Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

HIF-1α regulates IL-1β and IL-17 in sarcoidosis

Identifieur interne : 000840 ( Pmc/Corpus ); précédent : 000839; suivant : 000841

HIF-1α regulates IL-1β and IL-17 in sarcoidosis

Auteurs : Jaya Talreja ; Harvinder Talwar ; Christian Bauerfeld ; Lawrence I. Grossman ; Kezhong Zhang ; Paul Tranchida ; Lobelia Samavati

Source :

RBID : PMC:6506207

Abstract

Sarcoidosis is a complex systemic granulomatous disease of unknown etiology characterized by the presence of activated macrophages and Th1/Th17 effector cells. Data mining of our RNA-Seq analysis of CD14+monocytes showed enrichment for metabolic and hypoxia inducible factor (HIF) pathways in sarcoidosis. Further investigation revealed that sarcoidosis macrophages and monocytes exhibit higher protein levels for HIF-α isoforms, HIF-1β, and their transcriptional co-activator p300 as well as glucose transporter 1 (Glut1). In situ hybridization of sarcoidosis granulomatous lung tissues showed abundance of HIF-1α in the center of granulomas. The abundance of HIF isoforms was mechanistically linked to elevated IL-1β and IL-17 since targeted down regulation of HIF-1α via short interfering RNA or a HIF-1α inhibitor decreased their production. Pharmacological intervention using chloroquine, a lysosomal inhibitor, decreased lysosomal associated protein 2 (LAMP2) and HIF-1α levels and modified cytokine production. These data suggest that increased activity of HIF-α isoforms regulate Th1/Th17 mediated inflammation in sarcoidosis.


Url:
DOI: 10.7554/eLife.44519
PubMed: 30946009
PubMed Central: 6506207

Links to Exploration step

PMC:6506207

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">HIF-1α regulates IL-1β and IL-17 in sarcoidosis</title>
<author>
<name sortKey="Talreja, Jaya" sort="Talreja, Jaya" uniqKey="Talreja J" first="Jaya" last="Talreja">Jaya Talreja</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Talwar, Harvinder" sort="Talwar, Harvinder" uniqKey="Talwar H" first="Harvinder" last="Talwar">Harvinder Talwar</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bauerfeld, Christian" sort="Bauerfeld, Christian" uniqKey="Bauerfeld C" first="Christian" last="Bauerfeld">Christian Bauerfeld</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Pediatrics, Division of Critical Care</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grossman, Lawrence I" sort="Grossman, Lawrence I" uniqKey="Grossman L" first="Lawrence I" last="Grossman">Lawrence I. Grossman</name>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">Center for Molecular Medicine and Genetics</institution>
<institution>Wayne State University School of Medicine</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Kezhong" sort="Zhang, Kezhong" uniqKey="Zhang K" first="Kezhong" last="Zhang">Kezhong Zhang</name>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">Center for Molecular Medicine and Genetics</institution>
<institution>Wayne State University School of Medicine</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tranchida, Paul" sort="Tranchida, Paul" uniqKey="Tranchida P" first="Paul" last="Tranchida">Paul Tranchida</name>
<affiliation>
<nlm:aff id="aff4">
<institution content-type="dept">Department of Pathology</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Samavati, Lobelia" sort="Samavati, Lobelia" uniqKey="Samavati L" first="Lobelia" last="Samavati">Lobelia Samavati</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30946009</idno>
<idno type="pmc">6506207</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506207</idno>
<idno type="RBID">PMC:6506207</idno>
<idno type="doi">10.7554/eLife.44519</idno>
<date when="????">????</date>
<idno type="wicri:Area/Pmc/Corpus">000840</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000840</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">HIF-1α regulates IL-1β and IL-17 in sarcoidosis</title>
<author>
<name sortKey="Talreja, Jaya" sort="Talreja, Jaya" uniqKey="Talreja J" first="Jaya" last="Talreja">Jaya Talreja</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Talwar, Harvinder" sort="Talwar, Harvinder" uniqKey="Talwar H" first="Harvinder" last="Talwar">Harvinder Talwar</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bauerfeld, Christian" sort="Bauerfeld, Christian" uniqKey="Bauerfeld C" first="Christian" last="Bauerfeld">Christian Bauerfeld</name>
<affiliation>
<nlm:aff id="aff2">
<institution content-type="dept">Department of Pediatrics, Division of Critical Care</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grossman, Lawrence I" sort="Grossman, Lawrence I" uniqKey="Grossman L" first="Lawrence I" last="Grossman">Lawrence I. Grossman</name>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">Center for Molecular Medicine and Genetics</institution>
<institution>Wayne State University School of Medicine</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Kezhong" sort="Zhang, Kezhong" uniqKey="Zhang K" first="Kezhong" last="Zhang">Kezhong Zhang</name>
<affiliation>
<nlm:aff id="aff3">
<institution content-type="dept">Center for Molecular Medicine and Genetics</institution>
<institution>Wayne State University School of Medicine</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tranchida, Paul" sort="Tranchida, Paul" uniqKey="Tranchida P" first="Paul" last="Tranchida">Paul Tranchida</name>
<affiliation>
<nlm:aff id="aff4">
<institution content-type="dept">Department of Pathology</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Samavati, Lobelia" sort="Samavati, Lobelia" uniqKey="Samavati L" first="Lobelia" last="Samavati">Lobelia Samavati</name>
<affiliation>
<nlm:aff id="aff1">
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="????">????</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Sarcoidosis is a complex systemic granulomatous disease of unknown etiology characterized by the presence of activated macrophages and Th1/Th17 effector cells. Data mining of our RNA-Seq analysis of CD14
<sup>+</sup>
monocytes showed enrichment for metabolic and hypoxia inducible factor (HIF) pathways in sarcoidosis. Further investigation revealed that sarcoidosis macrophages and monocytes exhibit higher protein levels for HIF-α isoforms, HIF-1β, and their transcriptional co-activator p300 as well as glucose transporter 1 (Glut1). In situ hybridization of sarcoidosis granulomatous lung tissues showed abundance of HIF-1α in the center of granulomas. The abundance of HIF isoforms was mechanistically linked to elevated IL-1β and IL-17 since targeted down regulation of HIF-1α via short interfering RNA or a HIF-1α inhibitor decreased their production. Pharmacological intervention using chloroquine, a lysosomal inhibitor, decreased lysosomal associated protein 2 (LAMP2) and HIF-1α levels and modified cytokine production. These data suggest that increased activity of HIF-α isoforms regulate Th1/Th17 mediated inflammation in sarcoidosis.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aberdein, Jd" uniqKey="Aberdein J">JD Aberdein</name>
</author>
<author>
<name sortKey="Cole, J" uniqKey="Cole J">J Cole</name>
</author>
<author>
<name sortKey="Bewley, Ma" uniqKey="Bewley M">MA Bewley</name>
</author>
<author>
<name sortKey="Marriott, Hm" uniqKey="Marriott H">HM Marriott</name>
</author>
<author>
<name sortKey="Dockrell, Dh" uniqKey="Dockrell D">DH Dockrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arend, Wp" uniqKey="Arend W">WP Arend</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avril, N" uniqKey="Avril N">N Avril</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ben Haim, S" uniqKey="Ben Haim S">S Ben-Haim</name>
</author>
<author>
<name sortKey="Ell, P" uniqKey="Ell P">P Ell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Pore, N" uniqKey="Pore N">N Pore</name>
</author>
<author>
<name sortKey="Behrooz, A" uniqKey="Behrooz A">A Behrooz</name>
</author>
<author>
<name sortKey="Ismail Beigi, F" uniqKey="Ismail Beigi F">F Ismail-Beigi</name>
</author>
<author>
<name sortKey="Maity, A" uniqKey="Maity A">A Maity</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Sc" uniqKey="Cheng S">SC Cheng</name>
</author>
<author>
<name sortKey="Quintin, J" uniqKey="Quintin J">J Quintin</name>
</author>
<author>
<name sortKey="Cramer, Ra" uniqKey="Cramer R">RA Cramer</name>
</author>
<author>
<name sortKey="Shepardson, Km" uniqKey="Shepardson K">KM Shepardson</name>
</author>
<author>
<name sortKey="Saeed, S" uniqKey="Saeed S">S Saeed</name>
</author>
<author>
<name sortKey="Kumar, V" uniqKey="Kumar V">V Kumar</name>
</author>
<author>
<name sortKey="Giamarellos Bourboulis, Ej" uniqKey="Giamarellos Bourboulis E">EJ Giamarellos-Bourboulis</name>
</author>
<author>
<name sortKey="Martens, Jh" uniqKey="Martens J">JH Martens</name>
</author>
<author>
<name sortKey="Rao, Na" uniqKey="Rao N">NA Rao</name>
</author>
<author>
<name sortKey="Aghajanirefah, A" uniqKey="Aghajanirefah A">A Aghajanirefah</name>
</author>
<author>
<name sortKey="Manjeri, Gr" uniqKey="Manjeri G">GR Manjeri</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Ifrim, Dc" uniqKey="Ifrim D">DC Ifrim</name>
</author>
<author>
<name sortKey="Arts, Rj" uniqKey="Arts R">RJ Arts</name>
</author>
<author>
<name sortKey="Van Der Veer, Bm" uniqKey="Van Der Veer B">BM van der Veer</name>
</author>
<author>
<name sortKey="Van Der Meer, Bm" uniqKey="Van Der Meer B">BM van der Meer</name>
</author>
<author>
<name sortKey="Deen, Pm" uniqKey="Deen P">PM Deen</name>
</author>
<author>
<name sortKey="Logie, C" uniqKey="Logie C">C Logie</name>
</author>
<author>
<name sortKey="O Neill, La" uniqKey="O Neill L">LA O'Neill</name>
</author>
<author>
<name sortKey="Willems, P" uniqKey="Willems P">P Willems</name>
</author>
<author>
<name sortKey="Van De Veerdonk, Fl" uniqKey="Van De Veerdonk F">FL van de Veerdonk</name>
</author>
<author>
<name sortKey="Van Der Meer, Jw" uniqKey="Van Der Meer J">JW van der Meer</name>
</author>
<author>
<name sortKey="Ng, A" uniqKey="Ng A">A Ng</name>
</author>
<author>
<name sortKey="Joosten, La" uniqKey="Joosten L">LA Joosten</name>
</author>
<author>
<name sortKey="Wijmenga, C" uniqKey="Wijmenga C">C Wijmenga</name>
</author>
<author>
<name sortKey="Stunnenberg, Hg" uniqKey="Stunnenberg H">HG Stunnenberg</name>
</author>
<author>
<name sortKey="Xavier, Rj" uniqKey="Xavier R">RJ Xavier</name>
</author>
<author>
<name sortKey="Netea, Mg" uniqKey="Netea M">MG Netea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, Y" uniqKey="Chung Y">Y Chung</name>
</author>
<author>
<name sortKey="Chang, Sh" uniqKey="Chang S">SH Chang</name>
</author>
<author>
<name sortKey="Martinez, Gj" uniqKey="Martinez G">GJ Martinez</name>
</author>
<author>
<name sortKey="Yang, Xo" uniqKey="Yang X">XO Yang</name>
</author>
<author>
<name sortKey="Nurieva, R" uniqKey="Nurieva R">R Nurieva</name>
</author>
<author>
<name sortKey="Kang, Hs" uniqKey="Kang H">HS Kang</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L Ma</name>
</author>
<author>
<name sortKey="Watowich, Ss" uniqKey="Watowich S">SS Watowich</name>
</author>
<author>
<name sortKey="Jetten, Am" uniqKey="Jetten A">AM Jetten</name>
</author>
<author>
<name sortKey="Tian, Q" uniqKey="Tian Q">Q Tian</name>
</author>
<author>
<name sortKey="Dong, C" uniqKey="Dong C">C Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cominelli, F" uniqKey="Cominelli F">F Cominelli</name>
</author>
<author>
<name sortKey="Pizarro, Tt" uniqKey="Pizarro T">TT Pizarro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cummins, Ep" uniqKey="Cummins E">EP Cummins</name>
</author>
<author>
<name sortKey="Keogh, Ce" uniqKey="Keogh C">CE Keogh</name>
</author>
<author>
<name sortKey="Crean, D" uniqKey="Crean D">D Crean</name>
</author>
<author>
<name sortKey="Taylor, Ct" uniqKey="Taylor C">CT Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dang, Ev" uniqKey="Dang E">EV Dang</name>
</author>
<author>
<name sortKey="Barbi, J" uniqKey="Barbi J">J Barbi</name>
</author>
<author>
<name sortKey="Yang, Hy" uniqKey="Yang H">HY Yang</name>
</author>
<author>
<name sortKey="Jinasena, D" uniqKey="Jinasena D">D Jinasena</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y Zheng</name>
</author>
<author>
<name sortKey="Bordman, Z" uniqKey="Bordman Z">Z Bordman</name>
</author>
<author>
<name sortKey="Fu, J" uniqKey="Fu J">J Fu</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
<author>
<name sortKey="Yen, Hr" uniqKey="Yen H">HR Yen</name>
</author>
<author>
<name sortKey="Luo, W" uniqKey="Luo W">W Luo</name>
</author>
<author>
<name sortKey="Zeller, K" uniqKey="Zeller K">K Zeller</name>
</author>
<author>
<name sortKey="Shimoda, L" uniqKey="Shimoda L">L Shimoda</name>
</author>
<author>
<name sortKey="Topalian, Sl" uniqKey="Topalian S">SL Topalian</name>
</author>
<author>
<name sortKey="Semenza, Gl" uniqKey="Semenza G">GL Semenza</name>
</author>
<author>
<name sortKey="Dang, Cv" uniqKey="Dang C">CV Dang</name>
</author>
<author>
<name sortKey="Pardoll, Dm" uniqKey="Pardoll D">DM Pardoll</name>
</author>
<author>
<name sortKey="Pan, F" uniqKey="Pan F">F Pan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duhen, T" uniqKey="Duhen T">T Duhen</name>
</author>
<author>
<name sortKey="Campbell, Dj" uniqKey="Campbell D">DJ Campbell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Facco, M" uniqKey="Facco M">M Facco</name>
</author>
<author>
<name sortKey="Cabrelle, A" uniqKey="Cabrelle A">A Cabrelle</name>
</author>
<author>
<name sortKey="Teramo, A" uniqKey="Teramo A">A Teramo</name>
</author>
<author>
<name sortKey="Olivieri, V" uniqKey="Olivieri V">V Olivieri</name>
</author>
<author>
<name sortKey="Gnoato, M" uniqKey="Gnoato M">M Gnoato</name>
</author>
<author>
<name sortKey="Teolato, S" uniqKey="Teolato S">S Teolato</name>
</author>
<author>
<name sortKey="Ave, E" uniqKey="Ave E">E Ave</name>
</author>
<author>
<name sortKey="Gattazzo, C" uniqKey="Gattazzo C">C Gattazzo</name>
</author>
<author>
<name sortKey="Fadini, Gp" uniqKey="Fadini G">GP Fadini</name>
</author>
<author>
<name sortKey="Calabrese, F" uniqKey="Calabrese F">F Calabrese</name>
</author>
<author>
<name sortKey="Semenzato, G" uniqKey="Semenzato G">G Semenzato</name>
</author>
<author>
<name sortKey="Agostini, C" uniqKey="Agostini C">C Agostini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fazel, Sb" uniqKey="Fazel S">SB Fazel</name>
</author>
<author>
<name sortKey="Howie, Se" uniqKey="Howie S">SE Howie</name>
</author>
<author>
<name sortKey="Krajewski, As" uniqKey="Krajewski A">AS Krajewski</name>
</author>
<author>
<name sortKey="Lamb, D" uniqKey="Lamb D">D Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frede, S" uniqKey="Frede S">S Frede</name>
</author>
<author>
<name sortKey="Berchner Pfannschmidt, U" uniqKey="Berchner Pfannschmidt U">U Berchner-Pfannschmidt</name>
</author>
<author>
<name sortKey="Fandrey, J" uniqKey="Fandrey J">J Fandrey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geamanu, A" uniqKey="Geamanu A">A Geamanu</name>
</author>
<author>
<name sortKey="Gupta, Sv" uniqKey="Gupta S">SV Gupta</name>
</author>
<author>
<name sortKey="Bauerfeld, C" uniqKey="Bauerfeld C">C Bauerfeld</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gracie, Ja" uniqKey="Gracie J">JA Gracie</name>
</author>
<author>
<name sortKey="Robertson, Se" uniqKey="Robertson S">SE Robertson</name>
</author>
<author>
<name sortKey="Mcinnes, Ib" uniqKey="Mcinnes I">IB McInnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X Gao</name>
</author>
<author>
<name sortKey="Dykema, Kj" uniqKey="Dykema K">KJ Dykema</name>
</author>
<author>
<name sortKey="Martin, Kr" uniqKey="Martin K">KR Martin</name>
</author>
<author>
<name sortKey="Ke, J" uniqKey="Ke J">J Ke</name>
</author>
<author>
<name sortKey="Hudson, Ea" uniqKey="Hudson E">EA Hudson</name>
</author>
<author>
<name sortKey="Khoo, Sk" uniqKey="Khoo S">SK Khoo</name>
</author>
<author>
<name sortKey="Resau, Jh" uniqKey="Resau J">JH Resau</name>
</author>
<author>
<name sortKey="Alberts, As" uniqKey="Alberts A">AS Alberts</name>
</author>
<author>
<name sortKey="Mackeigan, Jp" uniqKey="Mackeigan J">JP MacKeigan</name>
</author>
<author>
<name sortKey="Furge, Ka" uniqKey="Furge K">KA Furge</name>
</author>
<author>
<name sortKey="Xu, He" uniqKey="Xu H">HE Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Cj" uniqKey="Hu C">CJ Hu</name>
</author>
<author>
<name sortKey="Wang, Ly" uniqKey="Wang L">LY Wang</name>
</author>
<author>
<name sortKey="Chodosh, La" uniqKey="Chodosh L">LA Chodosh</name>
</author>
<author>
<name sortKey="Keith, B" uniqKey="Keith B">B Keith</name>
</author>
<author>
<name sortKey="Simon, Mc" uniqKey="Simon M">MC Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, G" uniqKey="Huang G">G Huang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Vogel, P" uniqKey="Vogel P">P Vogel</name>
</author>
<author>
<name sortKey="Chi, H" uniqKey="Chi H">H Chi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunninghake, Gw" uniqKey="Hunninghake G">GW Hunninghake</name>
</author>
<author>
<name sortKey="Gilbert, S" uniqKey="Gilbert S">S Gilbert</name>
</author>
<author>
<name sortKey="Pueringer, R" uniqKey="Pueringer R">R Pueringer</name>
</author>
<author>
<name sortKey="Dayton, C" uniqKey="Dayton C">C Dayton</name>
</author>
<author>
<name sortKey="Floerchinger, C" uniqKey="Floerchinger C">C Floerchinger</name>
</author>
<author>
<name sortKey="Helmers, R" uniqKey="Helmers R">R Helmers</name>
</author>
<author>
<name sortKey="Merchant, R" uniqKey="Merchant R">R Merchant</name>
</author>
<author>
<name sortKey="Wilson, J" uniqKey="Wilson J">J Wilson</name>
</author>
<author>
<name sortKey="Galvin, J" uniqKey="Galvin J">J Galvin</name>
</author>
<author>
<name sortKey="Schwartz, D" uniqKey="Schwartz D">D Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunninghake, Gw" uniqKey="Hunninghake G">GW Hunninghake</name>
</author>
<author>
<name sortKey="Costabel, U" uniqKey="Costabel U">U Costabel</name>
</author>
<author>
<name sortKey="Ando, M" uniqKey="Ando M">M Ando</name>
</author>
<author>
<name sortKey="Baughman, R" uniqKey="Baughman R">R Baughman</name>
</author>
<author>
<name sortKey="Cordier, Jf" uniqKey="Cordier J">JF Cordier</name>
</author>
<author>
<name sortKey="Du Bois, R" uniqKey="Du Bois R">R du Bois</name>
</author>
<author>
<name sortKey="Eklund, A" uniqKey="Eklund A">A Eklund</name>
</author>
<author>
<name sortKey="Kitaichi, M" uniqKey="Kitaichi M">M Kitaichi</name>
</author>
<author>
<name sortKey="Lynch, J" uniqKey="Lynch J">J Lynch</name>
</author>
<author>
<name sortKey="Rizzato, G" uniqKey="Rizzato G">G Rizzato</name>
</author>
<author>
<name sortKey="Rose, C" uniqKey="Rose C">C Rose</name>
</author>
<author>
<name sortKey="Selroos, O" uniqKey="Selroos O">O Selroos</name>
</author>
<author>
<name sortKey="Semenzato, G" uniqKey="Semenzato G">G Semenzato</name>
</author>
<author>
<name sortKey="Sharma, Op" uniqKey="Sharma O">OP Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iannuzzi, Mc" uniqKey="Iannuzzi M">MC Iannuzzi</name>
</author>
<author>
<name sortKey="Rybicki, Ba" uniqKey="Rybicki B">BA Rybicki</name>
</author>
<author>
<name sortKey="Teirstein, As" uniqKey="Teirstein A">AS Teirstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janson, Rw" uniqKey="Janson R">RW Janson</name>
</author>
<author>
<name sortKey="Hance, Kr" uniqKey="Hance K">KR Hance</name>
</author>
<author>
<name sortKey="Arend, Wp" uniqKey="Arend W">WP Arend</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koppenol, Wh" uniqKey="Koppenol W">WH Koppenol</name>
</author>
<author>
<name sortKey="Bounds, Pl" uniqKey="Bounds P">PL Bounds</name>
</author>
<author>
<name sortKey="Dang, Cv" uniqKey="Dang C">CV Dang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lang, D" uniqKey="Lang D">D Lang</name>
</author>
<author>
<name sortKey="Knop, J" uniqKey="Knop J">J Knop</name>
</author>
<author>
<name sortKey="Wesche, H" uniqKey="Wesche H">H Wesche</name>
</author>
<author>
<name sortKey="Raffetseder, U" uniqKey="Raffetseder U">U Raffetseder</name>
</author>
<author>
<name sortKey="Kurrle, R" uniqKey="Kurrle R">R Kurrle</name>
</author>
<author>
<name sortKey="Boraschi, D" uniqKey="Boraschi D">D Boraschi</name>
</author>
<author>
<name sortKey="Martin, Mu" uniqKey="Martin M">MU Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le, Tt" uniqKey="Le T">TT Le</name>
</author>
<author>
<name sortKey="Karmouty Quintana, H" uniqKey="Karmouty Quintana H">H Karmouty-Quintana</name>
</author>
<author>
<name sortKey="Melicoff, E" uniqKey="Melicoff E">E Melicoff</name>
</author>
<author>
<name sortKey="Le, Tt" uniqKey="Le T">TT Le</name>
</author>
<author>
<name sortKey="Weng, T" uniqKey="Weng T">T Weng</name>
