" uniqKey="Riou J">JF Riou</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, R" uniqKey="Rodriguez R">R Rodriguez</name>
</author>
<author>
<name sortKey="Miller, Km" uniqKey="Miller K">KM Miller</name>
</author>
<author>
<name sortKey="Forment, Jv" uniqKey="Forment J">JV Forment</name>
</author>
<author>
<name sortKey="Bradshaw, Cr" uniqKey="Bradshaw C">CR Bradshaw</name>
</author>
<author>
<name sortKey="Nikan, M" uniqKey="Nikan M">M Nikan</name>
</author>
<author>
<name sortKey="Britton, S" uniqKey="Britton S">S Britton</name>
</author>
<author>
<name sortKey="Oelschlaegel, T" uniqKey="Oelschlaegel T">T Oelschlaegel</name>
</author>
<author>
<name sortKey="Xhemalce, B" uniqKey="Xhemalce B">B Xhemalce</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
<author>
<name sortKey="Jackson, Sp" uniqKey="Jackson S">SP Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Vega, F" uniqKey="Sanchez Vega F">F Sanchez-Vega</name>
</author>
<author>
<name sortKey="Mina, M" uniqKey="Mina M">M Mina</name>
</author>
<author>
<name sortKey="Armenia, J" uniqKey="Armenia J">J Armenia</name>
</author>
<author>
<name sortKey="Chatila, Wk" uniqKey="Chatila W">WK Chatila</name>
</author>
<author>
<name sortKey="Luna, A" uniqKey="Luna A">A Luna</name>
</author>
<author>
<name sortKey="La, Kc" uniqKey="La K">KC La</name>
</author>
<author>
<name sortKey="Dimitriadoy, S" uniqKey="Dimitriadoy S">S Dimitriadoy</name>
</author>
<author>
<name sortKey="Liu, Dl" uniqKey="Liu D">DL Liu</name>
</author>
<author>
<name sortKey="Kantheti, Hs" uniqKey="Kantheti H">HS Kantheti</name>
</author>
<author>
<name sortKey="Saghafinia, S" uniqKey="Saghafinia S">S Saghafinia</name>
</author>
<author>
<name sortKey="Chakravarty, D" uniqKey="Chakravarty D">D Chakravarty</name>
</author>
<author>
<name sortKey="Daian, F" uniqKey="Daian F">F Daian</name>
</author>
<author>
<name sortKey="Gao, Q" uniqKey="Gao Q">Q Gao</name>
</author>
<author>
<name sortKey="Bailey, Mh" uniqKey="Bailey M">MH Bailey</name>
</author>
<author>
<name sortKey="Liang, Ww" uniqKey="Liang W">WW Liang</name>
</author>
<author>
<name sortKey="Foltz, Sm" uniqKey="Foltz S">SM Foltz</name>
</author>
<author>
<name sortKey="Shmulevich, I" uniqKey="Shmulevich I">I Shmulevich</name>
</author>
<author>
<name sortKey="Ding, L" uniqKey="Ding L">L Ding</name>
</author>
<author>
<name sortKey="Heins, Z" uniqKey="Heins Z">Z Heins</name>
</author>
<author>
<name sortKey="Ochoa, A" uniqKey="Ochoa A">A Ochoa</name>
</author>
<author>
<name sortKey="Gross, B" uniqKey="Gross B">B Gross</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J Gao</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Kundra, R" uniqKey="Kundra R">R Kundra</name>
</author>
<author>
<name sortKey="Kandoth, C" uniqKey="Kandoth C">C Kandoth</name>
</author>
<author>
<name sortKey="Bahceci, I" uniqKey="Bahceci I">I Bahceci</name>
</author>
<author>
<name sortKey="Dervishi, L" uniqKey="Dervishi L">L Dervishi</name>
</author>
<author>
<name sortKey="Dogrusoz, U" uniqKey="Dogrusoz U">U Dogrusoz</name>
</author>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
<author>
<name sortKey="Shen, H" uniqKey="Shen H">H Shen</name>
</author>
<author>
<name sortKey="Laird, Pw" uniqKey="Laird P">PW Laird</name>
</author>
<author>
<name sortKey="Way, Gp" uniqKey="Way G">GP Way</name>
</author>
<author>
<name sortKey="Greene, Cs" uniqKey="Greene C">CS Greene</name>
</author>
<author>
<name sortKey="Liang, H" uniqKey="Liang H">H Liang</name>
</author>
<author>
<name sortKey="Xiao, Y" uniqKey="Xiao Y">Y Xiao</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Iavarone, A" uniqKey="Iavarone A">A Iavarone</name>
</author>
<author>
<name sortKey="Berger, Ah" uniqKey="Berger A">AH Berger</name>
</author>
<author>
<name sortKey="Bivona, Tg" uniqKey="Bivona T">TG Bivona</name>
</author>
<author>
<name sortKey="Lazar, Aj" uniqKey="Lazar A">AJ Lazar</name>
</author>
<author>
<name sortKey="Hammer, Gd" uniqKey="Hammer G">GD Hammer</name>
</author>
<author>
<name sortKey="Giordano, T" uniqKey="Giordano T">T Giordano</name>
</author>
<author>
<name sortKey="Kwong, Ln" uniqKey="Kwong L">LN Kwong</name>
</author>
<author>
<name sortKey="Mcarthur, G" uniqKey="Mcarthur G">G McArthur</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Tward, Ad" uniqKey="Tward A">AD Tward</name>
</author>
<author>
<name sortKey="Frederick, Mj" uniqKey="Frederick M">MJ Frederick</name>
</author>
<author>
<name sortKey="Mccormick, F" uniqKey="Mccormick F">F McCormick</name>
</author>
<author>
<name sortKey="Meyerson, M" uniqKey="Meyerson M">M Meyerson</name>
</author>
<author>
<name sortKey="Van Allen, Em" uniqKey="Van Allen E">EM Van Allen</name>
</author>
<author>
<name sortKey="Cherniack, Ad" uniqKey="Cherniack A">AD Cherniack</name>
</author>
<author>
<name sortKey="Ciriello, G" uniqKey="Ciriello G">G Ciriello</name>
</author>
<author>
<name sortKey="Sander, C" uniqKey="Sander C">C Sander</name>
</author>
<author>
<name sortKey="Schultz, N" uniqKey="Schultz N">N Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaffitzel, C" uniqKey="Schaffitzel C">C Schaffitzel</name>
</author>
<author>
<name sortKey="Berger, I" uniqKey="Berger I">I Berger</name>
</author>
<author>
<name sortKey="Postberg, J" uniqKey="Postberg J">J Postberg</name>
</author>
<author>
<name sortKey="Hanes, J" uniqKey="Hanes J">J Hanes</name>
</author>
<author>
<name sortKey="Lipps, Hj" uniqKey="Lipps H">HJ Lipps</name>
</author>
<author>
<name sortKey="Pluckthun, A" uniqKey="Pluckthun A">A Plückthun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schutte, M" uniqKey="Schutte M">M Schutte</name>
</author>
<author>
<name sortKey="Hruban, Rh" uniqKey="Hruban R">RH Hruban</name>
</author>
<author>
<name sortKey="Hedrick, L" uniqKey="Hedrick L">L Hedrick</name>
</author>
<author>
<name sortKey="Cho, Kr" uniqKey="Cho K">KR Cho</name>
</author>
<author>
<name sortKey="Nadasdy, Gm" uniqKey="Nadasdy G">GM Nadasdy</name>
</author>
<author>
<name sortKey="Weinstein, Cl" uniqKey="Weinstein C">CL Weinstein</name>
</author>
<author>
<name sortKey="Bova, Gs" uniqKey="Bova G">GS Bova</name>
</author>
<author>
<name sortKey="Isaacs, Wb" uniqKey="Isaacs W">WB Isaacs</name>
</author>
<author>
<name sortKey="Cairns, P" uniqKey="Cairns P">P Cairns</name>
</author>
<author>
<name sortKey="Nawroz, H" uniqKey="Nawroz H">H Nawroz</name>
</author>
<author>
<name sortKey="Sidransky, D" uniqKey="Sidransky D">D Sidransky</name>
</author>
<author>
<name sortKey="Casero, Ra" uniqKey="Casero R">RA Casero</name>
</author>
<author>
<name sortKey="Meltzer, Ps" uniqKey="Meltzer P">PS Meltzer</name>
</author>
<author>
<name sortKey="Hahn, Sa" uniqKey="Hahn S">SA Hahn</name>
</author>
<author>
<name sortKey="Kern, Se" uniqKey="Kern S">SE Kern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senft, D" uniqKey="Senft D">D Senft</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J Qi</name>
</author>
<author>
<name sortKey="Ronai, Za" uniqKey="Ronai Z">ZA Ronai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shain, Ah" uniqKey="Shain A">AH Shain</name>
</author>
<author>
<name sortKey="Pollack, Jr" uniqKey="Pollack J">JR Pollack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shannon, P" uniqKey="Shannon P">P Shannon</name>
</author>
<author>
<name sortKey="Markiel, A" uniqKey="Markiel A">A Markiel</name>
</author>
<author>
<name sortKey="Ozier, O" uniqKey="Ozier O">O Ozier</name>
</author>
<author>
<name sortKey="Baliga, Ns" uniqKey="Baliga N">NS Baliga</name>
</author>
<author>
<name sortKey="Wang, Jt" uniqKey="Wang J">JT Wang</name>
</author>
<author>
<name sortKey="Ramage, D" uniqKey="Ramage D">D Ramage</name>
</author>
<author>
<name sortKey="Amin, N" uniqKey="Amin N">N Amin</name>
</author>
<author>
<name sortKey="Schwikowski, B" uniqKey="Schwikowski B">B Schwikowski</name>
</author>
<author>
<name sortKey="Ideker, T" uniqKey="Ideker T">T Ideker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shema, E" uniqKey="Shema E">E Shema</name>
</author>
<author>
<name sortKey="Tirosh, I" uniqKey="Tirosh I">I Tirosh</name>
</author>
<author>
<name sortKey="Aylon, Y" uniqKey="Aylon Y">Y Aylon</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Ye, C" uniqKey="Ye C">C Ye</name>
</author>
<author>
<name sortKey="Moskovits, N" uniqKey="Moskovits N">N Moskovits</name>
</author>
<author>
<name sortKey="Raver Shapira, N" uniqKey="Raver Shapira N">N Raver-Shapira</name>
</author>
<author>
<name sortKey="Minsky, N" uniqKey="Minsky N">N Minsky</name>
</author>
<author>
<name sortKey="Pirngruber, J" uniqKey="Pirngruber J">J Pirngruber</name>
</author>
<author>
<name sortKey="Tarcic, G" uniqKey="Tarcic G">G Tarcic</name>
</author>
<author>
<name sortKey="Hublarova, P" uniqKey="Hublarova P">P Hublarova</name>
</author>
<author>
<name sortKey="Moyal, L" uniqKey="Moyal L">L Moyal</name>
</author>
<author>
<name sortKey="Gana Weisz, M" uniqKey="Gana Weisz M">M Gana-Weisz</name>
</author>
<author>
<name sortKey="Shiloh, Y" uniqKey="Shiloh Y">Y Shiloh</name>
</author>
<author>
<name sortKey="Yarden, Y" uniqKey="Yarden Y">Y Yarden</name>
</author>
<author>
<name sortKey="Johnsen, Sa" uniqKey="Johnsen S">SA Johnsen</name>
</author>
<author>
<name sortKey="Vojtesek, B" uniqKey="Vojtesek B">B Vojtesek</name>
</author>
<author>
<name sortKey="Berger, Sl" uniqKey="Berger S">SL Berger</name>
</author>
<author>
<name sortKey="Oren, M" uniqKey="Oren M">M Oren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shkreta, L" uniqKey="Shkreta L">L Shkreta</name>
</author>
<author>
<name sortKey="Blanchette, M" uniqKey="Blanchette M">M Blanchette</name>
</author>
<author>
<name sortKey="Toutant, J" uniqKey="Toutant J">J Toutant</name>
</author>
<author>
<name sortKey="Wilhelm, E" uniqKey="Wilhelm E">E Wilhelm</name>
</author>
<author>
<name sortKey="Bell, B" uniqKey="Bell B">B Bell</name>
</author>
<author>
<name sortKey="Story, Ba" uniqKey="Story B">BA Story</name>
</author>
<author>
<name sortKey="Balachandran, A" uniqKey="Balachandran A">A Balachandran</name>
</author>
<author>
<name sortKey="Cochrane, A" uniqKey="Cochrane A">A Cochrane</name>
</author>
<author>
<name sortKey="Cheung, Pk" uniqKey="Cheung P">PK Cheung</name>
</author>
<author>
<name sortKey="Harrigan, Pr" uniqKey="Harrigan P">PR Harrigan</name>
</author>
<author>
<name sortKey="Grierson, Ds" uniqKey="Grierson D">DS Grierson</name>
</author>
<author>
<name sortKey="Chabot, B" uniqKey="Chabot B">B Chabot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sims, D" uniqKey="Sims D">D Sims</name>
</author>
<author>
<name sortKey="Mendes Pereira, Am" uniqKey="Mendes Pereira A">AM Mendes-Pereira</name>
</author>
<author>
<name sortKey="Frankum, J" uniqKey="Frankum J">J Frankum</name>
</author>
<author>
<name sortKey="Burgess, D" uniqKey="Burgess D">D Burgess</name>
</author>
<author>
<name sortKey="Cerone, M A" uniqKey="Cerone M">M-A Cerone</name>
</author>
<author>
<name sortKey="Lombardelli, C" uniqKey="Lombardelli C">C Lombardelli</name>
</author>
<author>
<name sortKey="Mitsopoulos, C" uniqKey="Mitsopoulos C">C Mitsopoulos</name>
</author>
<author>
<name sortKey="Hakas, J" uniqKey="Hakas J">J Hakas</name>
</author>
<author>
<name sortKey="Murugaesu, N" uniqKey="Murugaesu N">N Murugaesu</name>
</author>
<author>
<name sortKey="Isacke, Cm" uniqKey="Isacke C">CM Isacke</name>
</author>
<author>
<name sortKey="Fenwick, K" uniqKey="Fenwick K">K Fenwick</name>
</author>
<author>
<name sortKey="Assiotis, I" uniqKey="Assiotis I">I Assiotis</name>
</author>
<author>
<name sortKey="Kozarewa, I" uniqKey="Kozarewa I">I Kozarewa</name>
</author>
<author>
<name sortKey="Zvelebil, M" uniqKey="Zvelebil M">M Zvelebil</name>
</author>
<author>
<name sortKey="Ashworth, A" uniqKey="Ashworth A">A Ashworth</name>
</author>
<author>
<name sortKey="Lord, Cj" uniqKey="Lord C">CJ Lord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soucy, Ta" uniqKey="Soucy T">TA Soucy</name>
</author>
<author>
<name sortKey="Smith, Pg" uniqKey="Smith P">PG Smith</name>
</author>
<author>
<name sortKey="Milhollen, Ma" uniqKey="Milhollen M">MA Milhollen</name>
</author>
<author>
<name sortKey="Berger, Aj" uniqKey="Berger A">AJ Berger</name>
</author>
<author>
<name sortKey="Gavin, Jm" uniqKey="Gavin J">JM Gavin</name>
</author>
<author>
<name sortKey="Adhikari, S" uniqKey="Adhikari S">S Adhikari</name>
</author>
<author>
<name sortKey="Brownell, Je" uniqKey="Brownell J">JE Brownell</name>
</author>
<author>
<name sortKey="Burke, Ke" uniqKey="Burke K">KE Burke</name>
</author>
<author>
<name sortKey="Cardin, Dp" uniqKey="Cardin D">DP Cardin</name>
</author>
<author>
<name sortKey="Critchley, S" uniqKey="Critchley S">S Critchley</name>
</author>
<author>
<name sortKey="Cullis, Ca" uniqKey="Cullis C">CA Cullis</name>
</author>
<author>
<name sortKey="Doucette, A" uniqKey="Doucette A">A Doucette</name>
</author>
<author>
<name sortKey="Garnsey, Jj" uniqKey="Garnsey J">JJ Garnsey</name>
</author>
<author>
<name sortKey="Gaulin, Jl" uniqKey="Gaulin J">JL Gaulin</name>
</author>
<author>
<name sortKey="Gershman, Re" uniqKey="Gershman R">RE Gershman</name>
</author>
<author>
<name sortKey="Lublinsky, Ar" uniqKey="Lublinsky A">AR Lublinsky</name>
</author>
<author>
<name sortKey="Mcdonald, A" uniqKey="Mcdonald A">A McDonald</name>
</author>
<author>
<name sortKey="Mizutani, H" uniqKey="Mizutani H">H Mizutani</name>
</author>
<author>
<name sortKey="Narayanan, U" uniqKey="Narayanan U">U Narayanan</name>
</author>
<author>
<name sortKey="Olhava, Ej" uniqKey="Olhava E">EJ Olhava</name>
</author>
<author>
<name sortKey="Peluso, S" uniqKey="Peluso S">S Peluso</name>
</author>
<author>
<name sortKey="Rezaei, M" uniqKey="Rezaei M">M Rezaei</name>
</author>
<author>
<name sortKey="Sintchak, Md" uniqKey="Sintchak M">MD Sintchak</name>
</author>
<author>
<name sortKey="Talreja, T" uniqKey="Talreja T">T Talreja</name>
</author>
<author>
<name sortKey="Thomas, Mp" uniqKey="Thomas M">MP Thomas</name>
</author>
<author>
<name sortKey="Traore, T" uniqKey="Traore T">T Traore</name>
</author>
<author>
<name sortKey="Vyskocil, S" uniqKey="Vyskocil S">S Vyskocil</name>
</author>
<author>
<name sortKey="Weatherhead, Gs" uniqKey="Weatherhead G">GS Weatherhead</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Dick, Lr" uniqKey="Dick L">LR Dick</name>
</author>
<author>
<name sortKey="Claiborne, Cf" uniqKey="Claiborne C">CF Claiborne</name>
</author>
<author>
<name sortKey="Rolfe, M" uniqKey="Rolfe M">M Rolfe</name>
</author>
<author>
<name sortKey="Bolen, Jb" uniqKey="Bolen J">JB Bolen</name>
</author>
<author>
<name sortKey="Langston, Sp" uniqKey="Langston S">SP Langston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spillare, Ea" uniqKey="Spillare E">EA Spillare</name>
</author>
<author>
<name sortKey="Wang, Xw" uniqKey="Wang X">XW Wang</name>
</author>
<author>
<name sortKey="Von Kobbe, C" uniqKey="Von Kobbe C">C von Kobbe</name>
</author>
<author>
<name sortKey="Bohr, Va" uniqKey="Bohr V">VA Bohr</name>
</author>
<author>
<name sortKey="Hickson, Id" uniqKey="Hickson I">ID Hickson</name>
</author>
<author>
<name sortKey="Harris, Cc" uniqKey="Harris C">CC Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szklarczyk, D" uniqKey="Szklarczyk D">D Szklarczyk</name>
</author>
<author>
<name sortKey="Morris, Jh" uniqKey="Morris J">JH Morris</name>
</author>
<author>
<name sortKey="Cook, H" uniqKey="Cook H">H Cook</name>
</author>
<author>
<name sortKey="Kuhn, M" uniqKey="Kuhn M">M Kuhn</name>
</author>
<author>
<name sortKey="Wyder, S" uniqKey="Wyder S">S Wyder</name>
</author>
<author>
<name sortKey="Simonovic, M" uniqKey="Simonovic M">M Simonovic</name>
</author>
<author>
<name sortKey="Santos, A" uniqKey="Santos A">A Santos</name>
</author>
<author>
<name sortKey="Doncheva, Nt" uniqKey="Doncheva N">NT Doncheva</name>
</author>
<author>
<name sortKey="Roth, A" uniqKey="Roth A">A Roth</name>
</author>
<author>
<name sortKey="Bork, P" uniqKey="Bork P">P Bork</name>
</author>
<author>
<name sortKey="Jensen, Lj" uniqKey="Jensen L">LJ Jensen</name>
</author>
<author>
<name sortKey="Von Mering, C" uniqKey="Von Mering C">C von Mering</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahama, K" uniqKey="Takahama K">K Takahama</name>
</author>
<author>
<name sortKey="Takada, A" uniqKey="Takada A">A Takada</name>
</author>
<author>
<name sortKey="Tada, S" uniqKey="Tada S">S Tada</name>
</author>
<author>
<name sortKey="Shimizu, M" uniqKey="Shimizu M">M Shimizu</name>
</author>
<author>
<name sortKey="Sayama, K" uniqKey="Sayama K">K Sayama</name>
</author>
<author>
<name sortKey="Kurokawa, R" uniqKey="Kurokawa R">R Kurokawa</name>
</author>
<author>
<name sortKey="Oyoshi, T" uniqKey="Oyoshi T">T Oyoshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uhlmann Schiffler, H" uniqKey="Uhlmann Schiffler H">H Uhlmann-Schiffler</name>
</author>
<author>
<name sortKey="Jalal, C" uniqKey="Jalal C">C Jalal</name>
</author>
<author>
<name sortKey="Stahl, H" uniqKey="Stahl H">H Stahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valton, Al" uniqKey="Valton A">AL Valton</name>
</author>
<author>
<name sortKey="Prioleau, Mn" uniqKey="Prioleau M">MN Prioleau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaughn, Jp" uniqKey="Vaughn J">JP Vaughn</name>
</author>
<author>
<name sortKey="Creacy, Sd" uniqKey="Creacy S">SD Creacy</name>
</author>
<author>
<name sortKey="Routh, Ed" uniqKey="Routh E">ED Routh</name>
</author>
<author>
<name sortKey="Joyner Butt, C" uniqKey="Joyner Butt C">C Joyner-Butt</name>
</author>
<author>
<name sortKey="Jenkins, Gs" uniqKey="Jenkins G">GS Jenkins</name>
</author>
<author>
<name sortKey="Pauli, S" uniqKey="Pauli S">S Pauli</name>
</author>
<author>
<name sortKey="Nagamine, Y" uniqKey="Nagamine Y">Y Nagamine</name>
</author>
<author>
<name sortKey="Akman, Sa" uniqKey="Akman S">SA Akman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Jc" uniqKey="Wang J">JC Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Yy" uniqKey="Wang Y">YY Wang</name>
</author>
<author>
<name sortKey="Yang, Yx" uniqKey="Yang Y">YX Yang</name>
</author>
<author>
<name sortKey="Zhe, H" uniqKey="Zhe H">H Zhe</name>
</author>
<author>
<name sortKey="He, Zx" uniqKey="He Z">ZX He</name>
</author>
<author>
<name sortKey="Zhou, Sf" uniqKey="Zhou S">SF Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Wild, At" uniqKey="Wild A">AT Wild</name>
</author>
<author>
<name sortKey="Wu, Wh" uniqKey="Wu W">WH Wu</name>
</author>
<author>
<name sortKey="Shah, R" uniqKey="Shah R">R Shah</name>
</author>
<author>
<name sortKey="Danussi, C" uniqKey="Danussi C">C Danussi</name>
</author>
<author>
<name sortKey="Riggins, Gj" uniqKey="Riggins G">GJ Riggins</name>
</author>
<author>
<name sortKey="Kannan, K" uniqKey="Kannan K">K Kannan</name>
</author>
<author>
<name sortKey="Sulman, Ep" uniqKey="Sulman E">EP Sulman</name>
</author>
<author>
<name sortKey="Chan, Ta" uniqKey="Chan T">TA Chan</name>
</author>
<author>
<name sortKey="Huse, Jt" uniqKey="Huse J">JT Huse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, La" uniqKey="Watson L">LA Watson</name>
</author>
<author>
<name sortKey="Solomon, La" uniqKey="Solomon L">LA Solomon</name>
</author>
<author>
<name sortKey="Li, Jr" uniqKey="Li J">JR Li</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Edwards, M" uniqKey="Edwards M">M Edwards</name>
</author>
<author>
<name sortKey="Shin Ya, K" uniqKey="Shin Ya K">K Shin-ya</name>
</author>
<author>
<name sortKey="Beier, F" uniqKey="Beier F">F Beier</name>
</author>
<author>
<name sortKey="Berube, Ng" uniqKey="Berube N">NG Bérubé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, W" uniqKey="Wei W">W Wei</name>
</author>
<author>
<name sortKey="Lin, Hk" uniqKey="Lin H">HK Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Will, Cl" uniqKey="Will C">CL Will</name>
</author>
<author>
<name sortKey="Urlaub, H" uniqKey="Urlaub H">H Urlaub</name>
</author>
<author>
<name sortKey="Achsel, T" uniqKey="Achsel T">T Achsel</name>
</author>
<author>
<name sortKey="Gentzel, M" uniqKey="Gentzel M">M Gentzel</name>
</author>
<author>
<name sortKey="Wilm, M" uniqKey="Wilm M">M Wilm</name>
</author>
<author>
<name sortKey="Luhrmann, R" uniqKey="Luhrmann R">R Lührmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfe, Al" uniqKey="Wolfe A">AL Wolfe</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K Singh</name>
</author>
<author>
<name sortKey="Zhong, Y" uniqKey="Zhong Y">Y Zhong</name>
</author>
<author>
<name sortKey="Drewe, P" uniqKey="Drewe P">P Drewe</name>
</author>
<author>
<name sortKey="Rajasekhar, Vk" uniqKey="Rajasekhar V">VK Rajasekhar</name>
</author>
<author>
<name sortKey="Sanghvi, Vr" uniqKey="Sanghvi V">VR Sanghvi</name>
</author>
<author>
<name sortKey="Mavrakis, Kj" uniqKey="Mavrakis K">KJ Mavrakis</name>
</author>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M Jiang</name>
</author>
<author>
<name sortKey="Roderick, Je" uniqKey="Roderick J">JE Roderick</name>
</author>
<author>
<name sortKey="Van Der Meulen, J" uniqKey="Van Der Meulen J">J Van der Meulen</name>
</author>
<author>
<name sortKey="Schatz, Jh" uniqKey="Schatz J">JH Schatz</name>
</author>
<author>
<name sortKey="Rodrigo, Cm" uniqKey="Rodrigo C">CM Rodrigo</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C Zhao</name>
</author>
<author>
<name sortKey="Rondou, P" uniqKey="Rondou P">P Rondou</name>
</author>
<author>
<name sortKey="De Stanchina, E" uniqKey="De Stanchina E">E de Stanchina</name>
</author>
<author>
<name sortKey="Teruya Feldstein, J" uniqKey="Teruya Feldstein J">J Teruya-Feldstein</name>
</author>
<author>
<name sortKey="Kelliher, Ma" uniqKey="Kelliher M">MA Kelliher</name>
</author>
<author>
<name sortKey="Speleman, F" uniqKey="Speleman F">F Speleman</name>
</author>
<author>
<name sortKey="Porco, Ja" uniqKey="Porco J">JA Porco</name>
</author>
<author>
<name sortKey="Pelletier, J" uniqKey="Pelletier J">J Pelletier</name>
</author>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
<author>
<name sortKey="Wendel, Hg" uniqKey="Wendel H">HG Wendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, W" uniqKey="Wu W">W Wu</name>
</author>
<author>
<name sortKey="Rokutanda, N" uniqKey="Rokutanda N">N Rokutanda</name>
</author>
<author>
<name sortKey="Takeuchi, J" uniqKey="Takeuchi J">J Takeuchi</name>
</author>
<author>
<name sortKey="Lai, Y" uniqKey="Lai Y">Y Lai</name>
</author>
<author>
<name sortKey="Maruyama, R" uniqKey="Maruyama R">R Maruyama</name>
</author>
<author>
<name sortKey="Togashi, Y" uniqKey="Togashi Y">Y Togashi</name>
</author>
<author>
<name sortKey="Nishikawa, H" uniqKey="Nishikawa H">H Nishikawa</name>
</author>
<author>
<name sortKey="Arai, N" uniqKey="Arai N">N Arai</name>
</author>
<author>
<name sortKey="Miyoshi, Y" uniqKey="Miyoshi Y">Y Miyoshi</name>
</author>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N Suzuki</name>
</author>
<author>
<name sortKey="Saeki, Y" uniqKey="Saeki Y">Y Saeki</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K Tanaka</name>
</author>
<author>
<name sortKey="Ohta, T" uniqKey="Ohta T">T Ohta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y Wu</name>
</author>
<author>
<name sortKey="Brosh, Rm" uniqKey="Brosh R">RM Brosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
<author>
<name sortKey="Di Antonio, M" uniqKey="Di Antonio M">M Di Antonio</name>
</author>
<author>
<name sortKey="Mckinney, S" uniqKey="Mckinney S">S McKinney</name>
</author>
<author>
<name sortKey="Mathew, V" uniqKey="Mathew V">V Mathew</name>
</author>
<author>
<name sortKey="Ho, B" uniqKey="Ho B">B Ho</name>
</author>
<author>
<name sortKey="O Neil, Nj" uniqKey="O Neil N">NJ O'Neil</name>
</author>
<author>
<name sortKey="Santos, Nd" uniqKey="Santos N">ND Santos</name>
</author>
<author>
<name sortKey="Silvester, J" uniqKey="Silvester J">J Silvester</name>
</author>
<author>
<name sortKey="Wei, V" uniqKey="Wei V">V Wei</name>
</author>
<author>
<name sortKey="Garcia, J" uniqKey="Garcia J">J Garcia</name>
</author>
<author>
<name sortKey="Kabeer, F" uniqKey="Kabeer F">F Kabeer</name>
</author>
<author>
<name sortKey="Lai, D" uniqKey="Lai D">D Lai</name>
</author>
<author>
<name sortKey="Soriano, P" uniqKey="Soriano P">P Soriano</name>
</author>
<author>
<name sortKey="Banath, J" uniqKey="Banath J">J Banáth</name>
</author>
<author>
<name sortKey="Chiu, Ds" uniqKey="Chiu D">DS Chiu</name>
</author>
<author>
<name sortKey="Yap, D" uniqKey="Yap D">D Yap</name>
</author>
<author>
<name sortKey="Le, Dd" uniqKey="Le D">DD Le</name>
</author>
<author>
<name sortKey="Ye, Fb" uniqKey="Ye F">FB Ye</name>
</author>
<author>
<name sortKey="Zhang, A" uniqKey="Zhang A">A Zhang</name>
</author>
<author>
<name sortKey="Thu, K" uniqKey="Thu K">K Thu</name>
</author>
<author>
<name sortKey="Soong, J" uniqKey="Soong J">J Soong</name>
</author>
<author>
<name sortKey="Lin, Sc" uniqKey="Lin S">SC Lin</name>
</author>
<author>
<name sortKey="Tsai, Ah" uniqKey="Tsai A">AH Tsai</name>
</author>
<author>
<name sortKey="Osako, T" uniqKey="Osako T">T Osako</name>
</author>
<author>
<name sortKey="Algara, T" uniqKey="Algara T">T Algara</name>
</author>
<author>
<name sortKey="Saunders, Dn" uniqKey="Saunders D">DN Saunders</name>
</author>
<author>
<name sortKey="Wong, J" uniqKey="Wong J">J Wong</name>
</author>
<author>
<name sortKey="Xian, J" uniqKey="Xian J">J Xian</name>
</author>
<author>
<name sortKey="Bally, Mb" uniqKey="Bally M">MB Bally</name>
</author>
<author>
<name sortKey="Brenton, Jd" uniqKey="Brenton J">JD Brenton</name>
</author>
<author>
<name sortKey="Brown, Gw" uniqKey="Brown G">GW Brown</name>
</author>
<author>
<name sortKey="Shah, Sp" uniqKey="Shah S">SP Shah</name>
</author>
<author>
<name sortKey="Cescon, D" uniqKey="Cescon D">D Cescon</name>
</author>
<author>
<name sortKey="Mak, Tw" uniqKey="Mak T">TW Mak</name>
</author>
<author>
<name sortKey="Caldas, C" uniqKey="Caldas C">C Caldas</name>
</author>
<author>
<name sortKey="Stirling, Pc" uniqKey="Stirling P">PC Stirling</name>
</author>
<author>
<name sortKey="Hieter, P" uniqKey="Hieter P">P Hieter</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
<author>
<name sortKey="Aparicio, S" uniqKey="Aparicio S">S Aparicio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yadav, P" uniqKey="Yadav P">P Yadav</name>
</author>
<author>
<name sortKey="Harcy, V" uniqKey="Harcy V">V Harcy</name>
</author>
<author>
<name sortKey="Argueso, Jl" uniqKey="Argueso J">JL Argueso</name>
</author>
<author>
<name sortKey="Dominska, M" uniqKey="Dominska M">M Dominska</name>
</author>
<author>
<name sortKey="Jinks Robertson, S" uniqKey="Jinks Robertson S">S Jinks-Robertson</name>
</author>
<author>
<name sortKey="Kim, N" uniqKey="Kim N">N Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D Yang</name>
</author>
<author>
<name sortKey="Hurley, Lh" uniqKey="Hurley L">LH Hurley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeats, C" uniqKey="Yeats C">C Yeats</name>
</author>
<author>
<name sortKey="Maibaum, M" uniqKey="Maibaum M">M Maibaum</name>
</author>
<author>
<name sortKey="Marsden, R" uniqKey="Marsden R">R Marsden</name>
</author>
<author>
<name sortKey="Dibley, M" uniqKey="Dibley M">M Dibley</name>
</author>
<author>
<name sortKey="Lee, D" uniqKey="Lee D">D Lee</name>
</author>
<author>
<name sortKey="Addou, S" uniqKey="Addou S">S Addou</name>
</author>
<author>
<name sortKey="Orengo, Ca" uniqKey="Orengo C">CA Orengo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, T" uniqKey="Yoshida T">T Yoshida</name>