</author>
<author>
<name sortKey="Chen, Ny" uniqKey="Chen N">NY Chen</name>
</author>
<author>
<name sortKey="Pedroza, M" uniqKey="Pedroza M">M Pedroza</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Davies, J" uniqKey="Davies J">J Davies</name>
</author>
<author>
<name sortKey="Philip, K" uniqKey="Philip K">K Philip</name>
</author>
<author>
<name sortKey="Molina, J" uniqKey="Molina J">J Molina</name>
</author>
<author>
<name sortKey="Luo, F" uniqKey="Luo F">F Luo</name>
</author>
<author>
<name sortKey="George, At" uniqKey="George A">AT George</name>
</author>
<author>
<name sortKey="Garcia Morales, Lj" uniqKey="Garcia Morales L">LJ Garcia-Morales</name>
</author>
<author>
<name sortKey="Bunge, Rr" uniqKey="Bunge R">RR Bunge</name>
</author>
<author>
<name sortKey="Bruckner, Ba" uniqKey="Bruckner B">BA Bruckner</name>
</author>
<author>
<name sortKey="Loebe, M" uniqKey="Loebe M">M Loebe</name>
</author>
<author>
<name sortKey="Seethamraju, H" uniqKey="Seethamraju H">H Seethamraju</name>
</author>
<author>
<name sortKey="Agarwal, Sk" uniqKey="Agarwal S">SK Agarwal</name>
</author>
<author>
<name sortKey="Blackburn, Mr" uniqKey="Blackburn M">MR Blackburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jw" uniqKey="Lee J">JW Lee</name>
</author>
<author>
<name sortKey="Bae, Sh" uniqKey="Bae S">SH Bae</name>
</author>
<author>
<name sortKey="Jeong, Jw" uniqKey="Jeong J">JW Jeong</name>
</author>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
<author>
<name sortKey="Kim, Kw" uniqKey="Kim K">KW Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Ww" uniqKey="Lee W">WW Lee</name>
</author>
<author>
<name sortKey="Kang, Sw" uniqKey="Kang S">SW Kang</name>
</author>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J Choi</name>
</author>
<author>
<name sortKey="Lee, Sh" uniqKey="Lee S">SH Lee</name>
</author>
<author>
<name sortKey="Shah, K" uniqKey="Shah K">K Shah</name>
</author>
<author>
<name sortKey="Eynon, Ee" uniqKey="Eynon E">EE Eynon</name>
</author>
<author>
<name sortKey="Flavell, Ra" uniqKey="Flavell R">RA Flavell</name>
</author>
<author>
<name sortKey="Kang, I" uniqKey="Kang I">I Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Sj" uniqKey="Lee S">SJ Lee</name>
</author>
<author>
<name sortKey="Silverman, E" uniqKey="Silverman E">E Silverman</name>
</author>
<author>
<name sortKey="Bargman, Jm" uniqKey="Bargman J">JM Bargman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, Tl" uniqKey="Liao T">TL Liao</name>
</author>
<author>
<name sortKey="Chen, Sc" uniqKey="Chen S">SC Chen</name>
</author>
<author>
<name sortKey="Tzeng, Cr" uniqKey="Tzeng C">CR Tzeng</name>
</author>
<author>
<name sortKey="Kao, Sh" uniqKey="Kao S">SH Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Foyil, Sr" uniqKey="Foyil S">SR Foyil</name>
</author>
<author>
<name sortKey="Godar, Rj" uniqKey="Godar R">RJ Godar</name>
</author>
<author>
<name sortKey="Weinheimer, Cj" uniqKey="Weinheimer C">CJ Weinheimer</name>
</author>
<author>
<name sortKey="Hill, Ja" uniqKey="Hill J">JA Hill</name>
</author>
<author>
<name sortKey="Diwan, A" uniqKey="Diwan A">A Diwan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mikuniya, T" uniqKey="Mikuniya T">T Mikuniya</name>
</author>
<author>
<name sortKey="Nagai, S" uniqKey="Nagai S">S Nagai</name>
</author>
<author>
<name sortKey="Takeuchi, M" uniqKey="Takeuchi M">M Takeuchi</name>
</author>
<author>
<name sortKey="Mio, T" uniqKey="Mio T">T Mio</name>
</author>
<author>
<name sortKey="Hoshino, Y" uniqKey="Hoshino Y">Y Hoshino</name>
</author>
<author>
<name sortKey="Miki, H" uniqKey="Miki H">H Miki</name>
</author>
<author>
<name sortKey="Shigematsu, M" uniqKey="Shigematsu M">M Shigematsu</name>
</author>
<author>
<name sortKey="Hamada, K" uniqKey="Hamada K">K Hamada</name>
</author>
<author>
<name sortKey="Izumi, T" uniqKey="Izumi T">T Izumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miyara, M" uniqKey="Miyara M">M Miyara</name>
</author>
<author>
<name sortKey="Amoura, Z" uniqKey="Amoura Z">Z Amoura</name>
</author>
<author>
<name sortKey="Parizot, C" uniqKey="Parizot C">C Parizot</name>
</author>
<author>
<name sortKey="Badoual, C" uniqKey="Badoual C">C Badoual</name>
</author>
<author>
<name sortKey="Dorgham, K" uniqKey="Dorgham K">K Dorgham</name>
</author>
<author>
<name sortKey="Trad, S" uniqKey="Trad S">S Trad</name>
</author>
<author>
<name sortKey="Kambouchner, M" uniqKey="Kambouchner M">M Kambouchner</name>
</author>
<author>
<name sortKey="Valeyre, D" uniqKey="Valeyre D">D Valeyre</name>
</author>
<author>
<name sortKey="Chapelon Abric, C" uniqKey="Chapelon Abric C">C Chapelon-Abric</name>
</author>
<author>
<name sortKey="Debre, P" uniqKey="Debre P">P Debré</name>
</author>
<author>
<name sortKey="Piette, Jc" uniqKey="Piette J">JC Piette</name>
</author>
<author>
<name sortKey="Gorochov, G" uniqKey="Gorochov G">G Gorochov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morse, Si" uniqKey="Morse S">SI Morse</name>
</author>
<author>
<name sortKey="Cohn, Za" uniqKey="Cohn Z">ZA Cohn</name>
</author>
<author>
<name sortKey="Hirsch, Jg" uniqKey="Hirsch J">JG Hirsch</name>
</author>
<author>
<name sortKey="Schaeder, Rw" uniqKey="Schaeder R">RW SCHAEDER</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller Quernheim, J" uniqKey="Muller Quernheim J">J Müller-Quernheim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Netea, Mg" uniqKey="Netea M">MG Netea</name>
</author>
<author>
<name sortKey="Joosten, La" uniqKey="Joosten L">LA Joosten</name>
</author>
<author>
<name sortKey="Latz, E" uniqKey="Latz E">E Latz</name>
</author>
<author>
<name sortKey="Mills, Kh" uniqKey="Mills K">KH Mills</name>
</author>
<author>
<name sortKey="Natoli, G" uniqKey="Natoli G">G Natoli</name>
</author>
<author>
<name sortKey="Stunnenberg, Hg" uniqKey="Stunnenberg H">HG Stunnenberg</name>
</author>
<author>
<name sortKey="O Neill, La" uniqKey="O Neill L">LA O'Neill</name>
</author>
<author>
<name sortKey="Xavier, Rj" uniqKey="Xavier R">RJ Xavier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nizet, V" uniqKey="Nizet V">V Nizet</name>
</author>
<author>
<name sortKey="Johnson, Rs" uniqKey="Johnson R">RS Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noubade, R" uniqKey="Noubade R">R Noubade</name>
</author>
<author>
<name sortKey="Krementsov, Dn" uniqKey="Krementsov D">DN Krementsov</name>
</author>
<author>
<name sortKey="Del Rio, R" uniqKey="Del Rio R">R Del Rio</name>
</author>
<author>
<name sortKey="Thornton, T" uniqKey="Thornton T">T Thornton</name>
</author>
<author>
<name sortKey="Nagaleekar, V" uniqKey="Nagaleekar V">V Nagaleekar</name>
</author>
<author>
<name sortKey="Saligrama, N" uniqKey="Saligrama N">N Saligrama</name>
</author>
<author>
<name sortKey="Spitzack, A" uniqKey="Spitzack A">A Spitzack</name>
</author>
<author>
<name sortKey="Spach, K" uniqKey="Spach K">K Spach</name>
</author>
<author>
<name sortKey="Sabio, G" uniqKey="Sabio G">G Sabio</name>
</author>
<author>
<name sortKey="Davis, Rj" uniqKey="Davis R">RJ Davis</name>
</author>
<author>
<name sortKey="Rincon, M" uniqKey="Rincon M">M Rincon</name>
</author>
<author>
<name sortKey="Teuscher, C" uniqKey="Teuscher C">C Teuscher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ostadkarampour, M" uniqKey="Ostadkarampour M">M Ostadkarampour</name>
</author>
<author>
<name sortKey="Eklund, A" uniqKey="Eklund A">A Eklund</name>
</author>
<author>
<name sortKey="Moller, D" uniqKey="Moller D">D Moller</name>
</author>
<author>
<name sortKey="Glader, P" uniqKey="Glader P">P Glader</name>
</author>
<author>
<name sortKey="Olgart Hoglund, C" uniqKey="Olgart Hoglund C">C Olgart Höglund</name>
</author>
<author>
<name sortKey="Linden, A" uniqKey="Linden A">A Lindén</name>
</author>
<author>
<name sortKey="Grunewald, J" uniqKey="Grunewald J">J Grunewald</name>
</author>
<author>
<name sortKey="Wahlstrom, J" uniqKey="Wahlstrom J">J Wahlström</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palazon, A" uniqKey="Palazon A">A Palazon</name>
</author>
<author>
<name sortKey="Goldrath, Aw" uniqKey="Goldrath A">AW Goldrath</name>
</author>
<author>
<name sortKey="Nizet, V" uniqKey="Nizet V">V Nizet</name>
</author>
<author>
<name sortKey="Johnson, Rs" uniqKey="Johnson R">RS Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peyssonnaux, C" uniqKey="Peyssonnaux C">C Peyssonnaux</name>
</author>
<author>
<name sortKey="Cejudo Martin, P" uniqKey="Cejudo Martin P">P Cejudo-Martin</name>
</author>
<author>
<name sortKey="Doedens, A" uniqKey="Doedens A">A Doedens</name>
</author>
<author>
<name sortKey="Zinkernagel, As" uniqKey="Zinkernagel A">AS Zinkernagel</name>
</author>
<author>
<name sortKey="Johnson, Rs" uniqKey="Johnson R">RS Johnson</name>
</author>
<author>
<name sortKey="Nizet, V" uniqKey="Nizet V">V Nizet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phan, At" uniqKey="Phan A">AT Phan</name>
</author>
<author>
<name sortKey="Goldrath, Aw" uniqKey="Goldrath A">AW Goldrath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramstein, J" uniqKey="Ramstein J">J Ramstein</name>
</author>
<author>
<name sortKey="Broos, Ce" uniqKey="Broos C">CE Broos</name>
</author>
<author>
<name sortKey="Simpson, Lj" uniqKey="Simpson L">LJ Simpson</name>
</author>
<author>
<name sortKey="Ansel, Km" uniqKey="Ansel K">KM Ansel</name>
</author>
<author>
<name sortKey="Sun, Sa" uniqKey="Sun S">SA Sun</name>
</author>
<author>
<name sortKey="Ho, Me" uniqKey="Ho M">ME Ho</name>
</author>
<author>
<name sortKey="Woodruff, Pg" uniqKey="Woodruff P">PG Woodruff</name>
</author>
<author>
<name sortKey="Bhakta, Nr" uniqKey="Bhakta N">NR Bhakta</name>
</author>
<author>
<name sortKey="Christian, L" uniqKey="Christian L">L Christian</name>
</author>
<author>
<name sortKey="Nguyen, Cp" uniqKey="Nguyen C">CP Nguyen</name>
</author>
<author>
<name sortKey="Antalek, Bj" uniqKey="Antalek B">BJ Antalek</name>
</author>
<author>
<name sortKey="Benn, Bs" uniqKey="Benn B">BS Benn</name>
</author>
<author>
<name sortKey="Hendriks, Rw" uniqKey="Hendriks R">RW Hendriks</name>
</author>
<author>
<name sortKey="Van Den Blink, B" uniqKey="Van Den Blink B">B van den Blink</name>
</author>
<author>
<name sortKey="Kool, M" uniqKey="Kool M">M Kool</name>
</author>
<author>
<name sortKey="Koth, Ll" uniqKey="Koth L">LL Koth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rastogi, R" uniqKey="Rastogi R">R Rastogi</name>
</author>
<author>
<name sortKey="Du, W" uniqKey="Du W">W Du</name>
</author>
<author>
<name sortKey="Ju, D" uniqKey="Ju D">D Ju</name>
</author>
<author>
<name sortKey="Pirockinaite, G" uniqKey="Pirockinaite G">G Pirockinaite</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Nunez, G" uniqKey="Nunez G">G Nunez</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rolfe, Mw" uniqKey="Rolfe M">MW Rolfe</name>
</author>
<author>
<name sortKey="Standiford, Tj" uniqKey="Standiford T">TJ Standiford</name>
</author>
<author>
<name sortKey="Kunkel, Sl" uniqKey="Kunkel S">SL Kunkel</name>
</author>
<author>
<name sortKey="Burdick, Md" uniqKey="Burdick M">MD Burdick</name>
</author>
<author>
<name sortKey="Gilbert, Ar" uniqKey="Gilbert A">AR Gilbert</name>
</author>
<author>
<name sortKey="Lynch, Jp" uniqKey="Lynch J">JP Lynch</name>
</author>
<author>
<name sortKey="Strieter, Rm" uniqKey="Strieter R">RM Strieter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubinsztein, Dc" uniqKey="Rubinsztein D">DC Rubinsztein</name>
</author>
<author>
<name sortKey="Gestwicki, Je" uniqKey="Gestwicki J">JE Gestwicki</name>
</author>
<author>
<name sortKey="Murphy, Lo" uniqKey="Murphy L">LO Murphy</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salceda, S" uniqKey="Salceda S">S Salceda</name>
</author>
<author>
<name sortKey="Caro, J" uniqKey="Caro J">J Caro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
<author>
<name sortKey="Rastogi, R" uniqKey="Rastogi R">R Rastogi</name>
</author>
<author>
<name sortKey="Du, W" uniqKey="Du W">W Du</name>
</author>
<author>
<name sortKey="Huttemann, M" uniqKey="Huttemann M">M Hüttemann</name>
</author>
<author>
<name sortKey="Fite, A" uniqKey="Fite A">A Fite</name>
</author>
<author>
<name sortKey="Franchi, L" uniqKey="Franchi L">L Franchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santarlasci, V" uniqKey="Santarlasci V">V Santarlasci</name>
</author>
<author>
<name sortKey="Cosmi, L" uniqKey="Cosmi L">L Cosmi</name>
</author>
<author>
<name sortKey="Maggi, L" uniqKey="Maggi L">L Maggi</name>
</author>
<author>
<name sortKey="Liotta, F" uniqKey="Liotta F">F Liotta</name>
</author>
<author>
<name sortKey="Annunziato, F" uniqKey="Annunziato F">F Annunziato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semenza, Gl" uniqKey="Semenza G">GL Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semenza, Gl" uniqKey="Semenza G">GL Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sobic Saranovic, D" uniqKey="Sobic Saranovic D">D Sobic-Saranovic</name>
</author>
<author>
<name sortKey="Artiko, V" uniqKey="Artiko V">V Artiko</name>
</author>
<author>
<name sortKey="Obradovic, V" uniqKey="Obradovic V">V Obradovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talreja, J" uniqKey="Talreja J">J Talreja</name>
</author>
<author>
<name sortKey="Talwar, H" uniqKey="Talwar H">H Talwar</name>
</author>
<author>
<name sortKey="Ahmad, N" uniqKey="Ahmad N">N Ahmad</name>
</author>
<author>
<name sortKey="Rastogi, R" uniqKey="Rastogi R">R Rastogi</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talreja, J" uniqKey="Talreja J">J Talreja</name>
</author>
<author>
<name sortKey="Farshi, P" uniqKey="Farshi P">P Farshi</name>
</author>
<author>
<name sortKey="Alazizi, A" uniqKey="Alazizi A">A Alazizi</name>
</author>
<author>
<name sortKey="Luca, F" uniqKey="Luca F">F Luca</name>
</author>
<author>
<name sortKey="Pique Regi, R" uniqKey="Pique Regi R">R Pique-Regi</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talwar, H" uniqKey="Talwar H">H Talwar</name>
</author>
<author>
<name sortKey="Bauerfeld, C" uniqKey="Bauerfeld C">C Bauerfeld</name>
</author>
<author>
<name sortKey="Bouhamdan, M" uniqKey="Bouhamdan M">M Bouhamdan</name>
</author>
<author>
<name sortKey="Farshi, P" uniqKey="Farshi P">P Farshi</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talwar, H" uniqKey="Talwar H">H Talwar</name>
</author>
<author>
<name sortKey="Bauerfeld, C" uniqKey="Bauerfeld C">C Bauerfeld</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talwar, H" uniqKey="Talwar H">H Talwar</name>
</author>
<author>
<name sortKey="Bouhamdan, M" uniqKey="Bouhamdan M">M Bouhamdan</name>
</author>
<author>
<name sortKey="Bauerfeld, C" uniqKey="Bauerfeld C">C Bauerfeld</name>
</author>
<author>
<name sortKey="Talreja, J" uniqKey="Talreja J">J Talreja</name>
</author>
<author>
<name sortKey="Aoidi, R" uniqKey="Aoidi R">R Aoidi</name>
</author>
<author>
<name sortKey="Houde, N" uniqKey="Houde N">N Houde</name>
</author>
<author>
<name sortKey="Charron, J" uniqKey="Charron J">J Charron</name>
</author>
<author>
<name sortKey="Samavati, L" uniqKey="Samavati L">L Samavati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Cm" uniqKey="Tang C">CM Tang</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tannahill, Gm" uniqKey="Tannahill G">GM Tannahill</name>
</author>
<author>
<name sortKey="Curtis, Am" uniqKey="Curtis A">AM Curtis</name>
</author>
<author>
<name sortKey="Adamik, J" uniqKey="Adamik J">J Adamik</name>
</author>
<author>
<name sortKey="Palsson Mcdermott, Em" uniqKey="Palsson Mcdermott E">EM Palsson-McDermott</name>
</author>
<author>
<name sortKey="Mcgettrick, Af" uniqKey="Mcgettrick A">AF McGettrick</name>
</author>
<author>
<name sortKey="Goel, G" uniqKey="Goel G">G Goel</name>
</author>
<author>
<name sortKey="Frezza, C" uniqKey="Frezza C">C Frezza</name>
</author>
<author>
<name sortKey="Bernard, Nj" uniqKey="Bernard N">NJ Bernard</name>
</author>
<author>
<name sortKey="Kelly, B" uniqKey="Kelly B">B Kelly</name>
</author>
<author>
<name sortKey="Foley, Nh" uniqKey="Foley N">NH Foley</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L Zheng</name>
</author>
<author>
<name sortKey="Gardet, A" uniqKey="Gardet A">A Gardet</name>
</author>
<author>
<name sortKey="Tong, Z" uniqKey="Tong Z">Z Tong</name>
</author>
<author>
<name sortKey="Jany, Ss" uniqKey="Jany S">SS Jany</name>
</author>
<author>
<name sortKey="Corr, Sc" uniqKey="Corr S">SC Corr</name>
</author>
<author>
<name sortKey="Haneklaus, M" uniqKey="Haneklaus M">M Haneklaus</name>
</author>
<author>
<name sortKey="Caffrey, Be" uniqKey="Caffrey B">BE Caffrey</name>
</author>
<author>
<name sortKey="Pierce, K" uniqKey="Pierce K">K Pierce</name>
</author>
<author>
<name sortKey="Walmsley, S" uniqKey="Walmsley S">S Walmsley</name>
</author>
<author>
<name sortKey="Beasley, Fc" uniqKey="Beasley F">FC Beasley</name>
</author>
<author>
<name sortKey="Cummins, E" uniqKey="Cummins E">E Cummins</name>
</author>
<author>
<name sortKey="Nizet, V" uniqKey="Nizet V">V Nizet</name>
</author>
<author>
<name sortKey="Whyte, M" uniqKey="Whyte M">M Whyte</name>
</author>
<author>
<name sortKey="Taylor, Ct" uniqKey="Taylor C">CT Taylor</name>
</author>
<author>
<name sortKey="Lin, H" uniqKey="Lin H">H Lin</name>
</author>
<author>
<name sortKey="Masters, Sl" uniqKey="Masters S">SL Masters</name>
</author>
<author>
<name sortKey="Gottlieb, E" uniqKey="Gottlieb E">E Gottlieb</name>
</author>
<author>
<name sortKey="Kelly, Vp" uniqKey="Kelly V">VP Kelly</name>
</author>
<author>
<name sortKey="Clish, C" uniqKey="Clish C">C Clish</name>
</author>
<author>
<name sortKey="Auron, Pe" uniqKey="Auron P">PE Auron</name>
</author>
<author>
<name sortKey="Xavier, Rj" uniqKey="Xavier R">RJ Xavier</name>
</author>
<author>
<name sortKey="O Neill, La" uniqKey="O Neill L">LA O'Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Aa" uniqKey="Thompson A">AA Thompson</name>
</author>
<author>
<name sortKey="Elks, Pm" uniqKey="Elks P">PM Elks</name>
</author>
<author>
<name sortKey="Marriott, Hm" uniqKey="Marriott H">HM Marriott</name>
</author>
<author>
<name sortKey="Eamsamarng, S" uniqKey="Eamsamarng S">S Eamsamarng</name>
</author>
<author>
<name sortKey="Higgins, Kr" uniqKey="Higgins K">KR Higgins</name>
</author>
<author>
<name sortKey="Lewis, A" uniqKey="Lewis A">A Lewis</name>
</author>
<author>
<name sortKey="Williams, L" uniqKey="Williams L">L Williams</name>
</author>
<author>
<name sortKey="Parmar, S" uniqKey="Parmar S">S Parmar</name>
</author>
<author>
<name sortKey="Shaw, G" uniqKey="Shaw G">G Shaw</name>
</author>
<author>
<name sortKey="Mcgrath, Ee" uniqKey="Mcgrath E">EE McGrath</name>
</author>
<author>
<name sortKey="Formenti, F" uniqKey="Formenti F">F Formenti</name>
</author>
<author>
<name sortKey="Van Eeden, Fj" uniqKey="Van Eeden F">FJ Van Eeden</name>
</author>
<author>
<name sortKey="Kinnula, Vl" uniqKey="Kinnula V">VL Kinnula</name>
</author>
<author>
<name sortKey="Pugh, Cw" uniqKey="Pugh C">CW Pugh</name>
</author>
<author>
<name sortKey="Sabroe, I" uniqKey="Sabroe I">I Sabroe</name>
</author>
<author>
<name sortKey="Dockrell, Dh" uniqKey="Dockrell D">DH Dockrell</name>
</author>
<author>
<name sortKey="Chilvers, Er" uniqKey="Chilvers E">ER Chilvers</name>
</author>
<author>
<name sortKey="Robbins, Pa" uniqKey="Robbins P">PA Robbins</name>
</author>
<author>
<name sortKey="Percy, Mj" uniqKey="Percy M">MJ Percy</name>
</author>
<author>
<name sortKey="Simon, Mc" uniqKey="Simon M">MC Simon</name>
</author>
<author>
<name sortKey="Johnson, Rs" uniqKey="Johnson R">RS Johnson</name>
</author>
<author>
<name sortKey="Renshaw, Sa" uniqKey="Renshaw S">SA Renshaw</name>
</author>
<author>
<name sortKey="Whyte, Mk" uniqKey="Whyte M">MK Whyte</name>
</author>
<author>
<name sortKey="Walmsley, Sr" uniqKey="Walmsley S">SR Walmsley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomita, H" uniqKey="Tomita H">H Tomita</name>
</author>
<author>
<name sortKey="Sato, S" uniqKey="Sato S">S Sato</name>
</author>
<author>
<name sortKey="Matsuda, R" uniqKey="Matsuda R">R Matsuda</name>
</author>
<author>
<name sortKey="Sugiura, Y" uniqKey="Sugiura Y">Y Sugiura</name>
</author>
<author>
<name sortKey="Kawaguchi, H" uniqKey="Kawaguchi H">H Kawaguchi</name>
</author>
<author>
<name sortKey="Niimi, T" uniqKey="Niimi T">T Niimi</name>
</author>
<author>
<name sortKey="Yoshida, S" uniqKey="Yoshida S">S Yoshida</name>
</author>
<author>
<name sortKey="Morishita, M" uniqKey="Morishita M">M Morishita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tzouvelekis, A" uniqKey="Tzouvelekis A">A Tzouvelekis</name>
</author>
<author>
<name sortKey="Ntolios, P" uniqKey="Ntolios P">P Ntolios</name>
</author>
<author>