</author>
<author>
<name sortKey="Tanaka, S" uniqKey="Tanaka S">S Tanaka</name>
</author>
<author>
<name sortKey="Mogi, A" uniqKey="Mogi A">A Mogi</name>
</author>
<author>
<name sortKey="Shitara, Y" uniqKey="Shitara Y">Y Shitara</name>
</author>
<author>
<name sortKey="Kuwano, H" uniqKey="Kuwano H">H Kuwano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, F" uniqKey="Zhao F">F Zhao</name>
</author>
<author>
<name sortKey="Gong, X" uniqKey="Gong X">X Gong</name>
</author>
<author>
<name sortKey="Liu, A" uniqKey="Liu A">A Liu</name>
</author>
<author>
<name sortKey="Lv, X" uniqKey="Lv X">X Lv</name>
</author>
<author>
<name sortKey="Hu, B" uniqKey="Hu B">B Hu</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y Cheng</name>
</author>
<author>
<name sortKey="Wu, W" uniqKey="Wu W">W Wu</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Xi, Q" uniqKey="Xi Q">Q Xi</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zimmer, J" uniqKey="Zimmer J">J Zimmer</name>
</author>
<author>
<name sortKey="Tacconi, Emc" uniqKey="Tacconi E">EMC Tacconi</name>
</author>
<author>
<name sortKey="Folio, C" uniqKey="Folio C">C Folio</name>
</author>
<author>
<name sortKey="Badie, S" uniqKey="Badie S">S Badie</name>
</author>
<author>
<name sortKey="Porru, M" uniqKey="Porru M">M Porru</name>
</author>
<author>
<name sortKey="Klare, K" uniqKey="Klare K">K Klare</name>
</author>
<author>
<name sortKey="Tumiati, M" uniqKey="Tumiati M">M Tumiati</name>
</author>
<author>
<name sortKey="Markkanen, E" uniqKey="Markkanen E">E Markkanen</name>
</author>
<author>
<name sortKey="Halder, S" uniqKey="Halder S">S Halder</name>
</author>
<author>
<name sortKey="Ryan, A" uniqKey="Ryan A">A Ryan</name>
</author>
<author>
<name sortKey="Jackson, Sp" uniqKey="Jackson S">SP Jackson</name>
</author>
<author>
<name sortKey="Ramadan, K" uniqKey="Ramadan K">K Ramadan</name>
</author>
<author>
<name sortKey="Kuznetsov, Sg" uniqKey="Kuznetsov S">SG Kuznetsov</name>
</author>
<author>
<name sortKey="Biroccio, A" uniqKey="Biroccio A">A Biroccio</name>
</author>
<author>
<name sortKey="Sale, Je" uniqKey="Sale J">JE Sale</name>
</author>
<author>
<name sortKey="Tarsounas, M" uniqKey="Tarsounas M">M Tarsounas</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">eLife</journal-id>
<journal-id journal-id-type="iso-abbrev">Elife</journal-id>
<journal-id journal-id-type="publisher-id">eLife</journal-id>
<journal-title-group>
<journal-title>eLife</journal-title>
</journal-title-group>
<issn pub-type="epub">2050-084X</issn>
<publisher>
<publisher-name>eLife Sciences Publications, Ltd</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31287417</article-id>
<article-id pub-id-type="pmc">6615864</article-id>
<article-id pub-id-type="publisher-id">46793</article-id>
<article-id pub-id-type="doi">10.7554/eLife.46793</article-id>
<article-categories>
<subj-group subj-group-type="display-channel">
<subject>Tools and Resources</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Biochemistry and Chemical Biology</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Chromosomes and Gene Expression</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Genetic interactions of G-quadruplexes in humans</article-title>
</title-group>
<contrib-group>
<contrib id="author-135350" contrib-type="author" equal-contrib="yes">
<name>
<surname>Zyner</surname>
<given-names>Katherine G</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-4997-0150</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="equal-contrib1"></xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="fn" rid="con1"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-135349" contrib-type="author" equal-contrib="yes">
<name>
<surname>Mulhearn</surname>
<given-names>Darcie S</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="equal-contrib1"></xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="fn" rid="con2"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-135351" contrib-type="author">
<name>
<surname>Adhikari</surname>
<given-names>Santosh</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-1501-2106</contrib-id>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="fn" rid="con3"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-135356" contrib-type="author">
<name>
<surname>Martínez Cuesta</surname>
<given-names>Sergio</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0001-9806-2805</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund3"></xref>
<xref ref-type="fn" rid="con4"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-135353" contrib-type="author">
<name>
<surname>Di Antonio</surname>
<given-names>Marco</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-7321-1867</contrib-id>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="fn" rid="con5"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-135357" contrib-type="author">
<name>
<surname>Erard</surname>
<given-names>Nicolas</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund6"></xref>
<xref ref-type="fn" rid="con6"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-32805" contrib-type="author">
<name>
<surname>Hannon</surname>
<given-names>Gregory J</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0003-4021-3898</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund2"></xref>
<xref ref-type="other" rid="fund5"></xref>
<xref ref-type="fn" rid="con7"></xref>
<xref ref-type="fn" rid="conf2"></xref>
</contrib>
<contrib id="author-135358" contrib-type="author">
<name>
<surname>Tannahill</surname>
<given-names>David</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-3811-6864</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="fn" rid="con8"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-15451" contrib-type="author" corresp="yes">
<name>
<surname>Balasubramanian</surname>
<given-names>Shankar</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0002-0281-5815</contrib-id>
<email>sb10031@cam.ac.uk</email>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund3"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="fn" rid="con9"></xref>
<xref ref-type="fn" rid="conf3"></xref>
</contrib>
<aff id="aff1">
<label>1</label>
<institution>Cancer Research United Kingdom Cambridge Institute</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution content-type="dept">Department of Chemistry</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</aff>
<aff id="aff3">
<label>3</label>
<institution content-type="dept">School of Clinical Medicine</institution>
<institution>University of Cambridge</institution>
<addr-line>Cambridge</addr-line>
<country>United Kingdom</country>
</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Heyer</surname>
<given-names>Wolf-Dietrich</given-names>
</name>
<role>Reviewing Editor</role>
<aff>
<institution>University of California, Davis</institution>
<country>United States</country>
</aff>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Struhl</surname>
<given-names>Kevin</given-names>
</name>
<role>Senior Editor</role>
<aff>
<institution>Harvard Medical School</institution>
<country>United States</country>
</aff>
</contrib>
</contrib-group>
<author-notes>
<fn fn-type="con" id="equal-contrib1">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date date-type="pub" publication-format="electronic">
<day>09</day>
<month>7</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>8</volume>
<elocation-id>e46793</elocation-id>
<history>
<date date-type="received" iso-8601-date="2019-03-12">
<day>12</day>
<month>3</month>
<year>2019</year>
</date>
<date date-type="accepted" iso-8601-date="2019-06-17">
<day>17</day>
<month>6</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019, Zyner et al</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Zyner et al</copyright-holder>
<ali:free_to_read></ali:free_to_read>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<ali:license_ref>http://creativecommons.org/licenses/by/4.0/</ali:license_ref>
<license-p>This article is distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use and redistribution provided that the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="elife-46793.pdf"></self-uri>
<abstract>
<p>G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.</p>
</abstract>
<kwd-group kwd-group-type="author-keywords">
<kwd>G-quadruplex</kwd>
<kwd>G4</kwd>
<kwd>G-quadruplex ligands</kwd>
<kwd>genetic vulnerability</kwd>
<kwd>nucleic acid structure</kwd>
<kwd>cancer</kwd>
</kwd-group>
<kwd-group kwd-group-type="research-organism">
<title>Research organism</title>
<kwd>Human</kwd>
</kwd-group>
<funding-group>
<award-group id="fund1">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000289</institution-id>
<institution>Cancer Research UK</institution>
</institution-wrap>
</funding-source>
<award-id>C14303/A17197</award-id>
<principal-award-recipient>
<name>
<surname>Zyner</surname>
<given-names>Katherine G</given-names>
</name>
<name>
<surname>Mulhearn</surname>
<given-names>Darcie S</given-names>
</name>
<name>
<surname>Adhikari</surname>
<given-names>Santosh</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>Marco</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>David</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>Shankar</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund4">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000289</institution-id>
<institution>Cancer Research UK</institution>
</institution-wrap>
</funding-source>
<award-id>C9681/A18618</award-id>
<principal-award-recipient>
<name>
<surname>Zyner</surname>
<given-names>Katherine G</given-names>
</name>
<name>
<surname>Mulhearn</surname>
<given-names>Darcie S</given-names>
</name>
<name>
<surname>Adhikari</surname>
<given-names>Santosh</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>Marco</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>David</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>Shankar</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund2">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000289</institution-id>
<institution>Cancer Research UK</institution>
</institution-wrap>
</funding-source>
<award-id>A21143</award-id>
<principal-award-recipient>
<name>
<surname>Hannon</surname>
<given-names>Gregory J</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund5">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000288</institution-id>
<institution>Royal Society</institution>
</institution-wrap>
</funding-source>
<award-id>RP130039</award-id>
<principal-award-recipient>
<name>
<surname>Hannon</surname>
<given-names>Gregory J</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund6">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000875</institution-id>
<institution>Pew Charitable Trusts</institution>
</institution-wrap>
</funding-source>
<award-id>00028354</award-id>
<principal-award-recipient>
<name>
<surname>Erard</surname>
<given-names>Nicolas</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund3">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100004440</institution-id>
<institution>Wellcome</institution>
</institution-wrap>
</funding-source>
<award-id>209441/z/17/z</award-id>
<principal-award-recipient>
<name>
<surname>Martínez Cuesta</surname>
<given-names>Sergio</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>Shankar</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.</funding-statement>
</funding-group>
<custom-meta-group>
<custom-meta specific-use="meta-only">
<meta-name>Author impact statement</meta-name>
<meta-value>For the first time, the spectrum of genes and pathways interacting with alternative DNA structures called G-quadruplexes in humans is revealed highlighting new possibilities for the pursuit of cancer therapies.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>G-quadruplex secondary structures (G4s) form in nucleic acids through the self-association of guanines (G) in G-rich sequences to form stacked tetrad structures (reviewed in
<xref rid="bib15" ref-type="bibr">Bochman et al., 2012</xref>
;
<xref rid="bib99" ref-type="bibr">Rhodes and Lipps, 2015</xref>
). In the human genome, over 700,000 G4s have been detected in vitro (
<xref rid="bib23" ref-type="bibr">Chambers et al., 2015</xref>
). Sequences encoding G4s are enriched in regulatory regions consistent with roles in transcription and RNA regulation (
<xref rid="bib63" ref-type="bibr">Huppert and Balasubramanian, 2007</xref>
;
<xref rid="bib62" ref-type="bibr">Huppert, 2008</xref>
), and their over-representation in oncogene promoters, such as
<italic>MYC, KRAS</italic>
and
<italic>KIT,</italic>
suggests that they are important in cancer and are potential therapeutic targets (reviewed in
<xref rid="bib7" ref-type="bibr">Balasubramanian et al., 2011</xref>
). Computationally predicted G4s have also been linked to replication origins (
<xref rid="bib10" ref-type="bibr">Besnard et al., 2012</xref>
) and telomere homeostasis (reviewed in
<xref rid="bib88" ref-type="bibr">Neidle, 2010</xref>
). In the transcriptome, more than 3000 mRNAs have been shown to contain G4 structures in vitro, particularly at 5’ and 3’ UTRs, suggestive of roles in posttranscriptional regulation (
<xref rid="bib19" ref-type="bibr">Bugaut and Balasubramanian, 2012</xref>
;
<xref rid="bib69" ref-type="bibr">Kwok et al., 2016</xref>
).</p>
<p>G4-specific antibodies have been used to visualise G4s in protozoa (
<xref rid="bib105" ref-type="bibr">Schaffitzel et al., 2001</xref>
) and mammalian cells (
<xref rid="bib11" ref-type="bibr">Biffi et al., 2013</xref>
;
<xref rid="bib56" ref-type="bibr">Henderson et al., 2014</xref>
;
<xref rid="bib76" ref-type="bibr">Liu et al., 2016</xref>
). More G4s are detected in transformed versus primary cells, and in human stomach and liver cancers compared to non-neoplastic tissues, supporting an association between G4 structures and cancer (
<xref rid="bib12" ref-type="bibr">Biffi et al., 2014</xref>
;
<xref rid="bib54" ref-type="bibr">Hänsel-Hertsch et al., 2016</xref>
). More recently, ChIP-seq was used to map endogenous G4 structure formation in chromatin revealing a link between G4s, promoters and transcription (
<xref rid="bib54" ref-type="bibr">Hänsel-Hertsch et al., 2016</xref>
). G4s are found predominately in nucleosome-depleted chromatin within promoters and 5’ UTRs of highly transcribed genes, including cancer-related genes and regions of somatic copy number alteration. G4s may therefore be part of a regulatory mechanism to switch between different transcriptional states. At telomeres, tandem G4-repeat structures also may help protect chromosome ends by providing binding sites for shelterin complex components (reviewed in
<xref rid="bib16" ref-type="bibr">Brázda et al., 2014</xref>
). As G4 structures can pause or stall polymerases, they must be resolved by helicases to allow replication and transcription to proceed. Several helicases, including WRN, BLM, PIF1, DHX36 and RTEL1, have been shown to unwind G4-structures in vitro (
<xref rid="bib17" ref-type="bibr">Brosh, 2013</xref>
;
<xref rid="bib84" ref-type="bibr">Mendoza et al., 2016</xref>
), and it is notable that fibroblasts from Werner (WRN) and Bloom (BLM) syndrome patients, who are predisposed to cancer, show altered gene expression that correlates with sites with potential to form G4s (
<xref rid="bib33" ref-type="bibr">Damerla et al., 2012</xref>
).</p>
<p>Small molecules that selectively bind and stabilise G4 formation in vitro have been used to probe G4 biological function. G4 ligands, such as pyridostatin (PDS), PhenDC3 and TMPyP4, can reduce transcription of many genes harbouring a promoter G4, including oncogenes such as
<italic>MYC,</italic>
in multiple cancer cell lines (
<xref rid="bib53" ref-type="bibr">Halder et al., 2012</xref>
;
<xref rid="bib83" ref-type="bibr">McLuckie et al., 2013</xref>
;
<xref rid="bib89" ref-type="bibr">Neidle, 2017</xref>
). G4-stabilising ligands also interfere with telomere homeostasis by inducing telomere uncapping/DNA damage through the inhibition of telomere extension by telomerase leading to senescence or apoptosis (reviewed in
<xref rid="bib88" ref-type="bibr">Neidle, 2010</xref>
). 5’ UTR RNA G4 structures may also be involved in eIF4A-dependent oncogene translation (
<xref rid="bib127" ref-type="bibr">Wolfe et al., 2014</xref>
) and their stabilisation by G4-ligands can inhibit translation in vitro (
<xref rid="bib19" ref-type="bibr">Bugaut and Balasubramanian, 2012</xref>
). Identification of several RNA G4-interacting proteins (reviewed in
<xref rid="bib20" ref-type="bibr">Cammas and Millevoi, 2016</xref>
), including DEAD/DEAH helicases such as DDX3X, and DHX36 (
<xref rid="bib27" ref-type="bibr">Chen et al., 2018</xref>
;
<xref rid="bib57" ref-type="bibr">Herdy et al., 2018</xref>
) additionally suggests specific roles for G4 structures in RNA.</p>
<p>Some G4-stabilising ligands cause a DNA damage-response (DDR); for example, DNA damage sites induced by PDS in human lung fibroblasts mapped to genomic regions at G4s within several oncogenes including
<italic>SRC</italic>
(
<xref rid="bib103" ref-type="bibr">Rodriguez et al., 2012</xref>
). Subsequent studies demonstrated that homologous recombination (HR) repair deficiencies can be exploited to selectively kill BRCA1/2-deficient cancer cells with G4 ligands (
<xref rid="bib83" ref-type="bibr">McLuckie et al., 2013</xref>
;
<xref rid="bib137" ref-type="bibr">Zimmer et al., 2016</xref>
). Recently, this concept has been applied to BRCA1/2-deficient breast cancers using CX-5461, a G4 ligand currently in clinical trials (
<xref rid="bib130" ref-type="bibr">Xu et al., 2017</xref>
) (
<ext-link ext-link-type="uri" xlink:href="https://clinicaltrials.gov/show/NCT02719977">NCT02719977</ext-link>
ClinicalTrials.gov). Overall, these initial studies demonstrate that specific genotypes can be selectively vulnerable to G4-stabilisation and raises the question as to what other genotypes might provide further such opportunities.</p>
<p>We set out to address two main questions (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
): 1) which human genes and cellular pathways interact with G4s and 2) what genetic backgrounds selectively lead to enhanced cell killing in the presence of G4 stabilising ligands? We employed PDS and PhenDC3 as representative G4 ligands as these are chemically and structurally dissimilar, but each shows a broad specificity for different G4 structural variants. Both ligands have been widely used as G4-targeting probes in biophysical (
<xref rid="bib35" ref-type="bibr">De Cian et al., 2007b</xref>
;
<xref rid="bib102" ref-type="bibr">Rodriguez et al., 2008</xref>
) and biological studies in which they have been shown to impart transcriptional inhibition, telomere dysfunction and replication stalling (
<xref rid="bib34" ref-type="bibr">De Cian et al., 2007a</xref>
;
<xref rid="bib53" ref-type="bibr">Halder et al., 2012</xref>
;
<xref rid="bib84" ref-type="bibr">Mendoza et al., 2016</xref>
).</p>
<fig id="fig1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.46793.002</object-id>
<label>Figure 1.</label>
<caption>
<title>Strategy identifying genetic vulnerabilities involved with G4 biology.</title>
<p>Genome-wide shRNA silencing combined with G4 structure stabilisation by small molecules identifies genes that when depleted compromise cell viability. Cells are infected with a genome-wide pool of shRNA lentiviruses targeting the protein coding genome followed by G4 ligand treatment to stabilise genomic and/or RNA G4 structures. Two general outcomes are possible: a gene is not required in a G4-dependent process so there is no effect on cell viability (left); or gene silencing results in cell death either due to loss of a direct G4 interaction (e.g. binding/unwinding) or indirectly through gene loss in a G4-dependent pathway (right). In absence of ligand, cells are viable in presence of the shRNA. Dotted boxes highlight genotypes of disease significance for possible G4-based therapies (blue) and genes and biological pathways that involve and/or interact with G4 structures (orange).</p>
</caption>
<graphic xlink:href="elife-46793-fig1"></graphic>
</fig>
</sec>
<sec sec-type="results" id="s2">
<title>Results</title>
<sec id="s2-1">
<title>Identification of genetic vulnerabilities to G4-ligands via genome-wide screening</title>
<p>An unbiased genome-wide shRNA screen was performed in A375 human melanoma cells to globally evaluate genetic vulnerabilities to G4-ligands and to identify genes and pathways involved with G4-structures (
<xref ref-type="fig" rid="fig2">Figure 2A</xref>
). For this, the pyridine-2,6-bis-quinolino-dicarboxamide derivative, PDS (
<xref rid="bib103" ref-type="bibr">Rodriguez et al., 2012</xref>
), and bisquinolinium compound, PhenDC3 (
<xref rid="bib35" ref-type="bibr">De Cian et al., 2007b</xref>
) were chosen (
<xref ref-type="fig" rid="fig2">Figure 2B</xref>
). We used the latest generation shERWOOD-Ultramir shRNA pLMN retroviral library, comprising 132,000 shRNAs across 12 randomised pools targeting the protein coding genome, with an average of five optimised hairpins per gene (
<xref ref-type="fig" rid="fig2">Figure 2C</xref>
) (
<xref rid="bib66" ref-type="bibr">Knott et al., 2014</xref>
). A375 melanoma cells were used due to their rapid doubling, stable ploidy and success in other shRNA-dropout screens (
<xref rid="bib112" ref-type="bibr">Sims et al., 2011</xref>
); they are TP53 wild-type and driven by oncogenic
<italic>BRAF</italic>
(V600E) and
<italic>CDKN2A</italic>
loss (
<xref rid="bib43" ref-type="bibr">Forbes et al., 2015</xref>
).
<xref ref-type="fig" rid="fig2">Figure 2D</xref>
outlines our shRNA screening strategy. To identify shRNAs that are lost between the initial (t0) and final (fF) timepoints, unique 3’-antisense sequences were recovered by PCR and quantified by sequencing. If a gene knockdown compromises cell viability then the associated shRNA will be depleted compared to those targeting non-essential genes: the tF sequence count will be less than t0 thus log
<sub>2</sub>
fold change (FC, tF/t0) is negative. A pilot using one shRNA pool established that a tF of 15 population doublings can be used to reveal significant G4-ligand-mediated changes [false discovery rate (FDR) ≤ 0.05] in shRNA levels using a ligand concentration resulting in 20% cell death (GI
<sub>20</sub>
, see Materials and methods and
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1</xref>
for details).</p>
<fig id="fig2" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.46793.003</object-id>
<label>Figure 2.</label>
<caption>
<title>shRNA screening pipeline to uncover genetic vulnerabilities to G4 stabilisation.</title>
<p>(
<bold>A</bold>
) A G-tetrad with four interacting guanines (left), which stack to form G4 structures (right). (
<bold>B</bold>
) Structures of the G4-stabilising small molecule ligands PDS and PhenDC3. (
<bold>C</bold>
) Distribution of the numbers of shRNAs targeting each gene, with the average indicated by a red dotted line. (
<bold>D</bold>
) Overall screening approach illustrated for one library pool. Plasmids are retrovirally packaged and A375 cells are infected at multiplicity of infection (MOI) of 0.3 (30%). Following antibiotic selection, an initial time point (t0) is harvested and then cells are cultured for ‘n’ population doublings in DMSO, PDS or PhenDC3 before the final time point was harvested (tF).</p>
</caption>
<graphic xlink:href="elife-46793-fig2"></graphic>
<p content-type="supplemental-figure">
<fig id="fig2s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.004</object-id>
<label>Figure 2—figure supplement 1.</label>
<caption>
<title>Genome-wide shRNA screen parameter optimisation.</title>
<p>(
<bold>A</bold>
) Representative growth curves from shRNA pool eight showing cumulative population doublings for DMSO, PhenDC3 and PDS (mean and standard deviation from three cell counts per condition). (
<bold>B</bold>
) Comparison of significant hairpin hits (colours indicate significance at FDR ≤ 0.05) for two end points: population doubling 7 (left) and 15 (right) for PDS (top) and PhenDC3 (bottom). (
<bold>C</bold>
) Comparison of FDR and log
<sub>2</sub>
FC values for a hairpin targeting
<italic>XRN1</italic>
following DMSO, PDS or PhenDC3 treatment after 7 and 15 population doublings.</p>
</caption>
<graphic xlink:href="elife-46793-fig2-figsupp1"></graphic>
</fig>
</p>
</fig>
<p>To understand the complete spectrum of G4 vulnerabilities, we first considered the combined set of sensitivities to PDS and PhenDC3 together. For the whole library, when individual shRNAs are considered 9509 (~7%) G4-ligand-specific hairpins (i.e. those not in DMSO) were found to be depleted (FDR ≤ 0.05; log
<sub>2</sub>
FC <0,
<xref ref-type="fig" rid="fig3">Figure 3A</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
). We then reasoned, for a gene knockdown to have compromised cell growth, that a minimum of either 50% or three shRNA hairpins should be significantly depleted for that gene (median log
<sub>2</sub>
FC <0). This resulted in the identification of 843 G4 ligand-specific gene knockdowns not present in DMSO (
<xref ref-type="fig" rid="fig3">Figure 3B</xref>
). We then denoted a more stringent preliminary list of 758 G4 sensitisers as those having a median log
<sub>2</sub>
FC ≤ −1 (
<xref ref-type="fig" rid="fig3">Figure 3C</xref>
). It is reassuring that in this list we independently validated the known G4 sensitisers
<italic>BRCA1/2, ATRX and HERC2</italic>
(
<xref rid="bib83" ref-type="bibr">McLuckie et al., 2013</xref>
;
<xref rid="bib123" ref-type="bibr">Wang et al., 2019</xref>
;
<xref rid="bib124" ref-type="bibr">Watson et al., 2013</xref>
;
<xref rid="bib128" ref-type="bibr">Wu et al., 2018</xref>
;
<xref rid="bib130" ref-type="bibr">Xu et al., 2017</xref>
<xref rid="bib137" ref-type="bibr">Zimmer et al., 2016</xref>
<xref ref-type="fig" rid="fig3">Figure 3D</xref>
).</p>
<fig id="fig3" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.46793.005</object-id>
<label>Figure 3.</label>
<caption>
<title>Genome-wide screening in A375 cells reveals deficiencies in known G4-associated genes as sensitive to G4-stabilising small molecules.</title>
<p>(
<bold>A–C</bold>
) Venn diagrams for: (
<bold>A</bold>
) significantly differentially expressed individual shRNAs (FDR ≤ 0.05); (
<bold>B</bold>
) significantly depleted genes (50% or three hairpins, FDR ≤ 0.05, median log
<sub>2</sub>
FC < 0) following DMSO, PDS and PhenDC3 treatment and (
<bold>C</bold>
) Significant PDS and PhenDC3 sensitiser genes not in DMSO and after applying a median log
<sub>2</sub>
FC ≤ −1 cut off. (
<bold>D–F</bold>
) Tables showing the number of depleted hairpins and median log
<sub>2</sub>
FC values for: (
<bold>D</bold>
) known G4 ligand sensitisers,
<italic>ATRX, HERC2</italic>
,
<italic>BRCA1</italic>
and
<italic>BRCA2,</italic>
that are independently validated in our screen; (
<bold>E</bold>
) sensitisers annotated with a G4-associated term in GO, UniprotKB or G4IPBD databases and (
<bold>F</bold>
) sensitisers identified as G4-related by text-mining showing the associated PolySearch2 algorithm score and summary of the G4 association. Sensitisers are defined as a gene where 50% or three hairpins were significantly differentially expressed (FDR ≤ 0.05) with median log
<sub>2</sub>
FC ≤ −1. See also
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig3"></graphic>
</fig>
<p>We next explored further genes already implicated in G4 biology, but whose deficiency has not yet been linked with any enhanced sensitivity to G4 ligands. For genes annotated with G4-related terms in the UniprotKB, Gene Ontology (GO) and G4IPDB databases (
<xref rid="bib85" ref-type="bibr">Mishra et al., 2016</xref>
), an additional eight sensitisers (
<italic>ADAR, DHX36, DNA2, FUS, MCRS1, RECQL4, SF3B3 and XRN1</italic>
) were uncovered (
<xref ref-type="fig" rid="fig3">Figure 3E</xref>
). Text-mining with G4 search terms using PolySearch2 on PubMed abstracts and open access full texts (see Materials and methods; 
<xref rid="bib75" ref-type="bibr">Liu et al., 2015b</xref>
) revealed a further 12 sensitisers arising from our screen including helicases (
<italic>RTEL1</italic>
), DDR components (
<italic>CHEK1, RAD17</italic>
), transcriptional proteins (
<italic>POLR1A, CNBP</italic>
) and replication factors (
<italic>ORC1, RPA3, TOP1</italic>
) (
<xref ref-type="fig" rid="fig3">Figure 3F</xref>
).</p>
<p>Within the total 758 G4-sensitiser gene list, we uncovered five significant enriched KEGG pathway clusters (p<0.05): ‘cell cycle’, ‘ribosome’, ‘spliceosome’, ‘ubiquitin-mediated proteolysis’ and ‘DNA replication’ (
<xref ref-type="fig" rid="fig4">Figure 4A</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
). Within each cluster are gene targets common to both G4 ligands, as well as genes unique to each ligand. To gain functional insights, enriched GO ‘Biological Process’ and ‘Molecular Function’ terms were determined (
<xref ref-type="fig" rid="fig4">Figure 4B</xref>
;
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
) which showed 20 out of 45 of the former and all the latter terms into DNA or RNA classifications, consistent with PDS/PhenDC3 directly binding nucleic acid G4 targets. Furthermore, when protein domains were considered using GENE3D and PFAM databases (
<xref ref-type="fig" rid="fig4">Figure 4C</xref>
), we discovered enrichments in helicase C-terminal domains, RNA recognition motifs including RRM, RBD and RNP domains, and DNA-binding domains including zinc fingers, bZIP motifs and HMG boxes. Consistent with the ubiquitin-mediated proteolysis KEGG cluster, enrichments in multifunctional ATPase domains and in ubiquitin hydrolase domains, were also found. These latter findings suggest important areas of biology not previously known to be affected by G4 intervention in mammalian cells.</p>
<fig id="fig4" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.46793.006</object-id>
<label>Figure 4.</label>
<caption>
<title>Pathways and processes showing sensitivity to G4-stabilising ligands.</title>
<p>(
<bold>A</bold>
) Enriched KEGG pathways and (
<bold>B</bold>
) Gene Ontology terms, GO Biological Processes (BP) and Molecular Functions (MF), for the 758 genome-wide G4-sensitiser genes. Blue- genes common to both ligands; black- genes unique to either PDS or PhenDC3. A right-sided enrichment test with Bonferroni correction used (see Materials and methods). (
<bold>C</bold>
) Enriched protein domains (p≤0.05) within GENE3D (black) and PFAM databases (grey) ordered by -Log10 (EASE p-value). See also
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig4"></graphic>
</fig>
</sec>
<sec id="s2-2">
<title>Cancer-associated gene depletion enhances sensitivity to G4-ligands</title>
<p>We next used the complete list of 758 genes, identified as stringent G4 ligand sensitisers above, to discover new cancer-associated gene vulnerabilities to G4-stabilising ligands. For this, we searched this list for any significant enrichment in the COSMIC database (v83) of genes causally implicated in cancer (
<xref rid="bib43" ref-type="bibr">Forbes et al., 2015</xref>
). Of the 758 sensitisers, there was a two-fold enrichment (p=9.1×10
<sup>−6</sup>
) for 50 cancer-associated genes, which increases to three-fold (p=2.5×10
<sup>−3</sup>
) when considering only sensitisers common to both G4 ligands (
<xref ref-type="fig" rid="fig5">Figure 5A,B</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
). Notably, when STRING network analysis (
<xref rid="bib115" ref-type="bibr">Szklarczyk et al., 2017</xref>
) was used to investigate functional interactions, this revealed a DDR cluster that included
<italic>BRCA1</italic>
and
<italic>BRCA2</italic>
, as well as their interacting tumour suppressor partners
<italic>PALB2</italic>
and
<italic>BAP1</italic>
, two cancer-associated DDR genes not previously indicated as G4 ligand sensitisers. (
<xref ref-type="fig" rid="fig5">Figure 5C</xref>
). This analysis also identified as sensitisers a cluster consisting of several chromatin modifiers including
<italic>SMARCA4</italic>
,
<italic>SMARCB1</italic>
and
<italic>SMARCE1</italic>
.</p>
<fig id="fig5" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.46793.007</object-id>
<label>Figure 5.</label>
<caption>
<title>Identification of cancer-associated genes whose loss promotes sensitivity to G4 ligands.</title>
<p>(
<bold>A, B</bold>
) Median log
<sub>2</sub>
FC and number of significantly depleted hairpins for G4 sensitisers overlapping the COSMIC database for PDS (
<bold>A</bold>
) and PhenDC3 (
<bold>B</bold>
). Genes common to both are indicated in blue. See also
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
. (
<bold>C</bold>
) Functional interaction network analysis using STRING for the 50 COSMIC proteins indicated in A and B. Clusters are shown using confidence interactions > 0.4 from co-expression and experimental data. Box indicates the DDR cluster.</p>
</caption>
<graphic xlink:href="elife-46793-fig5"></graphic>
</fig>
</sec>
<sec id="s2-3">
<title>Focused G4-sensitiser shRNA screening reveals robust G4-ligand genetic vulnerabilities and potential therapeutic targets</title>
<p>To enable more rigorous and further comparative analyses that focus solely on G4 sensitisers, we developed a custom shRNA screening panel encompassing the gene sensitisers identified above plus additional G4-associated genes noted from the literature (
<xref ref-type="fig" rid="fig6">Figure 6A</xref>
,
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1</xref>
, see Materials and methods). This panel consisted of a single retroviral shRNA pool to allow all shRNAs to be screened simultaneously under standardised conditions and to minimise technical fluctuations. We first used this panel to recapitulate the findings of the genome-wide screen above and compare responses with different G4 ligands. Using A375 melanoma cells with PDS and PhenDC3, the custom panel recovered a total of 342 G4 sensitisers corresponding to 40.6% overlap (308 genes) with the complete genome-wide screen (
<xref ref-type="fig" rid="fig6">Figure 6B,C</xref>
). From this, we identified 290 G4 sensitisers with 89 and 161 unique for PDS and PhenDC3, respectively, and 40 genes common for both ligands (
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1E</xref>
). Comparing PDS and PhenDC3 sensitisers by KEGG analysis shows that each ligand mostly interacts with different but related pathways (
<xref ref-type="fig" rid="fig6">Figure 6D,E</xref>
). Consistent with direct G4-targeting, nucleic-acid-related GO terms were enriched (
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1F & G</xref>
<xref ref-type="supplementary-material" rid="supp2">Supplementary file 2</xref>
). We next considered that the 40 sensitiser genes common between PDS and PhenDC3 reflected the most robust sensitisers for G4 ligands in general and it is notable that 27 out of 40 associated with DNA or RNA binding processes, such as chromatin modification, replication transcription, and translation (
<xref ref-type="fig" rid="fig6">Figure 6F</xref>
). Again, the ubiquitin processes, which previously were not linked with G4 biology, were also uncovered as a significant sensitiser pathway. Overall, these results clearly show the spectrum of biological vulnerabilities that underpin the observed enhanced sensitivities for each G4-targeting ligand.</p>
<fig id="fig6" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.46793.008</object-id>
<label>Figure 6.</label>
<caption>
<title>A custom G4 sensitiser shRNA panel reveals unique and common G4 ligand sensitivities.</title>
<p>(
<bold>A</bold>
) A shRNAs custom retroviral pool (~8000 hairpins) was used to infect A375 cells. Following antibiotic selection, the reference time point (t0) was taken and then cells were cultured for 15 population doublings in DMSO, PDS or PhenDC3 before (tF). Three biological replicates were performed. (
<bold>B</bold>
) Significant sensitiser genes for the A375 focused screen (50% or three significantly depleted with median log
<sub>2</sub>
FC≤ −1). (
<bold>C</bold>
) Overlap of the genome-wide (GW) with A375 focused screen for PDS and PhenDC3 G4-sensitisers combined (see also
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1</xref>
). (
<bold>D–E</bold>
) Enriched KEGG pathways for (
<bold>D</bold>
) PhenDC3 and (
<bold>E</bold>
) PDS sensitiser genes common to the genome-wide and A375 focused screens. A right-sided enrichment test with Bonferroni correction used (see Materials and methods). (
<bold>F</bold>
) DAVID, STRING (experimental data, co-expression, medium confidence ≥0.4) interaction and UniprotKB data were used to categorise biochemical roles for the 40 high-confidence G4 sensitisers common to both ligands. Genes in red indicate those found in the (DGIdb 2.0). *=genes in multiple categories. (
<bold>G, H</bold>
) Overlap of the all 290 robust G4 sensitisers (
<bold>G</bold>
) and the 40 G4 sensitisers common to both ligands (
<bold>H</bold>
) with the Drug Genome Interaction database. The druggable genome denotes genes with known or predicted drug interactions. Clinically actionable denotes genes used in targeted cancer clinical sequencing panels. See also
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig6"></graphic>
<p content-type="supplemental-figure">
<fig id="fig6s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.009</object-id>
<label>Figure 6—figure supplement 1.</label>
<caption>
<title>Focused A375 cell screening parallels findings from the genome-wide screen and highlights differences in individual G4 ligand sensitivities.</title>
<p>(
<bold>A</bold>
) Cumulative population doublings for A375 cells for DMSO, PDS and PhenDC3 (mean and standard deviation from three cell counts per condition). (
<bold>B</bold>
) Number of shRNAs targeting each gene, with the maximum capped at seven per gene (
<bold>C–E</bold>
) Venn diagrams showing (
<bold>C</bold>
) significantly depleted shRNAs at t15 v t0 (FDR ≤ 0.05) for DMSO, PDS and PhenDC3 treatment, (
<bold>D</bold>
) significantly depleted genes (minimum 50% or three significant shRNAs) and (
<bold>E</bold>
) overlap of focused and genome-wide screens. For PDS and PhenDC3, there are 89 and 201 unique genes, respectively, that overlap between the two screens and 40 genes shared for PDS and PhenDC3. (
<bold>F–G</bold>
) Enriched Gene Ontology terms (GO Biological Processes and Molecular Functions) as determined by Bonferroni multiple hypothesis correction (p≤0.05) for (
<bold>E</bold>
) all 201 PhenDC3 and (
<bold>F</bold>
) all 129 PDS G4-hits validated by the A375 focused screen. Black bars reflect terms enriched in both PDS and PhenDC3. See also
<xref ref-type="supplementary-material" rid="supp2">Supplementary file 2</xref>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig6-figsupp1"></graphic>
</fig>
</p>
</fig>
<p>We next reasoned that the robust set of 290 G4 ligand sensitiser genes above provides a suitable test bed for exploring the arising therapeutic potential for combinatorial pharmacological inhibition and G4-ligands. We therefore looked for the presence of these sensitisers genes within the druggable genome interaction database (DGIdb) (
<xref rid="bib50" ref-type="bibr">Griffith et al., 2013</xref>
). A total of 74 G4-sensitisers were found in the classifications ‘Druggable Genome’ (genes with known or predicted drug interactions) and ‘Clinically Actionable’ (genes used in targeted clinical cancer sequencing for precision medicine) with 13 being common to both classifications (
<xref ref-type="fig" rid="fig6">Figure 6G</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
). Notably, this included KEAP1, an E3 ubiquitin ligase adapter protein and highlights a new therapeutic domain for the application of G4-based drugs. Performing a similar analysis on the 40 most robust sensitisers common to both G4 ligands gave 12 genes within DGIdb (
<xref ref-type="fig" rid="fig6">Figure 6H</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
), including 5 (
<italic>BRCA1, CHEK1, CDK12, TOP1, PDKP1</italic>
) common to both druggable and clinically actionable classifications. These results therefore open up new possibilities for cancer therapies based on vulnerabilities to G4 ligands.</p>
</sec>
<sec id="s2-4">
<title>G4 sensitisers common to two independent cell lines</title>
<p>We next sought to extend the use of the custom shRNA lentiviral library to gain initial insights into possible commonalities and differences in the response to G4 ligands in cells from different lineages. We therefore applied the custom library to mesenchymal-derived HT1080 fibrosarcoma cells (wild-type
<italic>TP53</italic>
, driven by activated
<italic>NRAS</italic>
(Q61K) and
<italic>IDH1</italic>
mutation (R132C)) and compared the results to those from ectodermal A375 melanoma cells above (
<xref ref-type="fig" rid="fig7">Figure 7</xref>
,
<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1F & G</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary files 1 & 2</xref>
). The custom HT1080 screen recovered a total of 121 G4 ligand sensitisers, with the majority (73 genes, 58%) shared with those seen for each ligand in the A375 genome-wide screen. Cytoscape network analysis (
<xref ref-type="fig" rid="fig7">Figure 7A</xref>
) revealed a core set of G4-associated genes/pathways for these genes in spliceosome, HR and ubiquitin-mediated proteolysis processes (p<0.0005). Overall, 29 PDS and 22 PhenDC3 gene sensitivities were found to be shared across all three screens (
<xref ref-type="fig" rid="fig7">Figure 7B,C</xref>
), and it is noteworthy that both G4 ligands targeted similar processes including transcription, splicing and ubiquitin-mediated proteolysis (
<xref ref-type="fig" rid="fig7">Figure 7D,E</xref>
).</p>
<fig id="fig7" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.46793.010</object-id>
<label>Figure 7.</label>
<caption>
<title>G4 sensitivities in two different cell lines.</title>
<p>(
<bold>A</bold>
) Enriched KEGG and GO pathways for all G4 ligand-specific sensitisers (73 genes) shared between the genome-wide A375 and HT1080 screens. A right-sided enrichment test with Bonferroni correction used (see Materials and methods). (
<bold>B–C</bold>
) Comparison of G4 sensitisers across A375 focused, A375 genome-wide and HT1080 focused screens for (
<bold>B</bold>
) PhenDC3 and (
<bold>C</bold>
) PDS. (
<bold>D–E</bold>
) DAVID, STRING (experimental data, co-expression, medium confidence (≥0.4) interaction) and UniProtKB data analysis showing biochemical functions for common PhenDC3 (
<bold>D</bold>
) and PDS (
<bold>E</bold>
) sensitisers across all three screens. *=genes in multiple categories. Blue, four sensitisers common to both ligands. (
<bold>F</bold>
) Left, common sensitiser genes across all three screens. Right, number of depleted hairpins and median log
<sub>2</sub>
FC values for four key genes found as both PDS and PhenDC3 sensitisers across all the three screens. See also
<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1</xref>
,
<xref ref-type="supplementary-material" rid="supp1">Supplementary file 1</xref>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig7"></graphic>
<p content-type="supplemental-figure">
<fig id="fig7s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.011</object-id>
<label>Figure 7—figure supplement 1.</label>
<caption>
<title>Focused HT1080 and A375 cell screening reveals shared PDS and PhenDC3 sensitivities.</title>
<p>(
<bold>A</bold>
) Cumulative population doublings for HT1080 cells for DMSO, PDS and PhenDC3 (mean and standard deviation from three cell counts per condition). (
<bold>B</bold>
) Comparison between the numbers of shRNAs targeting each gene, with the maximum capped at seven per gene. (
<bold>C–E</bold>
) Venn diagrams from the HT1080 focused screen showing (
<bold>C</bold>
) significantly depleted shRNAs at t15 v t0 (FDR ≤ 0.05) for DMSO, PDS and PhenDC3 treatment, (
<bold>D</bold>
) significantly depleted genes (minimum 50% or three significant shRNAs; FDR ≤ 0.05) and (
<bold>E</bold>
) sensitiser genes (significantly depleted in PDS or PhenDC3 but not DMSO and median log
<sub>2</sub>
FC ≤ −1). (
<bold>F–G</bold>
) Venn diagrams showing G4-ligand-specific sensitisers overlapping between (
<bold>F</bold>
) the genome-wide (GW) A375 and HT1080 focused screens and (
<bold>G</bold>
) the HT1080 and A375 focused screens (50% or three significantly depleted with a median log
<sub>2</sub>
FC ≤ −1). See also
<xref ref-type="supplementary-material" rid="supp2">Supplementary file 2</xref>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig7-figsupp1"></graphic>
</fig>
</p>
</fig>
</sec>
<sec id="s2-5">
<title>
<italic>BRCA1, TOP1, DDX42</italic>
and
<italic>GAR1</italic>
are key G4 ligand sensitiser genes</title>
<p>When we evaluated the data collectively from all screens, it was apparent that four genes were repeatedly found as G4 ligand sensitisers-
<italic>BRCA1, TOP1, DDX42</italic>
and
<italic>GAR1,</italic>
as they consistently appeared in both cell types and with both G4-ligands in all screens (
<xref ref-type="fig" rid="fig7">Figure 7F</xref>
,
<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1F</xref>
). To corroborate these genes as genuine G4 sensitisers, we developed an independent siRNA knockdown approach using a shorter timeframe (~6 days) to recapitulate ligand-induced growth inhibition (
<xref ref-type="fig" rid="fig8">Figure 8</xref>
). Both A375 and HT1080 cells were transfected with siRNAs targeting
<italic>BRCA1, TOP1, DDX42</italic>
or
<italic>GAR1</italic>
alongside non-targeting siRNA and non-transfected controls. Following 24 hr, cells were treated with two concentrations of PDS and PhenDC3 or vehicle control DMSO for 144 hr. Growth curves for non-transfected and non-targeting siRNA controls were similar across ligand treatments in both cell lines (
<xref ref-type="fig" rid="fig8s1">Figure 8—figure supplements 1</xref>
and
<xref ref-type="fig" rid="fig8s2">2</xref>
). For both HT1080 (
<xref ref-type="fig" rid="fig8">Figure 8A & B</xref>
) and A375 cells (
<xref ref-type="fig" rid="fig8s3">Figure 8—figure supplement 3A & B</xref>
), protein depletion following siRNA transfection was confirmed after 48 hr by immunoblotting cell lysates with the appropriate antibodies (average 76–92% knockdown for HT1080; 41–69% knockdown for A375 after 48 hr). The percentage difference in confluency compared to non-targeting siRNA control cells was plotted (
<xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1B–E</xref>
and
<xref ref-type="fig" rid="fig8s3">Figure 8—figure supplement 3C–F</xref>
) and compared to DMSO treatment at 72, 96 and 120 hr (
<xref ref-type="fig" rid="fig8">Figure 8C–F</xref>
,
<xref ref-type="fig" rid="fig8s3">Figure 8—figure supplement 3G–J</xref>
).</p>
<fig id="fig8" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.46793.012</object-id>
<label>Figure 8.</label>
<caption>
<title>siRNA knockdowns validate
<italic>BRCA1</italic>
,
<italic>TOP1</italic>
,
<italic>DDX42</italic>
and
<italic>GAR1 as</italic>
key G4 ligand sensitiser genes.</title>
<p>(
<bold>A</bold>
) HT1080 cells were treated with non-targeting (NT) or targeting (T) siRNAs for
<italic>BRCA1</italic>
,
<italic>TOP1, DDX42</italic>
and
<italic>GAR1</italic>
. 48 hr and 144 hr after transfection, cell lysates and a non-transfected cell lysate (U) were probed with appropriate antibodies and actin control by western blotting. (
<bold>B</bold>
) Protein levels for targeting (T) and non-targeting (NT) 48 hr lysates were normalised to the internal actin control and then normalised to NT levels for three biological replicates (mean ± standard deviation). (
<bold>C–F</bold>
) HT1080 cells were transfected with targeting siRNAs for 24 hr before PDS, PhenDC3 or DMSO treatment. Comparative box plots of confluency differences and significance (unpaired parametric t-test) at selected timepoints for (
<bold>C</bold>
)
<italic>BRCA1</italic>
, (
<bold>D</bold>
)
<italic>TOP1</italic>
, (
<bold>E</bold>
)
<italic>DDX42</italic>
, (
<bold>F</bold>
)
<italic>GAR</italic>
(ns = not significant) for three separate siRNA transfections. See also
<xref ref-type="fig" rid="fig8s1">Figure 8—figure supplements 1</xref>
,
<xref ref-type="fig" rid="fig8s2">2</xref>
and
<xref ref-type="fig" rid="fig8s3">3</xref>
.</p>
<p>
<supplementary-material content-type="local-data" id="fig8sdata1">
<object-id pub-id-type="doi">10.7554/eLife.46793.017</object-id>
<label>Figure 8—source data 1.</label>
<caption>
<title>Source files for western blots.</title>
<p>(
<bold>A</bold>
) Full length western blots and (
<bold>B</bold>
) capillary traces obtained from Compass Software (Simple Western) for results shown in
<xref ref-type="fig" rid="fig8">Figure 8A</xref>
.</p>
</caption>
<media mime-subtype="pdf" mimetype="application" xlink:href="elife-46793-fig8-data1.pdf" orientation="portrait" id="d35e1415" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-46793-fig8"></graphic>
<p content-type="supplemental-figure">
<fig id="fig8s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.013</object-id>
<label>Figure 8—figure supplement 1.</label>
<caption>
<title>Short-term siRNA knockdowns of four key sensitisers in HT1080 cells show dose-dependent growth inhibition with G4-ligands.</title>
<p>(
<bold>A</bold>
) HT1080 cells were transfected with targeting siRNAs (orange) against BRCA1, TOP1, DDX42 or GAR1 for 24 hr before treatment with PDS (0.25 μM and 0.5 μM), PhenDC3 (20 μM and 40 μM) or vehicle control (DMSO). For each knockdown, confluency over 144 hr was monitored and plotted against confluency of non-transfected cells (blue) and cells transfected with a non-targeting control siRNA (green). Experiments were performed in triplicate and average confluency accumulation shown (mean ± standard deviation). (
<bold>B–D</bold>
) Confluency differences (mean ± standard deviation) compared to NT siRNA were plotted across three replicates for (
<bold>B</bold>
)
<italic>BRCA1</italic>
, (
<bold>C</bold>
)
<italic>TOP1</italic>
, (
<bold>D</bold>
)
<italic>DDX42</italic>
, (
<bold>E</bold>
)
<italic>GAR1</italic>
.</p>
</caption>
<graphic xlink:href="elife-46793-fig8-figsupp1"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig8s2" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.014</object-id>
<label>Figure 8—figure supplement 2.</label>
<caption>
<title>Short-term siRNA knockdowns of four key G4-sensitisers in A375 cells show dose-dependent growth inhibition with G4-ligands.</title>
<p>A375 cells were transfected with targeting siRNAs (orange) against BRCA1, TOP1, DDX42 or GAR1 for 24 hr before treatment with PDS (5 μM and 10 μM), PhenDC3 (20 μM and 40 μM) or vehicle control (DMSO). For each knockdown, confluency over 144 hr was monitored and plotted against confluency of non-transfected cells (blue) and cells transfected with a non-targeting control siRNA (green). Experiments were performed in triplicate and average confluency accumulation shown (mean ± standard deviation).</p>
</caption>
<graphic xlink:href="elife-46793-fig8-figsupp2"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig8s3" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.015</object-id>
<label>Figure 8—figure supplement 3.</label>
<caption>
<title>Short-term siRNA knockdowns validate four key sensitivities from the shRNA screening in A375 cells.</title>
<p>(
<bold>A</bold>
) For
<italic>BRCA1</italic>
,
<italic>TOP1</italic>
,
<italic>DDX42</italic>
and
<italic>GAR1</italic>
, A375 cells were transfected with non-targeting (NT) or targeting (T) siRNAs. 48 hr and 144 hr after transfection, lysates were probed appropriate antibodies alongside a non-transfected lysate (U). (
<bold>B</bold>
) BRCA1, TOP1, DDX42 and GAR1 protein levels for targeting (T) and non-targeting (NT) lysates were normalised to the internal actin control and then normalised to NT levels for three independent blots 48 hr (top) and two independent blots 144 hr (bottom) after transfection (mean ± standard deviation). (
<bold>C–F</bold>
) A375 cells were transfected with the targeting siRNAs for 24 hr before PDS, PhenDC3 or DMSO treatment. Average confluency difference (mean ± standard deviation) compared to NT siRNA plotted across three replicates for (
<bold>C</bold>
) BRCA1, (
<bold>D</bold>
) TOP1, (
<bold>E</bold>
) DDX42, (
<bold>F</bold>
) GAR1. Confluency differences at 72, 96 and 120 hr plotted for comparison for (
<bold>G</bold>
) BRCA1, (
<bold>H</bold>
) TOP1, (
<bold>I</bold>
) DDX42, (
<bold>J</bold>
) GAR1.</p>
<p>
<supplementary-material content-type="local-data" id="fig8s3sdata1">
<object-id pub-id-type="doi">10.7554/eLife.46793.016</object-id>
<label>Figure 8—figure supplement 3—source data 1.</label>
<caption>
<title>Source files for western blots.</title>
<p>(
<bold>A</bold>
) Full length western blots and (
<bold>B</bold>
) capillary traces obtained from Compass Software (Simple Western) for results shown in
<xref ref-type="fig" rid="fig8s3">Figure 8—figure supplement 3A</xref>
.</p>
</caption>
<media mime-subtype="pdf" mimetype="application" xlink:href="elife-46793-fig8-figsupp3-data1.pdf" orientation="portrait" id="d35e1547" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-46793-fig8-figsupp3"></graphic>
</fig>
</p>
</fig>
<p>Mirroring the shRNA screen findings, siRNA knockdown of all four genes in HT1080 cells imparted significant increases in sensitivity with PDS or PhenDC3 compared to DMSO. Some differences between the ligands and individual gene knockdowns were noted. For
<italic>BRCA1</italic>
and
<italic>TOP1</italic>
the lowest concentration of PDS resulted in the most sensitisation and this was evident early at 72 hr, whereas both PhenDC3 concentrations resulted in similar growth inhibition and was apparent later (
<xref ref-type="fig" rid="fig8">Figure 8C & D</xref>
<xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1</xref>
). For DDX42 and GAR1, growth inhibition was mostly manifest from 96 hr, with both ligands and concentrations being broadly similar (
<xref ref-type="fig" rid="fig8">Figure 8E & F</xref>
,
<xref ref-type="fig" rid="fig8s1">Figure 8—figure supplement 1</xref>
). Results with the A375 cells also lend support to our observations, although there were some differences compared to HT1080 cells (
<xref ref-type="fig" rid="fig8s2">Figure 8—figure supplements 2</xref>
and
<xref ref-type="fig" rid="fig8s3">3</xref>
). While
<italic>GAR1</italic>
knockdown showed a similar sensitivity profile,
<italic>BRCA1</italic>
and
<italic>TOP1</italic>
deficiencies were sensitive to PDS but not PhenDC3.