<name sortKey="Karameris, A" uniqKey="Karameris A">A Karameris</name>
</author>
<author>
<name sortKey="Koutsopoulos, A" uniqKey="Koutsopoulos A">A Koutsopoulos</name>
</author>
<author>
<name sortKey="Boglou, P" uniqKey="Boglou P">P Boglou</name>
</author>
<author>
<name sortKey="Koulelidis, A" uniqKey="Koulelidis A">A Koulelidis</name>
</author>
<author>
<name sortKey="Archontogeorgis, K" uniqKey="Archontogeorgis K">K Archontogeorgis</name>
</author>
<author>
<name sortKey="Zacharis, G" uniqKey="Zacharis G">G Zacharis</name>
</author>
<author>
<name sortKey="Drakopanagiotakis, F" uniqKey="Drakopanagiotakis F">F Drakopanagiotakis</name>
</author>
<author>
<name sortKey="Steiropoulos, P" uniqKey="Steiropoulos P">P Steiropoulos</name>
</author>
<author>
<name sortKey="Anevlavis, S" uniqKey="Anevlavis S">S Anevlavis</name>
</author>
<author>
<name sortKey="Polychronopoulos, V" uniqKey="Polychronopoulos V">V Polychronopoulos</name>
</author>
<author>
<name sortKey="Mikroulis, D" uniqKey="Mikroulis D">D Mikroulis</name>
</author>
<author>
<name sortKey="Bouros, D" uniqKey="Bouros D">D Bouros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vlaminck, B" uniqKey="Vlaminck B">B Vlaminck</name>
</author>
<author>
<name sortKey="Toffoli, S" uniqKey="Toffoli S">S Toffoli</name>
</author>
<author>
<name sortKey="Ghislain, B" uniqKey="Ghislain B">B Ghislain</name>
</author>
<author>
<name sortKey="Demazy, C" uniqKey="Demazy C">C Demazy</name>
</author>
<author>
<name sortKey="Raes, M" uniqKey="Raes M">M Raes</name>
</author>
<author>
<name sortKey="Michiels, C" uniqKey="Michiels C">C Michiels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Xj" uniqKey="Wang X">XJ Wang</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="Wong, Sh" uniqKey="Wong S">SH Wong</name>
</author>
<author>
<name sortKey="Cheng, As" uniqKey="Cheng A">AS Cheng</name>
</author>
<author>
<name sortKey="Chan, Fk" uniqKey="Chan F">FK Chan</name>
</author>
<author>
<name sortKey="Ng, Ss" uniqKey="Ng S">SS Ng</name>
</author>
<author>
<name sortKey="Cho, Ch" uniqKey="Cho C">CH Cho</name>
</author>
<author>
<name sortKey="Sung, Jj" uniqKey="Sung J">JJ Sung</name>
</author>
<author>
<name sortKey="Wu, Wk" uniqKey="Wu W">WK Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R Wang</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warburg, O" uniqKey="Warburg O">O Warburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watson, Ja" uniqKey="Watson J">JA Watson</name>
</author>
<author>
<name sortKey="Watson, Cj" uniqKey="Watson C">CJ Watson</name>
</author>
<author>
<name sortKey="Mccann, A" uniqKey="Mccann A">A McCann</name>
</author>
<author>
<name sortKey="Baugh, J" uniqKey="Baugh J">J Baugh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolff, M" uniqKey="Wolff M">M Wolff</name>
</author>
<author>
<name sortKey="Jelkmann, W" uniqKey="Jelkmann W">W Jelkmann</name>
</author>
<author>
<name sortKey="Dunst, J" uniqKey="Dunst J">J Dunst</name>
</author>
<author>
<name sortKey="Depping, R" uniqKey="Depping R">R Depping</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Jeyanathan, M" uniqKey="Jeyanathan M">M Jeyanathan</name>
</author>
<author>
<name sortKey="Haddadi, S" uniqKey="Haddadi S">S Haddadi</name>
</author>
<author>
<name sortKey="Barra, Ng" uniqKey="Barra N">NG Barra</name>
</author>
<author>
<name sortKey="Vaseghi Shanjani, M" uniqKey="Vaseghi Shanjani M">M Vaseghi-Shanjani</name>
</author>
<author>
<name sortKey="Damjanovic, D" uniqKey="Damjanovic D">D Damjanovic</name>
</author>
<author>
<name sortKey="Lai, R" uniqKey="Lai R">R Lai</name>
</author>
<author>
<name sortKey="Afkhami, S" uniqKey="Afkhami S">S Afkhami</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Dvorkin Gheva, A" uniqKey="Dvorkin Gheva A">A Dvorkin-Gheva</name>
</author>
<author>
<name sortKey="Robbins, Cs" uniqKey="Robbins C">CS Robbins</name>
</author>
<author>
<name sortKey="Schertzer, Jd" uniqKey="Schertzer J">JD Schertzer</name>
</author>
<author>
<name sortKey="Xing, Z" uniqKey="Xing Z">Z Xing</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">eLife</journal-id>
<journal-id journal-id-type="iso-abbrev">Elife</journal-id>
<journal-id journal-id-type="publisher-id">eLife</journal-id>
<journal-title-group>
<journal-title>eLife</journal-title>
</journal-title-group>
<issn pub-type="epub">2050-084X</issn>
<publisher>
<publisher-name>eLife Sciences Publications, Ltd</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30946009</article-id>
<article-id pub-id-type="pmc">6506207</article-id>
<article-id pub-id-type="publisher-id">44519</article-id>
<article-id pub-id-type="doi">10.7554/eLife.44519</article-id>
<article-categories>
<subj-group subj-group-type="display-channel">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Human Biology and Medicine</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Immunology and Inflammation</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>HIF-1α regulates IL-1β and IL-17 in sarcoidosis</article-title>
</title-group>
<contrib-group>
<contrib id="author-128795" contrib-type="author">
<name>
<surname>Talreja</surname>
<given-names>Jaya</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">https://orcid.org/0000-0001-6557-6500</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="con1"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-128792" contrib-type="author">
<name>
<surname>Talwar</surname>
<given-names>Harvinder</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="con2"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-128793" contrib-type="author">
<name>
<surname>Bauerfeld</surname>
<given-names>Christian</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="fn" rid="con3"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-128794" contrib-type="author">
<name>
<surname>Grossman</surname>
<given-names>Lawrence I</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="other" rid="fund1"></xref>
<xref ref-type="other" rid="fund2"></xref>
<xref ref-type="fn" rid="con4"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-24166" contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Kezhong</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="fn" rid="con5"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-133368" contrib-type="author">
<name>
<surname>Tranchida</surname>
<given-names>Paul</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="fn" rid="con6"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-123983" contrib-type="author" corresp="yes">
<name>
<surname>Samavati</surname>
<given-names>Lobelia</given-names>
</name>
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-3327-2585</contrib-id>
<email>ay6003@wayne.edu</email>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="fund3"></xref>
<xref ref-type="other" rid="fund4"></xref>
<xref ref-type="other" rid="fund5"></xref>
<xref ref-type="fn" rid="con7"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<aff id="aff1">
<label>1</label>
<institution content-type="dept">Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution content-type="dept">Department of Pediatrics, Division of Critical Care</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</aff>
<aff id="aff3">
<label>3</label>
<institution content-type="dept">Center for Molecular Medicine and Genetics</institution>
<institution>Wayne State University School of Medicine</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</aff>
<aff id="aff4">
<label>4</label>
<institution content-type="dept">Department of Pathology</institution>
<institution>Wayne State University School of Medicine and Detroit Medical Center</institution>
<addr-line>Detroit</addr-line>
<country>United States</country>
</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>van der Meer</surname>
<given-names>Jos WM</given-names>
</name>
<role>Reviewing Editor</role>
<aff>
<institution>Radboud University Medical Centre</institution>
<country>Netherlands</country>
</aff>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Taniguchi</surname>
<given-names>Tadatsugu</given-names>
</name>
<role>Senior Editor</role>
<aff>
<institution>Institute of Industrial Science, The University of Tokyo</institution>
<country>Japan</country>
</aff>
</contrib>
</contrib-group>
<pub-date date-type="pub" publication-format="electronic">
<day>01</day>
<month>5</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>8</volume>
<elocation-id>e44519</elocation-id>
<history>
<date date-type="received" iso-8601-date="2018-12-19">
<day>19</day>
<month>12</month>
<year>2018</year>
</date>
<date date-type="accepted" iso-8601-date="2019-04-03">
<day>03</day>
<month>4</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019, Talreja et al</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Talreja et al</copyright-holder>
<ali:free_to_read></ali:free_to_read>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<ali:license_ref>http://creativecommons.org/licenses/by/4.0/</ali:license_ref>
<license-p>This article is distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use and redistribution provided that the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="elife-44519.pdf"></self-uri>
<abstract>
<p>Sarcoidosis is a complex systemic granulomatous disease of unknown etiology characterized by the presence of activated macrophages and Th1/Th17 effector cells. Data mining of our RNA-Seq analysis of CD14
<sup>+</sup>
monocytes showed enrichment for metabolic and hypoxia inducible factor (HIF) pathways in sarcoidosis. Further investigation revealed that sarcoidosis macrophages and monocytes exhibit higher protein levels for HIF-α isoforms, HIF-1β, and their transcriptional co-activator p300 as well as glucose transporter 1 (Glut1). In situ hybridization of sarcoidosis granulomatous lung tissues showed abundance of HIF-1α in the center of granulomas. The abundance of HIF isoforms was mechanistically linked to elevated IL-1β and IL-17 since targeted down regulation of HIF-1α via short interfering RNA or a HIF-1α inhibitor decreased their production. Pharmacological intervention using chloroquine, a lysosomal inhibitor, decreased lysosomal associated protein 2 (LAMP2) and HIF-1α levels and modified cytokine production. These data suggest that increased activity of HIF-α isoforms regulate Th1/Th17 mediated inflammation in sarcoidosis.</p>
</abstract>
<abstract abstract-type="executive-summary">
<title>eLife digest</title>
<p>Sarcoidosis is a rare disease that is characterized by the formation of small lumps known as granulomas inside the body. These lumps are made up of clusters of immune cells, and are commonly found in the skin, lung or eye. Other organs of the body can also be affected, and symptoms will vary depending on where in the body lumps form. There is currently no specific treatment for sarcoidosis, as the direct cause of the disease is unknown. The disease is often treated with drugs that suppress the immune system. However, this type of treatment can lead to significant side effects and patients will respond to these drugs in different ways.</p>
<p>Patients with sarcoidosis have a heightened immune response to microbes that can cause infections, and rather than providing protection, this heightened response causes damage and inflammation to the body’s organs. Now, Talreja et al. have identified which genes and proteins control this inflammatory response in immune cells from the lungs and blood of sarcoidosis patients.</p>
<p>Immune cells in the lungs of sarcoidosis patients were found to have higher levels of hypoxia inducible factor (HIF) – a gene-regulating protein that controls the uptake and metabolism of oxygen in mammals. In addition, lung tissue affected with granulomas also expressed increased levels of a specific version of HIF known as HIF-1. Talreja et al. showed that the increased expression of HIF in the immune cells of sarcoidosis patients was mechanistically linked to the production of several molecules that promote inflammation. Inhibiting HIF-1 led to a decrease in the production of these inflammatory molecules, indicating that increased activity of HIF-1 causes inflammation in sarcoidosis patients.</p>
<p>It remains unclear what causes this abundance of HIF-1α. It is possible that specific modifications of this factor prevent it from degrading, resulting in higher levels. By identifying a link between HIF-1 and inflammation, these findings open up potential new avenues of the treatment for sarcoidosis patients.</p>
</abstract>
<kwd-group kwd-group-type="author-keywords">
<kwd>sarcoidosis</kwd>
<kwd>HIF-1α</kwd>
<kwd>monocytes</kwd>
<kwd>alveolar macrophages</kwd>
<kwd>IL-1β</kwd>
<kwd>IL-17</kwd>
</kwd-group>
<kwd-group kwd-group-type="research-organism">
<title>Research organism</title>
<kwd>None</kwd>
</kwd-group>
<funding-group>
<award-group id="fund1">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000005</institution-id>
<institution>U.S. Department of Defense</institution>
</institution-wrap>
</funding-source>
<award-id>W81XWH-16-1-0516</award-id>
<principal-award-recipient>
<name>
<surname>Grossman</surname>
<given-names>Lawrence I</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund2">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100006710</institution-id>
<institution>Wayne State University</institution>
</institution-wrap>
</funding-source>
<award-id>Henry L Brasza endowment</award-id>
<principal-award-recipient>
<name>
<surname>Grossman</surname>
<given-names>Lawrence I</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund3">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000050</institution-id>
<institution>National Heart, Lung, and Blood Institute</institution>
</institution-wrap>
</funding-source>
<award-id>R01HL113508</award-id>
<principal-award-recipient>
<name>
<surname>Samavati</surname>
<given-names>Lobelia</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund4">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100002590</institution-id>
<institution>American Lung Association</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>Samavati</surname>
<given-names>Lobelia</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="fund5">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100007284</institution-id>
<institution>School of Medicine, Wayne State University</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>Samavati</surname>
<given-names>Lobelia</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.</funding-statement>
</funding-group>
<custom-meta-group>
<custom-meta specific-use="meta-only">
<meta-name>Author impact statement</meta-name>
<meta-value>Sarcoidosis, a granulomatous disease characterized by macrophage and T-cell activation, is found to be associated with increased HIF-1α transcriptional activity, and modulation of HIF-1α regulates inflammatory immune responses.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Sarcoidosis is a systemic granulomatous disease of unknown etiology that is characterized by extensive local inflammation and granuloma formation in different organs with an increase in T-helper type 1 (Th1) mediated cytokine production (
<xref rid="bib20" ref-type="bibr">Hunninghake et al., 1994</xref>
;
<xref rid="bib22" ref-type="bibr">Iannuzzi et al., 2007</xref>
;
<xref rid="bib33" ref-type="bibr">Miyara et al., 2006</xref>
;
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
). Pulmonary involvement in sarcoidosis is the leading cause of morbidity and mortality. In the lungs, the presence of activated macrophages and the expansion of oligoclonal T and B cells suggest
<bold>s</bold>
ustained activation of inflammatory pathways in this disease (
<xref rid="bib13" ref-type="bibr">Fazel et al., 1992</xref>
;
<xref rid="bib22" ref-type="bibr">Iannuzzi et al., 2007</xref>
). Activated macrophages, monocytes, and T cells in sarcoidosis produce a plethora of cytokines including TNF-α, IL-1β, interferon (IFN) gamma, IL-17, and others (
<xref rid="bib12" ref-type="bibr">Facco et al., 2011</xref>
;
<xref rid="bib35" ref-type="bibr">Müller-Quernheim, 1998</xref>
;
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
).</p>
<p>Previously, we have shown that sarcoidosis bronchoalveolar lavage (BAL) cells and alveolar macrophages (AMs), unlike those from healthy controls, exhibit high constitutively active p38 and lack dual specificity phosphatase (DUSP1 or MKP-1). The sustained p38 activation directly controls expression of several cytokines in sarcoidosis AMs and monocytes and the modulation of p38 regulates T cell responses (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). Recently, we performed RNA-sequencing (RNA-seq) in sarcoidosis monocytes and identified altered gene expression profiles and cellular pathways (
<xref rid="bib54" ref-type="bibr">Talreja et al., 2017</xref>
). These were: metabolic including glycolysis and lipolysis, phagocytosis, inflammation, oxidative phosphorylation, and HIF signaling pathways (
<xref rid="bib54" ref-type="bibr">Talreja et al., 2017</xref>
). Among differentially expressed genes in sarcoidosis monocytes, we found a large number of genes containing hypoxia response elements (HREs) in their regulatory regions and, by pathway analysis, enrichment of hypoxia inducible factor signaling pathways. Furthermore, in an independent study applying
<sup>1</sup>
H nuclear magnetic resonance (NMR)-based analysis, we identified metabolic and mitochondrial alterations in sarcoidosis (
<xref rid="bib15" ref-type="bibr">Geamanu et al., 2016</xref>
). Based on these observations, we hypothesize that HIF-isoform expression plays an important role in the maintenance of inflammation (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
), metabolic imbalance, and mitochondrial dysfunction in sarcoidosis (
<xref rid="bib15" ref-type="bibr">Geamanu et al., 2016</xref>
).</p>
<p>The oxygen-sensitive transcription factors HIF-1α and HIF-2α are key transcriptional regulators of hypoxia-associated genes to adapt to decreased availability of O
<sub>2</sub>
(
<xref rid="bib51" ref-type="bibr">Semenza, 2011</xref>
;
<xref rid="bib65" ref-type="bibr">Wang and Green, 2012</xref>
). In the presence of O
<sub>2</sub>
, cytosolic HIF-α isoforms are hydroxylated by prolyl-hydroxylases (PHD) through an iron dependent mechanism, which prevents heterodimerization with HIF-1β (ARNT) and consequent nuclear translocation as an active transcription factor (
<xref rid="bib40" ref-type="bibr">Palazon et al., 2014</xref>
;
<xref rid="bib50" ref-type="bibr">Semenza, 2003</xref>
;
<xref rid="bib51" ref-type="bibr">Semenza, 2011</xref>
). HIF transcription factors alter the expression of various genes involved in metabolism, cell differentiation, proliferation, and angiogenesis in hypoxic tissues. Although the role of HIF-α isoforms in hypoxia and cancer is well studied, there is a knowledge gap regarding their role in regulating immune cells under normoxic conditions. The role of HIF-1α in sarcoidosis has not been studied. In the current study, we applied a combination of transcriptional and functional approaches to investigate the role of HIF-1α in mediating the inflammatory immune response in AMs, monocytes, and PBMCs of sarcoidosis patients as compared to healthy controls. Because sarcoidosis predominantly affects the lungs, we carried out the functional studies using AMs to determine the lung immune responses, while monocytes and PBMCs were used to assess peripheral immunity. Under normoxic conditions we found enhanced expression and activity of HIF-1α in sarcoidosis AMs and monocytes. Furthermore, HIF-1α expression was directly correlated with IL-1β production in AMs and PBMCs. Down regulation of HIF-1α expression via short interfering RNA (siRNA) decreased IL-1β in sarcoidosis AMs, while decreased HIF-1α expression in PBMCs decreased IL-1β and IL-17 in response to anti-CD3 challenge.</p>
</sec>
<sec sec-type="results" id="s2">
<title>Results</title>
<sec id="s2-1">
<title>RNA-seq data of sarcoidosis monocytes identifies enrichment of the HIF-1α signaling pathway</title>
<p>Patients (
<xref rid="table1" ref-type="table">Table 1</xref>
and Materials and methods) were ambulatory outpatients who were not hypoxic. Differentially expressed (DE) genes between sarcoidosis monocytes and healthy monocytes previously determined (
<xref rid="bib54" ref-type="bibr">Talreja et al., 2017</xref>
) were subjected to pathway analysis. The pathway analysis showed impaction of metabolic pathways, including oxidative phosphorylation, purine and pyruvate metabolism in sarcoidosis. Because most of genes in these pathways showed the presence of hypoxia response elements (HREs), we further focused on interrogation of the HIF-pathway.