<italic>DDX42</italic>
knockdown in A375 cells did not reflect the screens ligand sensitivities and this may in part be due to lower knockdown efficiency compared (~40%). Nonetheless, these independent siRNA short-term assays substantiate that
<italic>BRCA1, TOP1, DDX42</italic>
and
<italic>GAR1</italic>
are genetic vulnerabilities to G4 ligands and these may open up future possibilities for therapeutic development.</p>
</sec>
<sec id="s2-6">
<title>G4-targeting ligands plus pharmacological inhibitors of G4 sensitiser genes demonstrate synergistic cell killing</title>
<p>One of our aims was to identify potential cancer genotypes where G4-ligands could be therapeutically exploited. Cancers deficient in our newly discovered G4 sensitisers may be preferentially sensitive to G4-ligands as single agents. Alternatively, rather than exploiting a genetic deficiency per se, it may be possible to use pharmacological inhibition of a critical cancer gene product that phenocopies the deficiency in combination with G4 ligands as an orthogonal approach (
<xref ref-type="fig" rid="fig9">Figure 9A</xref>
). As proof-of-principle, we systematically evaluated cell death potentiation with the G4 ligand PDS in combination with pharmacological inhibitors for two new G4 sensitisers gene products, the WEE1 kinase or the deubiquitinase USP1 (
<xref ref-type="fig" rid="fig9">Figure 9B</xref>
). WEE1 is a crucial G2/M regulator overexpressed in several cancers (
<xref rid="bib80" ref-type="bibr">Matheson et al., 2016</xref>
), and USP1 is involved in DDR regulation and is overexpressed in non-small cell lung and other cancers (reviewed in
<xref rid="bib46" ref-type="bibr">García-Santisteban et al., 2013</xref>
). For our studies, we used MK1775 (AZD1775), a WEE1 kinase inhibitor that is being clinically evaluated in several cancers (
<xref rid="bib100" ref-type="bibr">Richer et al., 2017</xref>
), and pimozide a potent USP1-targeting drug (
<xref rid="bib25" ref-type="bibr">Chen et al., 2011a</xref>
). HT1080 and A375 cells were cultured in matrix combinations of PDS with MK1775 or pimozide at concentrations surrounding the GI
<sub>50</sub>
values and cell viability measured after 96 hr using an end-point ATP luminescence-based assay (CellTiter-Glo, Promega). Combenefit software (
<xref rid="bib37" ref-type="bibr">Di Veroli et al., 2016</xref>
) was then used to calculate synergy for different treatment combinations in which the percentage growth inhibition compared to single agent controls is used to plot a 3D-dose-response surface of synergy distribution in concentration space (
<xref ref-type="fig" rid="fig9">Figure 9C–F</xref>
). In HT1080 cells, synergy was found for both PDS and MK1775 or pimozide combinations (
<xref ref-type="fig" rid="fig9">Figure 9C,D</xref>
,
<xref ref-type="fig" rid="fig9s1">Figure 9—figure supplement 1</xref>
) with peak synergies of 21% and 24% at 156 nM PDS with 21 nM MK1775 or 6.25 μM pimozide, respectively (GI
<sub>50</sub>
for PDS, MK1775 and pimozide alone = 322 nM, 59 nM and 8.4 μM, respectively). A375 cells showed lower synergy with PDS and MK1775 combination (
<xref ref-type="fig" rid="fig9">Figure 9E</xref>
,
<xref ref-type="fig" rid="fig9s1">Figure 9—figure supplement 1</xref>
), with peak synergy of 15% at 8 μM PDS, 444 nM MK1775 (GI
<sub>50</sub>
for PDS, MK1775 and pimozide alone = 8.5 μM, 625 nM and 12.2 μM, respectively). The greatest synergy was seen in combinations of PDS and pimozide in A375 cells (
<xref ref-type="fig" rid="fig9">Figure 9F</xref>
,
<xref ref-type="fig" rid="fig9s1">Figure 9—figure supplement 1</xref>
) with a peak synergy of 61% at 5.33 μM PDS, 6.25 μM pimozide. Furthermore, long-term clonogenic survival assays revealed a similar potentiation of growth inhibition, albeit at lower compound concentrations, for PDS/MK1775 and PDS/pimozide drug combinations for both cell lines tested (
<xref ref-type="fig" rid="fig9s2">Figure 9—figure supplement 2</xref>
). Altogether, these results validate that appropriate drug combinations can synergistical act as a surrogate for gene deficiencies in the presence of G4 ligands and thus complements the findings uncovered by our genetic screening approach.</p>
<fig id="fig9" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.46793.018</object-id>
<label>Figure 9.</label>
<caption>
<title>Cell death potentiation mediated by pharmacological inhibition of WEE1 or USP1 with the G4-stabilising ligand PDS.</title>
<p>(
<bold>A</bold>
) Cell death potentiation with G4-stabilising ligands in combination with either gene deficiencies, such as shRNA-mediated knockdown (top), or pharmacological inhibition of a protein (bottom). (
<bold>B</bold>
) Numbers of depleted shRNA hairpins and median log
<sub>2</sub>
FC values for WEE1 and USP1 in the genome-wide and focused screens. (
<bold>C–F</bold>
) Synergy plots for HT1080 (
<bold>C, D</bold>
) and A375 (
<bold>E, F</bold>
) cells treated with PDS in combination with MK1775 (
<bold>C, E</bold>
) or pimozide (
<bold>D, F</bold>
). To determine any synergy in cell killing, 3D response surface plots were calculated using Combenefit software with the BLISS model for an average of three biological replicas. Heat bar- blue shading indicates synergy combinations, red indicates antagonism (see also
<xref ref-type="fig" rid="fig9s1">Figure 9—figure supplements 1</xref>
and
<xref ref-type="fig" rid="fig9s2">2</xref>
).</p>
</caption>
<graphic xlink:href="elife-46793-fig9"></graphic>
<p content-type="supplemental-figure">
<fig id="fig9s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.019</object-id>
<label>Figure 9—figure supplement 1.</label>
<caption>
<title>Synergy calculations for PDS with MK1775 and pimozide.</title>
<p>(
<bold>A–D</bold>
) Cell viability Cell-Titer Glo 96 hr luminescent values for HT1080 and A375 treated with PDS and MK1775 or PDS and pimozide, were normalised to the untreated controls (denoted 100% viability) and the viability of each condition expressed as a percentage of the untreated cells. These input values are then analysed using the BLISS model within the Combenefit software package to create a matrix of how the treatment ‘controls’ cell viability. Brown denotes high control, thus low viability. (
<bold>E–H</bold>
) 2D BLISS synergy matrix derived from ‘control’ input. Each dose combination is given a synergy score. Blue and a high percentage indicates synergy.</p>
</caption>
<graphic xlink:href="elife-46793-fig9-figsupp1"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig9s2" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.020</object-id>
<label>Figure 9—figure supplement 2.</label>
<caption>
<title>Clonogenic cell survival assay demonstrates enhanced cell death upon treatment with PDS in combination MK1775 or pimozide.</title>
<p>Clonogenic survival of HT1080 and A375 cells after 8-day exposure to the indicated drug combinations. (
<bold>A–D</bold>
) Colony intensity values, determined by ColonyArea Image J plugin, were expressed as a percentage of untreated (DMSO only) controls. (
<bold>E–H</bold>
) BLISS synergy matrix derived using Combenefit software package from normalised colony intensity values. Mean ± standard deviation shown (
<bold>I–L</bold>
) Representative SRB-stained colonies for A375 (
<bold>K</bold>
and
<bold>L</bold>
) and HT1080 (
<bold>I</bold>
and
<bold>J</bold>
) cells. Three biological replicates were performed.</p>
</caption>
<graphic xlink:href="elife-46793-fig9-figsupp2"></graphic>
</fig>
</p>
</fig>
</sec>
<sec id="s2-7">
<title>Identification of DDX42 as a new G4-binding protein</title>
<p>Another of our aims was to use the findings of our shRNA screen to identify proteins that may bind and/or regulate G4 structures in cells, such as G4 helicases. Indeed, DHX36 and DHX9, known G4 helicases (
<xref rid="bib47" ref-type="bibr">Giri et al., 2011</xref>
;
<xref rid="bib27" ref-type="bibr">Chen et al., 2018</xref>
;
<xref rid="bib22" ref-type="bibr">Chakraborty and Grosse, 2011</xref>
<xref rid="bib30" ref-type="bibr">Creacy et al., 2008</xref>
 ;
<xref rid="bib120" ref-type="bibr">Vaughn et al., 2005</xref>
) and the DEAD box protein DDX3X, that was recently shown to bind RNA G4s (
<xref rid="bib57" ref-type="bibr">Herdy et al., 2018</xref>
), were identified as G4 sensitisers in our screen. Further members of the DDX/DHX helicase family also appeared as G4 sensitisers (
<xref ref-type="fig" rid="fig10">Figure 10A</xref>
), raising the question of whether these represent previously uncharacterized G4-binding proteins. To address this directly, we chose to investigate DDX42 as this was one of the four key G4 sensitisers identified above. DDX42 is a non-processive RNA helicase (
<xref rid="bib118" ref-type="bibr">Uhlmann-Schiffler et al., 2006</xref>
) and has been associated with splicing (
<xref rid="bib126" ref-type="bibr">Will et al., 2002</xref>
); however, this protein remains largely uncharacterised. By immunoblotting of nuclear and cytoplasmic sub-cellular fractions (
<xref ref-type="fig" rid="fig10">Figure 10B–E</xref>
), we first established that DDX42 predominantly localises to the nucleus (~4 to 9-fold greater than cytoplasmic levels) in three independent cell lines, (HT1080, HEK293 and HeLa). As controls for fractionation, LaminB1 and GAPDH were found to partition as expected into nuclear and cytoplasmic fractions, respectively (
<xref ref-type="fig" rid="fig10">Figure 10C,D</xref>
).</p>
<fig id="fig10" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.46793.021</object-id>
<label>Figure 10.</label>
<caption>
<title>DDX42 is a predominantly nuclear G4-binding protein.</title>
<p>(
<bold>A</bold>
) Number of depleted hairpins and median log
<sub>2</sub>
FC values for DEAH/DEAD-box helicase genes within the 758 genes identified in the genome-wide screen. Those highlighted in blue caused sensitivity to both PDS and PhenDC3. (
<bold>B</bold>
) Representative immunoblots showing cytoplasmic (C) and nuclear (
<bold>N</bold>
) lysates for HT1080, human embryonic kidney (HEK) and HeLa cells probed for DDX42, laminB1 and GAPDH2. (
<bold>C, D</bold>
) GAPDH and laminB1 protein levels for (
<bold>C</bold>
) cytoplasmic and (
<bold>D</bold>
) nuclear lysates (mean for two biological replicates ± standard deviation). (
<bold>E</bold>
) DDX42 nuclear protein levels (normalised to cytoplasmic levels, mean for two biological replicates ± standard deviation). (
<bold>F, G</bold>
) DDX42 binding curves G4s by ELISA. (
<bold>F</bold>
) NRAS 5’ UTR RNA G4 (rG4), mutated G4 sequence (rG4 mut) and RNA hairpin. (
<bold>G</bold>
) MYC DNA G4 (dG4) and mutated control (dG4 mut). Apparent K
<sub>d</sub>
is calculated from five replicates (values are indicative as the model assumes saturation kinetics).</p>
<p>
<supplementary-material content-type="local-data" id="fig10sdata1">
<object-id pub-id-type="doi">10.7554/eLife.46793.023</object-id>
<label>Figure 10—source data 1.</label>
<caption>
<title>Source files for western blots.</title>
<p>(
<bold>A</bold>
) Full-length western blots and (
<bold>B</bold>
) capillary traces obtained from Compass Software (Simple Western) for results shown in
<xref ref-type="fig" rid="fig10">Figure 10A</xref>
.</p>
</caption>
<media mime-subtype="pdf" mimetype="application" xlink:href="elife-46793-fig10-data1.pdf" orientation="portrait" id="d35e1858" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-46793-fig10"></graphic>
<p content-type="supplemental-figure">
<fig id="fig10s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.46793.022</object-id>
<label>Figure 10—figure supplement 1.</label>
<caption>
<title>Circular dichroism spectroscopy for G4 oligonucleotides.</title>
<p>Circular dichroism spectra for G4-forming oligonucleotides (red) and mutated controls (blue) annealed in 100 mM KCl. G4 structures show a characteristic signature with a positive peak at 264 nm and negative peak at 241 nm. (
<bold>A</bold>
) NRAS 5’UTR RNA G4 and (
<bold>B</bold>
) MYC promoter DNA G4.</p>
</caption>
<graphic xlink:href="elife-46793-fig10-figsupp1"></graphic>
</fig>
</p>
</fig>
<p>As DDX42 is known to bind RNA, we next set out to demonstrate DDX42 affinity for a RNA-G4 structure as this has not previously been documented. For this, a G4 RNA oligonucleotide from the NRAS 5’UTR sequence, which forms a stable parallel G4 (
<xref rid="bib68" ref-type="bibr">Kumari et al., 2007</xref>
), was used together with a mutated oligonucleotide unable to form a G4 structure and also a RNA hairpin as negative controls (
<xref rid="bib57" ref-type="bibr">Herdy et al., 2018</xref>
). Oligonucleotides were folded in 100 mM KCl to promote G4 structure formation and the resultant structures confirmed by circular dichroism (CD) spectroscopy (
<xref ref-type="fig" rid="fig10s1">Figure 10—figure supplement 1</xref>
). The affinity of recombinant DDX42 was then investigated by Enzyme Linked Immunosorbent Assay (ELISA,
<xref ref-type="fig" rid="fig10">Figure 10F</xref>
) and binding parameters calculated using a non-linear regression model, assuming one-site-specific binding and saturation kinetics using Prism software. DDX42 bound the NRAS G4 folded in KCl with an apparent K
<sub>d</sub>
of 71.1 ± 3.5 nM and did not bind detectably to the mutant oligonucleotide or RNA hairpin controls.</p>
<p>Given the nuclear localisation of DDX42 and as some DDX proteins also have DNA helicase activity (
<xref rid="bib65" ref-type="bibr">Kikuma et al., 2004</xref>
), the DDX42 affinity for a DNA G4 structure was investigated. For this, an oligonucleotide corresponding to the stable parallel G4 structure in the promoter of
<italic>MYC</italic>
(
<xref rid="bib48" ref-type="bibr">González and Hurley, 2010</xref>
;
<xref rid="bib132" ref-type="bibr">Yang and Hurley, 2006</xref>
), and a non-G4 forming control, were used. The oligonucleotides were folded in 100 mM KCl and structures verified by CD spectroscopic analysis (
<xref ref-type="fig" rid="fig10s1">Figure 10—figure supplement 1B</xref>
). DDX42 affinity by ELISA (
<xref ref-type="fig" rid="fig10">Figure 10G</xref>
) showed that DDX42 binds to the MYC DNA G4 with an apparent K
<sub>d</sub>
of 232.9 ± 23.5 nM with little binding to the mutant control. Thus, the G4 sensitiser screen has enabled us to identify and classify DDX42 as a G4-interacting protein as a new finding.</p>
</sec>
</sec>
<sec sec-type="discussion" id="s3">
<title>Discussion</title>
<p>G4 structures are emerging as promising clinical targets in cancer (
<xref rid="bib130" ref-type="bibr">Xu et al., 2017</xref>
) but the range of disease-associated genetic backgrounds that potentiate G4 ligand effects has yet to be defined. Here, we have discovered many genes that when depleted enhance cell killing with the G4 ligands PDS and/or PhenDC3. The majority of these have no documented link to G4 biology and the use of low ligand concentrations is likely to favour discovery of gene losses that are the most sensitive in imparting selective cell killing. Validating the success of our approach, we independently identified G4-associated protein coding genes known to be genetic vulnerabilities to G4 ligands including
<italic>BRCA1/2, HERC2</italic>
and
<italic>ATRX</italic>
(
<xref rid="bib83" ref-type="bibr">McLuckie et al., 2013</xref>
;
<xref rid="bib123" ref-type="bibr">Wang et al., 2019</xref>
;
<xref rid="bib124" ref-type="bibr">Watson et al., 2013</xref>
;
<xref rid="bib128" ref-type="bibr">Wu et al., 2018</xref>
;
<xref rid="bib130" ref-type="bibr">Xu et al., 2017</xref>
<xref rid="bib137" ref-type="bibr">Zimmer et al., 2016</xref>
). We now report for the first time genetic vulnerabilities in 20 other known G4-associated genes that promote sensitivity to G4-stabilising ligands. These include direct nucleic acid binders and/or unwinders, such as ADAR, DHX36, DNA2, FUS, MCRS1, RECQL4, SF3B3 and XRN1.</p>
<p>The clinical PARP inhibitor, olaparib has exemplified the concept of synthetic lethality in BRCA-deficient cells (
<xref rid="bib18" ref-type="bibr">Bryant et al., 2005</xref>
;
<xref rid="bib41" ref-type="bibr">Farmer et al., 2005</xref>
), and it is notable that BRCA deficiencies were isolated as one of the top genetic vulnerabilities for both G4 ligands in both A375 and HT1080 cells. While PDS and PhenDC3 have not been optimised by medicinal chemistry, the findings of Zimmer et al showing similar efficacy of PDS and olaparib in several BRCA-deficient models (
<xref rid="bib137" ref-type="bibr">Zimmer et al., 2016</xref>
) lends further support that our screen detects robust, biologically relevant effects.</p>
<p>In dropout screens, dissociating minor from robust growth effects is important and is highly dependent on parameters such as compound dose, genotype and cell line selected. Our screen was designed with stringent parameters to detect genes deficiencies worthy of further exploration. Indeed, we demonstrate potent growth inhibition of up to 80% of the four top G4 sensitisers genes in a parallel siRNA approach.</p>
<p>The gene sensitivities uncovered here have potential to be exploited chemotherapeutically in cancer by deploying a G4-stabilising drug as a single-agent therapy. Alternatively, in the absence of a particular gene deficiency, pharmacological inhibition of a critical oncogene could phenocopy the genetic sensitivities described here and be used in combinatorial treatments with G4-stabilising drugs. This may be attractive as cells are less likely to simultaneously develop resistance against two drugs (reviewed in
<xref rid="bib24" ref-type="bibr">Chan and Giaccia, 2011</xref>
). Furthermore, as lower drug doses are used, this increases the therapeutic window and has less adverse side effects. As proof-as-principle for this, we selected the WEE1 cell cycle kinase and the deubiquitinase USP1, and demonstrated that their pharmacological inhibition, with MK1775 and pimozide, respectively, leads to the potentiation of cell death in conjunction with the G4 ligand PDS. For example, 5.3 μM PDS or 6.25 μM pimozide alone impart little growth inhibition (14% and 6% respectively), but together they lead to strong growth inhibition (79%).
<xref rid="table1" ref-type="table">Table 1</xref>
highlights further potential combinatorial opportunities for cancer-associated genes with clinical and/or experimental drugs. Additional therapeutic possibilities for other gene sensitivities that are largely still to be explored from a pharmacological perspective are illustrated in
<xref rid="table2" ref-type="table">Table 2</xref>
.</p>
<table-wrap id="table1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.46793.024</object-id>
<label>Table 1.</label>
<caption>
<title>Possible chemotherapeutic combinations for G4-stabilising ligands with clinically relevant pharmacological drugs</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1">Gene</th>
<th rowspan="1" colspan="1">Oncogene/tumour suppressor</th>
<th rowspan="1" colspan="1">Combinatorial/single agent</th>
<th rowspan="1" colspan="1">Available drug treatments</th>
<th rowspan="1" colspan="1">Cancer association
<break></break>
summary</th>
<th rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">BRCA1/2</td>
<td rowspan="1" colspan="1">Tumour suppressor</td>
<td rowspan="1" colspan="1">Single agent</td>
<td rowspan="1" colspan="1">Olaparib CX-5461</td>
<td rowspan="1" colspan="1">Deficient in ovarian,breast and colorectal cancer.</td>
<td rowspan="1" colspan="1">
<xref rid="bib72" ref-type="bibr">Lee et al., 2014</xref>
;
<break></break>
<xref rid="bib130" ref-type="bibr">Xu et al., 2017</xref>
<xref rid="bib83" ref-type="bibr">McLuckie et al., 2013</xref>
;
<xref rid="bib137" ref-type="bibr">Zimmer et al., 2016</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CCDC6</td>
<td rowspan="1" colspan="1">Tumour suppressor</td>
<td rowspan="1" colspan="1">Single agent</td>
<td rowspan="1" colspan="1">Olaparib</td>
<td rowspan="1" colspan="1">Inactivated in thyroid and lung cancers. CCDC6-deficient tumours are cisplatin-resistant but olaparib sensitive.</td>
<td rowspan="1" colspan="1">
<xref rid="bib97" ref-type="bibr">Puxeddu et al., 2005</xref>
;
<xref rid="bib86" ref-type="bibr">Morra et al., 2015</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CDK12</td>
<td rowspan="1" colspan="1">Oncogene</td>
<td rowspan="1" colspan="1">Combinatorial</td>
<td rowspan="1" colspan="1">Dinaclib (SCH77965)</td>
<td rowspan="1" colspan="1">High-grade serous ovariancancer, often exhibits gain-of-function CDK12.</td>
<td rowspan="1" colspan="1">
<xref rid="bib96" ref-type="bibr">Parry et al., 2010</xref>
;
<xref rid="bib6" ref-type="bibr">Bajrami et al., 2014</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">KEAP1</td>
<td rowspan="1" colspan="1">Oncogene/Tumour suppressor</td>
<td rowspan="1" colspan="1">Combinatorial/single agent</td>
<td rowspan="1" colspan="1">CDDO-Me CPUY192018</td>
<td rowspan="1" colspan="1">KEAP1 inactivated in multiple cancers including thoracic and endometrial; also hasoncogenic role, CDDO-Me used forleukaemia and sold tumours.</td>
<td rowspan="1" colspan="1">
<xref rid="bib104" ref-type="bibr">Sanchez-Vega et al., 2018</xref>
<xref rid="bib1" ref-type="bibr">Abed et al., 2015</xref>
<xref rid="bib77" ref-type="bibr">Lu et al., 2016</xref>
<xref rid="bib122" ref-type="bibr">Wang et al., 2014</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">PSMC2</td>
<td rowspan="1" colspan="1">Oncogene</td>
<td rowspan="1" colspan="1">Combinatorial</td>
<td rowspan="1" colspan="1">Proteosome inhibitors: Bortezomib CEP187710 Carfizomib</td>
<td rowspan="1" colspan="1">Ubiquitin is emerging aschemotherapeutic target, and general proteasome inhibitors clinically are used against multiple myeloma.</td>
<td rowspan="1" colspan="1">
<xref rid="bib25" ref-type="bibr">Chen et al., 2011a</xref>
;
<xref rid="bib81" ref-type="bibr">Mattern et al., 2012</xref>
<xref rid="bib40" ref-type="bibr">Edelmann et al., 2011</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">SMAD4</td>
<td rowspan="1" colspan="1">Tumour suppressor</td>
<td rowspan="1" colspan="1">Single agent</td>
<td rowspan="1" colspan="1">GSKi: NCT01632306 NCT01214603 NCT01287520</td>
<td rowspan="1" colspan="1">Inactivated in 50% of pancreatic adenocarcinomas. Negativelyregulated by GSK, GSKis in clinical trials for metastatic pancreatic cancer and acute leukaemia.</td>
<td rowspan="1" colspan="1">
<xref rid="bib106" ref-type="bibr">Schutte et al., 1996</xref>
<xref rid="bib52" ref-type="bibr">Hahn et al., 1996</xref>
;
<xref rid="bib36" ref-type="bibr">Demagny and De Robertis, 2016</xref>
;
<xref rid="bib82" ref-type="bibr">McCubrey et al., 2014</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">SRSF10</td>
<td rowspan="1" colspan="1">Oncogene</td>
<td rowspan="1" colspan="1">Combinatorial</td>
<td rowspan="1" colspan="1">E7107 1C8</td>
<td rowspan="1" colspan="1">Over-expressed in colon cancer. 1C8 inhibits SRSF10 and impairs HIV replication. FUS interactingprotein. E7107 is a splicinginhibitor preventing spliceosome assembly.</td>
<td rowspan="1" colspan="1">
<xref rid="bib136" ref-type="bibr">Zhou et al., 2014</xref>
<xref rid="bib111" ref-type="bibr">Shkreta et al., 2017</xref>
;
<xref rid="bib28" ref-type="bibr">Cheung et al., 2016</xref>
<xref rid="bib67" ref-type="bibr">Kotake et al., 2007</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">UBA3</td>
<td rowspan="1" colspan="1">Oncogene</td>
<td rowspan="1" colspan="1">Combinatorial</td>
<td rowspan="1" colspan="1">MLN4924</td>
<td rowspan="1" colspan="1">Upregulated in AML and multiple solid cancers. MLN4924 is in Phase Iclinical trials.</td>
<td rowspan="1" colspan="1">
<xref rid="bib113" ref-type="bibr">Soucy et al., 2009</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">USP1</td>
<td rowspan="1" colspan="1">Oncogene/Tumour suppressor</td>
<td rowspan="1" colspan="1">Combinatorial/single agent</td>
<td rowspan="1" colspan="1">Pimozide</td>
<td rowspan="1" colspan="1">Over-expressed inmelanoma, gastric, cervical and NSCLC; under-expressed in leukaemia and lymphoma. Pimozide is a potent USP1-targeting drug.</td>
<td rowspan="1" colspan="1">
<xref rid="bib46" ref-type="bibr">García-Santisteban et al., 2013</xref>
;
<break></break>
<xref rid="bib26" ref-type="bibr">Chen et al., 2011b</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">WEE1</td>
<td rowspan="1" colspan="1">Oncogene/Tumour suppressor</td>
<td rowspan="1" colspan="1">Combinatorial/single agent</td>
<td rowspan="1" colspan="1">AZDMK1775</td>
<td rowspan="1" colspan="1">Over-expressed in several cancers, some NSCLC are deficient.</td>
<td rowspan="1" colspan="1">
<xref rid="bib80" ref-type="bibr">Matheson et al., 2016</xref>
<xref rid="bib100" ref-type="bibr">Richer et al., 2017</xref>
<xref rid="bib5" ref-type="bibr">Backert et al., 1999</xref>
;
<xref rid="bib134" ref-type="bibr">Yoshida et al., 2004</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">WHSC1</td>
<td rowspan="1" colspan="1">Oncogene</td>
<td rowspan="1" colspan="1">Combinatorial</td>
<td rowspan="1" colspan="1">DA3003-1 PF-03882845 Chaetocin TC-LPA5-4 ABT-199</td>
<td rowspan="1" colspan="1">Over-expressed in prostate cancer, multiple myeloma and mantle cell lymphoma. five potent candidate inhibitors.</td>
<td rowspan="1" colspan="1">
<xref rid="bib29" ref-type="bibr">Coussens et al., 2017</xref>
;
<xref rid="bib9" ref-type="bibr">Bennett et al., 2017</xref>
</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="table2" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.46793.025</object-id>
<label>Table 2.</label>
<caption>
<title>Examples of cancer-associated genetic vulnerabilities to G4 ligands.</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1">Gene category</th>
<th rowspan="1" colspan="1">Gene name</th>
<th rowspan="1" colspan="1">Function/pathway Summary</th>
<th rowspan="1" colspan="1">Cancer
<break></break>
association summary</th>
<th rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4" colspan="1">DNA damage repair</td>
<td rowspan="1" colspan="1">PALB2</td>
<td rowspan="1" colspan="1">Homologous recombination; binds BRCA2</td>
<td rowspan="1" colspan="1">Inactivating mutations predispose patients to
<break></break>
myeloid leukaemia, Wilm’s tumour
<break></break>
and Fanconi anaemia.</td>
<td rowspan="1" colspan="1">
<xref rid="bib55" ref-type="bibr">Harrigan et al., 2018</xref>
;
<break></break>
<xref rid="bib91" ref-type="bibr">Nepomuceno et al., 2017</xref>
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"> BAP1</td>
<td rowspan="1" colspan="1">Homologous recombination; binds BRCA1, deubiquitinase for Histone 2A and tumour suppressor HCFC-1</td>
<td rowspan="1" colspan="1">Inactivating mutations foundin uveal melanoma and mesotheliomas.</td>
<td rowspan="1" colspan="1">
<xref rid="bib55" ref-type="bibr">Harrigan et al., 2018</xref>
;
<xref rid="bib21" ref-type="bibr">Carbone et al., 2013</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"> USP1</td>
<td rowspan="1" colspan="1">Fanconi anaemia and translesion synthesis DDR; deubiquitinase required for FANCD2, FANCI and PCNA localisation to sites of DNA
<break></break>
damage</td>
<td rowspan="1" colspan="1">USP1 mRNA over-expressed in melanoma, gastric, cervical and NSCLC; under-expressed in leukaemia and lymphoma.</td>
<td rowspan="1" colspan="1">
<xref rid="bib55" ref-type="bibr">Harrigan et al., 2018</xref>
;
<break></break>
<xref rid="bib92" ref-type="bibr">Nijman et al., 2005</xref>
;
<break></break>
<xref rid="bib58" ref-type="bibr">Huang et al., 2006</xref>
;
<break></break>
<xref rid="bib46" ref-type="bibr">García-Santisteban et al., 2013</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"> TOP1</td>
<td rowspan="1" colspan="1">Relieves torsional stress during DNA replication; suppresses genomic instability at actively transcribed exogenous G4-forming sequences</td>
<td rowspan="1" colspan="1">Common cancer target, to
<break></break>
induces DNA damage following pharmacological inhibition, lethal to cells.</td>
<td rowspan="1" colspan="1">
<xref rid="bib131" ref-type="bibr">Yadav et al., 2014</xref>
;
<break></break>
<xref rid="bib121" ref-type="bibr">Wang, 2002</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Helicase activity</td>
<td rowspan="1" colspan="1">RECQL4 RTEL1</td>
<td rowspan="1" colspan="1">Previously identified G4-helicases</td>
<td rowspan="1" colspan="1">RECQL4 (Rothmund-Thomsun syndrome) and RTEL1 (Hoyeraal-Hreidarsson Syndrome), deficiencies impart increased risks of cancer cancer, autoimmunity and premature ageing.</td>
<td rowspan="1" colspan="1">
<xref rid="bib17" ref-type="bibr">Brosh, 2013</xref>
</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Chromatin remodellers</td>
<td rowspan="1" colspan="1">ANKRD11</td>
<td rowspan="1" colspan="1">Transcription factor; Recruits histone deacetylases</td>
<td rowspan="1" colspan="1">Tumour suppressor epigenetically silenced in breast cancers.</td>
<td rowspan="1" colspan="1">
<xref rid="bib73" ref-type="bibr">Lim et al., 2012</xref>
<break></break>
<xref rid="bib90" ref-type="bibr">Neilsen et al., 2008</xref>
<break></break>
<xref rid="bib94" ref-type="bibr">Noll et al., 2012</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">MLL4</td>
<td rowspan="1" colspan="1">H3K4 lysine methyl transferase</td>
<td rowspan="1" colspan="1">Frequently inactivated in several cancers.</td>
<td rowspan="1" colspan="1">
<xref rid="bib44" ref-type="bibr">Froimchuk et al., 2017</xref>
<xref rid="bib64" ref-type="bibr">Kadoch et al., 2013</xref>
;
<break></break>
<xref rid="bib98" ref-type="bibr">Rao and Dou, 2015</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">SMARCA4 SMARCB1 SMARCE1</td>
<td rowspan="1" colspan="1">SWI/SNF ATP-dependent chromatin remodellers</td>
<td rowspan="1" colspan="1">Mutated in 20% of human cancers; doxorubicin resistant triple-negative breast cancer is associated with loss of SMARCB1, SMARCA4, or KEAP1 (a BRCA1 interactor).</td>
<td rowspan="1" colspan="1">
<xref rid="bib64" ref-type="bibr">Kadoch et al., 2013</xref>
;
<break></break>
<xref rid="bib108" ref-type="bibr">Shain and Pollack, 2013</xref>
</td>
</tr>
<tr>
<td rowspan="3" colspan="1">Ubiquitin</td>
<td rowspan="1" colspan="1">USP37</td>
<td rowspan="1" colspan="1">Deubiquitinating enzyme which stabilises MYC</td>
<td rowspan="1" colspan="1">Upregulated in lung cancer.</td>
<td rowspan="1" colspan="1">
<xref rid="bib95" ref-type="bibr">Pan et al., 2015</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">NEDD4L</td>
<td rowspan="1" colspan="1">E3 ubiquitin ligase</td>
<td rowspan="1" colspan="1">Expression correlates with poor patient outcome in hepatocellular and gastric carcinomas.</td>
<td rowspan="1" colspan="1">
<xref rid="bib135" ref-type="bibr">Zhao et al., 2018</xref>
;
<break></break>
<xref rid="bib45" ref-type="bibr">Gao et al., 2012</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">RNF20</td>
<td rowspan="1" colspan="1">E3 ubiquitin ligase; chromatin remodelling and DDR</td>
<td rowspan="1" colspan="1">Tumour supressor down-regulated in several cancers. Deletion is main contributor to chromosomal instability in colorectal cancer.</td>
<td rowspan="1" colspan="1">
<xref rid="bib87" ref-type="bibr">Moyal et al., 2011</xref>
;
<break></break>
<xref rid="bib110" ref-type="bibr">Shema et al., 2008</xref>
;
<break></break>
<xref rid="bib8" ref-type="bibr">Barber et al., 2008</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Splicing</td>
<td rowspan="1" colspan="1">FUS</td>
<td rowspan="1" colspan="1">Splicing component and known G4-interactor</td>
<td rowspan="1" colspan="1">Over-expressed in colon, breast and liposarcoma cancers, respectively.</td>
<td rowspan="1" colspan="1">
<xref rid="bib31" ref-type="bibr">Crozat et al., 1993</xref>
;
<break></break>
<xref rid="bib39" ref-type="bibr">Dvinge et al., 2016</xref>
;
<xref rid="bib116" ref-type="bibr">Takahama et al., 2013</xref>
</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>While the custom HT1080 screen recovered 58% of sensitisers seen for each ligand in the A375 genome-wide screen, it is striking that this increases to 93% (i.e. 112 out of 121) when considering all screens irrespective of G4 ligand, suggesting remarkable consistency when comparing G4 ligand effects globally. Differences in individual ligand sensitives may arise from variances in cellular uptake and dose, for example, the GI20 dose of PhenDC3 is ten-fold higher for A375 compared to HT1080; G4 ligand-dependent molecular preference for G-tetrad end binding (
<xref rid="bib71" ref-type="bibr">Le et al., 2015</xref>
) and/or the accessibility of G4s in the chromatin of individual cell lines (
<xref rid="bib54" ref-type="bibr">Hänsel-Hertsch et al., 2016</xref>
). These points plus differences in protein knockdown efficiency, especially in A375 cells, may contribute to the differences in G4 ligand growth inhibition in our siRNA experiments. In the siRNA experiments, the G4 ligand-induced growth inhibition of both A375 and HT1080 appear not to follow a ‘typical’ dose response where higher concentrations lead to greater effects. This may in part be due to there being an optimum G4 ligand dose for a particular gene loss leading to enhanced cell death. Indeed, it is thought that lower drug concentrations better fall within a ‘synthetic lethality window’ (
<xref rid="bib93" ref-type="bibr">Nijman, 2011</xref>
). Higher doses may mask these effects, by targeting more G4s that are not dependent on the particular gene lost and/or be due to other off-target effects. This is also supported by the experiments in
<xref ref-type="fig" rid="fig9">Figure 9</xref>
that show synergy is only apparent at defined concentrations.</p>
<p>Our data additionally provides insights into the possible functions of the identified G4 sensitisers and indicates roles in DNA damage response (DDR), transcription/chromatin remodelling, nucleic acid unwinding, splicing and ubiquitin-mediated proteolysis. Our findings substantially advance our knowledge of G4 interactions with DDR beyond
<italic>BRCA1/2</italic>
as several key HR genes were identified as novel G4-sensitisers including
<italic>PALB2</italic>
,
<italic>BAP1</italic>
and the deubiquitinase
<italic>USP1</italic>
. Importantly, this highlights that such HR repair mechanisms are an integral and important cellular response in preventing cell death induced through the increased persistence of G4s. Persistent G4 structures are also inhibitory to DNA replication/cell cycle progression (reviewed in
<xref rid="bib119" ref-type="bibr">Valton and Prioleau, 2016</xref>
), and it is of note that we also uncovered many cell cycle/DNA replication sensitivities such as
<italic>PCNA, CHEK1, CCND1, CDC7, RFC2</italic>
and
<italic>RFC4.</italic>
Taken together these suggest that G4 stabilisation with small molecules could be an attractive therapeutic strategy to inhibit cell growth.</p>
<p>Deficits in G4-unwinding helicases are predicted to increase the persistence of G4 structures resulting in heightened sensitivity to G4 ligands. Several known G4-associated helicase deficiencies were recovered, including
<italic>RECQL4</italic>
,
<italic>RTEL1</italic>
and
<italic>DHX36</italic>
, alongside many others with no known G4 link (see
<xref ref-type="fig" rid="fig10">Figure 10A</xref>
). Here, we demonstrate for the first time that the DDX42 DEAD/DEAH helicase is in fact a previously unidentified structure-specific G4-binding protein. On a wider level, this acts as proof-of-principle that other specific G4 interacting proteins exist within the sensitiser list of over 700 proteins. Other known G4-helicases such as BLM, WRN, PIF1 and FANCJ (reviewed in
<xref rid="bib129" ref-type="bibr">Wu and Brosh, 2010</xref>
) were not identified as sensitisers, which may reflect functional redundancy (
<xref rid="bib114" ref-type="bibr">Spillare et al., 2006</xref>
), or a low ligand concentrations and/or cell type effects.</p>
<p>Our findings highlight the ubiquitin-protesome pathway and modifications such, as neddylation as unexplored areas with respect to G4s. The only documented ubiquitin-G4 relationship in human cells is with HERC2, an E3 ubiquitin ligase that is implicated in G4 resolution whose loss sensitises cells to G4 ligands (
<xref rid="bib128" ref-type="bibr">Wu et al., 2018</xref>
). We also independently validate
<italic>HERC2</italic>
as a G4 sensitiser in our screen and extend our observations to cover the full breadth of the proteosomal degradation pathway, including members of E1 ligase (
<italic>UBA3, UBA2, SAE1</italic>
), E2 ligase (
<italic>UBE2H</italic>
), E3 ligase (
<italic>NEDD4L, RBX1</italic>
,
<italic>CUL1, RNF20</italic>
), deubiquitinating enzyme (
<italic>USP1</italic>
and
<italic>USP37</italic>
) and proteosome (
<italic>PSMC2)</italic>
families (see
<xref rid="table2" ref-type="table">Table 2</xref>
) (
<xref rid="bib107" ref-type="bibr">Senft et al., 2018</xref>
<xref rid="bib125" ref-type="bibr">Wei and Lin, 2012</xref>
) Given the involvement of ubiquitin-proteasomal regulation in pathways, such as DDR and cell cycle, that are generally deregulated in cancer (
<xref rid="bib55" ref-type="bibr">Harrigan et al., 2018</xref>
), this opens up an interesting intersection between ubiquitin regulation and G4s. As ubiquitin components are being targeted for anticancer therapies (
<xref rid="bib61" ref-type="bibr">Huang and Dixit, 2016</xref>
), their efficacy might be enhanced through simultaneous G4 targeting and here we have provided strong proof-of-principle of this using synergistic combinations of pimozide (targeting UPS1) and the G4 ligand PDS.</p>
<p>In contrast to other genetic screens identifying sensitiser genes that enhance the efficacy of anticancer agents (
<xref rid="bib4" ref-type="bibr">Azorsa et al., 2009</xref>
;
<xref rid="bib78" ref-type="bibr">Martens-de Kemp et al., 2017</xref>
), our work suggests that persistent G4s are problematic for splicing. We identified several cancer-associated splicing factors as G4 sensitisers, including SRSF10, HNRNPM and the known G4-interactor FUS, which is overexpressed in several cancers (
<xref rid="bib31" ref-type="bibr">Crozat et al., 1993</xref>
<xref rid="bib39" ref-type="bibr">Dvinge et al., 2016</xref>
;
<xref rid="bib116" ref-type="bibr">Takahama et al., 2013</xref>
). For the latter, a drug inhibiting general spliceosome assembly (
<xref rid="table1" ref-type="table">Table 1</xref>
) has been pharmacologically explored (
<xref rid="bib67" ref-type="bibr">Kotake et al., 2007</xref>
) raising the possibility of potentiation by G4-stabilising ligand combinatorial treatment.</p>
<p>We designated four of the genetic vulnerabilities as ‘key’ genes (
<italic>BRCA1</italic>
,
<italic>TOP1</italic>
,
<italic>DDX42</italic>
, and
<italic>GAR1)</italic>
whose deficiencies stood out with respect to consistent sensitivity to PDS and PhenDC3 in both cell lines tested. Given this, we postulate that deficiencies in any of these four genes will impart significant G4 ligand sensitivity for a range of cell types and/or with other G4 ligands. As GAR1-deficiencies are implicated in chronic lymphocytic leukaemia and contribute to telomere dysfunction (
<xref rid="bib38" ref-type="bibr">Dos Santos et al., 2017</xref>
), we suggest that this cancer may be acutely sensitive to G4-stabilisation by small molecules.</p>
<p>In conclusion, we have revealed genes and pathways that interact with stabilised G4 structures. This information provides new insights into G4-related biology, especially into the functional pathways and roles as G4-interacting proteins. Furthermore, this work reveals novel disease-related genetic vulnerabilities for G4-ligands. Overall, these data provide a unique and comprehensive resource that can be further explored to understand biology that may involve G4s and also inspire new therapeutic possibilities.</p>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and methods</title>
<table-wrap id="keyresource" orientation="portrait" position="anchor">
<label>Key resources table</label>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1">Reagent type
<break></break>
(species) or
<break></break>
resource</th>
<th rowspan="1" colspan="1">Designation</th>
<th rowspan="1" colspan="1">Source or reference</th>
<th rowspan="1" colspan="1">Identifiers</th>
<th rowspan="1" colspan="1">Additional
<break></break>
information</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Cell line (
<italic>H. Sapiens</italic>
)</td>
<td rowspan="1" colspan="1">A375</td>
<td rowspan="1" colspan="1">ATCC</td>
<td rowspan="1" colspan="1">Cat# CRL-1619, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/CVCL_0132">CVCL_0132</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cell line (
<italic>H. Sapiens</italic>
)</td>
<td rowspan="1" colspan="1">HT1080</td>
<td rowspan="1" colspan="1">ATCC</td>
<td rowspan="1" colspan="1">Cat# CCL-121, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/CVCL_0317">CVCL_0317</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cell line (
<italic>H. Sapiens</italic>
)</td>
<td rowspan="1" colspan="1">Plat-A</td>
<td rowspan="1" colspan="1">Cell Biolabs Inc</td>
<td rowspan="1" colspan="1">Cat# RV-102, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/CVCL_B489">CVCL_B489</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Mouse monoclonal anti-Beta Actin</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# A5441, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_476744">AB_476744</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:250)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Mouse polyclonal anti-DDX42</td>
<td rowspan="1" colspan="1">Abcam</td>
<td rowspan="1" colspan="1">Cat# ab80975, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2041042">AB_2041042</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:250)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit monoclonal anti-Beta Actin</td>
<td rowspan="1" colspan="1">Cell Signalling Technology</td>
<td rowspan="1" colspan="1">Cat# 4970, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2223172">AB_2223172</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:500)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit polyclonal anti-BRCA1</td>
<td rowspan="1" colspan="1">Cell Signalling Technology</td>
<td rowspan="1" colspan="1">Cat# 9010, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2228244">AB_2228244</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:50)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit monoclonal anti-GAPDH</td>
<td rowspan="1" colspan="1">Cell Signalling Technology</td>
<td rowspan="1" colspan="1">Cat# 5174, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_10622025">AB_10622025</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:50)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit polyclonal anti-GAR1</td>
<td rowspan="1" colspan="1">NovusBio</td>
<td rowspan="1" colspan="1">Cat# NBP2-31742, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2801566">AB_2801566</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:100)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit polyclonal anti-GST, HRP-conjugated</td>
<td rowspan="1" colspan="1">Abcam</td>
<td rowspan="1" colspan="1">Cat# ab3416, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_30378">AB_30378</ext-link>
</td>
<td rowspan="1" colspan="1">ELISA (1:10,000)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit monoclonal anti-LaminB1</td>
<td rowspan="1" colspan="1">Cell Signalling Technology</td>
<td rowspan="1" colspan="1">Cat# 12586, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2650517">AB_2650517</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:250)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">Rabbit monoclonal anti-TOP1</td>
<td rowspan="1" colspan="1">Abcam</td>
<td rowspan="1" colspan="1">Cat# ab109374, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_10861978">AB_10861978</ext-link>
</td>
<td rowspan="1" colspan="1">WB (1:250)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Recombinant DNA reagent</td>
<td rowspan="1" colspan="1">pCMV-VSV-G plasmid</td>
<td rowspan="1" colspan="1">Addgene</td>
<td rowspan="1" colspan="1">Cat # 8454, RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/Addgene_8454">Addgene_8454</ext-link>
</td>
<td rowspan="1" colspan="1">plasmid</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Recombinant DNA reagent</td>
<td rowspan="1" colspan="1">G-quadruplex focused shRNA plasmid library</td>
<td rowspan="1" colspan="1">transOMIC technologies, this paper</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">supplied as a glycerol stock, Materials and methods subsection: ‘Composition and recombinant DNA reproduction of shRNA libraries’</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Recombinant DNA reagent</td>
<td rowspan="1" colspan="1">transOMIC LMN genome-wide shRNA plasmid library</td>
<td rowspan="1" colspan="1">transOMIC technologies</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">supplied as multiple glycerol stocks</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sequence-based reagent</td>
<td rowspan="1" colspan="1">Biotinylated oligonucleotides</td>
<td rowspan="1" colspan="1">
<xref rid="bib11" ref-type="bibr">Biffi et al. (2013)</xref>
,
<xref rid="bib57" ref-type="bibr">Herdy et al. (2018)</xref>
, this paper</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Materials andmethods subsection ‘Oligonucleotide annealing’</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sequence-based reagent</td>
<td rowspan="1" colspan="1">Genomic qPCR primers</td>
<td rowspan="1" colspan="1">this paper</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Materials and methods subsection ‘Barcode recovery, adapter ligation and sequencing’</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sequence-based reagent</td>
<td rowspan="1" colspan="1">Pasha/DGCR8 siRNA</td>
<td rowspan="1" colspan="1">Qiagen</td>
<td rowspan="1" colspan="1">Cat# 1027423</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sequence-based reagent</td>
<td rowspan="1" colspan="1">siRNAs</td>
<td rowspan="1" colspan="1">this paper</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Materials and methods subsection ‘siRNA validation experiments – transfection, experimental outline, immunoblotting’</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Peptide, recombinant protein</td>
<td rowspan="1" colspan="1">Recombinant human DDX42</td>
<td rowspan="1" colspan="1">NovusBio</td>
<td rowspan="1" colspan="1">Cat# H0001325-P01</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">BluePippin 2% Internal Standard Marker Kit</td>
<td rowspan="1" colspan="1">Sage Science</td>
<td rowspan="1" colspan="1">Cat# BDF2010</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">CellTitre-Glo One Solution Assay Reagent</td>
<td rowspan="1" colspan="1">Promega</td>
<td rowspan="1" colspan="1">Cat# G8461</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">KAPA library quantification kit for Illumina platforms</td>
<td rowspan="1" colspan="1">Kapa Biosystems</td>
<td rowspan="1" colspan="1">Cat# 07960140001</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">KOD Hot Start DNA polymerase</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# 710864</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">Lipofectamine RNAiMAX</td>
<td rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td rowspan="1" colspan="1">Cat# 13778150</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">Muse Count and Viability kit</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# MCH600103</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">QIAmp DNA Blood Maxi Kit</td>
<td rowspan="1" colspan="1">Qiagen</td>
<td rowspan="1" colspan="1">Cat# 51194</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">QIAquick PCR purification kit</td>
<td rowspan="1" colspan="1">Qiagen</td>
<td rowspan="1" colspan="1">Cat# 28104</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">Qubit dsDNA HS assay kit</td>
<td rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td rowspan="1" colspan="1">Cat# Q32851</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">RIPA lysis buffer</td>
<td rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td rowspan="1" colspan="1">Cat# 8990</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">ZR GigaPrep Kit</td>
<td rowspan="1" colspan="1">Zymo Research</td>
<td rowspan="1" colspan="1">Cat# D4057</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Ampicillin</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# A5354</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Chloroquine diphosphate</td>
<td rowspan="1" colspan="1">Acros organics</td>
<td rowspan="1" colspan="1">Cat# 455240250</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">cOmplete mini protease inhibitor</td>
<td rowspan="1" colspan="1">Roche</td>
<td rowspan="1" colspan="1">Cat# 11836153001</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">DMSO</td>
<td rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td rowspan="1" colspan="1">Cat# 20688</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Geneticin</td>
<td rowspan="1" colspan="1">Gibco</td>
<td rowspan="1" colspan="1">Cat# 10131035</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">MK1775</td>
<td rowspan="1" colspan="1">Cambridge Bioscience</td>
<td rowspan="1" colspan="1">Cat# CAY21266</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">PenStrep</td>
<td rowspan="1" colspan="1">ThermoFisher Scientific</td>
<td rowspan="1" colspan="1">Cat# 1507063</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">PhenDC3</td>
<td rowspan="1" colspan="1">In-house synthesis</td>
<td rowspan="1" colspan="1">
<xref rid="bib34" ref-type="bibr">De Cian et al., 2007a</xref>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Pimozide</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# P1793-500MG</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Pyridostatin (PDS)</td>
<td rowspan="1" colspan="1">In-house synthesis</td>
<td rowspan="1" colspan="1">
<xref rid="bib102" ref-type="bibr">Rodriguez et al. (2008)</xref>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Sodium Butyrate</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# 303410</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">TMB substrate</td>
<td rowspan="1" colspan="1">Merck</td>
<td rowspan="1" colspan="1">Cat# T4444</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Bowtie 2 v2.2.6</td>
<td rowspan="1" colspan="1">
<xref rid="bib70" ref-type="bibr">Langmead and Salzberg, 2012</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://bowtie-bio.sourceforge.net/bowtie2/index.shtml">http://bowtie-bio.sourceforge.net/bowtie2/index.shtml</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">ClueGO v3.5.1</td>
<td rowspan="1" colspan="1">
<xref rid="bib13" ref-type="bibr">Bindea et al., 2009</xref>
;
<break></break>
<xref rid="bib14" ref-type="bibr">Bindea et al., 2013</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.ici.upmc.fr/cluego/cluegoDownload.shtml">http://www.ici.upmc.fr/cluego/cluegoDownload.shtml</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">ColonyArea</td>
<td rowspan="1" colspan="1">
<xref rid="bib51" ref-type="bibr">Guzmán et al., 2014</xref>
</td>
<td rowspan="1" colspan="1">Image J plugin</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Code used for shRNA screen data analysis</td>
<td rowspan="1" colspan="1">This paper</td>
<td rowspan="1" colspan="1">All scripts are available at:
<ext-link ext-link-type="uri" xlink:href="https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity">https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Combenefit</td>
<td rowspan="1" colspan="1">
<xref rid="bib37" ref-type="bibr">Di Veroli et al., 2016</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://sourceforge.net/projects/combenefit/">https://sourceforge.net/projects/combenefit/</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Cytoscape v3.6.0</td>
<td rowspan="1" colspan="1">
<xref rid="bib109" ref-type="bibr">Shannon et al., 2003</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.cytoscape.org/">http://www.cytoscape.org/</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">edgeR v3.6</td>
<td rowspan="1" colspan="1">
<xref rid="bib101" ref-type="bibr">Robinson et al., 2010</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://bioconductor.org/packages/release/bioc/html/edgeR.html">http://bioconductor.org/packages/release/bioc/html/edgeR.html</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">DAVID</td>
<td rowspan="1" colspan="1">
<xref rid="bib59" ref-type="bibr">Huang et al., 2009a</xref>
,
<xref rid="bib60" ref-type="bibr">Huang et al., 2009b</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://david.ncifcrf.gov">https://david.ncifcrf.gov</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">FastQC v0.11.3</td>
<td rowspan="1" colspan="1">
<xref rid="bib2" ref-type="bibr">Andrews, 2010</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc">http://www.bioinformatics.babraham.ac.uk/projects/fastqc</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">FASTX-Toolkit v0.0.14</td>
<td rowspan="1" colspan="1">
<xref rid="bib49" ref-type="bibr">Gordon and Hannon, 2010</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://hannonlab.cshl.edu/fastx_toolkit.html">http://hannonlab.cshl.edu/fastx_toolkit.html</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Graphpad Prism</td>
<td rowspan="1" colspan="1">GraphPad Prism (
<ext-link ext-link-type="uri" xlink:href="https://graphpad.com">https://graphpad.com</ext-link>
)</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/SCR_015807">SCR_015807</ext-link>
</td>
<td rowspan="1" colspan="1">Version 6</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">PolySearch2</td>
<td rowspan="1" colspan="1">
<xref rid="bib74" ref-type="bibr">Liu et al., 2015a</xref>
</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://polysearch.cs.ualberta.ca/">http://polysearch.cs.ualberta.ca/</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Python programming language v2.7.10</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.python.org">https://www.python.org</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">R programming language v3.2.1</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org/">https://cran.r-project.org/</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Software, algorithm</td>
<td rowspan="1" colspan="1">Unix tools (cat, cut, awk, sort and uniq)</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://opengroup.org/unix">https://opengroup.org/unix</ext-link>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
<sec id="s4-1">
<title>Cell lines</title>
<p>HT1080 (RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/CRL-1619">CRL-1619</ext-link>
) and A375 (RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/CRL-121">CRL-121</ext-link>
) were obtained from the American Type Culture Collection repository (ATCC) (LGC Standards, United Kingdom) and Plat-A (RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/RV-102">RV-102</ext-link>
) was obtained from Cell Biolabs Incorporation. All cell lines were cultured in DMEM medium (ThermoFisher Scientific, cat #41966029) supplemented with 10% (v/v) heat inactivated FBS (ThermoFisher Scientific, cat #10500064) and grown at 37°C in a 5% CO
<sub>2</sub>
humidified atmosphere. Cell lines were authenticated using small tandem repeat (STR) profiling and regularly checked to be mycoplasma-free by RNA-capture ELISA. All cell lines tested negative for
<italic>Mycoplasma</italic>
contamination. None of the cell lines used in our studies was mentioned in the list of commonly misidentified cell lines maintained by the International Cell Line Authentication Committee.</p>
</sec>
<sec id="s4-2">
<title>Quantification of live cell numbers</title>
<p>Live cell numbers (e.g. for plating cells for CellTitre-Glo assays, the screens and Incucyte experiments) were determined using the Muse Cell Analyzer (Merck), ‘Count and Viability’ assay according to manufacturer’s instructions. Cells were diluted either 1:10 or 1:20 in ‘Muse Count and Viability kit’ solution (Merck, cat # MCH60013), to give a viable cell concentration of 1–2 × 10
<sup>6</sup>
cells/mL, with ‘Events to Acquire’ parameter set at 1000 events. Three cell counts were recorded.</p>
</sec>
<sec id="s4-3">
<title>Determination of G4 ligand concentration for shRNA screens</title>
<p>PDS and PhenDC3 (both synthesised in-house) (
<xref rid="bib35" ref-type="bibr">De Cian et al., 2007b</xref>
;
<xref rid="bib102" ref-type="bibr">Rodriguez et al., 2008</xref>
) were used as 100 mM stocks, dissolved in DMSO (Thermofisher Scientific, cat # 20688). GI
<sub>20</sub>
values were calculated by treating A375 and HT1080 cells with serial dilutions of PDS and PhenDC3 for 96 hr and determining cell death via a CellTitre-Glo One Solution assay (Promega, cat # G8461) according to manufacturer’s protocol. Each serial dilution was replicated four times for two-cell-seeding densities (1000/1500 cells per well). For both densities, curves were plotted averaging the four replicates in Prism (GraphPad v6) using a Non-Linear regression model, ‘dose-response – inhibition’ equation [log(inhibitor) vs. normalised response – variable slope] and GI
<sub>20</sub>
values calculated. The GI
<sub>20</sub>
concentrations used represent an average of three separate assays per cell line and yielded the following concentrations used for the screens - A375: 10 μM PhenDC3 and 1.5 μM PDS; HT1080: 1 μM PhenDC3 and 0.5 μM PDS.</p>
</sec>
<sec id="s4-4">
<title>Composition and recombinant DNA production of shRNA libraries</title>
<p>The genome-wide screen uses the transOMIC LMN shRNA library against the human protein coding genome, consisting of 113,002 total shRNAs, split between 12 pools for ease-of-handling (approximately 10,000 shRNAs per pool) with an average number of five optimised hairpins per gene. The G4 focused screen consists of a custom shRNA pool (transOMIC technologies) with the same LMN vector (8018 shRNAs); this includes 1247 genes (7436 shRNAs) uncovered in the genome-wide screen (751 sensitisers and 496 upregulated genes), 116 additional genes identified from the literature as potentially G4-associated (439 shRNAs) and shRNAs targeting 37 olfactory receptors as non-targeting controls (143 shRNAs). 496 upregulated genes (FDR ≤ 0.05, 50% or three hairpins; log
<sub>2</sub>
FC ≥ 1) were included to mimic the genome-wide screen on a smaller scale by maintaining the population ratio of sensitisation and resistance. In this custom pool, unlike the commercially available genome-wide library, we capped the number of shRNAs at seven per gene. The backbone of both libraries contains Neo
<sup>R</sup>
and ZsGreen markers to allow monitoring of infected cell lines by Geneticin (Gibco, cat # 10131035) selection and fluorescence (MacsQUANT), respectively. Both libraries were provided as glycerol stocks. Bacterial density was determined by calculating the colony-forming units (CFU) from dilutions of the original glycerol stock after plating on agar plates (overnight, 37°C, 100 μg/mL ampicillin). Glycerol stocks were thawed completely with sufficient volume taken (based on CFU) to ensure a minimum of 1000-fold hairpin representation and inoculated into liquid culture (LB media + 100 μg/mL ampicillin). Plasmid DNA was isolated using ZR Gigaprep kit D4057 (Zymo research) according to manufacturer’s protocol and DNA quantified by Nanodrop One
<sup>c</sup>
(Thermo Fisher Scientific).</p>
</sec>
<sec id="s4-5">
<title>shRNA stable cell line creation</title>
<p>For the genome-wide screen, each pool was treated independently, necessitating the creation of 12 different polymorphic cell lines each containing an average of 10,000 shRNAs, for both HT1080 and A375, per replica (three replicas, 36 polymorphic cell lines). Virus was produced using the Platinum-A packaging cell line (4–6 × 15 cm plates per pool) and calcium phosphate transfection. 24 hr after plating Platimum-A cells (70–80% confluency), media was replaced with DMEM medium supplemented with 1% (v/v) PenStrep (Thermo Fisher Scientific, cat # 150763) and 10% (v/v) heat inactivated FBS, shRNA library plasmid (75 μg) was then mixed with pCMV-VSV-G plasmid (7.5 μg, Addgene cat # 8454), Pasha/DGCR8 siRNA (2.7 μM, Qiagen cat # 1027423) to increase viral titre and 0.25 M CaCl
<sub>2</sub>
in a total volume of 1.5 mL per 15 cm dish and bubbled with 1.5 mL 2 x HBS (50 mM HEPES, 10 mM KCl, 12 mM Dextrose, 280 mM NaCl, 1.5 mM Na
<sub>2</sub>
PO
<sub>4</sub>
at pH 7.00) and added to the Platinum-A cells (containing 17mL media) in a dropwise fashion. Immediately before adding the DNA-Pasha-transfection mixture to the Platinum-A cells, chloroquine diphosphate (lysosomal inhibitor, Acros Organics cat # 455200250) was added to the plates at a final concentration 2.5 μM. 14–16 hr after transfection, fresh media was added with 1:1000 1 M sodium butyrate (Merck, cat # 303410) for enhanced mammalian expression of the shRNA LMN plasmid. Virus was then harvested 48 hr after transfection and filter sterilised (0.45 μM) and stored at 4°C for a maximum of 7 days. Viral titre was determined by performing mock infections and quantifying fluorescent cells, via flow cytometry (MacsQUANT, Miltenyi Biotec Ltd.) 48 hr after infection. For both the genome-wide and focused-screen, 3.6 × 10
<sup>6</sup>
target cells were infected with a viral volume predicted to cause 30% infection (MOI 0.3) to minimise multiple shRNA integrations per cell. This provides approximately 10 × 10
<sup>6</sup>
shRNA expressing cells (1000-fold shRNA representation). Virus was diluted in serum free media plus polybrene (8 μg/mL) with infections carried out in triplicate and treated as independent replicates hereafter. 48 hr after infection cells antibiotic selection was performed with 800 μg/mL (HT1080) and 1000 μg/mL (A375) geneticin for 7–9 days (antibiotic concentrations were determined from 7-day toxicity curves prior to transfection setup).</p>
</sec>
<sec id="s4-6">
<title>Cell culture for pilot, genome-wide and focused shRNAs pools</title>
<p>Following complete antibiotic selection, a reference time point was harvested (t0) and cells were split into 3 × 15 cm plates per replica: PDS, PhenDC3 and DMSO vehicle control, each containing 8–10 × 10
<sup>6</sup>
cells to maintain 1000-fold hairpin representation. Every 72 hr, cells were trypsinised, counted via Muse Cell Analyzer to determine the number of population doublings, and 10 × 10
<sup>6</sup>
(A375 genome-wide and focused) or 8 × 10
<sup>6</sup>
(HT1080) cells per replica re-plated in fresh drug/DMSO and media (17 mL media per plate). At all times, sufficient cell numbers were used so that a minimum of 1000 or 800 cells per shRNA was maintained (A375 and HT1080, respectively), to ensure maximal potential for uncovering phenotypic effects from each shRNA hairpin tested (
<xref rid="bib66" ref-type="bibr">Knott et al., 2014</xref>
). The volume of DMSO used in the ‘vehicle’ condition is equal to the volume for 10 μM PhenDC3. The remaining drug treatments were supplemented with DMSO to match this volume to keep the same DMSO concentration between treatment cell lines and screens. For the pilot screen, two final timepoints were harvested after 7 and 15 population doublings (t7 and t15), pellets extracted and analysed as described below. Based on the pilot screen, discussed below, a final time point (tF) was harvested after 15 population doublings for subsequent genome-wide and focused screen. For each pool of the genome-wide screen, 12 samples were generated (t0, DMSO tF, PDS tF, PhenDC3 tF; three replicas each). Therefore, 144 samples of 10 × 10
<sup>6</sup>
cells were generated to cover the entire screen. For each cell line of the focused screen, 12 samples were generated (t0, DMSO tF, PDS tF, PhenDC3 tF, three replicas each).</p>
</sec>
<sec id="s4-7">
<title>Pilot screen technique to determine genome-wide parameters</title>
<p>To determine the most appropriate tF for the genome-wide screen, cells (from shRNA pool 8) were harvested after 7 and 15 population doublings (t7 and t15 respectively) and the average log
<sub>2</sub>
FC (tF/t0) counts for each hairpin were determined as described below. For t7, 13 and 115 shRNAs were significantly altered following PDS and PhenDC3 treatment respectively (FDR ≤ 0.05). At t15, more hairpins were significantly depleted following PDS and PhenDC3 treatment (746 and 93 shRNAs respectively, excluding those significantly changed in DMSO).</p>
</sec>
<sec id="s4-8">
<title>Barcode recovery, adapter ligation and sequencing</title>
<p>All PCR and sequencing oligonucleotides (Merck) are summarised in the table below. Cell pellets (10 × 10
<sup>6</sup>
cells) were resuspended in PBS and genomic DNA extracted using QIAmp DNA Blood Maxi Kit (Qiagen, cat # 51194) according to the manufacturer’s spin protocol, eluted in a final volume of 1200 μL and quantified by Qubit DNA HS Assay Kit (Thermo Fisher Scientific, cat # Q32851). The shRNA inserts were PCR-amplified from all DNA in each sample, in multiple 50 μL reactions each using 1.5 μg gDNA, with KOD Hot Start DNA Polymerase (Merck, cat # 710864) and the following reagents (included within the kit): 5 μL 10 x buffer, 5 μL 2 mM each dNTPs, 4 μL MgSO
<sub>4</sub>
(25 mM), 1.5 μL polymerase, 4 μL DMSO. Forward (Mir-F) and reverse (PGKpro-R) primers flanking the loop and antisense sequence of the hairpin region were used at a final concentration of 300 nM. PCR was performed under the following conditions: 98°C for 5 min, then for 25 cycles of 98°C for 35 s, 58°C 35 s and 72°C for 35 s, followed by a final extension at 72°C for 5 min. 1.2 mL of pooled PCR reaction were cleaned-up using QIAquick PCR purification kit (Qiagen, cat # 28104) according to manufacturer’s protocol. 2 μg purified PCR product were PCR amplified in a second step, using forward (P5-Seq-P-Mir-Loop) and reverse (P7-Index-n-TruSeq-PGKpro-R) primers containing the P5 and P7 flowcell adapters, respectively. PCR was performed in 8 × 50 μL reactions each with 500 ng template DNA. The reverse primer contains TruSeq adapter small RNA Indexes for multiplexing and a 6-nucleotide barcode, denoted ‘nnnnnn’ below. PCR reagents were as for the first PCR, with the exception of the primers, which were used at a final concentration 1.5 μM. The second PCR was performed under the following conditions: 98°C for 5 min, then for 25 cycles of 94°C for 35 s, 52°C 35 s and 72°C for 35 s, followed by a final extension at 72°C for 5 min. 200 μL of pooled secondary PCR product was cleaned up as previously and the desired product (~340 bp) was extracted using BluePippin (Sage Science) 2% Internal Standard Marker Kit (DF marker 100–600 bp; Sage Science, BDF2010), according to manufacturer’s protocol using a broad range elution (300–400 bp). Individual samples were quantified with a KAPA library quantification kit (KAPA Biosystems, cat # 0796-6014-0001) using a BioRad CFX96 Real Time PCR instrument with no Rox according to manufacturer’s protocols. Libraries were diluted to 4 nM in RNAse free water. For the genome-wide screen samples, 24 libraries (12 pools) and for the focused screen samples, 24 libraries (both cell lines) were combined to create a pooled 4 nM stock, with each sample having a unique TruSeq adapter. The genome-wide screen samples were sequenced in six batches; all focused screen samples were sequenced simultaneously. DNA-Seq libraries were prepared from these samples using the NextSeq Illumina Platform v2 High Output Kit 75 cycles, followed by 36 base pair single-read sequencing performed on an Illumina NextSeq instrument, using a custom sequencing primer.</p>
<p>
<table-wrap id="inlinetable1" orientation="portrait" position="anchor">
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" rowspan="1" colspan="1">Oligo name</th>
<th valign="top" rowspan="1" colspan="1">Description</th>
<th valign="top" rowspan="1" colspan="1">Sequence 5’−3’</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" rowspan="1" colspan="1">Mir5-F</td>
<td valign="top" rowspan="1" colspan="1">Primary PCR Forward Primer</td>
<td valign="top" rowspan="1" colspan="1">5’-CAGAATCGTTGCCTGCACATCTTGGAAAC- 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">PGKpro-R</td>
<td valign="top" rowspan="1" colspan="1">Primary PCR Reverse Primer</td>
<td valign="top" rowspan="1" colspan="1">5’ -CTGCTAAA GCGCATGCTCCAGACTGC- 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">P5-Seq-P-Mir-Loop</td>
<td valign="top" rowspan="1" colspan="1">Secondary PCR forward Primer</td>
<td valign="top" rowspan="1" colspan="1">5’-AATGATACGGCGACCACCGAGATCTACACT AGCCTGCGCACGTAGTGAAGCCACAGATGTA-3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">P7-Index-n-Truseq-PGKpro-R</td>
<td valign="top" rowspan="1" colspan="1">Secondary PCR barcoded reverse primer</td>
<td valign="top" rowspan="1" colspan="1">5’-CAAGCAGAAGACGGCATACGAGAT
<bold>nnnnnn</bold>
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGCTAAAGCGCATGCTCCAGACTGC – 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">SeqPrimer MirLoop</td>
<td valign="top" rowspan="1" colspan="1">Custom sequencing primer</td>
<td valign="top" rowspan="1" colspan="1">5’-TAGCCTGCGCACGTAGTGAAGCCACAGATGTA-3</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="s4-9">
<title>Sequencing, read processing, alignment and counting of shRNAs</title>
<p>Sequencing data have been deposited in ArrayExpress (
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/arrayexpress/">https://www.ebi.ac.uk/arrayexpress/</ext-link>
) under accession number
<italic>E-MTAB-6367.</italic>
Reads were trimmed to 22 nucleotides, base qualities were evaluated with FastQC v0.11.3 (
<xref rid="bib2" ref-type="bibr">Andrews, 2010</xref>
) and bases were filtered from the 3' end with a Phred quality threshold of 33 using the FASTX-Toolkit v0.0.14 (
<xref rid="bib49" ref-type="bibr">Gordon and Hannon, 2010</xref>
). Trimmed reads were aligned to the 113,002 reference shRNA sequences provided by transOMIC technologies (
<xref rid="bib66" ref-type="bibr">Knott et al., 2014</xref>
) using Bowtie 2 v2.2.6 with default parameters (
<xref rid="bib70" ref-type="bibr">Langmead and Salzberg, 2012</xref>
), which resulted in overall alignment rates of 90–95% with an average of 98% of reference sequences detected. The generated SAM files were processed to obtain shRNA counts using Unix tools (
<ext-link ext-link-type="uri" xlink:href="https://opengroup.org/unix">https://opengroup.org/unix</ext-link>
) and Python scripts (v2.7.10,
<ext-link ext-link-type="uri" xlink:href="https://www.python.org">https://www.python.org</ext-link>
), and library purity and potential contaminations were investigated with stacked bar plots and multidimensional scaling (MDS) using the R programming language v3.2.1 (
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org">https://cran.r-project.org</ext-link>
). The code and scripts developed during the development of the project are available in our group’s GitHub website (
<xref rid="bib79" ref-type="bibr">Martínez Cuesta, 2019</xref>
; copy archived at
<ext-link ext-link-type="uri" xlink:href="https://github.com/elifesciences-publications/GWscreen_G4sensitivity">https://github.com/elifesciences-publications/GWscreen_G4sensitivity</ext-link>
).</p>
</sec>
<sec id="s4-10">
<title>Filtering, normalisation, differential representation analysis and defining sensitisation</title>
<p>To discard shRNAs bearing low counts, each library was filtered based on a counts-per-million threshold of 0.5 for all initial time points (t0), for example in a library of 10M reads, shRNAs with at least five counts for all initial time points will pass this filter. Normalisation factors were calculated to scale the raw library sizes using the weighted trimmed mean of M-values (TMM) approach (
<xref rid="bib101" ref-type="bibr">Robinson et al., 2010</xref>
). To compare groups of replicates (time points and chemical treatments) for each pool, differential representation analysis of shRNA counts was performed using edgeR (
<xref rid="bib101" ref-type="bibr">Robinson et al., 2010</xref>
). Common and shRNA-specific dispersions were estimated to allow the fitting of a negative binomial generalised linear model to the treatment counts. Contrasts between the initial time point and the treatments were defined (PDS-t0, PhenDC3-t0, and DMSO-t0) and likelihood ratio tests were carried out accordingly (
<xref rid="bib32" ref-type="bibr">Dai et al., 2014</xref>
). Fold changes (FC) were then computed for every shRNA, and false discovery rates (FDR) were estimated using the Benjamini-Hochberg method. A gene was defined as significantly differentially represented for a given treatment if at least 50% or a minimum of 3 shRNAs were significant (FDR ≤ 0.05); sensitisation was additionally determined by applying a log
<sub>2</sub>
FC ≤ −1.</p>
</sec>
<sec id="s4-11">
<title>Exploring genes associated to G4s in databases and biomedical literature</title>
<p>Three different approaches were developed to uncover genes linked to G4s in the literature and molecular biology databases. 18 high confidence G4-related genes were obtained by scanning for genes in which the corresponding UniprotKB (
<xref rid="bib117" ref-type="bibr">The UniProt Consortium, 2017</xref>
) entry is annotated with the term 'quadruplex' or genes annotated with at least one of the following 11 GO terms with any evidence assertion method (
<xref rid="bib3" ref-type="bibr">Ashburner et al., 2000</xref>
):</p>
<p>
<table-wrap id="inlinetable2" orientation="portrait" position="anchor">
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" rowspan="1" colspan="1">GO id</th>
<th valign="top" rowspan="1" colspan="1">Name</th>
<th valign="top" rowspan="1" colspan="1">Type</th>
<th valign="top" rowspan="1" colspan="1">Link</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">GO:0051880</td>
<td rowspan="1" colspan="1">G-quadruplex DNA binding</td>
<td rowspan="1" colspan="1">Molecular function</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:0051880">https://www.ebi.ac.uk/QuickGO/term/GO:0051880</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:0002151</td>
<td rowspan="1" colspan="1">G-quadruplex RNA binding</td>
<td rowspan="1" colspan="1">Molecular function</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:0002151">https://www.ebi.ac.uk/QuickGO/term/GO:0002151</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:0061849</td>
<td rowspan="1" colspan="1">telomeric G-quadruplex DNA binding</td>
<td rowspan="1" colspan="1">Molecular function</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:0061849">https://www.ebi.ac.uk/QuickGO/term/GO:0061849</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:0071919</td>
<td rowspan="1" colspan="1">G-quadruplex DNA formation</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:0071919">https://www.ebi.ac.uk/QuickGO/term/GO:0071919</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:0044806</td>
<td rowspan="1" colspan="1">G-quadruplex DNA unwinding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:0044806">https://www.ebi.ac.uk/QuickGO/term/GO:0044806</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:1905493</td>
<td rowspan="1" colspan="1">regulation of G-quadruplex DNA binding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:1905493">https://www.ebi.ac.uk/QuickGO/term/GO:1905493</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:1905494</td>
<td rowspan="1" colspan="1">negative regulation of G-quadruplex DNA binding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:1905494">https://www.ebi.ac.uk/QuickGO/term/GO:1905494</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:1905495</td>
<td rowspan="1" colspan="1">positive regulation of G-quadruplex DNA binding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:1905495">https://www.ebi.ac.uk/QuickGO/term/GO:1905495</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:1905465</td>
<td rowspan="1" colspan="1">regulation of G-quadruplex DNA unwinding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:1905465">https://www.ebi.ac.uk/QuickGO/term/GO:1905465</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:1905466</td>
<td rowspan="1" colspan="1">negative regulation of G-quadruplex DNA unwinding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:1905466">https://www.ebi.ac.uk/QuickGO/term/GO:1905466</ext-link>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">GO:1905467</td>
<td rowspan="1" colspan="1">positive regulation of G-quadruplex DNA unwinding</td>
<td rowspan="1" colspan="1">Biological process</td>
<td rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/QuickGO/term/GO:1905467">https://www.ebi.ac.uk/QuickGO/term/GO:1905467</ext-link>
</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>Furthermore, 55 confirmed human G4-interacting proteins as defined by the G4IPB database (
<xref rid="bib85" ref-type="bibr">Mishra et al., 2016</xref>
) (
<ext-link ext-link-type="uri" xlink:href="http://bsbe.iiti.ac.in/bsbe/ipdb/index.php">http://bsbe.iiti.ac.in/bsbe/ipdb/index.php</ext-link>
) were also used to determine predefined G4-interacting proteins from the genome-wide shRNA screen. For this, gene entries were removed where the only G4-relationship was a predicted G4-forming sequence in the mRNA or DNA (i.e. not a direct protein interaction) or where the protein was not human. To extend the list of G4-interacting proteins, text-mining using PolySearch2 (
<xref rid="bib75" ref-type="bibr">Liu et al., 2015b</xref>
) was used. Human protein-coding gene names and G4-terms and synonyms are defined using the corresponding MeSH term id D054856 (
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/mesh/68054856">https://www.ncbi.nlm.nih.gov/mesh/68054856</ext-link>
) and the thesaurus of gene names obtained from the PolySearch2 website (
<ext-link ext-link-type="uri" xlink:href="http://polysearch.cs.ualberta.ca/">http://polysearch.cs.ualberta.ca/</ext-link>
). A relevancy score measures the strength of association between two text groups, and higher the score, the more likely terms from the two groups co-occur within the same abstract; the score also accounts for the distance between terms from the two groups. A total of 5477 pieces of text were identified in PubMed and PubMed Central where any of the G4 terms co-occur with more than 500 human gene names. Overall, this generated 526 G4-associated genes, with 54 (10%) uncovered as G4-sensitisers (
<ext-link ext-link-type="uri" xlink:href="https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity">https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity</ext-link>
), which were manually edited to 16 genes as discussed in the main text and figures.</p>
</sec>
<sec id="s4-12">
<title>KEGG pathway, gene ontology and protein domain enrichment analysis</title>
<p>The ClueGO v2.3.3 (
<xref rid="bib13" ref-type="bibr">Bindea et al., 2009</xref>
;
<xref rid="bib14" ref-type="bibr">Bindea et al., 2013</xref>
) plugin for Cytoscape (
<xref rid="bib109" ref-type="bibr">Shannon et al., 2003</xref>
) (v3.5.1) was used to determine networks of enriched KEGG pathways and Gene Ontology terms (Biological Process and Molecular Function) for significantly depleted genes upon G4 ligand treatment. Specifically, a right-sided (Enrichment) test based on the hyper-geometric distribution was performed on the corresponding Entrez gene IDs for each gene list and the Bonferroni adjustment (p<0.05) was applied to correct for multiple hypothesis testing. Only experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP) were used. The Kappa-statistics score threshold was set to 0.4 and GO term fusion was used to diminish redundancy of terms shared by similar proteins. Other parameters include: GO level intervals (3–8 genes) and Group Merge (50%). Protein domains were investigated using DAVID (v6.8) to integrate GENE3D crystallographic data and PFAM sequence information and enrichment was considered significant if the EASE score p<0.05 (
<xref rid="bib42" ref-type="bibr">Finn et al., 2016</xref>
;
<xref rid="bib133" ref-type="bibr">Yeats et al., 2006</xref>
).</p>
</sec>
<sec id="s4-13">
<title>COSMIC analysis</title>
<p>Cancer mutation data (CosmicMutantExport.tsv) from the COSMIC database v82 (
<xref rid="bib43" ref-type="bibr">Forbes et al., 2015</xref>
) was used to investigate the association between G4 sensitisers and cancer genes. ~150,000 were mutations available in COSMIC for 702 (93%) sensitiser genes, with some predicted to be pathogenic by the FATHMM algorithm embedded within the COSMIC database. The Cancer Gene Census (
<ext-link ext-link-type="uri" xlink:href="http://cancer.sanger.ac.uk/census">http://cancer.sanger.ac.uk/census</ext-link>
) was used to investigate whether G4 sensitisers are enriched in genes containing mutations causally implicated in cancer. Fisher’s exact tests as implemented in R were used to calculate fold enrichment significance of sensitisers that are cancer genes in COSMIC (compared to the percentage of protein-coding genes in COSMIC – 3.3%).</p>
</sec>
<sec id="s4-14">
<title>siRNA validation experiments – transfection, experimental outline, immunoblotting</title>
<p>ON-TARGETplus siRNAs (Dharmacon/GE healthcare) were used as summarised in the table below. Cells were transfected with either targeting or non-targeting control siRNAs using lipofectamine RNAiMAX (Thermo Fisher Scientific, cat # 13778150) and OptiMEM reduced serum medium (Thermo Fisher Scientific) according to the manufacturer’s protocol (reagent protocol 2013) alongside a non-transfected control. 24 hr after transfection, cells were trypsinised, counted and re-plated in media supplemented with PDS, PhenDC3 or DMSO vehicle control (minimum two biological replicates per condition) in a 48-well plate format (seeding density - 8,000 cells per well A375; 4,000 cells per well HT1080). Cell growth was monitored for 144 hr using IncuCyteZOOM live cell analysis (Sartorius) and cell confluency calculated as a percentage of the well area covered. Scans were performed every 3 hr; nine scans per well. To monitor protein levels, cells transfected simultaneously with the same siRNA-reagent mixture were harvested 48 hr and 144 hr after transfection, by cell scraping and lysed on ice (30 min) with RIPA lysis buffer with protease inhibitor +EDTA (Thermo Fisher Scientific, cat # 8990). Lysates were analysed by capillary electrophoresis via the Protein Simple Wes platform according to manufacturer’s protocol with antibodies summarised in the key resource table above. Lysates from non-transfected and siRNA-treated (targeting and non-targeting) samples were probed with antibodies against BRCA1 (Cell Signalling Technology, cat # 4970-CST), TOP1 (Abcam, cat # AB109374), GAR1 (NovusBio cat #NBP2-31742) or DDX42 (Abcam cat #AB80975), plus anti-beta actin antibody (mouse Merck cat # A5441; rabbit cat # 4970-CST) by multiplexing. For non-targeting and targeting lysates, the area of the desired band was normalised to beta-actin and then normalised to the protein level in the non-targeting sample, for three (48 hr after transfection lysates) or two independent Wes runs (144 hr after transfection). Protein depletion is expressed as an average of these normalised values. All lysates were used at a concentration of 0.8 mg/mL and antibody dilutions as follows: BRCA1 1:50; TOP1 1:250; GAR1 1:100; DDX42 1:250; rabbit-actin 1:500; mouse-actin 1:250.</p>
<p>
<table-wrap id="inlinetable3" orientation="portrait" position="anchor">
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" rowspan="1" colspan="1">siRNA</th>
<th valign="top" rowspan="1" colspan="1">Catalogue number</th>
<th valign="top" rowspan="1" colspan="1">Sequence 5’−3’</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" rowspan="1" colspan="1">Non-targeting 2</td>
<td valign="top" rowspan="1" colspan="1">D-001810-02-05</td>
<td valign="top" rowspan="1" colspan="1">UGGUUUACAUGUUGUGUGA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">BRCA1 (A375)</td>