<xref ref-type="fig" rid="fig1">Figure 1A</xref>
shows the heat map of HIF signaling genes in monocytes. There are clear differences in the intensity and expression of genes related to the HIF pathway in monocytes of healthy controls and sarcoidosis subjects. Next, we compared the expression of selected genes related to HIF transcription factor activity. The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-1β) heterodimerizes with HIF-1α to form a transcriptional active complex (
<xref rid="bib68" ref-type="bibr">Wolff et al., 2013</xref>
). The gene count between sarcoidosis and healthy control subjects demonstrate significantly higher ARNT gene expression in sarcoidosis monocytes (
<xref ref-type="fig" rid="fig1">Figure 1B</xref>
). Endothelial PAS domain protein 1 (EPAS1), also known as HIF-2α, is a hypoxia inducible transcription factor (
<xref rid="bib18" ref-type="bibr">Hu et al., 2003</xref>
;
<xref rid="bib60" ref-type="bibr">Thompson et al., 2014</xref>
). The EPAS1 gene count between sarcoidosis and healthy control subjects demonstrates significantly higher EPAS1 expression in sarcoidosis monocytes (
<xref ref-type="fig" rid="fig1">Figure 1C</xref>
). EP300 is a co-activator important for transcriptional activity of HIFs (
<xref rid="bib40" ref-type="bibr">Palazon et al., 2014</xref>
). Similarly, we found higher p300 gene expression in sarcoidosis monocytes as compared to healthy controls (
<xref ref-type="fig" rid="fig1">Figure 1D</xref>
). However, there were no differences in HIF-1α gene transcripts between the two groups.</p>
<fig id="fig1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.003</object-id>
<label>Figure 1.</label>
<caption>
<title>Enrichment of HIF-1α signaling pathways and related genes in sarcoidosis.</title>
<p>Pathway analysis of DE genes between sarcoidosis versus healthy control monocytes was done using the iPathwayGuide tool. (
<bold>A</bold>
) Heatmap of genes involved in HIF-1α signaling between sarcoid and healthy control monocytes. Dendrograms according to means identifying genes levels in the heatmap show two distinct clusters. Green shading represents high expression and red shading represents low expression. (
<bold>B–D</bold>
) Data presented as box plots of gene counts corrected based on an FDR of 0.05. Boxplots for gene expression in monocytes are shown for ARNT (
<bold>B</bold>
), EPAS1 (
<bold>C</bold>
), and EP300 (
<bold>D</bold>
).</p>
<p>
<supplementary-material content-type="local-data" id="fig1sdata1">
<object-id pub-id-type="doi">10.7554/eLife.44519.004</object-id>
<label>Figure 1—source data 1.</label>
<caption>
<title>RNA-seq data of Sarcoid vs Healthy monocytes.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-44519-fig1-data1.xlsx" orientation="portrait" id="d35e524" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-44519-fig1"></graphic>
</fig>
<table-wrap id="table1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.005</object-id>
<label>Table 1.</label>
<caption>
<title>Subject Demographics.</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" rowspan="1" colspan="1">Characteristic</th>
<th valign="top" rowspan="1" colspan="1">Patients</th>
<th colspan="2" valign="top" rowspan="1">Control subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" rowspan="1" colspan="1">Age, y</td>
<td valign="top" rowspan="1" colspan="1">27.7 ± 11.4</td>
<td colspan="2" valign="top" rowspan="1">28 ± 8.4</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">BMI</td>
<td valign="top" rowspan="1" colspan="1">29 ± 10.4</td>
<td colspan="2" valign="top" rowspan="1">28 ± 3.6</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Gender, N (%)</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Female</td>
<td valign="top" rowspan="1" colspan="1">35 (77)</td>
<td colspan="2" valign="top" rowspan="1">16(70)</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Male</td>
<td valign="top" rowspan="1" colspan="1">10 (23)</td>
<td colspan="2" valign="top" rowspan="1">7 (30)</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Race, N (%)</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">African American</td>
<td valign="top" rowspan="1" colspan="1">51 (100)</td>
<td colspan="2" valign="top" rowspan="1">15 (75)</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Caucasian</td>
<td valign="top" rowspan="1" colspan="1">0 (0)</td>
<td colspan="2" valign="top" rowspan="1">5 (25)</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">CXR stage, N (%)</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">0</td>
<td valign="top" rowspan="1" colspan="1">0 (0)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">1</td>
<td valign="top" rowspan="1" colspan="1">5 (11)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2</td>
<td valign="top" rowspan="1" colspan="1">30 (66)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3
<break></break>
O
<sub>2</sub>
saturation at Room Air</td>
<td valign="top" rowspan="1" colspan="1">10 (22)
<break></break>
96–100</td>
<td colspan="2" valign="top" rowspan="1">NA
<break></break>
97–100</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Organ Involvements, N (%)</td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Neuro-ophtalmologic</td>
<td valign="top" rowspan="1" colspan="1">8 (17)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Lung</td>
<td valign="top" rowspan="1" colspan="1">43 (95)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Skin</td>
<td valign="top" rowspan="1" colspan="1">12 (26)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Multiorgan</td>
<td valign="top" rowspan="1" colspan="1">26 (57)</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">PPD</td>
<td valign="top" rowspan="1" colspan="1">Negative</td>
<td colspan="2" valign="top" rowspan="1">NA</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Definition of abbreviations: BMI = body mass index, CXR = chest X-ray, NA = not applicable, PPD = purified protein derivative.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s2-2">
<title>Increased protein expression of HIF-α isoforms in sarcoidosis</title>
<p>Since HIF-1α is known to be predominantly regulated through modification of its protein stability (
<xref rid="bib27" ref-type="bibr">Lee et al., 2004</xref>
;
<xref rid="bib47" ref-type="bibr">Salceda and Caro, 1997</xref>
), we evaluated HIF-1α and HIF-2α protein abundance in AMs and monocytes of sarcoidosis patients, isolated as described in Materials and methods. AMs or monocytes were cultured ex vivo under normoxic conditions. Western analysis of cell lysates probed with antibody against HIF-1α showed increased HIF-1α protein expression in sarcoidosis AMs and monocytes (
<xref ref-type="fig" rid="fig2">Figure 2A and B</xref>
). Similar results were seen for HIF-2α protein expression (
<xref ref-type="fig" rid="fig2">Figure 2C and D</xref>
). Since HIFα heterodimerizes with ARNT (also known as HIF-1β), translocates to the nucleus, and recruits transcriptional coactivator p300 to transactivate target genes containing hypoxia-responsive elements (HREs) (
<xref rid="bib50" ref-type="bibr">Semenza, 2003</xref>
;
<xref rid="bib55" ref-type="bibr">Talwar et al., 2017a</xref>
;
<xref rid="bib56" ref-type="bibr">Talwar et al., 2017b</xref>
), we also examined their protein expression. Sarcoidosis AMs also show a higher expression of ARNT (
<xref ref-type="fig" rid="fig2">Figure 2E and F</xref>
) and p300 (
<xref ref-type="fig" rid="fig2">Figure 2E and G</xref>
). Similarly, we evaluated the HIF-1α protein abundance in isolated monocytes from sarcoidosis subjects and healthy controls and found significantly higher HIF-1α expression (
<xref ref-type="fig" rid="fig2">Figure 2H and I</xref>
). However, in contrast to increased HIF-2α gene transcripts, we did not detect HIF-2α in either sarcoidosis or control monocytes at the protein level. Because the lack of detection could have been due to low protein abundance in monocytes or lower sensitivity of antibody epitope, we compared the HIF-1α and −2α expression by flow cytometry.
<xref ref-type="fig" rid="fig2">Figure 2J</xref>
shows FSC-A/SSC-A gating. FACS analysis of PBMCs double stained for CD14 and HIF-1α or HIF-2α shows that in healthy controls 5–9% of PBMCs are CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
, whereas in sarcoidosis 20% to 35% of PBMCs are CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
. Analysis of CD14
<sup>+</sup>
monocytes based on the expression of HIF-1α shows 25–60% HIF-1α
<sup>+</sup>
CD14
<sup>+</sup>
monocytes in controls, whereas in sarcoidosis HIF-1α
<sup>+</sup>
CD14
<sup>+</sup>
monocytes are 64–96% (K). Interestingly, in healthy controls 0–0.1% of PBMCs are CD14
<sup>+</sup>
HIF-2α
<sup>+</sup>
, whereas in sarcoidosis 1–3% of PBMCs are CD14
<sup>+</sup>
HIF-2α
<sup>+</sup>
. It shows that in healthy controls the percentage of HIF-2α
<sup>+</sup>
CD14
<sup>+</sup>
monocytes is negligible, whereas in sarcoidosis there is higher percentage of HIF-2α
<sup>+</sup>
CD14
<sup>+</sup>
monocytes (5–9%) (
<xref ref-type="fig" rid="fig2">Figure 2L</xref>
). Thus, these results show that sarcoidosis AMs and peripheral monocytes exhibit increased expression of HIF isoforms compared to healthy controls. These data suggest a different protein expression profile of HIF-2α in lung macrophages versus peripheral monocytes with low abundance in monocytes versus AMs.</p>
<fig id="fig2" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.006</object-id>
<label>Figure 2.</label>
<caption>
<title>Increased expression of HIF-1α, HIF-2α, ARNT, and p300 in sarcoidosis.</title>
<p>Whole cell extracts of AMs and monocytes were prepared and subjected to SDS-PAGE and western blot analysis using specific antibodies for HIF-1α, HIF-2α, ARNT, and p300. Equal loading was confirmed using antibodies against β-actin. Densitometry analysis is expressed as fold increase of the ratio of specific protein/β-actin. Sarcoid AMs exhibited higher HIF-1α expression (
<bold>A and B</bold>
) as compared to healthy controls. Sarcoid AMs expressed higher HIF-2α (
<bold>C and D</bold>
), ARNT (
<bold>E and F</bold>
) and p300 (
<bold>E and G</bold>
) as compared to healthy controls. Sarcoid monocytes exhibited higher HIF-1α expression (
<bold>H and I</bold>
) as compared to healthy controls. Representative blots for AMs and monocytes are shown out of a total of 10 patients and seven controls. Flow cytometry of PBMCs double stained for CD14
<sup>+</sup>
HIF-1α + and CD14
<sup>+</sup>
HIF-2α
<sup>+</sup>
(
<bold>J and K</bold>
). PBMCs of healthy controls and sarcoid were stained with CD14-PerCPCy5.5, HIF-1α or CD14-PerCPCy5.5, HIF-2α primary antibodies followed by Alexa 488 secondary antibody and analyzed by flow cytometry using Flow-jo software.
<xref ref-type="fig" rid="fig2">Figure 2J</xref>
shows FSC-A/SSC-A gating. In healthy controls, 5–9% of PBMCs were CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
whereas in sarcoidosis 20% to 35% of PBMCs were CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
(
<bold>K</bold>
). HIF-2α expression was negligible in control PBMCs whereas 3% of sarcoid PBMCs were CD14
<sup>+</sup>
HIF-2α
<sup>+</sup>
(
<bold>L</bold>
). Representative scatter plots from 4 patients and three controls are shown.</p>
</caption>
<graphic xlink:href="elife-44519-fig2"></graphic>
</fig>
</sec>
<sec id="s2-3">
<title>Confocal microscopy of sarcoidosis AMs and immunohistochemistry of sarcoidosis tissues confirmed increased HIF-1α expression and its nuclear accumulation</title>
<p>To further confirm increased expression of HIF-1α protein in sarcoidosis and to determine whether HIF-1α accumulates in the nucleus, we immunostained AMs using specific an antibody against HIF-1α. Images were analyzed by immunofluorescent microscopy (AX10, Zeiss). We quantitated the percentage of cells showing HIF-1α expression (
<xref ref-type="fig" rid="fig3">Figure 3A and B</xref>
) in sarcoidosis. The staining is representative of one out of the five patients. It shows that about 60–90% of AMs express HIF-1α. Images (
<xref ref-type="fig" rid="fig3">Figure 3C–H</xref>
) were analyzed by confocal laser scanning microscopy (CLSM-310, Zeiss). Confocal microscopy images show nuclei stained with DAPI (blue) in a single AM (C) and a multinucleated giant cell (D), nuclear and cytoplasmic accumulation of HIF-1α in green (E and F), overlay image shows nuclear co-localization of HIF-1α (G and H).We saw enhanced expression and accumulation of HIF-1α in the cytoplasm and nuclei of sarcoidosis AMs, both in a single AM (
<xref ref-type="fig" rid="fig3">Figure 3E</xref>
) and in a multinucleated giant cell (
<xref ref-type="fig" rid="fig3">Figure 3F</xref>
) that are known to be characteristic cells in sarcoidosis granuloma. HIF-1α is highly expressed and overlay images show that HIF-1α accumulates in nuclei (
<xref ref-type="fig" rid="fig3">Figure 3G and H</xref>
) as compared to cytoplasm. To further explore the expression seen in sarcoidosis AMs, we assessed the presence of HIF-1α in lung biopsies of patients with sarcoidosis. Positive immunostaining was seen in multinucleated giant cells of granulomas as well as macrophages (
<xref ref-type="fig" rid="fig3">Figure 3I and J</xref>
, thick arrow), whereas fibroblasts and normal lungs lack HIF-1α expression. Negative staining was done by using isotype control antibody (
<xref ref-type="fig" rid="fig3">Figure 3K</xref>
). Similarly, we observed increased HIF-1α immunostaining signal in sarcoidosis liver and skin tissue samples. These results further confirmed that HIF-1α accumulates in sarcoidosis granulomatous tissues.</p>
<fig id="fig3" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.44519.007</object-id>
<label>Figure 3.</label>
<caption>
<title>Increased HIF-1α expression in sarcoidosis AMs and granulomatous sarcoidosis lung tissue.</title>
<p>Immunofluorescence staining of sarcoidosis AMs showing presence of HIF-1α in the cytoplasm and nuclei. AMs (1 × 10
<sup>5</sup>
) were allowed to adhere on chamber slides overnight. The cells were washed with PBST and fixed with 3.7% paraformaldehyde. Cells were permeabilized with 0.1% Triton X-100, blocked (10% FCS), and then incubated with anti-HIF-1α antibody overnight at 4°C. The secondary antibody was Alexa-fluor 488 - conjugated goat anti-rabbit antibody. Images were analyzed by immunofluorescent microscopy (AX10, Zeiss). Images show nuclei staining of AMs (
<bold>A</bold>
), overlay image shows nuclear and cytoplasmic co-localization of HIF-1α (
<bold>Β</bold>
). Confocal laser scanning microscopy (CLSM-310, Zeiss) images show nuclei stained with DAPI (blue) in a single AM (
<bold>C</bold>
) and a multinucleated giant cell (
<bold>D</bold>
), nuclear and cytoplasmic accumulation of HIF-1α in green (
<bold>E and F</bold>
), overlay image shows nuclear co-localization of HIF-1α (
<bold>G and H</bold>
). The images are representative from two patients out of total of 5 patients. The photomicrographs represent in situ immunohistochemistry performed on lung tissues. H and E staining of tissue obtained from transbronchial biopsy (
<bold>I</bold>
) 100X, HIF-1α immunostaining (
<bold>J</bold>
), negative staining using isotype control antibody (
<bold>K</bold>
). The brown color represents an area of precipitate formed by a chromogenic substrate that is transformed by an enzymatic label conjugated to the antibody that has bound to the HIF-1α antigen. Note that the intensity of the staining is most pronounced in the histiocytic cells (i.e., AMs and the multinucleated giant cells, thick arrow), and is not identified in the surrounding alveoli (thin arrow). The immunohistochemistry images are representative from one patient out of total of 5 patients.</p>
</caption>
<graphic xlink:href="elife-44519-fig3"></graphic>
<p content-type="supplemental-figure">
<fig id="fig3s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.44519.008</object-id>
<label>Figure 3—figure supplement 1.</label>
<caption>
<title>A 28- year-old woman underwent a liver biopsy for evaluation of increased transaminases.</title>
<p>At the age of 21 she developed sarcoidosis involving multiple organs, including lungs, eyes, heart and liver. The increased HIF-1α staining in the hepatocytes may reflect the severity of disease in this patient. (
<bold>A</bold>
) Hematoxylin-eosin; original magnification X 200 shows multiple granuloma and increased mononuclear cell infiltrates. No significant fibrosis is seen in the H and E staining. (
<bold>B</bold>
) Immunohistochemical analysis using a specific antibody against HIF-1α. Staining intensity of HIF-1α was stronger in the mononuclear cells and granulomatous structures, while hepatocytes showed also HIF-1α staining. (
<bold>C</bold>
) Negative staining was performed by using isotype control antibody.</p>
</caption>
<graphic xlink:href="elife-44519-fig3-figsupp1"></graphic>
</fig>
</p>
</fig>
</sec>
<sec id="s2-4">
<title>Increased Glut1, pro-IL-1β levels and IL-1β, IL-1Ra production in sarcoid AMs and monocytes</title>
<p>HIF-1α is a critical transcription factor regulating metabolic reprogramming during inflammation, in part through upregulation of the
<italic>SLC2A1</italic>
gene encoding glucose transporter (Glut)1 (
<xref rid="bib5" ref-type="bibr">Chen et al., 2001</xref>
). HIF-1α and Glut1 upregulation contribute to production of several pro-inflammatory cytokines including IL-1β (
<xref rid="bib55" ref-type="bibr">Talwar et al., 2017a</xref>
;
<xref rid="bib56" ref-type="bibr">Talwar et al., 2017b</xref>
;
<xref rid="bib59" ref-type="bibr">Tannahill et al., 2013</xref>
). Therefore, we evaluated the expression of Glut1 and pro-IL-1β at baseline in AMs and monocytes from sarcoidosis and control subjects. Sarcoidosis AMs exhibited a variable amount of Glut1 and pro-IL-1β (18/18 patients) but only 1 out of 10 healthy controls showed expression (
<xref ref-type="fig" rid="fig4">Figure 4A and B</xref>
). We found similar results for pro-IL-1β in monocytes (
<xref ref-type="fig" rid="fig4">Figure 4C and D</xref>
). Furthermore, increased pro-IL-1β expression directly correlated with Glut1 and HIF-1α expression in sarcoidosis AMs (
<xref ref-type="fig" rid="fig4">Figure 4E</xref>
). To determine whether increased pro-IL-1β expression in sarcoidosis leads to released IL-1β, we measured secreted IL-1β in the conditioned media of AMs and monocytes cultured in the absence or presence of LPS via ELISA. The results showed that unstimulated and LPS-stimulated cultured sarcoidosis AMs and monocytes secrete higher IL-1β as compared to healthy controls (
<xref ref-type="fig" rid="fig4">Figure 4F and G</xref>
). These data suggest that increased expression of HIF-1α leads to increased IL-1β production in sarcoidosis patients. The interleukin one receptor antagonist (IL-1Ra) is mainly secreted by monocytes, macrophages, and neutrophils. IL-1Ra (IL-1RII) competitively binds to IL-1β and forms a nonsignaling complex IL-1Ra to the surface receptors for IL-1β and inhibits the effect of IL-1β on cells (
<xref rid="bib2" ref-type="bibr">Arend, 2000</xref>
;
<xref rid="bib23" ref-type="bibr">Janson et al., 1991</xref>
). Since the sarcoidosis AMs produced significantly high levels of IL-1β, we assessed the conditioned media for the secreted IL-1Ra.
<xref ref-type="fig" rid="fig4">Figure 4H</xref>
shows that sarcoidosis AMs produced significantly high levels of IL-1Ra as compared to control AMs. Similarly, sarcoidosis PBMCs (
<xref ref-type="fig" rid="fig4">Figure 4I</xref>
) produced high levels of IL-1Ra as compared to control PBMCs.</p>
<fig id="fig4" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.009</object-id>
<label>Figure 4.</label>
<caption>
<title>Increased Glut1, pro-IL-1β expression and IL-1β, IL-1Ra in sarcoidosis.</title>
<p>AMs or monocytes from sarcoid subjects and controls were cultured overnight. Whole cell extracts were prepared, and culture supernatants were collected to measure IL-1β. Whole cell extracts were subjected to SDS-PAGE and western blot analysis using specific antibodies for Glut1, pro- IL-1β and HIF-1α. Equal loading was confirmed using β-actin antibody. Densitometry analysis is expressed as fold increase of the ratio of specific protein/β-actin. IL-1β was measured in culture supernatants via ELISA. Sarcoidosis AMs (n = 18) exhibited significantly higher expression of Glut1 and pro- IL-1β as compared to control subjects (n = 10) (
<bold>A and B</bold>
). The western blot and densitometric results (black bars for pro- IL-1β and grey bars for Glut1) are representative from three patients out of total of 18 patients and three controls out of total of 10 control subjects. Monocytes from sarcoid subjects also exhibited significantly higher pro-IL-1β as compared to controls (
<bold>C and D</bold>
). The western blot and densitometric results are representative from three patients out of total of 10 patients and 3 controls out of 10 control subjects. These data indicate that sarcoid AMs exhibit higher pro-IL-1β at baseline and this highly correlates with HIF-1α expression (
<bold>E</bold>
). Sarcoidosis AMs (
<bold>F</bold>
) and monocytes (
<bold>G</bold>
) produced significantly higher IL-1β cytokine at baseline and after LPS-stimulation as compared to healthy controls. Sarcoidosis AMs (
<bold>H</bold>
) and PBMCs (
<bold>I</bold>
) produced significantly higher IL-1Ra at baseline as compared to healthy controls. ELISA results represent mean ± SEM from 10 patients and 10 controls (4F and 4G), 10 patients and five controls (4H and 4I). *, p < 0.05 and was considered significant.</p>
<p>
<supplementary-material content-type="local-data" id="fig4sdata1">
<object-id pub-id-type="doi">10.7554/eLife.44519.010</object-id>
<label>Figure 4—source data 1.</label>
<caption>
<title>IL-1β and IL-1Ra production in sarcoid AMs,monocytes or PBMCs.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-44519-fig4-data1.xlsx" orientation="portrait" id="d35e1028" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-44519-fig4"></graphic>
</fig>
</sec>
<sec id="s2-5">
<title>Targeted downregulation of HIF-1α decreases IL-1β production in sarcoidosis AMs</title>
<p>IL-1β is regulated at the transcriptional level through expression of several transcription factors including Signal Transducer and Activator of Transcription (STAT) 3, HIF-1α, and others (
<xref rid="bib48" ref-type="bibr">Samavati et al., 2009</xref>
;
<xref rid="bib56" ref-type="bibr">Talwar et al., 2017b</xref>
). To determine the relative contribution of increased HIF-1α in IL-1β production in sarcoidosis AMs, we transiently transfected sarcoidosis AMs with either non-targeted siRNA or HIF-1α targeted siRNA. After 24 hr of transfection, cells were treated with LPS (100 ng/mL). Targeted downregulation of HIF-1α via siRNA of sarcoidosis AMs led to a significant reduction (about 50%) in HIF-1α (
<xref ref-type="fig" rid="fig5">Figure 5A and B</xref>
) and pro-IL-1β (
<xref ref-type="fig" rid="fig5">Figure 5C and D</xref>
) protein expression. To determine the specificity of targeted downregulation of HIF-1α on other cytokines, we assessed the conditioned medium for IL-1β and IL-10 production and found significantly decreased IL-1β production (
<xref ref-type="fig" rid="fig5">Figure 5E</xref>
). However, HIF-1α inhibition did not inhibit IL-10 production (
<xref ref-type="fig" rid="fig5">Figure 5F</xref>
).</p>
<fig id="fig5" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.011</object-id>
<label>Figure 5.</label>
<caption>
<title>HIF-1α downregulation via siRNA decreases IL-1β production in sarcoid AMs.</title>
<p>AMs from sarcoidosis subjects were transiently transfected with nonsense vector (NS siRNA, 200 pM) or targeted HIF-1α siRNA (200 pM, Thermofisher-Scientific). After 24 hr of transfection, cells were activated with LPS (100 ng/mL) for 3 hr. Whole cell lysates obtained after 3 hr of activation were subjected to immunoblotting to assess the HIF-1α and pro- IL-1β expression. Values were normalized to β-actin and are shown as relative expression to NS siRNA control. Conditioned media were collected after 24 hr and were assessed for different cytokines. HIF-1α siRNA significantly reduced both HIF-1α and pro-IL-1β protein in AMs (
<bold>A–D</bold>
). HIF-1α siRNA significantly inhibited IL-1β (
<bold>E</bold>
) but had no inhibitory effect on IL-10 (
<bold>F</bold>
) in AMs. Western blot data presented is a representative of four independent experiments. ELISA results represent mean ± SEM from four different experiments. *, p < 0.05 and was considered significant.</p>
<p>
<supplementary-material content-type="local-data" id="fig5sdata1">
<object-id pub-id-type="doi">10.7554/eLife.44519.012</object-id>
<label>Figure 5—source data 1.</label>
<caption>
<title>Effect of downregulation of HIF-1α via siRNA on IL-1β and IL-10 production in sarcoid AMs.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-44519-fig5-data1.xlsx" orientation="portrait" id="d35e1082" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-44519-fig5"></graphic>
</fig>
</sec>
<sec id="s2-6">
<title>Downregulation of HIF-1α modulates cytokine profiles in sarcoidosis PBMCs in response to LPS and anti-CD3</title>
<p>Similar to AMs, the targeted down regulation of HIF-1α in sarcoidosis PBMCs resulted in decreased production of IL-1β in response to LPS (
<xref ref-type="fig" rid="fig6">Figure 6A</xref>
); the effect of HIF-1α inhibition was specific for IL-1β since there was no significant effect on IL-10 production (
<xref ref-type="fig" rid="fig6">Figure 6B</xref>
). These results clearly show that HIF-1α expression regulates IL-1β production in sarcoidosis AMs and PBMCs.</p>
<fig id="fig6" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.013</object-id>
<label>Figure 6.</label>
<caption>
<title>Downregulation of HIF-1α reduces the production of IL-1β, IL-17, and IL-6 in sarcoid PBMCs.</title>
<p>PBMCs were transiently transfected with nonsense vector (NS siRNA, 200 pM) or targeted HIF-1α siRNA (200 pM, Thermofisher-Scientific). After 24 hr of transfection, cells were activated with either LPS (100 ng/mL) or anti-CD3 (1 μg/mL) in the presence of rhIL-2 (10 ng/mL). Conditioned media were collected after 24 hr (stimulated with LPS) or after 72 hr (stimulated with anti-CD3) and were assessed for cytokines via ELISA. HIF-1α siRNA significantly inhibited IL-1β (
<bold>A</bold>
) but had no inhibitory effect on IL-10 (
<bold>B</bold>
). The conditioned media of anti-CD3 stimulated sarcoidosis PBMCs (n = 11) or healthy control PBMCs (n = 10) show that sarcoidosis PBMCs produced significantly higher IL-1β (
<bold>C</bold>
) and IL-17 (
<bold>D</bold>
) as compared to healthy control PBMCs. HIF-1α siRNA significantly inhibited IL-1β (
<bold>E</bold>
), IL-17 (
<bold>F</bold>
) and IL-6 (
<bold>G</bold>
). HIF-1α siRNA did not inhibit IFN-γ (
<bold>H</bold>
), or IL-10 (
<bold>I</bold>
). ELISA results obtained from siRNA experiments represent mean ± SEM of four different experiments. *, p < 0.05 and was considered significant.</p>
<p>
<supplementary-material content-type="local-data" id="fig6sdata1">
<object-id pub-id-type="doi">10.7554/eLife.44519.014</object-id>
<label>Figure 6—source data 1.</label>
<caption>
<title>Effect of downregulation of HIF-1α via siRNA on IL-1β , IL-10, IL-17,IL-6 and IFN-γ production in sarcoid PBMCs.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-44519-fig6-data1.xlsx" orientation="portrait" id="d35e1142" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-44519-fig6"></graphic>
</fig>
<p>Recent work has shown that the HIF transcription factors are key elements in the control of immune cell metabolism and function in macrophages, B-cells, and T-cells (
<xref rid="bib40" ref-type="bibr">Palazon et al., 2014</xref>
;
<xref rid="bib65" ref-type="bibr">Wang and Green, 2012</xref>
). T helper 17 cells (Th17) represent a lineage of effector T cells critical in host defense and autoimmunity. It is has been shown that Th1 and Th17 cells contribute to sarcoidosis pathology (
<xref rid="bib43" ref-type="bibr">Ramstein et al., 2016</xref>
). Based on this, we hypothesize that the HIF-1α inhibition may also modulate IL-1β and IL-17 production in response to anti-CD3 challenge. First, we assessed the effect of anti-CD3 activation on the production of IL-1β and IL-17 in healthy controls and sarcoidosis PBMCs. PBMCs were treated with anti-CD3 for 24 hr and the conditioned media were assessed for IL-1β and IL-17 production. Sarcoidosis PBMCS were seen to produce significantly higher levels of IL-1β (
<xref ref-type="fig" rid="fig6">Figure 6C</xref>
) and IL-17 (
<xref ref-type="fig" rid="fig6">Figure 6D</xref>
). To investigate the contribution of HIF-1α in Th1/Th17 cytokine production, we investigated the effect of targeted downregulation of HIF-1α in PBMCs in response to anti-CD3 challenge on the production of various inflammatory cytokines. Inhibition of HIF-1α by siRNA significantly decreased the production of anti-CD3 induced IL-1β (
<xref ref-type="fig" rid="fig6">Figure 6E</xref>
), IL-17 (
<xref ref-type="fig" rid="fig6">Figure 6F</xref>
), and IL-6 (
<xref ref-type="fig" rid="fig6">Figure 6G</xref>
). However, inhibition of HIF-1α did not decrease IFN-γ (
<xref ref-type="fig" rid="fig6">Figure 6H</xref>
) and IL-10 (
<xref ref-type="fig" rid="fig6">Figure 6I</xref>
) production. These results suggest that HIF-1α specifically regulates IL-1β and IL-17 in sarcoidosis.</p>
</sec>
<sec id="s2-7">
<title>Pharmacological HIF-1α inhibition decreases the percentage of activated T-cells and cytokines in sarcoidosis PBMCs in response to anti-CD3</title>
<p>To confirm our results, we used echinomycin, a small molecule inhibitor of HIF-1α that has been shown to inhibit HIF-1α DNA binding activity (
<xref rid="bib58" ref-type="bibr">Tang and Yu, 2013</xref>
;
<xref rid="bib63" ref-type="bibr">Vlaminck et al., 2007</xref>
). We evaluated the effect of echinomycin HIF-1α inhibition on anti-CD3-induced IL-1β and IL-17 production and T cell activation in sarcoid PBMCs. To do so, cultured sarcoidosis PBMCs were pre-treated with echinomycin in vitro, then activated with anti-CD3 in the presence of rIL-2, followed by determination of activated CD4
<sup>+</sup>
CD25
<sup>+</sup>
T-cells by flow cytometry and measurement of cytokines by ELISA. Our results showed that PBMCs of patients with sarcoidosis (n = 23) exhibit higher expression for activated CD4
<sup>+</sup>
CD25
<sup>+</sup>
T cells (mean ± SEM, 11.08 ± 5.32% as compared to healthy (n = 7) controls (mean ± SEM, 5.16 ± 2.71%, p < 0.05).
<xref ref-type="fig" rid="fig7">Figure 7A</xref>
shows that PBMCs of a patient with sarcoidosis exhibited higher expression for activated CD4
<sup>+</sup>
CD25
<sup>+</sup>
T cells (10%), further increasing to 50% in response to anti-CD3 stimulation (
<xref ref-type="fig" rid="fig7">Figure 7B</xref>
). Pre-treatment of PBMCs with echinomycin decreased the number of activated T cells (3%) at base line (
<xref ref-type="fig" rid="fig7">Figure 7C</xref>
) and in response to anti-CD3 stimulation to 15% (
<xref ref-type="fig" rid="fig7">Figure 7D</xref>
). Furthermore, pretreatment with echinomycin significantly decreased both baseline and anti-CD3 induced IL-1β production (
<xref ref-type="fig" rid="fig7">Figure 7E</xref>
). Similarly, pretreatment with echinomycin significantly decreased anti-CD3 induced IL-17 (
<xref ref-type="fig" rid="fig7">Figure 7F</xref>
) and IL-6 (
<xref ref-type="fig" rid="fig7">Figure 7G</xref>
) production in sarcoidosis PBMCs.</p>
<fig id="fig7" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.015</object-id>
<label>Figure 7.</label>
<caption>
<title>HIF-1α inhibition reduces the percentage of activated CD4 +CD25+cells in anti-CD3 stimulated sarcoid PBMCs and the production of IL-1β, IL-17, and IFN-γ.</title>
<p>PBMCs of sarcoid subjects were pretreated with echinomycin (HIF-1α inhibitor, 10 nM) for 30 min and were stimulated with anti-CD3 (1 μg/mL) in the presence of rhIL-2 (10 ng/mL) for 72 hr. Cells were harvested after 72 hr of culture and immunostained with fluorescein conjugated antibodies CD4 and CD25 and analyzed by flow cytometry using Flow-jo software. (
<bold>A–D</bold>
) Representative scatter plots show FACS analysis of CD4 and CD25 expression of sarcoidosis PBMCs. The percentage of CD4 and CD25 double positive, representing activated T-cells, were 10% in untreated PBMCs (
<bold>A</bold>
). In sarcoidosis PBMCs stimulated with anti-CD3 the percentage of CD4 and CD25 double positive T-cells increased to 50% (
<bold>B</bold>
). Sarcoidosis PBMCs cultured in the presence of echinomycin for 72 hr. The percentage of CD4 and CD25 double positive cells decreased from 10% to 3% (
<bold>C</bold>
). Sarcoidosis PBMCs were stimulated with anti-CD3 in the presence of echinomycin. The percentage of activated T-cells decreased from 50% after anti-CD3 challenge to 15% in the presence of echinomycin (
<bold>D</bold>
). Data presented is a representative plot of 5 independent experiments. The conditioned medium was assessed for IL-1β, IL-17 and IFN-γ using ELISA. Echinomycin significantly inhibited anti-CD3-induced IL-1β (
<bold>E</bold>
), IL-17 (
<bold>F</bold>
) and IFN-γ (
<bold>G</bold>
). Data represent mean ± SEM from six different experiments. *, p < 0.05 and was considered significant.</p>
<p>
<supplementary-material content-type="local-data" id="fig7sdata1">
<object-id pub-id-type="doi">10.7554/eLife.44519.016</object-id>
<label>Figure 7—source data 1.</label>
<caption>
<title>HIF-1α inhibition reduces the production of IL-1β, IL-17, and IFN-γ in anti-CD3 stimulated sarcoid PBMCs.</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-44519-fig7-data1.xlsx" orientation="portrait" id="d35e1273" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-44519-fig7"></graphic>
</fig>
</sec>
<sec id="s2-8">
<title>Chloroquine modifies LAMP2, HIF-1α protein expression and inhibits IL-1 β and IL-17 production in sarcoidosis</title>
<p>Chloroquine (CHQ) is an anti-malarial drug and remains an integral treatment for systemic inflammatory diseases such as systemic lupus erythematosus and sarcoidosis (
<xref rid="bib29" ref-type="bibr">Lee et al., 2011</xref>
;
<xref rid="bib34" ref-type="bibr">Morse et al., 1961</xref>
). CHQ inhibits lysosomal degradation/autophagy either by altering lysosomal acidification or inhibiting the levels of lysosomal associated proteins (LAMP) (
<xref rid="bib17" ref-type="bibr">He et al., 2011</xref>
;
<xref rid="bib31" ref-type="bibr">Ma et al., 2012</xref>
;
<xref rid="bib46" ref-type="bibr">Rubinsztein et al., 2007</xref>
). We hypothesized that CHQ modulates LAMP2, HIF-1α, and HIF-2α levels and cytokine production in sarcoidosis AMs and PBMCs. To examine this hypothesis, isolated AMs were pre-treated with CHQ and then activated with LPS. Interestingly, CHQ decreased LAMP2 levels and both HIF-1α (by approximately 50%) and HIF-2α protein expression (by approximately 65%) in sarcoidosis AMs after LPS stimulation (
<xref ref-type="fig" rid="fig8">Figure 8A–D</xref>
). Furthermore, CHQ significantly decreased (70%) the expression of pro-IL-1β (
<xref ref-type="fig" rid="fig8">Figure 8D and E</xref>
). Similarly, measurement of released IL-1β in conditioned medium was significantly decreased both at baseline and in response to LPS stimulation (
<xref ref-type="fig" rid="fig8">Figure 8F</xref>
). To assess the effect of CHQ on IL-1β and IL-17 production by sarcoidosis PBMCs, cultured PBMCs were pre-treated with CHQ in vitro and then activated with anti-CD3. CHQ significantly decreased anti-CD3 induced IL-1β (
<xref ref-type="fig" rid="fig8">Figure 8G</xref>
) and IL-17 (
<xref ref-type="fig" rid="fig8">Figure 8H</xref>
) production in sarcoidosis PBMCs (p < 0.05).</p>
<fig id="fig8" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.017</object-id>
<label>Figure 8.</label>
<caption>
<title>Chloroquine (CHQ) decreases LAMP2, HIF-α, IL-1 β, and IL-17 production in sarcoidosis.</title>
<p>Sarcoidosis AMs were pretreated with CHQ (100 µM) for 30 minutes and activated with LPS (100 ng/mL) for 3 hours. Whole cell lysates obtained after 3 hours of activation were subjected to immunoblotting to assess the LAMP2, HIF-1α, HIF-2α, and pro-IL-1β expression. Values were normalized to β-actin and are shown as relative expression to untreated cells. Densitometry analysis is expressed as fold increase of the ratio of specific protein/ β-actin. Culture supernatants were assessed for IL-1β via ELISA. CHQ significantly inhibited LAMP2 (50%) at baseline and both HIF-1α (50%) and HIF-2α (50%) protein expression in response to LPS challenge (
<bold>A-D</bold>
). CHQ significantly inhibited pro-IL-1β (70%) protein expression in response to LPS treatment (
<bold>E and F</bold>
) and significantly inhibited IL-1β production both at baseline and in response to LPS (
<bold>G</bold>
). Sarcoid PBMCs were pretreated with CHQ (100 µM) for 30 min and activated with anti-CD3 (1 µg/mL) in the presence of rhIL-2 (10 ng/mL). Conditioned media were collected after 72 hours and were assessed for IL-1 β and IL-17 via ELISA. CHQ significantly inhibited anti-CD3 induced IL-1β (
<bold>H</bold>
) and IL-17 (
<bold>I</bold>
) production. Western blot data presented is representative of five independent experiments. ELISA results represent mean ± SEM from five different experiments. *, p < 0.05 and was considered significant.</p>
<p>
<supplementary-material content-type="local-data" id="fig8sdata1">
<object-id pub-id-type="doi">10.7554/eLife.44519.018</object-id>
<label>Figure 8—source data 1.</label>
<caption>
<title>Chloroquine (CHQ) decreases IL-1 β and IL-17 production in sarcoidosis..</title>
</caption>
<media mime-subtype="xlsx" mimetype="application" xlink:href="elife-44519-fig8-data1.xlsx" orientation="portrait" id="d35e1345" position="anchor"></media>
</supplementary-material>
</p>
</caption>
<graphic xlink:href="elife-44519-fig8"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s3">
<title>Discussion</title>
<p>Sarcoidosis is a chronic granulomatous disease with aberrant immune response to undefined environmental or infectious triggers (
<xref rid="bib22" ref-type="bibr">Iannuzzi et al., 2007</xref>
). How specific antigens lead to a sustained granulomatous inflammation in sarcoidosis is largely unknown. Our novel RNA-seq data showed aberrant metabolic pathways and enrichment of DE genes for HIF pathways in monocytes of sarcoidosis patients (
<xref rid="bib54" ref-type="bibr">Talreja et al., 2017</xref>
), confirming our previous metabolomics data showing aberrant metabolic pathways including increased glycolysis and malfunctional tricarboxylic acid (TCA) cycle in sarcoidosis (
<xref rid="bib15" ref-type="bibr">Geamanu et al., 2016</xref>
;
<xref rid="bib54" ref-type="bibr">Talreja et al., 2017</xref>
). In the current study, we investigated the role of HIF-isoforms in sarcoid alveolar macrophages and blood monocytes as well as PBMCs. Alveolar macrophages and monocytes have a central role in the maintenance of immunological homeostasis in response to pathogens providing an important host-defense (
<xref rid="bib1" ref-type="bibr">Aberdein et al., 2013</xref>
). In sarcoidosis, both cell types are in an activated state and produce spontaneous ex vivo cytokines and chemokines including, IL-1β, TNF-α, IL-6, IL-18, and others (
<xref rid="bib16" ref-type="bibr">Gracie et al., 2003</xref>
;
<xref rid="bib35" ref-type="bibr">Müller-Quernheim, 1998</xref>
;
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib45" ref-type="bibr">Rolfe et al., 1993</xref>
). Our current study confirms our previous findings that IL-1β plays an important role in sarcoidosis (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). In addition, we find increased IL-1Ra in sarcoidosis AMs and PBMCs, suggesting activation of the IL-1 pathway. IL-1Ra is a member of the IL-1 family, whose production is stimulated by many substances including cytokines and bacterial or viral components; it has been suggested to act as a decoy receptor and is a natural inhibitor for the biologically active IL-1β (
<xref rid="bib25" ref-type="bibr">Lang et al., 1998</xref>
); (
<xref rid="bib2" ref-type="bibr">Arend, 2000</xref>
;
<xref rid="bib49" ref-type="bibr">Santarlasci et al., 2013</xref>
). In several inflammatory diseases, including lupus and Crohn's disease (CD), elevated IL-1β production is associated with IL-1Ra (
<xref rid="bib8" ref-type="bibr">Cominelli and Pizarro, 1996</xref>
). Our data are in line with previous studies showing increased IL-1Ra in sarcoidosis (
<xref rid="bib32" ref-type="bibr">Mikuniya et al., 2000</xref>
;
<xref rid="bib45" ref-type="bibr">Rolfe et al., 1993</xref>
). Further studies need to delineate the clinical role of IL-1Ra in sarcoidosis.</p>
<p>Here, we show that sarcoidosis AMs and monocytes in normoxic ex vivo culture conditions and without any stimulation exhibit constitutively active HIF-1α and HIF-1β (ARNT) along with its coactivator, p300. Furthermore, in situ HIF-1α immune staining of sarcoidosis lung biopsies demonstrated HIF-1α abundance in the center of granulomatous tissue and in multinucleated giant cells. We found that a higher percentage of CD14
<sup>+</sup>
monocytes express HIF-1α and HIF-2α in sarcoidosis subjects as compared to controls. Our data show that the increased HIF-1α expression is coupled to increased Glut1 protein levels, and enhanced IL-1β, IL-6 and IL-17 production. Downregulation of HIF-1α via siRNA or chemical inhibitors in sarcoidosis PBMCs leads to a decrease in IL-6 and IL-17 production at baseline and in response to anti-CD3 stimulation. In sarcoid subjects HIF-2α was predominantly expressed in the lung macrophage population whereas sarcoidosis monocytes showed lower levels of HIF-2α. HIF-2α downregulation had no significant effect on IL-1β and IL-17 production in sarcoidosis (data not shown). We speculate that HIF-2α regulates other macrophage functions such as phagocytosis and cell metabolism. Classically, sarcoidosis granulomas feature activated antigen presenting cells initiating adaptive immune responses with an increase in activated CD4
<sup>+</sup>
T-cells and Th1 mediated cytokines. Recently, it has been shown that Th17
<sup>+</sup>
/CD4
<sup>+</sup>
T cells are increased in sarcoidosis granulomatous tissue and peripheral blood (
<xref rid="bib12" ref-type="bibr">Facco et al., 2011</xref>
;
<xref rid="bib39" ref-type="bibr">Ostadkarampour et al., 2014</xref>
;
<xref rid="bib43" ref-type="bibr">Ramstein et al., 2016</xref>
). Recent studies indicated that IL-1β plays a critical role in regulation of Th1/Th17 cells in response to commensal microbes (
<xref rid="bib11" ref-type="bibr">Duhen and Campbell, 2014</xref>
). IL-1β promotes Th17 differentiation from naive CD4
<sup>+</sup>
T cells by enhancing IL-1 receptor expression (
<xref rid="bib28" ref-type="bibr">Lee et al., 2010</xref>
). Furthermore, IL-1 synergizes with IL-6 to regulate Th17 differentiation and effector Th17 cell function through regulation of transcription factors, including IRF4 and RORγt (
<xref rid="bib7" ref-type="bibr">Chung et al., 2009</xref>
). Thus, in sarcoidosis increased IL-1β and IL-6 explains Th17 differentiation. Previously, our group and other showed increased IL-6 production in AMs and PBMCs of sarcoidosis subjects at baseline and in response to TLR or NLR ligands (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). Levels of IL-6 may be important in progression of fibrotic lung changes in sarcoidosis (
<xref rid="bib26" ref-type="bibr">Le et al., 2014</xref>
). Our data indicate that downregulation of HIF-1α via siRNA or chemical inhibitor reduces IL-6 production by sarcoid PBMCs.</p>
<p>HIF-1α and HIF-2α are two critical transcription factors that regulate an array of genes involved in inflammation, angiogenesis, metabolic reprogramming, mitochondrial function, T-cell differentiation and Th17 development (
<xref rid="bib9" ref-type="bibr">Cummins et al., 2016</xref>
;
<xref rid="bib10" ref-type="bibr">Dang et al., 2011</xref>
;
<xref rid="bib37" ref-type="bibr">Nizet and Johnson, 2009</xref>
;
<xref rid="bib40" ref-type="bibr">Palazon et al., 2014</xref>
;
<xref rid="bib42" ref-type="bibr">Phan and Goldrath, 2015</xref>
). Upregulation of HIF isoform plays a critical role in providing metabolic reprogramming in myeloid cells that is required to develop trained immunity for a robust immune response (
<xref rid="bib6" ref-type="bibr">Cheng et al., 2014</xref>
). It has been shown that mice with a myeloid cell-specific defect in HIF-1α were unable to mount a trained immune response against bacterial sepsis (
<xref rid="bib6" ref-type="bibr">Cheng et al., 2014</xref>
;
<xref rid="bib36" ref-type="bibr">Netea et al., 2016</xref>
). Trained immunity is associated with profound metabolic reprogramming in macrophages (
<xref rid="bib69" ref-type="bibr">Yao et al., 2018</xref>
), dendritic cells, and natural killer cells (
<xref rid="bib36" ref-type="bibr">Netea et al., 2016</xref>
). New mounting evidence indicates that metabolic reprogramming, including upregulation of glycolysis and depression of the TCA cycle, is a required metabolic switch for the development of innate memory, which in turn leads to upregulation of inflammatory cytokines including IL-1β and IL-17. Similar to cancer metabolism, during inflammation aerobic glycolysis (Warburg effect) plays an important role in the maintenance of cellular energy supply (
<xref rid="bib24" ref-type="bibr">Koppenol et al., 2011</xref>
;
<xref rid="bib66" ref-type="bibr">Warburg, 1956</xref>
). Sarcoidosis AMs and monocytes exhibit a phenotype resembling the Warburg effect or trained immunity exhibiting an abundance of HIF isoforms, higher expression for Glut1, and higher production of IL-1β and IL-17. Glut1 is regulated by HIF-1α transcriptional activity and its elaboration is an important step in the metabolic switch from oxidative phosphorylation to glycolysis (
<xref rid="bib5" ref-type="bibr">Chen et al., 2001</xref>
). Fluorodeoxyglucose positron emission tomography (FDG PET) scans are commonly used to identify metabolic activity in cancer and PET scans have been shown to be useful in active sarcoidosis (
<xref rid="bib3" ref-type="bibr">Avril, 2004</xref>
;
<xref rid="bib4" ref-type="bibr">Ben-Haim and Ell, 2009</xref>
). Increased Glut1 levels may explain the observed increased FDG uptake in PET/CT scans in active sarcoidosis (
<xref rid="bib52" ref-type="bibr">Sobic-Saranovic et al., 2013</xref>
). Despite the importance of HIF signaling, the role of HIF-1α and HIF-2α in lung diseases has not been established and only a few studies addressed the role of HIFs in primary human immune cells. One previous study reported increased HIF-1α mRNA in lymphocytes of peripheral blood but a decreased mRNA level in HIF-1α BAL cells. In contrast to our study one prior study reported decreased HIF-1α mRNA and protein expression in sarcoidosis tissue biopsies (
<xref rid="bib62" ref-type="bibr">Tzouvelekis et al., 2012</xref>
), although the same study reported increased expression of VEGF, which is directly regulated by HIF (
<xref rid="bib62" ref-type="bibr">Tzouvelekis et al., 2012</xref>
). The discrepancy of the results may be due to stages of the disease or evaluation of heterogeneous cell populations.</p>
<p>Several pathways including the PI3 kinase, mTOR, MEK/ERK, GSK3β, and p38 pathways have been proposed to regulate LPS mediated HIF-1α expression and stabilization (
<xref rid="bib40" ref-type="bibr">Palazon et al., 2014</xref>
;
<xref rid="bib41" ref-type="bibr">Peyssonnaux et al., 2007</xref>