<td valign="top" rowspan="1" colspan="1">J-003461–09</td>
<td valign="top" rowspan="1" colspan="1">CAACAUGCCCACAGAUCAA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">BRCA1 (HT1080)</td>
<td valign="top" rowspan="1" colspan="1">J-003461–12</td>
<td valign="top" rowspan="1" colspan="1">GAAGGAGCUUUCAUCAUUUC</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">TOP1 (both cell lines)</td>
<td valign="top" rowspan="1" colspan="1">J-005278–08</td>
<td valign="top" rowspan="1" colspan="1">CGAAGAAGGUAGUAGAGUC</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">DDX42 (both cell lines)</td>
<td valign="top" rowspan="1" colspan="1">J-012393–11</td>
<td valign="top" rowspan="1" colspan="1">GGAGAUCGACUAACGGCAA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">GAR1 (both cell lines)</td>
<td valign="top" rowspan="1" colspan="1">J-013386–06</td>
<td valign="top" rowspan="1" colspan="1">UCCAGAACGUGUAGUCUUA</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="s4-15">
<title>G4 ligand and drug treatments</title>
<p>10 mM stocks in DMSO of PDS (in house synthesis), MK1775 (Cambridge Bioscience, cat# CAY21266) and pimozide (Merck, cat# P1793-500MG) were used as for synergy experiment. Cells were seeded in Corning, Tissue Culture-treated 96-well clear bottom plates (Thermofisher, cat#07-200-587) for HT1080 (1000 cells per well) and A375 (1500 cells per well) cell lines. 24 hr after plating, media was removed and cells were treated with different concentrations of PDS and MK1775 or pimozide in media in a final volume of 150 μL, alongside non-treated and solvent-treated controls. After 96 hr, cell death was determined via a CellTitre-Glo One Solution assay (Promega, cat # G8461) according to manufacturer’s protocol using the PHERAstar FS (BMG labtech) to detect luminescence, using the recommended settings. Values were normalised to and expressed as a percentage of the untreated controls. This was performed for three biological replicas. Data were analysed via Combenefit software using the BLISS independence model since the molecule have independent targets (
<xref rid="bib37" ref-type="bibr">Di Veroli et al., 2016</xref>
) to determine synergy. For the clonogenic cell survival assay, A375 (300 cells per well) and HT1080 (400 cells per well) were plated as single cells in 12-well plates. The next day, cells were treated with DMSO or the indicated doses of PDS, pimozide and/or MK1775 in media. After 8 days, colonies were fixed with 3% trichloroacetic acid (TCA) for 90 min at 4°C, washed with MiliQ, air dried and then stained with 0.057% (v/v) Sulforhodamine B solution (Merck, cat # 230162–5G) for 30 min at room temperature. Plates were then washed four times with 1% acetic acid, air dried and colonies visualised using GelCount (Oxford Optronix). Colony growth was determined using the ‘colony intensity percentage’ parameter in the ColonyArea Image J plugin (
<xref rid="bib51" ref-type="bibr">Guzmán et al., 2014</xref>
), which considers both the intensity and percentage of area covered by the colonies. Values were normalised to and expressed as a percentage of the untreated controls and then further processed by Combenefit software, as described above, to determine synergy. A total of three independent biological replicates were performed.</p>
</sec>
<sec id="s4-16">
<title>Sub-cellular localisation of DDX42</title>
<p>HT1080, HEK and HeLa cells were harvested from a 70% confluent 15 cm plate by cell scraping in PBS on ice and pelleted by centrifugation (500 g, 5 min, 4°C). Pellets were resuspended in three volumes of low-salt buffer (20 mM HEPES pH7.4, 10 mM NaCl, 3 mM MgCl
<sub>2</sub>
, 0.2 mM EDTA, 1 mM DTT) plus protease inhibitor (cOmplete mini, Roche cat#11836153001), lysed on ice (15 min) and 0.5% Igepal added. Samples were vortexed (1 min) and centrifuged (900 g, 15 min, 4°C) and the supernatant collected for cytoplasmic extracts. Nuclear pellets were washed in low-salt buffer, supernatant discarded and then resuspended in high-salt buffer (20 mM HEPES pH7.4, 500 mM NaCl, 3 mM MgCl
<sub>2</sub>
, 0.5% Igepal, 0.2 mM EDTA, 1 mM DTT) plus protease inhibitors, followed by lysis on ice with intermittent vortexing (30 min). Lysates were passed through a syringe needle to promote lysis and shear genomic DNA and followed by centrifugation (13,000 g, 10 min, 4°C). Lysis confirmed by trypan blue staining according to manufacturer’s protocols (Thermofisher Scientific cat#15250061). The supernatant was then collected as nuclear extract. Cytoplasmic and nuclear lysates were quantified on a Direct Detect platform (Merck) and DDX42 expression analysed by immunoblotting using the Protein Simple Wes instrument as described above with a lysate concentration of 0.5 mg/mL. Samples were also immunoblotted with antibodies against nuclear laminB1 (CST 12586; 1:250) and cytoplasmic GAPDH to confirm subcellular fractionation efficiency (CST 5174, 1:50).</p>
</sec>
<sec id="s4-17">
<title>Oligonucleotide annealing</title>
<p>Biotinylated oligonucleotides for G4 and non-G4 forming sequences (IDT technologies; see Table below) were annealed in 10 mM TrisHCl pH 7.4, 100 mM KCl by heating at 95°C, 10 min followed by slow cooling to room temperature overnight at a controlled rate of 0.2°C/min. Annealed oligonucleotides were stored at 4°C for maximum 1 month.</p>
<p>
<table-wrap id="inlinetable4" orientation="portrait" position="anchor">
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" rowspan="1" colspan="1">Oligo</th>
<th valign="top" rowspan="1" colspan="1">Rna/DNA</th>
<th valign="top" rowspan="1" colspan="1">Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" rowspan="1" colspan="1">NRAS G4</td>
<td valign="top" rowspan="1" colspan="1">RNA</td>
<td valign="top" rowspan="1" colspan="1">5’ [Btn] UGU GGG AGG GGC GGG UCU GGG UGC 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">NRAS mut</td>
<td valign="top" rowspan="1" colspan="1">RNA</td>
<td valign="top" rowspan="1" colspan="1">5’ [Btn] UGU AGA AAG AGC AGA UCU AGA UG 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Stem loop</td>
<td valign="top" rowspan="1" colspan="1">RNA</td>
<td valign="top" rowspan="1" colspan="1">5’ [Btn] ACA GGG CUC CGC GAU GGC GGA GCC CAA 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Myc G4</td>
<td valign="top" rowspan="1" colspan="1">DNA</td>
<td valign="top" rowspan="1" colspan="1">5’ [Btn] TGA GGG T GGG TA GGG T GGG TAA 3’</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Myc mut</td>
<td valign="top" rowspan="1" colspan="1">DNA</td>
<td valign="top" rowspan="1" colspan="1">5’ [Btn] TGA GAG T GAG TA GAG T GAG TAA 3’</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="s4-18">
<title>Enzyme-Linked immunosorbent assay</title>
<p>Recombinant human DDX42 with an N-terminal GST tag was purchased from NovusBio (cat# H0001325-P01). Streptavidin-Coated High-Binding Capacity 96-well plates (ThermoScientific prod #15501) were hydrated with PBS (30 min) and coated with 50 nM biotinylated oligonucleotides (1 hr, shaking 450 rpm). Wells were washed three times with ELISA buffer (50 mM K
<sub>2</sub>
HPO
<sub>4</sub>
pH 7.4 and 100 mM KCl/100 mM LiCl); 1 min shaking, 450 rpm. Wells were then blocked with 3% (w/v) BSA (Merck, cat# A7030) in ELISA buffer for 1 hr, at room temperature and then incubated with serial dilutions of DDX42 up to 200 nM for 1 hr. Wells were washed three times with 0.1% TWEEN-20 in ELISA buffer and then incubated for 1 hr with anti-GST HRP-conjugated antibody (Abcam AB3416) diluted 1:10,000 in blocking buffer. Wells were again washed three times with ELISA-Tween, and the bound anti-GST HRP detected with TMB substrate (Merck,cat#T4444) for 2 min. Reactions were stopped with 2 M HCl. Absorbance at 450 nm was measured with PheraSTAR plate reader (BMG labtech). Binding curves with standard error of the mean (SEM) were fitted using GraphPad Prism software, using a non-linear regression fit, one site, specific binding model with saturation kinetics. The following equation was used: y=(Bmax*x)/(K
<sub>d</sub>
 +x), where x = concentration of DDX42 (nM) and Bmax is the maximum specific binding (i.e. saturation).</p>
</sec>
<sec id="s4-19">
<title>Circular dichroism spectroscopy</title>
<p>200 μL of 10 μM oligonucleotide were prepared in assay buffer and annealed as described above. CD spectra were recorded on an Applied Photo-physics Chirascan CD spectropolarimeter using a 1 mm path length quartz cuvette. CD measurements were performed at 298 K over a range of 200–320 nm using a response time of 0.5 s, 1 nm pitch and 0.5 nm bandwidth. The recorded spectra represent a smoothed average of three scans, zero-corrected at 320 nm (Molar ellipticity
<italic>θ</italic>
is quoted in 10
<sup>5</sup>
deg cm
<sup>2</sup>
dmol
<sup>−1</sup>
). The absorbance of the buffer was subtracted from the recorded spectra.</p>
</sec>
</sec>
</body>
<back>
<sec sec-type="funding-information">
<title>Funding Information</title>
<p>This paper was supported by the following grants:</p>
<list list-type="bullet">
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000289</institution-id>
<institution>Cancer Research UK</institution>
</institution-wrap>
</funding-source>
<award-id>C14303/A17197</award-id>
to Katherine G Zyner, Darcie S Mulhearn, Santosh Adhikari, Marco Di Antonio, David Tannahill, Shankar Balasubramanian.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000289</institution-id>
<institution>Cancer Research UK</institution>
</institution-wrap>
</funding-source>
<award-id>C9681/A18618</award-id>
to Katherine G Zyner, Darcie S Mulhearn, Santosh Adhikari, Marco Di Antonio, David Tannahill, Shankar Balasubramanian.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000289</institution-id>
<institution>Cancer Research UK</institution>
</institution-wrap>
</funding-source>
<award-id>A21143</award-id>
to Gregory J Hannon.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100000288</institution-id>
<institution>Royal Society</institution>
</institution-wrap>
</funding-source>
<award-id>RP130039</award-id>
to Gregory J Hannon.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000875</institution-id>
<institution>Pew Charitable Trusts</institution>
</institution-wrap>
</funding-source>
<award-id>00028354</award-id>
to Nicolas Erard.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100004440</institution-id>
<institution>Wellcome</institution>
</institution-wrap>
</funding-source>
<award-id>209441/z/17/z</award-id>
to Sergio Martínez Cuesta, Shankar Balasubramanian.</p>
</list-item>
</list>
</sec>
<ack id="ack">
<title>Acknowledgements</title>
<p>The Balasubramanian laboratory is supported by core funding (C14303/A17197) and programme grant funding (C9681/A18618) from Cancer Research UK. SB is a Senior Investigator of the Wellcome Trust (grant no. 209441/z/17/z). GJH is supported by core funding from Cancer Research UK (A21143) and a Royal Society Research Professorship (RP130039). NE was supported by a grant from the Pew Charitable Trusts (00028354). Authors would like to thank Dr Isaac Johnson for help regarding the clonogenic survival assays. Authors would also like to thank the staff of the Genomic, Flow Cytometry, Research Instrumentation and Biorepository core facilities at CRUK Cambridge Institute and members of the Balasubramanian and Hannon Lab for helpful discussions.</p>
</ack>
<sec id="s5" sec-type="additional-information">
<title>Additional information</title>
<fn-group content-type="competing-interest">
<title>
<bold>Competing interests</bold>
</title>
<fn fn-type="COI-statement" id="conf1">
<p>No competing interests declared.</p>
</fn>
<fn fn-type="COI-statement" id="conf2">
<p>Is associated with transOMIC Technologies, who have commercialised libraries constructed using the shERWOOD and ultramiR design strategies.</p>
</fn>
<fn fn-type="COI-statement" id="conf3">
<p>Is founder, adviser and shareholder of Cambridge Epigenetix Ltd.</p>
</fn>
</fn-group>
<fn-group content-type="author-contribution">
<title>
<bold>Author contributions</bold>
</title>
<fn fn-type="con" id="con1">
<p>Conceptualization, Data curation, Formal analysis, Supervision, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing, Designed and performed the genome-wide shRNA screen, library preparation and sequencing, Designed the focused RNAi screens, Performed the GO and Cytoscape analyses, Designed and performed the clonogenic assays and DDX42 binding experiments.</p>
</fn>
<fn fn-type="con" id="con2">
<p>Conceptualization, Data curation, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing, Designed and performed the genome-wide shRNA screen, library preparation and sequencing, Designed and performed the focused RNAi screens, Performed the GO and Cytoscape analyses, Designed and performed the drug synergy and DDX42 binding experiments.</p>
</fn>
<fn fn-type="con" id="con3">
<p>Conceptualization, Data curation, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing, Designed and performed the drug synergy experiments.</p>
</fn>
<fn fn-type="con" id="con4">
<p>Conceptualization, Data curation, Software, Formal analysis, Validation, Methodology, Writing—original draft, Writing—review and editing, Performed the computational analyses on all RNAi screens.</p>
</fn>
<fn fn-type="con" id="con5">
<p>Conceptualization, Resources, Data curation, Formal analysis, Methodology, Writing—original draft, Writing—review and editing, Synthesised all the G4 ligands.</p>
</fn>
<fn fn-type="con" id="con6">
<p>Resources, Software, Formal analysis, Methodology, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con7">
<p>Conceptualization, Resources, Supervision, Methodology, Writing—original draft, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con8">
<p>Conceptualization, Resources, Software, Formal analysis, Supervision, Methodology, Writing—original draft, Project administration, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con9">
<p>Conceptualization, Formal analysis, Supervision, Funding acquisition, Methodology, Writing—original draft, Project administration, Writing—review and editing.</p>
</fn>
</fn-group>
</sec>
<sec id="s6" sec-type="supplementary-material">
<title>Additional files</title>
<supplementary-material content-type="local-data" id="supp1">
<object-id pub-id-type="doi">10.7554/eLife.46793.026</object-id>
<label>Supplementary file 1.</label>
<caption>
<title>Supporting data for
<xref ref-type="fig" rid="fig3">Figure 3</xref>
<xref ref-type="fig" rid="fig7">7</xref>
.</title>
<p>List of shRNAs/genes from venn diagrams and table statistics for KEGG, GO, DGIDb and Protein Domains analyses from
<xref ref-type="fig" rid="fig3">Figures 3</xref>
<xref ref-type="fig" rid="fig7">7</xref>
. Each data tab is labelled with its corresponding originating figure.</p>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-46793-supp1.xlsx" orientation="portrait" id="d35e3954" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="supp2">
<object-id pub-id-type="doi">10.7554/eLife.46793.027</object-id>
<label>Supplementary file 2.</label>
<caption>
<title>Supporting data for
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1</xref>
and
<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1</xref>
.</title>
<p>List of shRNAs/genes from venn diagrams and table statistics for GO analyses from
<xref ref-type="fig" rid="fig6s1">Figure 6—figure supplement 1</xref>
and
<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1</xref>
. Each data tab is labelled with its corresponding originating figure.</p>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-46793-supp2.xlsx" orientation="portrait" id="d35e3977" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="transrepform">
<object-id pub-id-type="doi">10.7554/eLife.46793.028</object-id>
<label>Transparent reporting form</label>
<media mime-subtype="docx" mimetype="application" xlink:href="elife-46793-transrepform.docx" orientation="portrait" id="d35e3983" position="anchor"></media>
</supplementary-material>
</sec>
<sec id="s7" sec-type="data-availability">
<title>Data availability</title>
<p>Sequencing data have been deposited in ArrayExpress under the accession number E-MTAB-6367.</p>
<p>The following dataset was generated:</p>
<p>
<element-citation publication-type="data" id="dataset1">
<person-group person-group-type="author">
<name>
<surname>Mulhearn</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Zyner</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>Cuesta S</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year iso-8601-date="2019">2019</year>
<data-title>Systematic identification of G-quadruplex sensitive lethality by genome-wide genetic screening</data-title>
<source>ArrayExpress</source>
<pub-id assigning-authority="EBI" pub-id-type="accession" xlink:href="https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6367/">E-MTAB-6367</pub-id>
</element-citation>
</p>
</sec>
<ref-list>
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abed</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Albanyan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents</article-title>
<source>Acta Pharmaceutica Sinica B</source>
<volume>5</volume>
<fpage>285</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="doi">10.1016/j.apsb.2015.05.008</pub-id>
<pub-id pub-id-type="pmid">26579458</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Andrews</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2010</year>
<data-title>FastQC</data-title>
<version designator="0.11.3">v0.11.3</version>
<publisher-name>Bioinformatics</publisher-name>
<ext-link ext-link-type="uri" xlink:href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</ext-link>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashburner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Blake</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Botstein</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cherry</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Dolinski</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dwight</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Eppig</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Issel-Tarver</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kasarskis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matese</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Ringwald</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rubin</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Sherlock</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Gene ontology: tool for the unification of biology. The Gene Ontology Consortium</article-title>
<source>Nature Genetics</source>
<volume>25</volume>
<fpage>25</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1038/75556</pub-id>
<pub-id pub-id-type="pmid">10802651</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azorsa</surname>
<given-names>DO</given-names>
</name>
<name>
<surname>Gonzales</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Choudhary</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arora</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bisanz</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Kiefer</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Trent</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Von Hoff</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Mousses</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer</article-title>
<source>Journal of Translational Medicine</source>
<volume>7</volume>
<elocation-id>43</elocation-id>
<pub-id pub-id-type="doi">10.1186/1479-5876-7-43</pub-id>
<pub-id pub-id-type="pmid">19519883</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Backert</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gelos</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kobalz</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Hanski</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Böhm</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lövin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gratchev</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mansmann</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Moyer</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Riecken</surname>
<given-names>EO</given-names>
</name>
<name>
<surname>Hanski</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array</article-title>
<source>International Journal of Cancer</source>
<volume>82</volume>
<fpage>868</fpage>
<lpage>874</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0215(19990909)82:6<868::AID-IJC16>3.0.CO;2-W</pub-id>
<pub-id pub-id-type="pmid">10446455</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bajrami</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Frankum</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Konde</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Rehman</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>Brough</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sims</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rafiq</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hooper</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kozarewa</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Assiotis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Fenwick</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Natrajan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Ashworth</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity</article-title>
<source>Cancer Research</source>
<volume>74</volume>
<fpage>287</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-13-2541</pub-id>
<pub-id pub-id-type="pmid">24240700</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hurley</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Neidle</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?</article-title>
<source>Nature Reviews Drug Discovery</source>
<volume>10</volume>
<fpage>261</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="doi">10.1038/nrd3428</pub-id>
<pub-id pub-id-type="pmid">21455236</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barber</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>McManus</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Reis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Nouhi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lengauer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hieter</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers</article-title>
<source>PNAS</source>
<volume>105</volume>
<fpage>3443</fpage>
<lpage>3448</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0712384105</pub-id>
<pub-id pub-id-type="pmid">18299561</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Swaroop</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Troche</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Licht</surname>
<given-names>JD</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>The role of nuclear Receptor-Binding SET domain family histone lysine methyltransferases in cancer</article-title>
<source>Cold Spring Harbor Perspectives in Medicine</source>
<volume>7</volume>
<elocation-id>a026708</elocation-id>
<pub-id pub-id-type="doi">10.1101/cshperspect.a026708</pub-id>
<pub-id pub-id-type="pmid">28193767</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Besnard</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Babled</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lapasset</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Milhavet</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Parrinello</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dantec</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Marin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lemaitre</surname>
<given-names>JM</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs</article-title>
<source>Nature Structural & Molecular Biology</source>
<volume>19</volume>
<fpage>837</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="doi">10.1038/nsmb.2339</pub-id>
<pub-id pub-id-type="pmid">22751019</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biffi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>McCafferty</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Quantitative visualization of DNA G-quadruplex structures in human cells</article-title>
<source>Nature Chemistry</source>
<volume>5</volume>
<fpage>182</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="doi">10.1038/nchem.1548</pub-id>
<pub-id pub-id-type="pmid">23422559</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biffi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Howat</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues</article-title>
<source>PLOS ONE</source>
<volume>9</volume>
<elocation-id>e102711</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0102711</pub-id>
<pub-id pub-id-type="pmid">25033211</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bindea</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mlecnik</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hackl</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Charoentong</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tosolini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kirilovsky</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fridman</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Pagès</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Trajanoski</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Galon</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks</article-title>
<source>Bioinformatics</source>
<volume>25</volume>
<fpage>1091</fpage>
<lpage>1093</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp101</pub-id>
<pub-id pub-id-type="pmid">19237447</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bindea</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Galon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mlecnik</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>CluePedia cytoscape plugin: pathway insights using integrated experimental and in silico data</article-title>
<source>Bioinformatics</source>
<volume>29</volume>
<fpage>661</fpage>
<lpage>663</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btt019</pub-id>
<pub-id pub-id-type="pmid">23325622</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bochman</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Paeschke</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zakian</surname>
<given-names>VA</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>DNA secondary structures: stability and function of G-quadruplex structures</article-title>
<source>Nature Reviews Genetics</source>
<volume>13</volume>
<fpage>770</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="doi">10.1038/nrg3296</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brázda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hároníková</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Fojta</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>DNA and RNA quadruplex-binding proteins</article-title>
<source>International Journal of Molecular Sciences</source>
<volume>15</volume>
<fpage>17493</fpage>
<lpage>17517</lpage>
<pub-id pub-id-type="doi">10.3390/ijms151017493</pub-id>
<pub-id pub-id-type="pmid">25268620</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brosh</surname>
<given-names>RM</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>DNA helicases involved in DNA repair and their roles in cancer</article-title>
<source>Nature Reviews Cancer</source>
<volume>13</volume>
<fpage>542</fpage>
<lpage>558</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3560</pub-id>
<pub-id pub-id-type="pmid">23842644</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bryant</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Flower</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kyle</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meuth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Curtin</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Helleday</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase</article-title>
<source>Nature</source>
<volume>434</volume>
<fpage>913</fpage>
<lpage>917</lpage>
<pub-id pub-id-type="doi">10.1038/nature03443</pub-id>
<pub-id pub-id-type="pmid">15829966</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bugaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>5'-UTR RNA G-quadruplexes: translation regulation and targeting</article-title>
<source>Nucleic Acids Research</source>
<volume>40</volume>
<fpage>4727</fpage>
<lpage>4741</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gks068</pub-id>
<pub-id pub-id-type="pmid">22351747</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cammas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Millevoi</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>RNA G-quadruplexes: emerging mechanisms in disease</article-title>
<source>Nucleic Acids Research</source>
<volume>9</volume>
<elocation-id>gkw1280</elocation-id>
<pub-id pub-id-type="doi">10.1093/nar/gkw1280</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carbone</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pass</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Krausz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Testa</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Gaudino</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>BAP1 and cancer</article-title>
<source>Nature Reviews Cancer</source>
<volume>13</volume>
<fpage>153</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3459</pub-id>
<pub-id pub-id-type="pmid">23550303</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakraborty</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Grosse</surname>
<given-names>F</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes</article-title>
<source>DNA Repair</source>
<volume>10</volume>
<fpage>654</fpage>
<lpage>665</lpage>
<pub-id pub-id-type="doi">10.1016/j.dnarep.2011.04.013</pub-id>
<pub-id pub-id-type="pmid">21561811</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chambers</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Marsico</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Boutell</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>High-throughput sequencing of DNA G-quadruplex structures in the human genome</article-title>
<source>Nature Biotechnology</source>
<volume>33</volume>
<fpage>877</fpage>
<lpage>881</lpage>
<pub-id pub-id-type="doi">10.1038/nbt.3295</pub-id>
<pub-id pub-id-type="pmid">26192317</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Giaccia</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Harnessing synthetic lethal interactions in anticancer drug discovery</article-title>
<source>Nature Reviews Drug Discovery</source>
<volume>10</volume>
<fpage>351</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="doi">10.1038/nrd3374</pub-id>
<pub-id pub-id-type="pmid">21532565</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Frezza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schmitt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kanwar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dou</surname>
<given-names>QP</given-names>
</name>
</person-group>
<year>2011a</year>
<article-title>Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives</article-title>
<source>Current Cancer Drug Targets</source>
<volume>11</volume>
<fpage>239</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="doi">10.2174/156800911794519752</pub-id>
<pub-id pub-id-type="pmid">21247388</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dexheimer</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Villamil</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Inglese</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maloney</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Jadhav</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Simeonov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2011b</year>
<article-title>Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells</article-title>
<source>Chemistry & Biology</source>
<volume>18</volume>
<fpage>1390</fpage>
<lpage>1400</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2011.08.014</pub-id>
<pub-id pub-id-type="pmid">22118673</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Tippana</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Demeshkina</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Murat</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Myong</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferré-D'Amaré</surname>
<given-names>AR</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36</article-title>
<source>Nature</source>
<volume>558</volume>
<fpage>465</fpage>
<lpage>469</lpage>
<pub-id pub-id-type="doi">10.1038/s41586-018-0209-9</pub-id>
<pub-id pub-id-type="pmid">29899445</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Horhant</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bandy</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Zamiri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rabea</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Karagiosov</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Matloobi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McArthur</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Harrigan</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Chabot</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Grierson</surname>
<given-names>DS</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>A parallel synthesis approach to the identification of novel Diheteroarylamide-Based compounds blocking HIV replication: potential inhibitors of HIV-1 Pre-mRNA alternative splicing</article-title>
<source>Journal of Medicinal Chemistry</source>
<volume>59</volume>
<fpage>1869</fpage>
<lpage>1879</lpage>
<pub-id pub-id-type="doi">10.1021/acs.jmedchem.5b01357</pub-id>
<pub-id pub-id-type="pmid">26878150</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="preprint">
<person-group person-group-type="author">
<name>
<surname>Coussens</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Kales</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>OW</given-names>
</name>
<name>
<surname>Horiuchi</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>MD</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Small molecule inhibitors of the human histone lysine methyltransferase NSD2 / WHSC1 / MMSET identified from a quantitative High-Throughput screen with nucleosome substrate</article-title>
<source>bioRxiv</source>
<pub-id pub-id-type="doi">10.1101/208439</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creacy</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Routh</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Iwamoto</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akman</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Vaughn</surname>
<given-names>JP</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates</article-title>
<source>Journal of Biological Chemistry</source>
<volume>283</volume>
<fpage>34626</fpage>
<lpage>34634</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M806277200</pub-id>
<pub-id pub-id-type="pmid">18842585</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crozat</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mandahl</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ron</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma</article-title>
<source>Nature</source>
<volume>363</volume>
<fpage>640</fpage>
<lpage>644</lpage>
<pub-id pub-id-type="doi">10.1038/363640a0</pub-id>
<pub-id pub-id-type="pmid">8510758</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Sheridan</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Gearing</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wormald</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wilcox</surname>
<given-names>S</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dickins</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Blewitt</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Ritchie</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens</article-title>
<source>F1000Research</source>
<volume>3</volume>
<fpage>95</fpage>
<pub-id pub-id-type="doi">10.12688/f1000research.3928.2</pub-id>
<pub-id pub-id-type="pmid">24860646</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Damerla</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Knickelbein</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Strutt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Opresko</surname>
<given-names>PL</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences</article-title>
<source>Cell Cycle</source>
<volume>11</volume>
<fpage>3036</fpage>
<lpage>3044</lpage>
<pub-id pub-id-type="doi">10.4161/cc.21399</pub-id>
<pub-id pub-id-type="pmid">22871734</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Cian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cristofari</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Reichenbach</surname>
<given-names>P</given-names>
</name>
<name>
<surname>De Lemos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Monchaud</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Teulade-Fichou</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Shin-Ya</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lacroix</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lingner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mergny</surname>
<given-names>JL</given-names>
</name>
</person-group>
<year>2007a</year>
<article-title>Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action</article-title>
<source>PNAS</source>
<volume>104</volume>
<fpage>17347</fpage>
<lpage>17352</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0707365104</pub-id>
<pub-id pub-id-type="pmid">17954919</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Cian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Delemos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mergny</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Teulade-Fichou</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Monchaud</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2007b</year>
<article-title>Highly efficient G-quadruplex recognition by bisquinolinium compounds</article-title>
<source>Journal of the American Chemical Society</source>
<volume>129</volume>
<fpage>1856</fpage>
<lpage>1857</lpage>
<pub-id pub-id-type="doi">10.1021/ja067352b</pub-id>
<pub-id pub-id-type="pmid">17260991</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demagny</surname>
<given-names>H</given-names>
</name>
<name>
<surname>De Robertis</surname>
<given-names>EM</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling</article-title>
<source>Molecular & Cellular Oncology</source>
<volume>3</volume>
<elocation-id>e1025181</elocation-id>
<pub-id pub-id-type="doi">10.1080/23723556.2015.1025181</pub-id>
<pub-id pub-id-type="pmid">27308538</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Veroli</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Fornari</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mollard</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bramhall</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Jodrell</surname>
<given-names>DI</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Combenefit: an interactive platform for the analysis and visualization of drug combinations</article-title>
<source>Bioinformatics</source>
<volume>32</volume>
<fpage>2866</fpage>
<lpage>2868</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btw230</pub-id>
<pub-id pub-id-type="pmid">27153664</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dos Santos</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Panero</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stanganelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Palau Nagore</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Stella</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bezares</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Slavutsky</surname>
<given-names>I</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia</article-title>
<source>PLOS ONE</source>
<volume>12</volume>
<elocation-id>e0179883</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0179883</pub-id>
<pub-id pub-id-type="pmid">28666010</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dvinge</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Abdel-Wahab</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>RK</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>RNA splicing factors as oncoproteins and tumour suppressors</article-title>
<source>Nature Reviews Cancer</source>
<volume>16</volume>
<fpage>413</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="doi">10.1038/nrc.2016.51</pub-id>
<pub-id pub-id-type="pmid">27282250</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edelmann</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>BM</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases</article-title>
<source>Expert Reviews in Molecular Medicine</source>
<volume>13</volume>
<elocation-id>e35</elocation-id>
<pub-id pub-id-type="doi">10.1017/S1462399411002031</pub-id>
<pub-id pub-id-type="pmid">22088887</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farmer</surname>
<given-names>H</given-names>
</name>
<name>
<surname>McCabe</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Tutt</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Santarosa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Hickson</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Knights</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Ashworth</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy</article-title>
<source>Nature</source>
<volume>434</volume>
<fpage>917</fpage>
<lpage>921</lpage>
<pub-id pub-id-type="doi">10.1038/nature03445</pub-id>