;
<xref rid="bib55" ref-type="bibr">Talwar et al., 2017a</xref>
;
<xref rid="bib57" ref-type="bibr">Talwar et al., 2019</xref>
). Previously, we have shown that sustained p38 activation directly controls expression of several cytokines in sarcoid AMs (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
). The increased p38 phosphorylation in sarcoidosis was associated with lack of mitogen activated protein kinase phosphatase (MKP)-1 expression in sarcoidosis AMs and monocytes (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
). Furthermore, p38 MAPK regulates IL-17 production by Th17 cells through regulation of various transcription factors (
<xref rid="bib19" ref-type="bibr">Huang et al., 2015</xref>
;
<xref rid="bib38" ref-type="bibr">Noubade et al., 2011</xref>
). Interestingly, our recent study showed that macrophages derived from MKP-1 deficient mice exhibited higher HIF-1α and IL-1β expression and higher ROS production in response to LPS; in addition, p38 inhibition decreased HIF-1α expression in MKP-1 deficient macrophages and modified cytokine production (
<xref rid="bib55" ref-type="bibr">Talwar et al., 2017a</xref>
). In our current work, we found significantly higher HIF-1α expression in sarcoidosis AMs and PBMCs. This can be partly explained by a constitutively active p38 in macrophages of sarcoidosis subjects (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). We observed that a p38 inhibitor (SB203580) partly decreased the expression of HIF-1α (data not shown) and cytokine levels in sarcoidosis.</p>
<p>Activation of TLR4 and TLR2 by a variety of pathogen-derived molecules as well as environmental toxins has been shown to induce and stabilize HIF-1α expression (
<xref rid="bib14" ref-type="bibr">Frede et al., 2007</xref>
;
<xref rid="bib30" ref-type="bibr">Liao et al., 2014</xref>
;
<xref rid="bib40" ref-type="bibr">Palazon et al., 2014</xref>
). Abundance of HIF-1α in sarcoidosis also implies aberrant degradation by proteasomal or/and lysosomal pathways. Autophagy and the ubiquitin-proteasome system (UPS) are two major pathways involved in the degradation of proteins. It has been shown that there is a compensatory interaction between these two pathways and inhibition of one pathway leads to activation of the other (
<xref rid="bib64" ref-type="bibr">Wang et al., 2013</xref>
). Our RNA sequencing data showed upregulation of lysosomal pathways, confirming previous findings by other investigators (
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
;
<xref rid="bib61" ref-type="bibr">Tomita et al., 1999</xref>
). LAMP2, along with LAMP1, comprise about 50% of lysosomal proteins. In sarcoidosis we observed upregulation of LAMP2 both at the gene and protein level. CHQ is an ancient drug that in addition to its anti-malaria activity has been used for autoimmune diseases, including sarcoidosis (
<xref rid="bib34" ref-type="bibr">Morse et al., 1961</xref>
). Therefore, we determined the effect of CHQ on LAMP2 and HIF-α isoform expression. Surprisingly, we found that CHQ inhibits the increased levels of LAMP2, HIF-α isoforms, and cytokine production in sarcoidosis. We speculate that in sarcoidosis inhibition of lysosomal function by CHQ leads to increased proteasome degradation of HIF-α isoforms leading to subsequent inhibition of IL-1β and IL-17 cytokines production.</p>
<p>Environmental factors, altered metabolism, and inflammation can be linked to epigenetic changes such as methylation and acetylation that may contribute to HIF-1α expression and stability in sarcoidosis (
<xref rid="bib67" ref-type="bibr">Watson et al., 2010</xref>
). How HIF signaling in the absence of a hypoxic trigger regulates metabolic reprogramming and influences inflammation in chronic inflammatory diseases, especially respiratory diseases including sarcoidosis, has not been well illuminated. Our report identifies a role for HIF signaling in sarcoidosis granulomatous inflammation. The identification of the mechanisms underlying the aberrant regulation of HIF-1α and HIF-2α leading to persistent inflammation and Th1/Th17 pathology in sarcoidosis should open new avenues in rational drug discovery, not only for this disease but also for other inflammatory diseases.</p>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and methods</title>
<table-wrap id="inlinetable1" orientation="portrait" position="anchor">
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="bottom" rowspan="1" colspan="1">Reagent type
<break></break>
(species) or
<break></break>
resource</th>
<th valign="bottom" rowspan="1" colspan="1">Designation</th>
<th valign="bottom" rowspan="1" colspan="1">Source or
<break></break>
reference</th>
<th valign="bottom" rowspan="1" colspan="1">Identifiers</th>
<th valign="bottom" rowspan="1" colspan="1">Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Genetic reagent</td>
<td rowspan="1" colspan="1">Lipofectamine 2000</td>
<td rowspan="1" colspan="1">Invitrogen</td>
<td rowspan="1" colspan="1">Cat. #11668027</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Biological sample</td>
<td rowspan="1" colspan="1">Human AMs</td>
<td rowspan="1" colspan="1">Bronchoalveolar lavage (BAL) cells</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Sarcoidosis Center, WSU, Detroit,
<break></break>
USA</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Biological sample</td>
<td rowspan="1" colspan="1">Human PBMCs and monocytes</td>
<td rowspan="1" colspan="1">Heparinized blood</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Sarcoidosis Center, WSU, Detroit,
<break></break>
USA</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">HIF-1α (rabbit polyclonal)</td>
<td rowspan="1" colspan="1">Bioss</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">AB_</ext-link>
<break></break>
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">10857933</ext-link>
,
<break></break>
Cat. #bs0737</td>
<td rowspan="1" colspan="1">WB (1:500)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">HIF-2α (rabbit polyclonal)</td>
<td rowspan="1" colspan="1">Bioss</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">AB_</ext-link>
<break></break>
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">10857576</ext-link>
, Cat. #bs1477</td>
<td rowspan="1" colspan="1">WB (1:500)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td rowspan="1" colspan="1">ARNT (rabbit monoclonal)</td>
<td rowspan="1" colspan="1">Cell Signaling</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">AB_</ext-link>
<break></break>
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">2783880</ext-link>
,
<break></break>
Cat. # 5531</td>
<td rowspan="1" colspan="1">WB (1:1000)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">P300 (rabbit polyclonal)</td>
<td rowspan="1" colspan="1">Santa Cruz Biotechnology</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">AB_</ext-link>
<break></break>
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">2231120</ext-link>
,Cat # sc-585</td>
<td rowspan="1" colspan="1">WB (1:500)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">Glut1 (rabbit polyclonal)</td>
<td rowspan="1" colspan="1">Thermofisher Scientific</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">AB_</ext-link>
<break></break>
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">2302087</ext-link>
,
<break></break>
Cat # PA1-46152</td>
<td rowspan="1" colspan="1">WB (1:1000)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">LAMP2 (mouse monoclonal)</td>
<td rowspan="1" colspan="1">Santa Cruz Biotechnology</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_">AB_</ext-link>
<break></break>
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2305186Cat">626858</ext-link>
,Cat # sc-18822</td>
<td rowspan="1" colspan="1">WB (1:1000)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">pro-IL-1β (goat polyclonal)</td>
<td rowspan="1" colspan="1">R and D</td>
<td rowspan="1" colspan="1">Cat # AF-201-NA</td>
<td rowspan="1" colspan="1">WB (1:1000)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">β-actin (rabbit polyclonal)</td>
<td valign="bottom" rowspan="1" colspan="1">Abcam</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2305186Cat">AB_2305186</ext-link>
Cat # ab8227</td>
<td rowspan="1" colspan="1">WB (1:1000)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD4-FITC (mouse monoclonal)</td>
<td valign="bottom" rowspan="1" colspan="1">BD Biosciences</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_400007">AB_400007</ext-link>
,Cat # 340133</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD25-PE (mouse monoclonal)</td>
<td valign="bottom" rowspan="1" colspan="1">BD Biosciences</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_400203">AB_400203</ext-link>
,Cat # 341009</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Antibody</td>
<td valign="bottom" rowspan="1" colspan="1">CD14-PerCPCy5.5 (mouse monoclonal)</td>
<td valign="bottom" rowspan="1" colspan="1">BD Biosciences</td>
<td rowspan="1" colspan="1">RRID:
<ext-link ext-link-type="uri" xlink:href="https://scicrunch.org/resolver/AB_2033939">AB_2033939</ext-link>
,Cat # 561116</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sequence-based reagent</td>
<td rowspan="1" colspan="1">HIF-1α siRNA, Sense</td>
<td rowspan="1" colspan="1">GGAACCUGAUGCUUUAACUtt</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Thermofisher-Scientific</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sequence-based reagent</td>
<td rowspan="1" colspan="1">HIF-1α siRNA, Anti-sense</td>
<td rowspan="1" colspan="1">AGUUAAAGCAUCAGGUUCCtt</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Thermofisher-Scientific</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Commercial assay or kit</td>
<td rowspan="1" colspan="1">MTS assay kit
<break></break>
ELISA kits</td>
<td rowspan="1" colspan="1">Promega
<break></break>
R and D</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Chloroquine</td>
<td rowspan="1" colspan="1">Invivo Gen</td>
<td valign="bottom" rowspan="1" colspan="1">tlrl-chq</td>
<td rowspan="1" colspan="1">100 mM</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chemical compound, drug</td>
<td rowspan="1" colspan="1">Echinomycin</td>
<td rowspan="1" colspan="1">Sigma</td>
<td rowspan="1" colspan="1">SML0477</td>
<td rowspan="1" colspan="1">10 nM</td>
</tr>
</tbody>
</table>
</table-wrap>
<sec id="s4-1">
<title>Chemicals</title>
<p>Chemicals were purchased from Sigma Chemical (St. Louis, MO) unless specified otherwise. LPS and chloroquine was purchased from InvivoGen (San Diego, CA). Antibodies against HIF-1α (# bs0737) and HIF-2α (#bs1477) were purchased from Bioss Inc (Woburn, MA), P300 (sc-585) was from Santa Cruz Biotechnology (Santa Cruz, CA), Glut1 (PA1-46152) from Thermofisher Scientific (Waltham, MA). The antibody for pro-IL-1β (# AF-201-NA) was purchased from R and D Systems (Minneapolis, MN), and β-actin (#ab8227) was purchased from Abcam (Cambridge, MA). Horseradish peroxidase–conjugated anti-mouse IgG (#7076S) and anti-rabbit IgG (#7074S) antibodies and antibody for ARNT (#5531) were purchased from Cell Signaling Technology (Beverly, MA). Horseradish peroxidase–conjugated anti-goat IgG (sc-2033) was purchased from Santa Cruz Biotechnology, The anti-human antibodies used for flow cytometry were CD4-FITC (#340133), CD25-PE (#341009), CD14-PerCPCy5.5 (#561116) and purified CD3 (#555337), purchased from BD Biosciences (San Jose, CA). The secondary antibody used for immunostaining Alexa 488 (#A11070) was purchased from Molecular Probes (Grand Island, NY). CellTiter 96 AQueous One Solution Cell Proliferation Assay was purchased from Promega (Madison, WI).</p>
</sec>
<sec id="s4-2">
<title>Study Design</title>
<p>The Committee for Investigations Involving Human Subjects at Wayne State University approved the protocol for obtaining alveolar macrophages by bronchoalveolar lavage (BAL) and blood by phlebotomy from control subjects and patients with sarcoidosis. The IRB number for this study is 055208MP4E. All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all subjects enrolled for the study. Sarcoidosis diagnosis was based on the ATS/ERS/WASOG statement (
<xref rid="bib21" ref-type="bibr">Hunninghake et al., 1999</xref>
). The criteria for enrollment in the diseased group were: (i) a compatible clinical/radiographic picture consistent with sarcoidosis, (ii) histologic demonstration of non-caseating granulomas on the tissue biopsy, and (iii) exclusion of other diseases capable of producing a similar histologic or clinical picture, such as fungus or mycobacteria. Subjects excluded were: (i) smokers, (ii) individuals receiving immune suppressive medication (defined as corticosteroid alone and/or in combination with immune modulatory medications), (iii) individuals with positive microbial culture in routine laboratory examinations or viral infection; or (iv) individuals with known hepatitis or HIV infections or any immune suppressive condition. The criteria for enrollment in the control group were: (i) absence of any chronic respiratory diseases, (ii) lifetime nonsmoker, (iii) absence of HIV or hepatitis infection, and (iv) negative microbial culture. A total of 51 patients with sarcoidosis and 23 controls participated in this study. The medical records of all patients were reviewed, and data regarding demographics, radiographic stages, pulmonary function tests, and organ involvements were recorded.</p>
</sec>
<sec id="s4-3">
<title>BAL and the preparation of alveolar macrophages (AMs)</title>
<p>BAL was collected during bronchoscopy after administration of local anesthesia and before tissue biopsies (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). Briefly, a total of 150 to 200 mL of sterile saline solution was injected via fiberoptic bronchoscopy; the BAL fluid was retrieved, measured, and centrifuged. Cells recovered from the BAL fluid were filtered through a sterile gauze pad and washed three times with phosphate-buffered saline (PBS), resuspended in endotoxin-free RPMI 1640 medium (HyClone) supplemented with L-glutamine (Life Technologies), penicillin/streptomycin (Life Technologies), and 1% fetal calf serum (HyClone), and then counted. BAL cells were cultured on adherent plates for 1 hr at 37°C in air containing 5% CO
<sub>2</sub>
. Non-adherent cells were removed by aspiration; adherent cells were washed three times and used as AMs. Viability of these populations was routinely about 97% and by morphologic criteria the adherent cells were in excess of 99% AMs (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
).</p>
</sec>
<sec id="s4-4">
<title>Isolation of PBMCs and purification of monocytes</title>
<p>PBMCs were isolated from heparinized blood using Ficoll-Histopaque (Sigma, St. Louis, MO) density gradient separation followed by washing twice with PBS. Cell suspension was made in endotoxin-free RPMI 1640 medium (HyClone) supplemented with L-glutamine (Life Technologies), penicillin/streptomycin (Life Technologies), and 10% fetal calf serum (HyClone). Cells were cultured in 12-well plates for further experiments (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). CD14
<sup>+</sup>
monocytes were purified from PBMCs by using the MACS monocyte isolation kit (Miltenyl Biotech, San Diego, CA) according to the manufacturer’s instructions. The purity of enriched monocytes was evaluated by flow cytometry using PerCPCy5.5-conjugated CD14 antibody (#561116, BD Biosciences); the purity of monocytes was about 95%.</p>
</sec>
<sec id="s4-5">
<title>Targeted down regulation of HIF-1α via siRNA</title>
<p>Isolated AMs or PBMCs were transiently transfected with non-specific silencer siRNA (NS siRNA, 200 pM) or targeted HIF-1α silencer siRNA (200 pM, Thermofisher-Scientific) in the presence of lipofectamine 2000 (Invitrogen). The sequence of siRNA used: sense (5’−3’)
<named-content content-type="sequence">GGAACCUGAUGCUUUAACUtt</named-content>
and antisense
<named-content content-type="sequence">AGUUAAAGCAUCAGGUUCCtt</named-content>
. After 24 hr of transfection, cells were activated with either LPS (100 ng/mL) or anti-CD3 (1 µg/mL). Viability of cells was assessed after siRNA treatment by MTS assay and 95% of cells were viable.</p>
</sec>
<sec id="s4-6">
<title>Cell viability</title>
<p>Cell viability was assessed using MTS assay [CellTiter 96 AQueous One Solution Cell Proliferation Assay] (Promega, Madison, WI) following the manufacturer’s instructions. Briefly, cells equivalent to 1 × 10
<sup>4</sup>
/well were seeded in 96-well culture plate and incubated for 24–48 hr with different treatments. After incubation, 20 µl of CellTiter 96 AQueous One Solution Reagent was added per well for 2 hr and the absorbance was measured at 490 nm using a 96-well plate reader.</p>
</sec>
<sec id="s4-7">
<title>Enzyme- Linked Immunosorbent Assay (ELISA)</title>
<p>The levels of IL-1β, IL-1Ra, IL-17, IL-10, IL-6, and IFN-γ in the conditioned medium were measured by ELISA according to the manufacturer's instructions (ELISA DuoKits; R and D Systems, Minneapolis, MN).</p>
</sec>
<sec id="s4-8">
<title>Flow cytometry and cell surface immunostaining</title>
<p>PBMCs from subjects with sarcoidosis were isolated, cultured, and after appropriate treatment were stained for cell surface markers using fluorescent labelled antibodies for CD4-FITC (#340133, BD Biosciences), and CD25-PE (#341009, BD Biosciences). Intracellular staining of PBMCs was done for HIF-1α and HIF-2α. Briefly, PBMCs were first surface stained for CD14 using CD14-PerCPCy5.5 antibody and then fixed using 100 μl of 1% paraformaldehyde for 30 min and then permeabilized with permeabilization buffer (0.5% saponin) for 15 min at room temperature. Cells were centrifuged and resuspended in 100 μl of permeabilization buffer and stained with HIF-1α (bs0737, Bioss Inc) or HIF-2α (bs1477, Bioss Inc) antibody for 30 min. Cells were washed and stained with the Alexa 488 secondary antibody (#A11070, Molecular Probes). After 30 min cells were washed twice, resuspended in staining buffer, and analyzed for CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
and CD14+HIF-2α
<sup>+</sup>
monocytes by flow cytometry. PBMCs were not stained specifically to exclude DC contamination. Flow cytometry was performed on a BD LSR II SORP and data analysis was performed using FlowJo software (FlowJo, LLC, Ashland, OR) (
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
). Samples were gated on cells using FSC/SSC and doublet discrimination was performed to identify singlets using SSC-W vs. SSC-A. The flowcytometry work was done at the Microscopy, Imaging and Cytometry Resources (MICR) Core at the Karmanos Cancer Institute, Wayne State University.</p>
</sec>
<sec id="s4-9">
<title>Immunofluorescent staining</title>
<p>Intracellular expression of HIF-1α in sarcoidosis AMs was visualized by immunofluorescence staining. AMs (1 × 10
<sup>5</sup>
) were allowed to adhere overnight on chamber slides. The cells were washed briefly with PBST and fixed with 3.7% paraformaldehyde. Cells were washed and permeabilized with 0.1% Triton X-100, blocked (10% FCS), and then incubated with anti-HIF-1α (bs0737,Bioss Inc) overnight at 4°C. The secondary antibody used was Alexa-fluor 488- conjugated goat anti-rabbit antibody. The next day cells were washed three times with PBS for 5 min, the slide was mounted with a drop of ProLong Gold antifade reagent with DAPI (Invitrogen). The slide was examined using an Axiovert 40 CFL fluorescence microscope (Carl Zeiss MicroImaging, Inc).</p>
</sec>
<sec id="s4-10">
<title>Protein extraction and immunoblotting</title>
<p>Total cellular proteins were extracted by addition of RIPA buffer containing a protease inhibitor cocktail and antiphosphatase I and II (Sigma Chemicals). Protein concentration was measured with the BCA assay (Thermo Scientific, CA). Equal amounts of proteins (10–25 μg) were mixed 1/1 (v/v) with 2x sample buffer (20% glycerol, 4% sodium dodecyl sulfate, 10% 2-βME, 0.05% bromophenol blue, and 1.25 M Tris-HCl, pH 6.8), and fractionated on a 10% sodium dodecyl sulfate–polyacrylamide gel. Proteins were transferred onto a polyvinylidene difluoride membrane (Bio-Rad) for 60 min at 18 V using a SemiDry Transfer Cell (Bio-Rad). The polyvinylidene difluoride membrane was blocked with 5% nonfat dry milk in TBST (Tris-buffered saline with 0.1% Tween 20) for 1 hr, washed, and incubated with primary Abs (1/1000) overnight at 4°C. The blots were washed with TBST and then incubated for 1 hr with horseradish peroxidase–conjugated secondary anti-IgG Ab using a dilution of 1/10,000 in 5% nonfat dry milk in TBST. Membranes were washed four times in TBST. Immuno-reactive bands were visualized with a chemiluminescent reagent (Amersham GE, PA). Images were captured on Hyblot CL film (Denville; Scientific, Inc; Metuchen, NJ) using a JPI automatic X-ray film processor model JP-33. Optical density analysis of signals was performed using Image J software (
<xref rid="bib44" ref-type="bibr">Rastogi et al., 2011</xref>
;
<xref rid="bib53" ref-type="bibr">Talreja et al., 2016</xref>
).</p>
</sec>
<sec id="s4-11">
<title>Immunohistochemistry</title>
<p>Tissue sections from the sarcoidosis transbronchial lung biopsy samples were selected for immunostaining after review of the glass slides that had been previously prepared using the routine hematoxylin-eosin protocol on paraffin-embedded sections. Additional fixed slides were cut, subjected to peroxide block protocol, pretreated, and then incubated first with primary antibody (anti-HIF-1α, bs0737, Bioss Inc ) and then with a secondary conjugated polymer; each incubation step was done for 30 min at room temperature. Negative staining was done by using an isotype control antibody. After another incubation step with the chromogen (5 min at room temperature), the sections were counterstained with hematoxylin and dehydrated with ethanol and xylene prior to mounting. Images were analyzed by microscopy (BX40, Olympus).</p>
</sec>
<sec id="s4-12">
<title>Statistical Analyses</title>
<p>A Student
<italic>t-test</italic>
or one-way analysis of variance and
<italic>post hoc</italic>
repeated measure comparisons (least significant difference) were performed to identify differences between groups. ELISA results were expressed as mean ± SEM. For all analyses, two-tailed
<italic>p</italic>
values of less than 0.05 were considered to be significant.</p>
</sec>
</sec>
</body>
<back>
<sec sec-type="funding-information">
<title>Funding Information</title>
<p>This paper was supported by the following grants:</p>
<list list-type="bullet">
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000005</institution-id>
<institution>U.S. Department of Defense</institution>
</institution-wrap>
</funding-source>
<award-id>W81XWH-16-1-0516</award-id>
to Lawrence I Grossman.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100006710</institution-id>
<institution>Wayne State University</institution>
</institution-wrap>
</funding-source>
<award-id>Henry L Brasza endowment</award-id>
to Lawrence I Grossman.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000050</institution-id>
<institution>National Heart, Lung, and Blood Institute</institution>
</institution-wrap>
</funding-source>
<award-id>R01HL113508</award-id>
to Lobelia Samavati.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100002590</institution-id>
<institution>American Lung Association</institution>
</institution-wrap>
</funding-source>
to Lobelia Samavati.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100007284</institution-id>
<institution>School of Medicine, Wayne State University</institution>
</institution-wrap>
</funding-source>
to Lobelia Samavati.</p>
</list-item>
</list>
</sec>
<ack id="ack">
<title>Acknowledgements</title>
<p>This work was supported by grants from NIH (R01HL113508) (LS) and the American Lung Association (LS) and as well as the Department of Medicine and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine (LS). The Microscopy, Imaging and Cytometry Resources Core is supported, in part, by NIH Center grant P30 CA022453 to the Karmanos Cancer Institute at Wayne State University and the Perinatology Research Branch of the National Institutes of Child Health and Development at Wayne State University. LIG is supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program under Award W81XWH-16-1-0516 and the Henry L Brasza endowment at Wayne State University. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the US Department of Defense or the United States government.</p>
</ack>
<sec id="s5" sec-type="additional-information">
<title>Additional information</title>
<fn-group content-type="competing-interest">
<title>
<bold>Competing interests</bold>
</title>
<fn fn-type="COI-statement" id="conf1">
<p>No competing interests declared.</p>
</fn>
</fn-group>
<fn-group content-type="author-contribution">
<title>
<bold>Author contributions</bold>
</title>
<fn fn-type="con" id="con1">
<p>Data curation, Formal analysis, Visualization, Methodology, Writing—original draft, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con2">
<p>Data curation, Visualization, Methodology, Writing—review.</p>
</fn>
<fn fn-type="con" id="con3">
<p>Formal analysis, Visualization, Methodology, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con4">
<p>Visualization, Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con5">
<p>Writing—review and editing.</p>
</fn>
<fn fn-type="con" id="con6">
<p>Methodology.</p>
</fn>
<fn fn-type="con" id="con7">
<p>Conceptualization, Resources, Formal analysis, Supervision, Funding acquisition, Validation, Visualization, Project administration, Writing—review and editing.</p>
</fn>
</fn-group>
<fn-group content-type="ethics-information">
<title>
<bold>Ethics</bold>
</title>
<fn fn-type="other">
<p>Human subjects: The Committee for Investigations Involving Human Subjects at Wayne State University approved the protocol for obtaining alveolar macrophages by bronchoalveolar lavage (BAL) and blood by phlebotomy from control subjects and patients with sarcoidosis.The IRB number for this study is 055208MP4E. Informed consent was obtained from all subjects enrolled for the study.</p>
</fn>
</fn-group>
</sec>
<sec id="s6" sec-type="supplementary-material">
<title>Additional files</title>
<supplementary-material content-type="local-data" id="transrepform">
<object-id pub-id-type="doi">10.7554/eLife.44519.020</object-id>
<label>Transparent reporting form</label>
<media mime-subtype="docx" mimetype="application" xlink:href="elife-44519-transrepform.docx" orientation="portrait" id="d35e2047" position="anchor"></media>
</supplementary-material>
</sec>
<sec id="s7" sec-type="data-availability">
<title>Data availability</title>
<p>All data generated or analysed during this study are included in the manuscript.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aberdein</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bewley</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Marriott</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Dockrell</surname>
<given-names>DH</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Alveolar macrophages in pulmonary host defence the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing</article-title>
<source>Clinical and Experimental Immunology</source>
<volume>174</volume>
<fpage>193</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1111/cei.12170</pub-id>
<pub-id pub-id-type="pmid">23841514</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arend</surname>
<given-names>WP</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Biological role of interleukin 1 receptor antagonist isoforms</article-title>
<source>Annals of the Rheumatic Diseases</source>
<volume>59</volume>
<fpage>60</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1136/ard.59.suppl_1.i60</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Avril</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>GLUT1 expression in tissue and (18)F-FDG uptake</article-title>
<source>Journal of Nuclear Medicine</source>
<volume>45</volume>
<fpage>930</fpage>
<lpage>932</lpage>
<pub-id pub-id-type="pmid">15181126</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ben-Haim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ell</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>18F-FDG PET and PET/CT in the evaluation of cancer treatment response</article-title>
<source>Journal of Nuclear Medicine</source>
<volume>50</volume>
<fpage>88</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.2967/jnumed.108.054205</pub-id>
<pub-id pub-id-type="pmid">19139187</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pore</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Behrooz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ismail-Beigi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maity</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Regulation of glut1 mRNA by hypoxia-inducible factor-1. interaction between H-ras and hypoxia</article-title>
<source>The Journal of Biological Chemistry</source>
<volume>276</volume>
<fpage>9519</fpage>
<lpage>9525</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M010144200</pub-id>
<pub-id pub-id-type="pmid">11120745</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Quintin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cramer</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Shepardson</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Saeed</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Giamarellos-Bourboulis</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Aghajanirefah</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Manjeri</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ifrim</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Arts</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>van der Veer</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>van der Meer</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Deen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Logie</surname>
<given-names>C</given-names>
</name>
<name>
<surname>O'Neill</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Willems</surname>
<given-names>P</given-names>
</name>
<name>
<surname>van de Veerdonk</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>van der Meer</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Joosten</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Wijmenga</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stunnenberg</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Netea</surname>
<given-names>MG</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity</article-title>
<source>Science</source>
<volume>345</volume>
<fpage>1250684</fpage>
<pub-id pub-id-type="doi">10.1126/science.1250684</pub-id>
<pub-id pub-id-type="pmid">25258083</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chung</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>XO</given-names>
</name>
<name>
<surname>Nurieva</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Watowich</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Jetten</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Critical regulation of early Th17 cell differentiation by interleukin-1 signaling</article-title>
<source>Immunity</source>
<volume>30</volume>
<fpage>576</fpage>
<lpage>587</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2009.02.007</pub-id>
<pub-id pub-id-type="pmid">19362022</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cominelli</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pizarro</surname>
<given-names>TT</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease</article-title>
<source>Alimentary Pharmacology & Therapeutics</source>
<volume>10</volume>
<fpage>49</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2036.1996.22164020.x</pub-id>
<pub-id pub-id-type="pmid">8899101</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cummins</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Keogh</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Crean</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>CT</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>The role of HIF in immunity and inflammation</article-title>
<source>Molecular Aspects of Medicine</source>
<volume>47-48</volume>
<fpage>24</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.mam.2015.12.004</pub-id>
<pub-id pub-id-type="pmid">26768963</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dang</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Barbi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Jinasena</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bordman</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yen</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shimoda</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Topalian</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>CV</given-names>
</name>
<name>
<surname>Pardoll</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>F</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1</article-title>
<source>Cell</source>
<volume>146</volume>
<fpage>772</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.07.033</pub-id>
<pub-id pub-id-type="pmid">21871655</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duhen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes</article-title>
<source>The Journal of Immunology</source>
<volume>193</volume>
<fpage>120</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1302734</pub-id>
<pub-id pub-id-type="pmid">24890729</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Facco</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cabrelle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Teramo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Olivieri</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gnoato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Teolato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ave</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gattazzo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fadini</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Calabrese</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Semenzato</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Agostini</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Sarcoidosis is a Th1/Th17 multisystem disorder</article-title>
<source>Thorax</source>
<volume>66</volume>
<fpage>144</fpage>
<lpage>150</lpage>
<pub-id pub-id-type="doi">10.1136/thx.2010.140319</pub-id>
<pub-id pub-id-type="pmid">21139119</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fazel</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Howie</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Krajewski</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>B lymphocyte accumulations in human pulmonary sarcoidosis</article-title>
<source>Thorax</source>
<volume>47</volume>
<fpage>964</fpage>
<lpage>967</lpage>
<pub-id pub-id-type="doi">10.1136/thx.47.11.964</pub-id>
<pub-id pub-id-type="pmid">1465757</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frede</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Berchner-Pfannschmidt</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Fandrey</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Regulation of hypoxia-inducible factors during inflammation</article-title>
<source>Methods in enzymology</source>
<volume>435</volume>
<fpage>405</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(07)35021-0</pub-id>
<pub-id pub-id-type="pmid">17998066</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geamanu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Bauerfeld</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Metabolomics connects aberrant bioenergetic, Transmethylation, and gut microbiota in sarcoidosis</article-title>
<source>Metabolomics</source>
<volume>12</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1007/s11306-015-0932-2</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gracie</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>McInnes</surname>
<given-names>IB</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Interleukin-18</article-title>
<source>Journal of Leukocyte Biology</source>
<volume>73</volume>
<fpage>213</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="doi">10.1189/jlb.0602313</pub-id>
<pub-id pub-id-type="pmid">12554798</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dykema</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Ke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hudson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Khoo</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Resau</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Alberts</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>MacKeigan</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Furge</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>HE</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Identification of a lysosomal pathway that modulates glucocorticoid signaling and the inflammatory response</article-title>
<source>Science Signaling</source>
<volume>4</volume>
<fpage>ra44</fpage>
<pub-id pub-id-type="doi">10.1126/scisignal.2001450</pub-id>
<pub-id pub-id-type="pmid">21730326</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>LY</given-names>
</name>
<name>
<surname>Chodosh</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Keith</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>MC</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation</article-title>
<source>Molecular and Cellular Biology</source>
<volume>23</volume>
<fpage>9361</fpage>
<lpage>9374</lpage>
<pub-id pub-id-type="doi">10.1128/mcb.23.24.9361-9374.2003</pub-id>
<pub-id pub-id-type="pmid">14645546</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Control of IL-17 receptor signaling and tissue inflammation by the p38α-MKP-1 signaling axis in a mouse model of multiple sclerosis</article-title>
<source>Science Signaling</source>
<volume>8</volume>
<fpage>ra24</fpage>
<pub-id pub-id-type="doi">10.1126/scisignal.aaa2147</pub-id>
<pub-id pub-id-type="pmid">25737586</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunninghake</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pueringer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dayton</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Floerchinger</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Helmers</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Merchant</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Galvin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>Outcome of the treatment for sarcoidosis</article-title>
<source>American Journal of Respiratory and Critical Care Medicine</source>
<volume>149</volume>
<fpage>893</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="doi">10.1164/ajrccm.149.4.8143052</pub-id>
<pub-id pub-id-type="pmid">8143052</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunninghake</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Costabel</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Ando</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baughman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cordier</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>du Bois</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Eklund</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kitaichi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rizzato</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Selroos</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Semenzato</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>OP</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>ATS/ERS/WASOG statement on sarcoidosis. american thoracic society/European respiratory society/World association of sarcoidosis and other granulomatous disorders</article-title>
<source>Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG</source>
<volume>16</volume>
<fpage>149</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="pmid">10560120</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iannuzzi</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Rybicki</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Teirstein</surname>
<given-names>AS</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Sarcoidosis</article-title>
<source>New England Journal of Medicine</source>
<volume>357</volume>
<fpage>2153</fpage>
<lpage>2165</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMra071714</pub-id>
<pub-id pub-id-type="pmid">18032765</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janson</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Hance</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Arend</surname>
<given-names>WP</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Production of IL-1 receptor antagonist by human in vitro-derived macrophages. effects of lipopolysaccharide and granulocyte-macrophage colony-stimulating factor</article-title>
<source>Journal of Immunology</source>
<volume>147</volume>
<fpage>4218</fpage>
<lpage>4223</lpage>
<pub-id pub-id-type="pmid">1836481</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koppenol</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Bounds</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>CV</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Otto Warburg's contributions to current concepts of cancer metabolism</article-title>
<source>Nature Reviews Cancer</source>
<volume>11</volume>
<fpage>325</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3038</pub-id>
<pub-id pub-id-type="pmid">21508971</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Knop</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wesche</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Raffetseder</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Kurrle</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Boraschi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>MU</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel mechanism of regulation of IL-1 responsiveness</article-title>
<source>Journal of Immunology</source>
<volume>161</volume>
<fpage>6871</fpage>
<lpage>6877</lpage>
<pub-id pub-id-type="pmid">9862719</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Karmouty-Quintana</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Melicoff</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>NY</given-names>
</name>
<name>
<surname>Pedroza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Philip</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Molina</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>George</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Garcia-Morales</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Bunge</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Bruckner</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Loebe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Seethamraju</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Agarwal</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Blackburn</surname>
<given-names>MR</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Blockade of IL-6 trans signaling attenuates pulmonary fibrosis</article-title>
<source>Journal of Immunology</source>
<volume>193</volume>
<fpage>3755</fpage>
<lpage>3768</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1302470</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>KW</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions</article-title>
<source>Experimental & Molecular Medicine</source>
<volume>36</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1038/emm.2004.1</pub-id>
<pub-id pub-id-type="pmid">15031665</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Eynon</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Flavell</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>I</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Regulating human Th17 cells via differential expression of IL-1 receptor</article-title>
<source>Blood</source>
<volume>115</volume>
<fpage>530</fpage>
<lpage>540</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2009-08-236521</pub-id>
<pub-id pub-id-type="pmid">19965648</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bargman</surname>
<given-names>JM</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>The role of antimalarial agents in the treatment of SLE and lupus nephritis</article-title>
<source>Nature Reviews Nephrology</source>
<volume>7</volume>
<fpage>718</fpage>
<lpage>729</lpage>
<pub-id pub-id-type="doi">10.1038/nrneph.2011.150</pub-id>
<pub-id pub-id-type="pmid">22009248</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Tzeng</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>SH</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells</article-title>
<source>International Journal of Molecular Sciences</source>
<volume>15</volume>
<fpage>17733</fpage>
<lpage>17750</lpage>
<pub-id pub-id-type="doi">10.3390/ijms151017733</pub-id>
<pub-id pub-id-type="pmid">25272228</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Foyil</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Godar</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Weinheimer</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Diwan</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury</article-title>
<source>Circulation</source>
<volume>125</volume>
<fpage>3170</fpage>
<lpage>3181</lpage>
<pub-id pub-id-type="doi">10.1161/CIRCULATIONAHA.111.041814</pub-id>
<pub-id pub-id-type="pmid">22592897</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mikuniya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mio</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hoshino</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shigematsu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hamada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Izumi</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Significance of the interleukin-1 receptor antagonist/interleukin-1 beta ratio as a prognostic factor in patients with pulmonary sarcoidosis</article-title>
<source>Respiration</source>
<volume>67</volume>
<fpage>389</fpage>
<lpage>396</lpage>
<pub-id pub-id-type="doi">10.1159/000029536</pub-id>
<pub-id pub-id-type="pmid">10940792</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyara</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Amoura</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Parizot</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Badoual</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dorgham</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Trad</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kambouchner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Valeyre</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chapelon-Abric</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Debré</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Piette</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Gorochov</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>The immune paradox of sarcoidosis and regulatory T cells</article-title>
<source>The Journal of Experimental Medicine</source>
<volume>203</volume>
<fpage>359</fpage>
<lpage>370</lpage>
<pub-id pub-id-type="doi">10.1084/jem.20050648</pub-id>
<pub-id pub-id-type="pmid">16432251</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morse</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Cohn</surname>
<given-names>ZA</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>SCHAEDER</surname>
<given-names>RW</given-names>
</name>
</person-group>
<year>1961</year>
<article-title>The treatment of sarcoidosis with chloroquine</article-title>
<source>The American Journal of Medicine</source>
<volume>30</volume>
<fpage>779</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="doi">10.1016/0002-9343(61)90213-3</pub-id>
<pub-id pub-id-type="pmid">13772932</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Müller-Quernheim</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>Sarcoidosis: immunopathogenetic concepts and their clinical application</article-title>
<source>European Respiratory Journal</source>
<volume>12</volume>
<fpage>716</fpage>
<lpage>738</lpage>
<pub-id pub-id-type="doi">10.1183/09031936.98.12030716</pub-id>
<pub-id pub-id-type="pmid">9762805</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Netea</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Joosten</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Latz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mills</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Natoli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stunnenberg</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>O'Neill</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Trained immunity: a program of innate immune memory in health and disease</article-title>
<source>Science</source>
<volume>352</volume>
<fpage>aaf1098</fpage>
<pub-id pub-id-type="doi">10.1126/science.aaf1098</pub-id>
<pub-id pub-id-type="pmid">27102489</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nizet</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RS</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Interdependence of hypoxic and innate immune responses</article-title>
<source>Nature Reviews Immunology</source>
<volume>9</volume>
<fpage>609</fpage>
<lpage>617</lpage>
<pub-id pub-id-type="doi">10.1038/nri2607</pub-id>
<pub-id pub-id-type="pmid">19704417</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noubade</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Krementsov</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Del Rio</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Thornton</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagaleekar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Saligrama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Spitzack</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Spach</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sabio</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Rincon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Teuscher</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis</article-title>
<source>Blood</source>
<volume>118</volume>
<fpage>3290</fpage>
<lpage>3300</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2011-02-336552</pub-id>
<pub-id pub-id-type="pmid">21791428</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ostadkarampour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Eklund</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Moller</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Glader</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Olgart Höglund</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lindén</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Grunewald</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wahlström</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Higher levels of interleukin IL-17 and antigen-specific IL-17 responses in pulmonary sarcoidosis patients with löfgren's syndrome</article-title>
<source>Clinical & Experimental Immunology</source>
<volume>178</volume>
<fpage>342</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="doi">10.1111/cei.12403</pub-id>
<pub-id pub-id-type="pmid">24962673</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palazon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Goldrath</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Nizet</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RS</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>HIF transcription factors, inflammation, and immunity</article-title>
<source>Immunity</source>
<volume>41</volume>
<fpage>518</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2014.09.008</pub-id>
<pub-id pub-id-type="pmid">25367569</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peyssonnaux</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cejudo-Martin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Doedens</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zinkernagel</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Nizet</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis</article-title>
<source>The Journal of Immunology</source>
<volume>178</volume>
<fpage>7516</fpage>
<lpage>7519</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.178.12.7516</pub-id>
<pub-id pub-id-type="pmid">17548584</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phan</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Goldrath</surname>
<given-names>AW</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Hypoxia-inducible factors regulate T cell metabolism and function</article-title>
<source>Molecular Immunology</source>
<volume>68</volume>
<fpage>527</fpage>
<lpage>535</lpage>
<pub-id pub-id-type="doi">10.1016/j.molimm.2015.08.004</pub-id>
<pub-id pub-id-type="pmid">26298577</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramstein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Broos</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Ansel</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Woodruff</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Bhakta</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Christian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Antalek</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Benn</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Hendriks</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>van den Blink</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kool</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koth</surname>
<given-names>LL</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>IFN-γ-Producing T-Helper 17.1 cells are increased in Sarcoidosis and are more prevalent than T-Helper type 1 cells</article-title>
<source>American Journal of Respiratory and Critical Care Medicine</source>
<volume>193</volume>
<fpage>1281</fpage>
<lpage>1291</lpage>
<pub-id pub-id-type="doi">10.1164/rccm.201507-1499OC</pub-id>
<pub-id pub-id-type="pmid">26649486</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rastogi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pirockinaite</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nunez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells</article-title>
<source>American Journal of Respiratory and Critical Care Medicine</source>
<volume>183</volume>
<fpage>500</fpage>
<lpage>510</lpage>
<pub-id pub-id-type="doi">10.1164/rccm.201005-0792OC</pub-id>
<pub-id pub-id-type="pmid">20851927</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rolfe</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Standiford</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Kunkel</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Burdick</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Strieter</surname>
<given-names>RM</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Interleukin-1 receptor antagonist expression in sarcoidosis</article-title>
<source>American Review of Respiratory Disease</source>
<volume>148</volume>
<fpage>1378</fpage>
<lpage>1384</lpage>
<pub-id pub-id-type="doi">10.1164/ajrccm/148.5.1378</pub-id>
<pub-id pub-id-type="pmid">8239179</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Gestwicki</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>LO</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Potential therapeutic applications of autophagy</article-title>
<source>Nature Reviews Drug Discovery</source>
<volume>6</volume>
<fpage>304</fpage>
<lpage>312</lpage>
<pub-id pub-id-type="doi">10.1038/nrd2272</pub-id>
<pub-id pub-id-type="pmid">17396135</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salceda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Caro</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. its stabilization by hypoxia depends on redox-induced changes</article-title>
<source>The Journal of Biological Chemistry</source>
<volume>272</volume>
<fpage>22642</fpage>
<lpage>22647</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.272.36.22642</pub-id>
<pub-id pub-id-type="pmid">9278421</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rastogi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hüttemann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fite</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Franchi</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria</article-title>