<pub-id pub-id-type="pmid">15829967</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finn</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Coggill</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Eberhardt</surname>
<given-names>RY</given-names>
</name>
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Mistry</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Potter</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Punta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Qureshi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sangrador-Vegas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Salazar</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Tate</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>The pfam protein families database: towards a more sustainable future</article-title>
<source>Nucleic Acids Research</source>
<volume>44</volume>
<fpage>D279</fpage>
<lpage>D285</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv1344</pub-id>
<pub-id pub-id-type="pmid">26673716</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forbes</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Beare</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gunasekaran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bindal</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Boutselakis</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bamford</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kok</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>M</given-names>
</name>
<name>
<surname>De</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Teague</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Stratton</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>McDermott</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>COSMIC: exploring the world's knowledge of somatic mutations in human cancer</article-title>
<source>Nucleic Acids Research</source>
<volume>43</volume>
<fpage>D805</fpage>
<lpage>D811</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gku1075</pub-id>
<pub-id pub-id-type="pmid">25355519</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Froimchuk</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Histone H3 lysine 4 methyltransferase KMT2D</article-title>
<source>Gene</source>
<volume>627</volume>
<fpage>337</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="doi">10.1016/j.gene.2017.06.056</pub-id>
<pub-id pub-id-type="pmid">28669924</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Decreased expression of Nedd4L correlates with poor prognosis in gastric cancer patient</article-title>
<source>Medical Oncology</source>
<volume>29</volume>
<fpage>1733</fpage>
<lpage>1738</lpage>
<pub-id pub-id-type="doi">10.1007/s12032-011-0061-3</pub-id>
<pub-id pub-id-type="pmid">21909941</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>García-Santisteban</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Giovannetti</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rodríguez</surname>
<given-names>JA</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy</article-title>
<source>Molecular Cancer</source>
<volume>12</volume>
<elocation-id>91</elocation-id>
<pub-id pub-id-type="doi">10.1186/1476-4598-12-91</pub-id>
<pub-id pub-id-type="pmid">23937906</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giri</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Smaldino</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Thys</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Creacy</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Routh</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Hantgan</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Lattmann</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akman</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Vaughn</surname>
<given-names>JP</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA</article-title>
<source>Nucleic Acids Research</source>
<volume>39</volume>
<fpage>7161</fpage>
<lpage>7178</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkr234</pub-id>
<pub-id pub-id-type="pmid">21586581</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>González</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hurley</surname>
<given-names>LH</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>The c-MYC NHE III(1): function and regulation</article-title>
<source>Annual Review of Pharmacology and Toxicology</source>
<volume>50</volume>
<fpage>111</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pharmtox.48.113006.094649</pub-id>
<pub-id pub-id-type="pmid">19922264</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="software">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hannon</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2010</year>
<source> FASTQ/A Short-Reads Pre-Processing Tools</source>
<ext-link ext-link-type="uri" xlink:href="http://hannonlab.cshl.edu/fastx_toolkit/download.html">http://hannonlab.cshl.edu/fastx_toolkit/download.html</ext-link>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffith</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Griffith</surname>
<given-names>OL</given-names>
</name>
<name>
<surname>Coffman</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Weible</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>McMichael</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Spies</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Koval</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Eldred</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Govindan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Bose</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Dooling</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Ley</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Mardis</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>RK</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>DGIdb: mining the druggable genome</article-title>
<source>Nature Methods</source>
<volume>10</volume>
<fpage>1209</fpage>
<lpage>1210</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.2689</pub-id>
<pub-id pub-id-type="pmid">24122041</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guzmán</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bagga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Westermarck</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Abankwa</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays</article-title>
<source>PLOS ONE</source>
<volume>9</volume>
<elocation-id>e92444</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0092444</pub-id>
<pub-id pub-id-type="pmid">24647355</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hahn</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Schutte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hoque</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Moskaluk</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>da Costa</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Rozenblum</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Weinstein</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yeo</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Hruban</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>SE</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1</article-title>
<source>Science</source>
<volume>271</volume>
<fpage>350</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="doi">10.1126/science.271.5247.350</pub-id>
<pub-id pub-id-type="pmid">8553070</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halder</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Riou</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Teulade-Fichou</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Frickey</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hartig</surname>
<given-names>JS</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Bisquinolinium compounds induce quadruplex-specific transcriptome changes in HeLa S3 cell lines</article-title>
<source>BMC Research Notes</source>
<volume>5</volume>
<elocation-id>138</elocation-id>
<pub-id pub-id-type="doi">10.1186/1756-0500-5-138</pub-id>
<pub-id pub-id-type="pmid">22414013</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hänsel-Hertsch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Beraldi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lensing</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Marsico</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zyner</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Parry</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pike</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Narita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>G-quadruplex structures mark human regulatory chromatin</article-title>
<source>Nature Genetics</source>
<volume>48</volume>
<fpage>1267</fpage>
<lpage>1272</lpage>
<pub-id pub-id-type="doi">10.1038/ng.3662</pub-id>
<pub-id pub-id-type="pmid">27618450</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harrigan</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Jacq</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>SP</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Deubiquitylating enzymes and drug discovery: emerging opportunities</article-title>
<source>Nature Reviews Drug Discovery</source>
<volume>17</volume>
<fpage>57</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1038/nrd.2017.152</pub-id>
<pub-id pub-id-type="pmid">28959952</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Henderson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Chavez</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Platt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Brosh</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lansdorp</surname>
<given-names>PM</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Detection of G-quadruplex DNA in mammalian cells</article-title>
<source>Nucleic Acids Research</source>
<volume>42</volume>
<fpage>860</fpage>
<lpage>869</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt957</pub-id>
<pub-id pub-id-type="pmid">24163102</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herdy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Varshney</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Marsico</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Murat</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>C</given-names>
</name>
<name>
<surname>D'Santos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts</article-title>
<source>Nucleic Acids Research</source>
<volume>46</volume>
<fpage>11592</fpage>
<lpage>11604</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gky861</pub-id>
<pub-id pub-id-type="pmid">30256975</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Nijman</surname>
<given-names>SMB</given-names>
</name>
<name>
<surname>Mirchandani</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Galardy</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Cohn</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Haas</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gygi</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Ploegh</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Bernards</surname>
<given-names>R</given-names>
</name>
<name>
<surname>D'Andrea</surname>
<given-names>AD</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Regulation of monoubiquitinated PCNA by DUB autocleavage</article-title>
<source>Nature Cell Biology</source>
<volume>8</volume>
<fpage>341</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="doi">10.1038/ncb1378</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>daW</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Lempicki</surname>
<given-names>RA</given-names>
</name>
</person-group>
<year>2009a</year>
<article-title>Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources</article-title>
<source>Nature Protocols</source>
<volume>4</volume>
<fpage>44</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2008.211</pub-id>
<pub-id pub-id-type="pmid">19131956</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>daW</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Lempicki</surname>
<given-names>RA</given-names>
</name>
</person-group>
<year>2009b</year>
<article-title>Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists</article-title>
<source>Nucleic Acids Research</source>
<volume>37</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkn923</pub-id>
<pub-id pub-id-type="pmid">19033363</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>VM</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Drugging the undruggables: exploring the ubiquitin system for drug development</article-title>
<source>Cell Research</source>
<volume>26</volume>
<fpage>484</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2016.31</pub-id>
<pub-id pub-id-type="pmid">27002218</pub-id>
</element-citation>
</ref>
<ref id="bib62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huppert</surname>
<given-names>JL</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes</article-title>
<source>Chemical Society Reviews</source>
<volume>37</volume>
<elocation-id>1375</elocation-id>
<pub-id pub-id-type="doi">10.1039/b702491f</pub-id>
<pub-id pub-id-type="pmid">18568163</pub-id>
</element-citation>
</ref>
<ref id="bib63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huppert</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>G-quadruplexes in promoters throughout the human genome</article-title>
<source>Nucleic Acids Research</source>
<volume>35</volume>
<fpage>406</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkl1057</pub-id>
<pub-id pub-id-type="pmid">17169996</pub-id>
</element-citation>
</ref>
<ref id="bib64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kadoch</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hargreaves</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Hodges</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Elias</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ranish</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Crabtree</surname>
<given-names>GR</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy</article-title>
<source>Nature Genetics</source>
<volume>45</volume>
<fpage>592</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="doi">10.1038/ng.2628</pub-id>
<pub-id pub-id-type="pmid">23644491</pub-id>
</element-citation>
</ref>
<ref id="bib65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kikuma</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohtsu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Utsugi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Koga</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Okuhara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Eki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujimori</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Dbp9p, a member of the DEAD box protein family, exhibits DNA helicase activity</article-title>
<source>Journal of Biological Chemistry</source>
<volume>279</volume>
<fpage>20692</fpage>
<lpage>20698</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M400231200</pub-id>
<pub-id pub-id-type="pmid">15028736</pub-id>
</element-citation>
</ref>
<ref id="bib66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knott</surname>
<given-names>SRV</given-names>
</name>
<name>
<surname>Maceli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Erard</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Marran</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Demerdash</surname>
<given-names>OE</given-names>
</name>
<name>
<surname>Wagenblast</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fellmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hannon</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>A computational algorithm to predict shRNA potency</article-title>
<source>Molecular Cell</source>
<volume>56</volume>
<fpage>796</fpage>
<lpage>807</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2014.10.025</pub-id>
<pub-id pub-id-type="pmid">25435137</pub-id>
</element-citation>
</ref>
<ref id="bib67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotake</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sagane</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Owa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mimori-Kiyosue</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Uesugi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ishihama</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Iwata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mizui</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Splicing factor SF3b as a target of the antitumor natural product pladienolide</article-title>
<source>Nature Chemical Biology</source>
<volume>3</volume>
<fpage>570</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.2007.16</pub-id>
<pub-id pub-id-type="pmid">17643112</pub-id>
</element-citation>
</ref>
<ref id="bib68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumari</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bugaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Huppert</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation</article-title>
<source>Nature Chemical Biology</source>
<volume>3</volume>
<fpage>218</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio864</pub-id>
<pub-id pub-id-type="pmid">17322877</pub-id>
</element-citation>
</ref>
<ref id="bib69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwok</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Marsico</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sahakyan</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome</article-title>
<source>Nature Methods</source>
<volume>13</volume>
<fpage>841</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.3965</pub-id>
<pub-id pub-id-type="pmid">27571552</pub-id>
</element-citation>
</ref>
<ref id="bib70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langmead</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Fast gapped-read alignment with bowtie 2</article-title>
<source>Nature Methods</source>
<volume>9</volume>
<fpage>357</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1923</pub-id>
<pub-id pub-id-type="pmid">22388286</pub-id>
</element-citation>
</ref>
<ref id="bib71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>LKM</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>G-quadruplex ligands exhibit differential G-tetrad selectivity</article-title>
<source>Chemical Communications</source>
<volume>51</volume>
<fpage>8048</fpage>
<lpage>8050</lpage>
<pub-id pub-id-type="doi">10.1039/c5cc02252e</pub-id>
<pub-id pub-id-type="pmid">25864836</pub-id>
</element-citation>
</ref>
<ref id="bib72">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ledermann</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kohn</surname>
<given-names>EC</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies</article-title>
<source>Annals of Oncology</source>
<volume>25</volume>
<fpage>32</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1093/annonc/mdt384</pub-id>
<pub-id pub-id-type="pmid">24225019</pub-id>
</element-citation>
</ref>
<ref id="bib73">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Suetani</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Neilsen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Gill</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Callen</surname>
<given-names>DF</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Specific-site methylation of tumour suppressor ANKRD11 in breast Cancer</article-title>
<source>European Journal of Cancer</source>
<volume>48</volume>
<fpage>3300</fpage>
<lpage>3309</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejca.2012.03.023</pub-id>
<pub-id pub-id-type="pmid">22538187</pub-id>
</element-citation>
</ref>
<ref id="bib74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shaik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>W</given-names>
</name>
</person-group>
<year>2015a</year>
<article-title>Targeting the ubiquitin pathway for cancer treatment</article-title>
<source>Biochimica Et Biophysica Acta (BBA) - Reviews on Cancer</source>
<volume>1855</volume>
<fpage>50</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbcan.2014.11.005</pub-id>
<pub-id pub-id-type="pmid">25481052</pub-id>
</element-citation>
</ref>
<ref id="bib75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wishart</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2015b</year>
<article-title>PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more</article-title>
<source>Nucleic Acids Research</source>
<volume>43</volume>
<fpage>W535</fpage>
<lpage>W542</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv383</pub-id>
<pub-id pub-id-type="pmid">25925572</pub-id>
</element-citation>
</ref>
<ref id="bib76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>He</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>LQ</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>ZS</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Conformation selective antibody enables genome profiling and leads to discovery of parallel G-Quadruplex in human telomeres</article-title>
<source>Cell Chemical Biology</source>
<volume>23</volume>
<fpage>1261</fpage>
<lpage>1270</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2016.08.013</pub-id>
<pub-id pub-id-type="pmid">27693060</pub-id>
</element-citation>
</ref>
<ref id="bib77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>ZW</given-names>
</name>
<name>
<surname>You</surname>
<given-names>QD</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>ZY</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>An inhibitor of the Keap1-Nrf2 protein-protein interaction protects NCM460 colonic cells and alleviates experimental colitis</article-title>
<source>Scientific Reports</source>
<volume>6</volume>
<elocation-id>26585</elocation-id>
<pub-id pub-id-type="doi">10.1038/srep26585</pub-id>
<pub-id pub-id-type="pmid">27215610</pub-id>
</element-citation>
</ref>
<ref id="bib78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martens-de Kemp</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Brink</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van der Meulen</surname>
<given-names>IH</given-names>
</name>
<name>
<surname>de Menezes</surname>
<given-names>RX</given-names>
</name>
<name>
<surname>Te Beest</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Leemans</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>van Beusechem</surname>
<given-names>VW</given-names>
</name>
<name>
<surname>Braakhuis</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Brakenhoff</surname>
<given-names>RH</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>The FA/BRCA pathway identified as the major predictor of cisplatin response in head and neck cancer by functional genomics</article-title>
<source>Molecular Cancer Therapeutics</source>
<volume>16</volume>
<fpage>540</fpage>
<lpage>550</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-16-0457</pub-id>
<pub-id pub-id-type="pmid">27980104</pub-id>
</element-citation>
</ref>
<ref id="bib79">
<element-citation publication-type="software">
<person-group person-group-type="author">
<name>
<surname>Martínez Cuesta</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2019</year>
<data-title>GWscreen_G4sensitivity</data-title>
<source>GitHub</source>
<version designator="9264d3b">9264d3b</version>
<ext-link ext-link-type="uri" xlink:href="https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity">https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity</ext-link>
</element-citation>
</ref>
<ref id="bib80">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matheson</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Backos</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Reigan</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Targeting WEE1 kinase in cancer</article-title>
<source>Trends in Pharmacological Sciences</source>
<volume>37</volume>
<fpage>872</fpage>
<lpage>881</lpage>
<pub-id pub-id-type="doi">10.1016/j.tips.2016.06.006</pub-id>
<pub-id pub-id-type="pmid">27427153</pub-id>
</element-citation>
</ref>
<ref id="bib81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mattern</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors</article-title>
<source>Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research</source>
<volume>1823</volume>
<fpage>2014</fpage>
<lpage>2021</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2012.05.005</pub-id>
<pub-id pub-id-type="pmid">22610084</pub-id>
</element-citation>
</ref>
<ref id="bib82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCubrey</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Steelman</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Sokolosky</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Abrams</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Montalto</surname>
<given-names>G</given-names>
</name>
<name>
<surname>D'Assoro</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Libra</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nicoletti</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maestro</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Basecke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rakus</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gizak</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Demidenko</surname>
<given-names>ZN</given-names>
</name>
<name>
<surname>Cocco</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Martelli</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Cervello</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>GSK-3 as potential target for therapeutic intervention in cancer</article-title>
<source>Oncotarget</source>
<volume>5</volume>
<fpage>2881</fpage>
<lpage>2911</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2037</pub-id>
<pub-id pub-id-type="pmid">24931005</pub-id>
</element-citation>
</ref>
<ref id="bib83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McLuckie</surname>
<given-names>KI</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zecchini</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Caldas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Krippendorff</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Tannahill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells</article-title>
<source>Journal of the American Chemical Society</source>
<volume>135</volume>
<fpage>9640</fpage>
<lpage>9643</lpage>
<pub-id pub-id-type="doi">10.1021/ja404868t</pub-id>
<pub-id pub-id-type="pmid">23782415</pub-id>
</element-citation>
</ref>
<ref id="bib84">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mendoza</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Bourdoncle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boulé</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Brosh</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Mergny</surname>
<given-names>JL</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>G-quadruplexes and helicases</article-title>
<source>Nucleic Acids Research</source>
<volume>44</volume>
<fpage>1989</fpage>
<lpage>2006</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw079</pub-id>
<pub-id pub-id-type="pmid">26883636</pub-id>
</element-citation>
</ref>
<ref id="bib85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishra</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Tawani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>G4IPDB: a database for G-quadruplex structure forming nucleic acid interacting proteins</article-title>
<source>Scientific Reports</source>
<volume>6</volume>
<elocation-id>38144</elocation-id>
<pub-id pub-id-type="doi">10.1038/srep38144</pub-id>
<pub-id pub-id-type="pmid">27905517</pub-id>
</element-citation>
</ref>
<ref id="bib86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morra</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Luise</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Visconti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Staibano</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Merolla</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ilardi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Guggino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Paladino</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sarnataro</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Monaco</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zitomarino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pacelli</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Monaco</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rocco</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cerrato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Linardopoulos</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Celetti</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>New therapeutic perspectives in CCDC6 deficient lung cancer cells</article-title>
<source>International Journal of Cancer</source>
<volume>136</volume>
<fpage>2146</fpage>
<lpage>2157</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.29263</pub-id>
<pub-id pub-id-type="pmid">25302833</pub-id>
</element-citation>
</ref>
<ref id="bib87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moyal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lerenthal</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gana-Weisz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mass</surname>
<given-names>G</given-names>
</name>
<name>
<surname>So</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Eppink</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Shalev</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shema</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Shkedy</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Smorodinsky</surname>
<given-names>NI</given-names>
</name>
<name>
<surname>van Vliet</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kuster</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ciechanover</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dahm-Daphi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kanaar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Oren</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shiloh</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks</article-title>
<source>Molecular Cell</source>
<volume>41</volume>
<fpage>529</fpage>
<lpage>542</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2011.02.015</pub-id>
<pub-id pub-id-type="pmid">21362549</pub-id>
</element-citation>
</ref>
<ref id="bib88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neidle</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer</article-title>
<source>FEBS Journal</source>
<volume>277</volume>
<fpage>1118</fpage>
<lpage>1125</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2009.07463.x</pub-id>
<pub-id pub-id-type="pmid">19951354</pub-id>
</element-citation>
</ref>
<ref id="bib89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neidle</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Quadruplex nucleic acids as targets for anticancer therapeutics</article-title>
<source>Nature Reviews Chemistry</source>
<volume>1</volume>
<elocation-id>0041</elocation-id>
<pub-id pub-id-type="doi">10.1038/s41570-017-0041</pub-id>
</element-citation>
</ref>
<ref id="bib90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neilsen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Cheney</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Cawrse</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Schulz</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Callen</surname>
<given-names>DF</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Identification of ANKRD11 as a p53 coactivator</article-title>
<source>Journal of Cell Science</source>
<volume>121</volume>
<fpage>3541</fpage>
<lpage>3552</lpage>
<pub-id pub-id-type="doi">10.1242/jcs.026351</pub-id>
<pub-id pub-id-type="pmid">18840648</pub-id>
</element-citation>
</ref>
<ref id="bib91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nepomuceno</surname>
<given-names>T</given-names>
</name>
<name>
<surname>De Gregoriis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>FMB</given-names>
</name>
<name>
<surname>Suarez-Kurtz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Monteiro</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Carvalho</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>The role of PALB2 in the DNA damage response and Cancer predisposition</article-title>
<source>International Journal of Molecular Sciences</source>
<volume>18</volume>
<fpage>1886</fpage>
<pub-id pub-id-type="doi">10.3390/ijms18091886</pub-id>
</element-citation>
</ref>
<ref id="bib92">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nijman</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Dirac</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Brummelkamp</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Kerkhoven</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>D'Andrea</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Bernards</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>The deubiquitinating enzyme USP1 regulates the fanconi anemia pathway</article-title>
<source>Molecular Cell</source>
<volume>17</volume>
<fpage>331</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2005.01.008</pub-id>
<pub-id pub-id-type="pmid">15694335</pub-id>
</element-citation>
</ref>
<ref id="bib93">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nijman</surname>
<given-names>SM</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Synthetic lethality: general principles, utility and detection using genetic screens in human cells</article-title>
<source>FEBS Letters</source>
<volume>585</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.febslet.2010.11.024</pub-id>
<pub-id pub-id-type="pmid">21094158</pub-id>
</element-citation>
</ref>
<ref id="bib94">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noll</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Jeffery</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Al-Ejeh</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Callen</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Neilsen</surname>
<given-names>PM</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11</article-title>
<source>Oncogene</source>
<volume>31</volume>
<fpage>2836</fpage>
<lpage>2848</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2011.456</pub-id>
<pub-id pub-id-type="pmid">21986947</pub-id>
</element-citation>
</ref>
<ref id="bib95">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer</article-title>
<source>Oncogene</source>
<volume>34</volume>
<fpage>3957</fpage>
<lpage>3967</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2014.327</pub-id>
<pub-id pub-id-type="pmid">25284584</pub-id>
</element-citation>
</ref>
<ref id="bib96">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parry</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Guzi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shanahan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Prabhavalkar</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wiswell</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Seghezzi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Paruch</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dwyer</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Doll</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nomeir</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Windsor</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Fischmann</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Oft</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kirschmeier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lees</surname>
<given-names>EM</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor</article-title>
<source>Molecular Cancer Therapeutics</source>
<volume>9</volume>
<fpage>2344</fpage>
<lpage>2353</lpage>
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-10-0324</pub-id>
<pub-id pub-id-type="pmid">20663931</pub-id>
</element-citation>
</ref>
<ref id="bib97">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puxeddu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stringer</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Medvedovic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moretti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fagin</surname>
<given-names>JA</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens</article-title>
<source>Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis</source>
<volume>570</volume>
<fpage>17</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1016/j.mrfmmm.2004.09.010</pub-id>
<pub-id pub-id-type="pmid">15680400</pub-id>
</element-citation>
</ref>
<ref id="bib98">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Dou</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Hijacked in Cancer: the KMT2 (MLL) family of methyltransferases</article-title>
<source>Nature Reviews Cancer</source>
<volume>15</volume>
<fpage>334</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3929</pub-id>
<pub-id pub-id-type="pmid">25998713</pub-id>
</element-citation>
</ref>
<ref id="bib99">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rhodes</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lipps</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>G-quadruplexes and their regulatory roles in biology</article-title>
<source>Nucleic Acids Research</source>
<volume>43</volume>
<fpage>8627</fpage>
<lpage>8637</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv862</pub-id>
<pub-id pub-id-type="pmid">26350216</pub-id>
</element-citation>
</ref>
<ref id="bib100">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richer</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Cala</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Carson</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Inge</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Whitsett</surname>
<given-names>TG</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>WEE1 kinase inhibitor AZD1775 has preclinical efficacy in LKB1-Deficient Non-Small cell lung cancer</article-title>
<source>Cancer Research</source>
<volume>77</volume>
<fpage>4663</fpage>
<lpage>4672</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-3565</pub-id>
<pub-id pub-id-type="pmid">28652249</pub-id>
</element-citation>
</ref>
<ref id="bib101">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>McCarthy</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Smyth</surname>
<given-names>GK</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>edgeR: a bioconductor package for differential expression analysis of digital gene expression data</article-title>
<source>Bioinformatics</source>
<volume>26</volume>
<fpage>139</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp616</pub-id>
<pub-id pub-id-type="pmid">19910308</pub-id>
</element-citation>
</ref>
<ref id="bib102">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yeoman</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Trentesaux</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Riou</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres</article-title>
<source>Journal of the American Chemical Society</source>
<volume>130</volume>
<fpage>15758</fpage>
<lpage>15759</lpage>
<pub-id pub-id-type="doi">10.1021/ja805615w</pub-id>
<pub-id pub-id-type="pmid">18975896</pub-id>
</element-citation>
</ref>
<ref id="bib103">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Forment</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Bradshaw</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Nikan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Britton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Oelschlaegel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Xhemalce</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>SP</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Small-molecule-induced DNA damage identifies alternative DNA structures in human genes</article-title>
<source>Nature Chemical Biology</source>
<volume>8</volume>
<fpage>301</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.780</pub-id>
<pub-id pub-id-type="pmid">22306580</pub-id>
</element-citation>
</ref>
<ref id="bib104">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanchez-Vega</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mina</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Armenia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chatila</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Luna</surname>
<given-names>A</given-names>
</name>
<name>
<surname>La</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Dimitriadoy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Kantheti</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Saghafinia</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chakravarty</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Daian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Foltz</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Shmulevich</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Heins</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ochoa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kundra</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kandoth</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bahceci</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dervishi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dogrusoz</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Laird</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Way</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Greene</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Iavarone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Bivona</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Lazar</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Hammer</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kwong</surname>
<given-names>LN</given-names>
</name>
<name>
<surname>McArthur</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tward</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Frederick</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>McCormick</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Meyerson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van Allen</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Cherniack</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Ciriello</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sander</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>N</given-names>
</name>
<collab>Cancer Genome Atlas Research Network</collab>
</person-group>
<year>2018</year>
<article-title>Oncogenic signaling pathways in the cancer genome atlas</article-title>
<source>Cell</source>
<volume>173</volume>
<fpage>321</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.03.035</pub-id>
<pub-id pub-id-type="pmid">29625050</pub-id>
</element-citation>
</ref>
<ref id="bib105">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaffitzel</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Postberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hanes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lipps</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Plückthun</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with stylonychia lemnae macronuclei</article-title>
<source>PNAS</source>
<volume>98</volume>
<fpage>8572</fpage>
<lpage>8577</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.141229498</pub-id>
<pub-id pub-id-type="pmid">11438689</pub-id>
</element-citation>
</ref>
<ref id="bib106">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schutte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hruban</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Hedrick</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Nadasdy</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Weinstein</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Bova</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Isaacs</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Cairns</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nawroz</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sidransky</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Casero</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Meltzer</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Hahn</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>SE</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>DPC4 gene in various tumor types</article-title>
<source>Cancer Research</source>
<volume>56</volume>
<fpage>2527</fpage>
<lpage>2530</lpage>
<pub-id pub-id-type="pmid">8653691</pub-id>
</element-citation>
</ref>
<ref id="bib107">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senft</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ronai</surname>
<given-names>ZA</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Ubiquitin ligases in oncogenic transformation and cancer therapy</article-title>
<source>Nature Reviews Cancer</source>
<volume>18</volume>
<fpage>69</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1038/nrc.2017.105</pub-id>
<pub-id pub-id-type="pmid">29242641</pub-id>
</element-citation>
</ref>
<ref id="bib108">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shain</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Pollack</surname>
<given-names>JR</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>The spectrum of SWI/SNF mutations, ubiquitous in human cancers</article-title>
<source>PLOS ONE</source>
<volume>8</volume>
<elocation-id>e55119</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0055119</pub-id>
<pub-id pub-id-type="pmid">23355908</pub-id>
</element-citation>
</ref>
<ref id="bib109">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shannon</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Markiel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ozier</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Baliga</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Ramage</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Amin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Schwikowski</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ideker</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Cytoscape: a software environment for integrated models of biomolecular interaction networks</article-title>
<source>Genome Research</source>
<volume>13</volume>
<fpage>2498</fpage>
<lpage>2504</lpage>
<pub-id pub-id-type="doi">10.1101/gr.1239303</pub-id>
<pub-id pub-id-type="pmid">14597658</pub-id>
</element-citation>
</ref>
<ref id="bib110">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shema</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tirosh</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Aylon</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Moskovits</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Raver-Shapira</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Minsky</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pirngruber</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tarcic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hublarova</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Moyal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gana-Weisz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shiloh</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yarden</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Johnsen</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Vojtesek</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Oren</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression</article-title>
<source>Genes & Development</source>
<volume>22</volume>
<fpage>2664</fpage>
<lpage>2676</lpage>
<pub-id pub-id-type="doi">10.1101/gad.1703008</pub-id>
<pub-id pub-id-type="pmid">18832071</pub-id>
</element-citation>
</ref>
<ref id="bib111">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shkreta</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Blanchette</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Toutant</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wilhelm</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Story</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Balachandran</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cochrane</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Harrigan</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Grierson</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Chabot</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Modulation of the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1 replication</article-title>
<source>Nucleic Acids Research</source>
<volume>45</volume>
<fpage>4051</fpage>
<lpage>4067</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw1223</pub-id>
<pub-id pub-id-type="pmid">27928057</pub-id>
</element-citation>
</ref>
<ref id="bib112">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sims</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mendes-Pereira</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Frankum</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Burgess</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cerone</surname>
<given-names>M-A</given-names>
</name>
<name>
<surname>Lombardelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mitsopoulos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hakas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Murugaesu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Isacke</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Fenwick</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Assiotis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kozarewa</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zvelebil</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ashworth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing</article-title>
<source>Genome Biology</source>
<volume>12</volume>
<elocation-id>R104</elocation-id>
<pub-id pub-id-type="doi">10.1186/gb-2011-12-10-r104</pub-id>
<pub-id pub-id-type="pmid">22018332</pub-id>
</element-citation>
</ref>
<ref id="bib113">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soucy</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Milhollen</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Gavin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Adhikari</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brownell</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Cardin</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Critchley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cullis</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Doucette</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Garnsey</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Gaulin</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Gershman</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Lublinsky</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mizutani</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Narayanan</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Olhava</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Peluso</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rezaei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sintchak</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Talreja</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Traore</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Vyskocil</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Weatherhead</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dick</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Claiborne</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Rolfe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bolen</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Langston</surname>
<given-names>SP</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer</article-title>
<source>Nature</source>
<volume>458</volume>
<fpage>732</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="doi">10.1038/nature07884</pub-id>
<pub-id pub-id-type="pmid">19360080</pub-id>
</element-citation>
</ref>
<ref id="bib114">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spillare</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XW</given-names>
</name>
<name>
<surname>von Kobbe</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bohr</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Hickson</surname>
<given-names>ID</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>CC</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Redundancy of DNA helicases in p53-mediated apoptosis</article-title>
<source>Oncogene</source>
<volume>25</volume>
<fpage>2119</fpage>
<lpage>2123</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1209242</pub-id>
<pub-id pub-id-type="pmid">16288211</pub-id>
</element-citation>
</ref>
<ref id="bib115">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szklarczyk</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wyder</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simonovic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Doncheva</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bork</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>von Mering</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible</article-title>
<source>Nucleic Acids Research</source>
<volume>45</volume>
<fpage>D362</fpage>
<lpage>D368</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw937</pub-id>
<pub-id pub-id-type="pmid">27924014</pub-id>
</element-citation>
</ref>
<ref id="bib116">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahama</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Takada</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sayama</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kurokawa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Oyoshi</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS</article-title>
<source>Chemistry & Biology</source>
<volume>20</volume>
<fpage>341</fpage>
<lpage>350</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2013.02.013</pub-id>
<pub-id pub-id-type="pmid">23521792</pub-id>
</element-citation>
</ref>
<ref id="bib117">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>The UniProt Consortium</collab>
</person-group>
<year>2017</year>
<article-title>UniProt: the universal protein knowledgebase</article-title>
<source>Nucleic Acids Research</source>
<volume>45</volume>
<fpage>D158</fpage>
<lpage>D169</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw1099</pub-id>
<pub-id pub-id-type="pmid">27899622</pub-id>
</element-citation>
</ref>
<ref id="bib118">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uhlmann-Schiffler</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jalal</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Ddx42p--a human DEAD box protein with RNA chaperone activities</article-title>
<source>Nucleic Acids Research</source>
<volume>34</volume>
<fpage>10</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkj403</pub-id>
<pub-id pub-id-type="pmid">16397294</pub-id>
</element-citation>
</ref>
<ref id="bib119">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valton</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Prioleau</surname>
<given-names>MN</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>G-Quadruplexes in DNA replication: a problem or a necessity?</article-title>
<source>Trends in Genetics</source>
<volume>32</volume>
<fpage>697</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.1016/j.tig.2016.09.004</pub-id>
<pub-id pub-id-type="pmid">27663528</pub-id>
</element-citation>
</ref>
<ref id="bib120">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaughn</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Creacy</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Routh</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Joyner-Butt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Pauli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akman</surname>
<given-names>SA</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates</article-title>
<source>Journal of Biological Chemistry</source>
<volume>280</volume>
<fpage>38117</fpage>
<lpage>38120</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.C500348200</pub-id>
<pub-id pub-id-type="pmid">16150737</pub-id>
</element-citation>
</ref>
<ref id="bib121">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>JC</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Cellular roles of DNA topoisomerases: a molecular perspective</article-title>
<source>Nature Reviews Molecular Cell Biology</source>
<volume>3</volume>
<fpage>430</fpage>
<lpage>440</lpage>
<pub-id pub-id-type="doi">10.1038/nrm831</pub-id>
<pub-id pub-id-type="pmid">12042765</pub-id>
</element-citation>
</ref>
<ref id="bib122">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Zhe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>He</surname>
<given-names>ZX</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>SF</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties</article-title>
<source>Drug Design, Development and Therapy</source>
<volume>8</volume>
<fpage>2075</fpage>
<lpage>2088</lpage>
<pub-id pub-id-type="doi">10.2147/DDDT.S68872</pub-id>
<pub-id pub-id-type="pmid">25364233</pub-id>
</element-citation>
</ref>
<ref id="bib123">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Danussi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Riggins</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Kannan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sulman</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Huse</surname>
<given-names>JT</given-names>
</name>
</person-group>
<year>2019</year>
<article-title>G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma</article-title>
<source>Nature Communications</source>
<volume>10</volume>
<fpage>943</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-08905-8</pub-id>
<pub-id pub-id-type="pmid">30808951</pub-id>
</element-citation>
</ref>
<ref id="bib124">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shin-ya</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Beier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bérubé</surname>
<given-names>NG</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span</article-title>
<source>Journal of Clinical Investigation</source>
<volume>123</volume>
<fpage>2049</fpage>
<lpage>2063</lpage>
<pub-id pub-id-type="doi">10.1172/JCI65634</pub-id>
<pub-id pub-id-type="pmid">23563309</pub-id>
</element-citation>
</ref>
<ref id="bib125">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>HK</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>The key role of ubiquitination and sumoylation in signaling and cancer: a research topic</article-title>
<source>Frontiers in Oncology</source>
<volume>2</volume>
<elocation-id>187</elocation-id>
<pub-id pub-id-type="doi">10.3389/fonc.2012.00187</pub-id>
<pub-id pub-id-type="pmid">23227454</pub-id>
</element-citation>
</ref>
<ref id="bib126">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Will</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Urlaub</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Achsel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gentzel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wilm</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lührmann</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein</article-title>
<source>The EMBO Journal</source>
<volume>21</volume>
<fpage>4978</fpage>
<lpage>4988</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/cdf480</pub-id>
<pub-id pub-id-type="pmid">12234937</pub-id>
</element-citation>
</ref>
<ref id="bib127">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfe</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Drewe</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rajasekhar</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Sanghvi</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Mavrakis</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roderick</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Van der Meulen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Schatz</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Rodrigo</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rondou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>de Stanchina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Teruya-Feldstein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kelliher</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Speleman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Porco</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rätsch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>HG</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer</article-title>
<source>Nature</source>
<volume>513</volume>
<fpage>65</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1038/nature13485</pub-id>
<pub-id pub-id-type="pmid">25079319</pub-id>
</element-citation>
</ref>
<ref id="bib128">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Rokutanda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maruyama</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Togashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nishikawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Arai</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Miyoshi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Saeki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-Quadruplex DNA</article-title>
<source>Cancer Research</source>
<volume>78</volume>
<fpage>6371</fpage>
<lpage>6385</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-18-1877</pub-id>
<pub-id pub-id-type="pmid">30279242</pub-id>
</element-citation>
</ref>
<ref id="bib129">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Brosh</surname>
<given-names>RM</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>G-quadruplex nucleic acids and human disease</article-title>
<source>FEBS Journal</source>
<volume>277</volume>
<fpage>3470</fpage>
<lpage>3488</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2010.07760.x</pub-id>
<pub-id pub-id-type="pmid">20670277</pub-id>
</element-citation>
</ref>
<ref id="bib130">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Di Antonio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McKinney</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>B</given-names>
</name>
<name>
<surname>O'Neil</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Silvester</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kabeer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Soriano</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Banáth</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Yap</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Soong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Osako</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Algara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bally</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Brenton</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Cescon</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Caldas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stirling</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Hieter</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aparicio</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours</article-title>
<source>Nature Communications</source>
<volume>8</volume>
<elocation-id>14432</elocation-id>
<pub-id pub-id-type="doi">10.1038/ncomms14432</pub-id>
<pub-id pub-id-type="pmid">28211448</pub-id>
</element-citation>
</ref>
<ref id="bib131">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yadav</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Harcy</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Argueso</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Dominska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jinks-Robertson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence</article-title>
<source>PLOS Genetics</source>
<volume>10</volume>
<elocation-id>e1004839</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pgen.1004839</pub-id>
<pub-id pub-id-type="pmid">25473964</pub-id>
</element-citation>
</ref>
<ref id="bib132">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hurley</surname>
<given-names>LH</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Structure of the biologically relevant G-Quadruplex in the c-MYC promoter</article-title>
<source>Nucleosides, Nucleotides and Nucleic Acids</source>
<volume>25</volume>
<fpage>951</fpage>
<lpage>968</lpage>
<pub-id pub-id-type="doi">10.1080/15257770600809913</pub-id>
</element-citation>
</ref>
<ref id="bib133">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeats</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maibaum</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Marsden</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dibley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Addou</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Orengo</surname>
<given-names>CA</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Gene3D: modelling protein structure, function and evolution</article-title>
<source>Nucleic Acids Research</source>
<volume>34</volume>
<fpage>D281</fpage>
<lpage>D284</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkj057</pub-id>
<pub-id pub-id-type="pmid">16381865</pub-id>
</element-citation>
</ref>
<ref id="bib134">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mogi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shitara</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>The clinical significance of cyclin B1 and Wee1 expression in non-small-cell lung cancer</article-title>
<source>Annals of Oncology</source>
<volume>15</volume>
<fpage>252</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="doi">10.1093/annonc/mdh073</pub-id>
<pub-id pub-id-type="pmid">14760118</pub-id>
</element-citation>
</ref>
<ref id="bib135">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Downregulation of Nedd4L predicts poor prognosis, promotes tumor growth and inhibits MAPK/ERK signal pathway in hepatocellular carcinoma</article-title>
<source>Biochemical and Biophysical Research Communications</source>
<volume>495</volume>
<fpage>1136</fpage>
<lpage>1143</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2017.11.139</pub-id>
<pub-id pub-id-type="pmid">29175326</pub-id>
</element-citation>
</ref>
<ref id="bib136">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells</article-title>
<source>Nature Communications</source>
<volume>5</volume>
<elocation-id>4581</elocation-id>
<pub-id pub-id-type="doi">10.1038/ncomms5581</pub-id>
<pub-id pub-id-type="pmid">25091051</pub-id>
</element-citation>
</ref>
<ref id="bib137">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zimmer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tacconi</surname>
<given-names>EMC</given-names>
</name>
<name>
<surname>Folio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Badie</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Porru</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klare</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tumiati</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Markkanen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Halder</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Ramadan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kuznetsov</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Biroccio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sale</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Tarsounas</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Targeting BRCA1 and BRCA2 deficiencies with G-Quadruplex-Interacting compounds</article-title>
<source>Molecular Cell</source>
<volume>61</volume>
<fpage>449</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2015.12.004</pub-id>
<pub-id pub-id-type="pmid">26748828</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<sub-article id="SA1" article-type="decision-letter">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.46793.032</article-id>
<title-group>
<article-title>Decision letter</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Heyer</surname>
<given-names>Wolf-Dietrich</given-names>
</name>
<role>Reviewing Editor</role>
<aff>
<institution>University of California, Davis</institution>
<country>United States</country>
</aff>
</contrib>
<contrib contrib-type="reviewer">
<name>
<surname>Heyer</surname>
<given-names>Wolf-Dietrich</given-names>
</name>
<role>Reviewer</role>
<aff>
<institution>University of California, Davis</institution>
<country>United States</country>
</aff>
</contrib>
<contrib contrib-type="reviewer">
<name>
<surname>Lansdorp</surname>
<given-names>Peter M</given-names>
</name>
<role>Reviewer</role>
<aff>
<institution>BC Cancer Agency</institution>
<country>Canada</country>
</aff>
</contrib>
</contrib-group>
</front-stub>
<body>
<boxed-text position="float" orientation="portrait">
<p>In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.</p>
</boxed-text>
<p>Thank you for submitting your article "Genetic Interactions of G-quadruplexes" for consideration by
<italic>eLife</italic>
. Your article has been reviewed by three peer reviewers, including Wolf-Dietrich Heyer as the Reviewing Editor and Reviewer #1, and the evaluation has been overseen by Kevin Struhl as the Senior Editor. The following individual involved in review of your submission has agreed to reveal their identity: Peter M Lansdorp (Reviewer #3).</p>
<p>The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.</p>
<p>Summary:</p>
<p>The authors report a genome-wide shRNA screen for gene knockdowns that sensitize cells to two G4 stabilizing compounds, Phen DC3 and pyridostatin (PDS), in the human melanoma cell line A375. They design a custom library of positive hits and shRNAs against additional G4-related genes and conduct two additional focused screens in A375 and in HT1080 fibrosarcoma cells. The authors identify 36 genes that are consistently positive in all screens for both G4 stabilizing compounds. Four genes, BRCA1, TOP1, DDX42, and GAR1, are independently validated by siRNAs in both cell lines. Further experiments focus on two druggable targets, WEE1 and USP1, and targeted inhibitors (WEE1: MK1775; USP1: pimozide) are found to synergize with PDS in both cell lines to various degrees. Moreover, they identified a novel gene, DXX42, and determine this RNA helicase to be a G4 RNA binding protein using recombinant protein.</p>
<p>This is a solid study linking many previously unknown genes to G4 biology as studied using G4 stabilizers. The fact that many genes in different cell types were identified with two chemically distinct G4 stabilizers and that, based on this, pharmacological inhibition of selected pathways was shown to be effective is a wonderful illustration of insightful biological experimentation with potential implications for novel cancer therapies.</p>
<p>After addition of some needed experimentation and expanded discussion of results, as outlined under essential revisions, this manuscript should make a valuable contribution and a 'Tools and Resources' article.</p>
<p>Essential revisions:</p>
<p>Points 1 and 2 require new experimentation.</p>
<p>1) Survival data should also include a clonogenic survival assay at least in selected examples such as Figure 9.</p>
<p>2) The experiments reported in Figure 10F and G are only with n=2, which is insufficient, and an 'n' of 3 or higher is required to derive such quantitative data.</p>
<p>Points 3-5 do not require additional experimentation but expanded discussion.</p>
<p>3) Do the genes that are differentially affected by the different G4 stabilizers (PDS and PhenDC3) show any similarity in G4 motifs in the gene body, promotor or nearby enhancers? Can anything be learned about G4 biology by comparing G4 motifs in the vicinity of genes that are 1) picked up by both G4 stabilizers or those identified by individual G4 stabilizers?</p>
<p>4) Is the growth inhibition observed with specific combinations of G4 stabilizers and shRNAs biologically relevant? If G4 formation and stabilization is sporadic, many cells could potentially escape the "synthetic lethal" interactions. Perhaps "significant G4-ligand mediated changes" is a more appropriate description of effects on cell growth than "synthetic lethality". For interpretation of potential clinical relevance, it is important that reader can distinguish minor growth inhibition (presumably with little clinical relevance) to robust killing of cells. This needs to be flashed out more e.g. by comparisons with previously described synthetic lethal combinations such as e.g. PARP inhibition in BRCA1 or 2 deficient cells.</p>
<p>5) Genetic abnormalities in the target cells for the initial shRNA screen using A375 melanoma cells need to be spelled out. A similar screen using HT1080 cells identified many G4 ligand sensitizers (42% of genes) that were not shared with those seen the A375 genome-wide screen. The authors should expand their discussion of possible explanations for these observations.</p>
<p>6) Figure 8C-F shows growth responses to two doses of each drug in the validation experiments with siRNA for BRCA1, TOP1, DDX42, and GAR1 in HT1080 cells. Why is there no dose response? Is there any explanation for the differences between PDS and PhenDC3? How can the differences between HT1080 and A375 cells (Figure 8—figure supplement 3) be explained.</p>
<p>7) The observation that out of 9509 G4-ligand specific shRNAs drop-outs in the screen only 843 or 758 identify the same gene suggest that the screen picks up many non-specific "synthetic lethal" hits. This deserves further explanation by the authors. The list of these genes that are supported by multiple shRNAs is nevertheless of interest and it is reassuring that several of the genes previously implicated in G4 biology and HR are detected.</p>
</body>
</sub-article>
<sub-article id="SA2" article-type="reply">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.46793.033</article-id>
<title-group>
<article-title>Author response</article-title>
</title-group>
</front-stub>
<body>
<disp-quote content-type="editor-comment">
<p>Essential revisions:</p>
<p>Points 1 and 2 require new experimentation.</p>
<p>1) Survival data should also include a clonogenic survival assay at least in selected examples such as Figure 9.</p>
</disp-quote>
<p>We have performed the requested clonogenic survival assay for the examples given in Figure 9 and the results confirm our previous observations. We note that the clonogenic assay is more sensitive than the shorter-term cell killing assay necessitating lower compound concentrations. We have added a comment to the subsection “G4-targeting ligands plus pharmacological inhibitors of G4 sensitiser genes demonstrate synergistic cell killing”, and these data in Figure 9—figure supplement 2.</p>
<disp-quote content-type="editor-comment">
<p>2) The experiments reported in Figure 10F and G are only with n=2, which is insufficient, and an 'n' of 3 or higher is required to derive such quantitative data.</p>
</disp-quote>
<p>We obtained a new batch of recombinant protein and performed repeat experiments for a total of five replicates which gives similar results. The updated data are presented in Figure 10.</p>
<disp-quote content-type="editor-comment">
<p>Points 3-5 do not require additional experimentation but expanded discussion.</p>
<p>3) Do the genes that are differentially affected by the different G4 stabilizers (PDS and PhenDC3) show any similarity in G4 motifs in the gene body, promotor or nearby enhancers? Can anything be learned about G4 biology by comparing G4 motifs in the vicinity of genes that are 1) picked up by both G4 stabilizers or those identified by individual G4 stabilizers?</p>
</disp-quote>
<p>These are interesting questions, but they cannot be addressed owing to the very nature our screen, which actually determines cell survival in the presence of a G4 ligand in the event where expression of a given gene is independently knocked-down by shRNA. The outcome does not depend on whether or not the G4 ligand interacts directly with the knocked-down gene.</p>
<disp-quote content-type="editor-comment">
<p>4) Is the growth inhibition observed with specific combinations of G4 stabilizers and shRNAs biologically relevant?</p>
</disp-quote>
<p>Yes, we believe that many will be biologically relevant. The biology of G4s is an emerging field and their detailed functions are largely unknown, but we and others have shown that loss of specific genes, several of which were identified in our study, in the presence of G4 ligands leads to demonstrable biological effects (subsection “Identification of genetic vulnerabilities to G4-ligands via genome-wide screening”, third paragraph). Furthermore, as referenced in the Introduction (fourth paragraph), we and others have shown that cells deficient in homologous recombination are more susceptible to G4 ligands. Importantly, the latter findings were used as the basis for development of a G4 ligand, that we have helped characterise (Xu et al., 2017), that has entered clinical trials for BRCA-deficient breast cancer patients (NCT02719977
<underline>ClinicalTrials.gov</underline>
).</p>
<disp-quote content-type="editor-comment">
<p>If G4 formation and stabilization is sporadic, many cells could potentially escape the "synthetic lethal" interactions.</p>
</disp-quote>
<p>It is commonly thought that G4s are persistent structures. Supporting this, we and others using antibody tools have demonstrated that G4s form consistently (see Introduction, second paragraph). Even if a proportion of G4s formed sporadically, they would have to be processed by the cell during transcription and replication, so defects in G4 unwinding enzymes would still be apparent and our screen did indeed uncover many such proteins.</p>
<disp-quote content-type="editor-comment">
<p>Perhaps "significant G4-ligand mediated changes" is a more appropriate description of effects on cell growth than "synthetic lethality".</p>
</disp-quote>
<p>We have accepted that our use of the terminology “synthetic lethality” may have been confusing and have clarified this throughout the manuscript.</p>
<disp-quote content-type="editor-comment">
<p>For interpretation of potential clinical relevance, it is important that reader can distinguish minor growth inhibition (presumably with little clinical relevance) to robust killing of cells. This needs to be flashed out more e.g. by comparisons with previously described synthetic lethal combinations such as e.g. PARP inhibition in BRCA1 or 2 deficient cells.</p>
</disp-quote>
<p>We believe that our observations can be the starting point for future clinical work (see our first response to point 4). PDS and PhenDC3 are tool molecules and have not undergone extensive medicinal chemistry optimisation. When one compares PDS to the clinically developed CX5461 G4 ligand, both show robust cellular effects though CX5461 has greater efficacy (Xu et al., 2017). Furthermore, Zimmer et al. directly compared the efficacy of PDS and olaparib in BRCA-deficient cells and found that both molecules had comparable growth inhibitory properties (Zimmer et al., 2016). We have added further discussion on the comparisons on PDS and olaparib, and also robust vs. minor growth effects in the second paragraph of the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>5) Genetic abnormalities in the target cells for the initial shRNA screen using A375 melanoma cells need to be spelled out.</p>
</disp-quote>
<p>We have added comments on key genetic abnormalities for these cell lines. See subsection “Identification of genetic vulnerabilities to G4-ligands via genome-wide screening”, first paragraph and subsection “BRCA1, TOP1, DDX42 and GAR1 are key G4 ligand sensitiser genes”.</p>
<disp-quote content-type="editor-comment">
<p>A similar screen using HT1080 cells identified many G4 ligand sensitizers (42% of genes) that were not shared with those seen the A375 genome-wide screen. The authors should expand their discussion of possible explanations for these observations.</p>
</disp-quote>
<p>We have added relevant discussion of these points in the fifth paragraph of the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>6) Figure 8C-F shows growth responses to two doses of each drug in the validation experiments with siRNA for BRCA1, TOP1, DDX42, and GAR1 in HT1080 cells. Why is there no dose response?</p>
</disp-quote>
<p>We have added text for this in the fifth paragraph of the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>Is there any explanation for the differences between PDS and PhenDC3?</p>
</disp-quote>
<p>See our second response to point 5. Also, PhenDC3 and PDS are structurally unrelated compounds, thus they have different physico-chemical properties and different binding properties towards G4s, which themselves represent heterogeneous targets. For example, our own work has shown that in addition to having different binding affinities, PhenDC3, unlike PDS, has a strong preference for 5’-G-tetrad binding (Le et al., 2015). We have added a discussion on this to the fifth paragraph of the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>How can the differences between HT1080 and A375 cells (Figure 8—figure supplement 3) be explained.</p>
</disp-quote>
<p>We suspect that the differences between the cell lines are in part due to the greater knockdown efficiency seen with HT1080 cells compared to A375 cells. We have added a comment for this to the fifth paragraph of the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>7) The observation that out of 9509 G4-ligand specific shRNAs drop-outs in the screen only 843 or 758 identify the same gene suggest that the screen picks up many non-specific "synthetic lethal" hits. This deserves further explanation by the authors. The list of these genes that are supported by multiple shRNAs is nevertheless of interest and it is reassuring that several of the genes previously implicated in G4 biology and HR are detected.</p>
</disp-quote>
<p>Thank you for pointing this out. Although the efficacy of genome-wide screening libraries has improved considerably with the development of new algorithms for library design (reviewed in 10.1038/nrg.2017.47), the lack of complete gene specificity of shRNA hairpins (and CRISPR sgRNAs) still hinders the outcome of genome-wide studies. It is standard practice in shRNA screens that the desired phenotype is captured by multiple independent shRNA hairpins to mitigate any off-target effects and variability in knockdown efficiencies (reviewed in 10.1038/nrg2364, 10.1038/nmeth.1351 and 10.1038/nmeth1006-777). To clarify further, the 9,509 G4 ligand specific shRNA hairpins arise from the shRNA cut-off threshold (FDR <0.05) alone whereas the 758 G4 synthetic lethal genes (representing 2,025 unique shRNA hairpins) come from additionally considering a gene threshold cut-off (3 or 50% hairpins and median Log
<sub>2</sub>
FC ≤ -1). 5411 genes are targeted by a single hairpin whereas 2329 genes are targeted by two or more hairpins. We have added an extra table (Figure 3 shRNA_summary) into Supplementary file 1 to provide the information.</p>
</body>
</sub-article>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000841 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000841 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6615864
   |texte=   Genetic interactions of G-quadruplexes in humans
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31287417" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021