<source>Molecular Immunology</source>
<volume>46</volume>
<fpage>1867</fpage>
<lpage>1877</lpage>
<pub-id pub-id-type="doi">10.1016/j.molimm.2009.02.018</pub-id>
<pub-id pub-id-type="pmid">19299019</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santarlasci</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cosmi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Maggi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liotta</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Annunziato</surname>
<given-names>F</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>IL-1 and T helper immune responses</article-title>
<source>Frontiers in Immunology</source>
<volume>4</volume>
<fpage>182</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2013.00182</pub-id>
<pub-id pub-id-type="pmid">23874332</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semenza</surname>
<given-names>GL</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Targeting HIF-1 for cancer therapy</article-title>
<source>Nature Reviews Cancer</source>
<volume>3</volume>
<fpage>721</fpage>
<lpage>732</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1187</pub-id>
<pub-id pub-id-type="pmid">13130303</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semenza</surname>
<given-names>GL</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Oxygen sensing, homeostasis, and disease</article-title>
<source>New England Journal of Medicine</source>
<volume>365</volume>
<fpage>537</fpage>
<lpage>547</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMra1011165</pub-id>
<pub-id pub-id-type="pmid">21830968</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sobic-Saranovic</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Artiko</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Obradovic</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>FDG PET imaging in sarcoidosis</article-title>
<source>Seminars in Nuclear Medicine</source>
<volume>43</volume>
<fpage>404</fpage>
<lpage>411</lpage>
<pub-id pub-id-type="doi">10.1053/j.semnuclmed.2013.06.007</pub-id>
<pub-id pub-id-type="pmid">24094707</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talreja</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Talwar</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Rastogi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Dual inhibition of Rip2 and IRAK1/4 regulates IL-1β and IL-6 in sarcoidosis alveolar macrophages and peripheral blood mononuclear cells</article-title>
<source>The Journal of Immunology</source>
<volume>197</volume>
<fpage>1368</fpage>
<lpage>1378</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1600258</pub-id>
<pub-id pub-id-type="pmid">27402699</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talreja</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Farshi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Alazizi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luca</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pique-Regi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>RNA-sequencing identifies novel pathways in sarcoidosis monocytes</article-title>
<source>Scientific Reports</source>
<volume>7</volume>
<fpage>2720</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-02941-4</pub-id>
<pub-id pub-id-type="pmid">28577019</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talwar</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bauerfeld</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bouhamdan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Farshi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2017a</year>
<article-title>MKP-1 negatively regulates LPS-mediated IL-1β production through p38 activation and HIF-1α expression</article-title>
<source>Cellular Signalling</source>
<volume>34</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.cellsig.2017.02.018</pub-id>
<pub-id pub-id-type="pmid">28238855</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talwar</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bauerfeld</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2017b</year>
<article-title>The dataset describes: hif-1 α expression and LPS mediated cytokine production in MKP-1 deficient bone marrow derived murine macrophages</article-title>
<source>Data in Brief</source>
<volume>14</volume>
<fpage>56</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/j.dib.2017.07.036</pub-id>
<pub-id pub-id-type="pmid">28765831</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talwar</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bouhamdan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bauerfeld</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Talreja</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Aoidi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Houde</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Charron</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Samavati</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2019</year>
<article-title>MEK2 negatively regulates Lipopolysaccharide-Mediated IL-1β production through HIF-1α expression</article-title>
<source>The Journal of Immunology</source>
<volume>202</volume>
<fpage>1815</fpage>
<lpage>1825</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1801477</pub-id>
<pub-id pub-id-type="pmid">30710049</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Hypoxia-inducible factor-1 as a therapeutic target in cancer</article-title>
<source>Journal of Gastroenterology and Hepatology</source>
<volume>28</volume>
<fpage>401</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="doi">10.1111/jgh.12038</pub-id>
<pub-id pub-id-type="pmid">23173651</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tannahill</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Curtis</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Adamik</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Palsson-McDermott</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>McGettrick</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Goel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Frezza</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Foley</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gardet</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jany</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Corr</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Haneklaus</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Caffrey</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Pierce</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Walmsley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Beasley</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Cummins</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nizet</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Whyte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Masters</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Gottlieb</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Clish</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Auron</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>O'Neill</surname>
<given-names>LA</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Succinate is an inflammatory signal that induces IL-1β through HIF-1α</article-title>
<source>Nature</source>
<volume>496</volume>
<fpage>238</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1038/nature11986</pub-id>
<pub-id pub-id-type="pmid">23535595</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Elks</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Marriott</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Eamsamarng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Parmar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>G</given-names>
</name>
<name>
<surname>McGrath</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Formenti</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Van Eeden</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Kinnula</surname>
<given-names>VL</given-names>
</name>
<name>
<surname>Pugh</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Sabroe</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dockrell</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Chilvers</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Percy</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Renshaw</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Whyte</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Walmsley</surname>
<given-names>SR</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish</article-title>
<source>Blood</source>
<volume>123</volume>
<fpage>366</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2013-05-500207</pub-id>
<pub-id pub-id-type="pmid">24196071</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomita</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sugiura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kawaguchi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Niimi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morishita</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Serum lysozyme levels and clinical features of sarcoidosis</article-title>
<source>Lung</source>
<volume>177</volume>
<fpage>161</fpage>
<lpage>167</lpage>
<pub-id pub-id-type="doi">10.1007/PL00007637</pub-id>
<pub-id pub-id-type="pmid">10192763</pub-id>
</element-citation>
</ref>
<ref id="bib62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tzouvelekis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ntolios</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Karameris</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Koutsopoulos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boglou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Koulelidis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Archontogeorgis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zacharis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Drakopanagiotakis</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Steiropoulos</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Anevlavis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Polychronopoulos</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Mikroulis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bouros</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Expression of hypoxia-inducible factor (HIF)-1a-vascular endothelial growth factor (VEGF)-inhibitory growth factor (ING)-4- axis in sarcoidosis patients</article-title>
<source>BMC Research Notes</source>
<volume>5</volume>
<fpage>654</fpage>
<pub-id pub-id-type="doi">10.1186/1756-0500-5-654</pub-id>
<pub-id pub-id-type="pmid">23181555</pub-id>
</element-citation>
</ref>
<ref id="bib63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vlaminck</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Toffoli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ghislain</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Demazy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Raes</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Michiels</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Dual effect of echinomycin on hypoxia-inducible factor-1 activity under normoxic and hypoxic conditions</article-title>
<source>FEBS Journal</source>
<volume>274</volume>
<fpage>5533</fpage>
<lpage>5542</lpage>
<pub-id pub-id-type="doi">10.1111/j.1742-4658.2007.06072.x</pub-id>
<pub-id pub-id-type="pmid">17916190</pub-id>
</element-citation>
</ref>
<ref id="bib64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>WK</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy</article-title>
<source>Autophagy</source>
<volume>9</volume>
<fpage>1500</fpage>
<lpage>1508</lpage>
<pub-id pub-id-type="doi">10.4161/auto.25573</pub-id>
<pub-id pub-id-type="pmid">23934082</pub-id>
</element-citation>
</ref>
<ref id="bib65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Metabolic checkpoints in activated T cells</article-title>
<source>Nature Immunology</source>
<volume>13</volume>
<fpage>907</fpage>
<lpage>915</lpage>
<pub-id pub-id-type="doi">10.1038/ni.2386</pub-id>
<pub-id pub-id-type="pmid">22990888</pub-id>
</element-citation>
</ref>
<ref id="bib66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warburg</surname>
<given-names>O</given-names>
</name>
</person-group>
<year>1956</year>
<article-title>On the origin of cancer cells</article-title>
<source>Science</source>
<volume>123</volume>
<fpage>309</fpage>
<lpage>314</lpage>
<pub-id pub-id-type="doi">10.1126/science.123.3191.309</pub-id>
<pub-id pub-id-type="pmid">13298683</pub-id>
</element-citation>
</ref>
<ref id="bib67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watson</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>McCann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Baugh</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Epigenetics, the epicenter of the hypoxic response</article-title>
<source>Epigenetics</source>
<volume>5</volume>
<fpage>293</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.4161/epi.5.4.11684</pub-id>
<pub-id pub-id-type="pmid">20418669</pub-id>
</element-citation>
</ref>
<ref id="bib68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolff</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jelkmann</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Dunst</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Depping</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>The aryl hydrocarbon receptor nuclear translocator (ARNT/HIF-1β) is influenced by hypoxia and hypoxia-mimetics</article-title>
<source>Cellular Physiology and Biochemistry</source>
<volume>32</volume>
<fpage>849</fpage>
<lpage>858</lpage>
<pub-id pub-id-type="doi">10.1159/000354487</pub-id>
<pub-id pub-id-type="pmid">24081025</pub-id>
</element-citation>
</ref>
<ref id="bib69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jeyanathan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Haddadi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Barra</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Vaseghi-Shanjani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Damjanovic</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Afkhami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dvorkin-Gheva</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Schertzer</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity</article-title>
<source>Cell</source>
<volume>175</volume>
<fpage>1634</fpage>
<lpage>1650</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.09.042</pub-id>
<pub-id pub-id-type="pmid">30433869</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<sub-article id="SA1" article-type="decision-letter">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.44519.025</article-id>
<title-group>
<article-title>Decision letter</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>van der Meer</surname>
<given-names>Jos WM</given-names>
</name>
<role>Reviewing Editor</role>
<aff>
<institution>Radboud University Medical Centre</institution>
<country>Netherlands</country>
</aff>
</contrib>
<contrib contrib-type="reviewer">
<name>
<surname>van der Meer</surname>
<given-names>Jos WM</given-names>
</name>
<role>Reviewer</role>
<aff>
<institution>Radboud University Medical Centre</institution>
<country>Netherlands</country>
</aff>
</contrib>
<contrib contrib-type="reviewer">
<name>
<surname>Bekkering</surname>
<given-names>Siroon</given-names>
</name>
<role>Reviewer</role>
<aff>
<institution>Radboud University</institution>
<country>Netherlands</country>
</aff>
</contrib>
</contrib-group>
</front-stub>
<body>
<boxed-text position="float" orientation="portrait">
<p>In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.</p>
</boxed-text>
<p>Thank you for submitting your article "HIF-1α Regulates IL-1β and IL-17 in Sarcoidosis" for consideration by
<italic>eLife</italic>
. Your article has been reviewed by three peer reviewers, including Jos WM van der Meer as the Reviewing Editor and Reviewer #1, and the evaluation has been overseen by Tadatsugu Taniguchi as the Senior Editor. The following individual involved in review of your submission has agreed to reveal their identity: Siroon Bekkering (Reviewer #2).</p>
<p>The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.</p>
<p>Summary:</p>
<p>This is a well-executed study showing a key role for unregulated HIF-1α in the pro-inflammatory cytokine response in sarcoidosis. Mechanistic studies in sarcoidosis are definitely needed, since the understanding of the pathogenesis is still rather limited. The clinical material used, the experiments both in alveolar macrophages and in peripheral monocytes are adequate and convincing, also because of the inhibition studies performed.</p>
<p>Essential revisions:</p>
<p>1) The authors assert that, to the best of their knowledge, this is the first report to interrogate the role of HIF in sarcoidosis. Whilst this is the most comprehensive, and likely a more robust study to look at the function of HIF in the disease, there are two other reports detailing HIF expression in sarcoidosis (Tzouvelekis et al., 2012 and Piotrowski et al., 2015). One of these studies conflicts with the finding of HIF granuloma expression presented here in this report, therefore it would be of value to discuss these within this paper and provide possible reasons for the differences or similarities in findings.</p>
<p>2) Regarding flow cytometry, the authors show HIF-1α expression in CD14
<sup>+</sup>
cells. They should FSC and SSC gating and acknowledge DC contamination, if that has not been dealt with.</p>
<p>3) The conclusion drawn from flow cytometry data for PBMCs makes reference to increased CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
monocytes in the patient samples, stating that this is 5-9% in controls and 20-35% in sarcoidosis patient samples. This is misleading, as monocytes make up a higher percentage of PBMCs in sarcoidosis. It is suggested that this be reworded to represent HIF
<sup>+</sup>
percentage of monocytes, and that quantitative figures provided for all donors along with degree of expression (MFI or equivalent).</p>
<p>4) For Figure 3, a negative antibody control staining is necessary to support the conclusion, as macrophages and giant cells display high non-specific staining. This is important for validation in light of point 1.</p>
<p>5) The authors show single cell examples of confocal microscopic studies. The question is are all cells showing this upregulated pattern? A remark on this would be helpful.</p>
<p>6) The authors say that they have observed similar results on liver and skin samples (subsection “Confocal microscopy of sarcoidosis AMs and immunohistochemistry of sarcoidosis tissues confirmed increased HIF-1α expression and its nuclear accumulation”). This is a bit too loose. How many samples? What does 'similar' exactly mean?</p>
<p>7) In Figure 4, why were the cells not stimulated by LPS and why was only baseline expression measured? In Figure 5, the expression is measured after stimulation and it might be interesting to look at secreted IL-1β after stimulation in Figure 4 as well. Furthermore, in Figure 5C, the expression of pro-IL-1β (unstimulated pro-IL-1β) should be similar to the expression in Figure 4 (as it is the same measurement) but suddenly looks much lower. Why is this?</p>
<p>8) Was the viability of the cells checked after siRNA treatment? Primary cells usually don't like siRNA treatment and die. Please add proof of viability.</p>
<p>9) In Figure 6B, the expression of IL-10 looks decreased. There is no statistical significance (as is hard to obtain with n=4 generally), but the same trend is seen in Figure 6A. What would happen if one would increase it to n=6, would that become statistically significant? Will that change the conclusions?</p>
<p>10) In discussing the specificity of HIF for IL-17 and IL-1β, the data shows an impact on IL-6 also. Additionally, in discussions, the lack of significant impact on IFN-γ is noted but not considered of importance. IL-6 and IFN-γ are notably important cytokines in sarcoidosis, both being overexpressed in granulomatous tissue, so addressing these findings would be useful for wider context.</p>
<p>11) In the text explaining Figure 7A, it is mentioned that patients’ PBMCs have a higher expression of CD4
<sup>+</sup>
CD25
<sup>+</sup>
cells. But higher than what? There are no control PBMCs included in this analysis, is that correct? Why not? What is the baseline expression in control PBMCs?</p>
<p>12) The findings of sustained enhanced (spontaneous) IL-1 production and upregulated HIF-1α are reminiscent of the trained immunity state of mononuclear phagocytes, in which the metabolic shift (Warburg effect) and epigenetic reprogramming are tightly connected (see Cheng et al., 2014). This should be discussed.</p>
<p>13) When IL-1β production is enhanced, the net biological effect is often dependent on the production level of IL-1Ra. If the investigators still have supernatants, it would be of interest to see whether IL-1Ra is also unregulated.</p>
<p>14) A main criticism is the Discussion. This section could be much better structured and written, as the reviewers lost track of the authors' findings in their reasoning. Please start with a few sentences telling the key findings of this work, and put that into the perspective of what is known about this in sarcoidosis and in general. Thereafter, please go into the minor findings, to end with future perspectives (and speculate about the clinical implications of these very interesting findings).</p>
<p>15) In the Discussion, two interesting results of inhibitors used are mentioned with 'data not shown'. Why are these data not included in the manuscript? This would add some interesting pathway information to the story. It is preferable not to mention unpublished data, if at all possible.</p>
<p>References:</p>
<p>Piotrowski WJ, Kiszałkiewicz J, Pastuszak-Lewandoska D, Górski P, Antczak A, Migdalska-Sęk M, Górski W, Czarnecka KH, Domańska D, Nawrot E, Brzeziańska-Lasota E. Expression of HIF-1A/VEGF/ING-4 Axis in Pulmonary Sarcoidosis. Adv Exp Med Biol. 2015;866:61-9. doi: 10.1007/5584_2015_144.</p>
<p>[Editors' note: further revisions were requested prior to acceptance, as described below.]</p>
<p>Thank you for resubmitting your work entitled "HIF-1α Regulates IL-1β and IL-17 in Sarcoidosis" for further consideration at
<italic>eLife</italic>
. Your revised article has been favorably evaluated by Tadatsugu Taniguchi as the Senior Editor, and by Jos WM van der Meer as the Reviewing Editor.</p>
<p>The manuscript has been improved but there are some remaining issues that need to be addressed before acceptance, as outlined below:</p>
<p>1) The rebuttal to our major criticism 1 deserves a little more discussion. The rebuttal is quite OK but too little of it reached the revised manuscript. So please also incorporate the discrepancies with the Piotrowski paper.</p>
<p>2) The figure presented in the rebuttal to our criticism #6 merits to be added as a supplementary figure with a short(er) description of the case in the legend.</p>
<p>3) The rebuttal under criticism #9 should also be reflected in the revision.</p>
<p>4) Give the full reference for the Avril paper.</p>
</body>
</sub-article>
<sub-article id="SA2" article-type="reply">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.44519.026</article-id>
<title-group>
<article-title>Author response</article-title>
</title-group>
</front-stub>
<body>
<disp-quote content-type="editor-comment">
<p>Essential revisions:</p>
<p>1) The authors assert that, to the best of their knowledge, this is the first report to interrogate the role of HIF in sarcoidosis. Whilst this is the most comprehensive, and likely a more robust study to look at the function of HIF in the disease, there are two other reports detailing HIF expression in sarcoidosis (Tzouvelekis et al., 2012 and Piotrowski et al., 2015). One of these studies conflicts with the finding of HIF granuloma expression presented here in this report, therefore it would be of value to discuss these within this paper and provide possible reasons for the differences or similarities in findings.</p>
</disp-quote>
<p>We were aware of these two publications. Both studies evaluated predominantly HIF-1α mRNA levels using PCR. Tzouvelekis et al. reported decreased expression of HIF-1α mRNA and protein in tissue biopsies. The tissue presented in that manuscript appears to show advanced fibrotic changes with complete destruction of lung structures. Furthermore, they show upregulation of VEGF expression. Increased VEGF expression indicates increased HIF-1α activity as VEGF is highly regulated by HIF-1α. The discrepancy between our results and their findings could be due to sampling of biopsy at different stages of the disease or treatment effect. Note that in our study, most of the patients were recruited before starting any drug treatment. Furthermore, similar to their results our RNA-Seq data didn’t show any differential expression of HIF-1α between healthy controls and sarcoid patients. We mentioned that pathway analysis indicated upregulation of metabolic pathways that are regulated by HIF pathways. The study done by Piotrowski et al. was concluded that the upregulation of HIF-1α and VEGF in PBMCs of sarcoid patients was associated with poor lung function. We were unable to access the complete paper of Piotrowski. Reading the Abstract, it is not clear to us what cell type they analyzed (blood lymphocytes versus BAL?). Hence, we are unsure how those results compare to our findings.</p>
<disp-quote content-type="editor-comment">
<p>2) Regarding flow cytometry, the authors show HIF-1α expression in CD14
<sup>+</sup>
cells. They should FSC and SSC gating and acknowledge DC contamination, if that has not been dealt with.</p>
</disp-quote>
<p>As suggested, we have shown the FSC and SSC gating in Figure 2J. We acknowledge that we did not do any staining to exclude DCs. For flowcytometry, PBMCs were double stained with CD14 and HIF-1α antibodies. The upper right quadrant shows CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
cells that are CD14
<sup>+</sup>
monocytes expressing HIF-1α. We added a sentence indicating that we did not specifically assess for DCs.</p>
<disp-quote content-type="editor-comment">
<p>3) The conclusion drawn from flow cytometry data for PBMCs makes reference to increased CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
monocytes in the patient samples, stating that this is 5-9% in controls and 20-35% in sarcoidosis patient samples. This is misleading, as monocytes make up a higher percentage of PBMCs in sarcoidosis. It is suggested that this be reworded to represent HIF
<sup>+</sup>
percentage of monocytes, and that quantitative figures provided for all donors along with degree of expression (MFI or equivalent).</p>
</disp-quote>
<p>We agree with the comment. We have reworded in the Results and legend sections to accommodate your suggestion, however we also think it important to mention double positivity of CD14 and HIF-1α.</p>
<p>The percentage of CD14
<sup>+</sup>
HIF-1α
<sup>+</sup>
monocytes obtained from the donors used for the study are shown in
<xref ref-type="fig" rid="respfig1">Author response image 1</xref>
.</p>
<fig id="respfig1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.022</object-id>
<label>Author response image 1.</label>
<graphic xlink:href="elife-44519-resp-fig1"></graphic>
</fig>
<disp-quote content-type="editor-comment">
<p>4) For Figure 3, a negative antibody control staining is necessary to support the conclusion, as macrophages and giant cells display high non-specific staining. This is important for validation in light of point 1.</p>
</disp-quote>
<p>It is our opinion that the best control is the unaffected appearing lung tissue of the same subject. However, we added the negative (isotype control) staining as suggested in Figure 3K.</p>
<disp-quote content-type="editor-comment">
<p>5) The authors show single cell examples of confocal microscopic studies. The question is are all cells showing this upregulated pattern? A remark on this would be helpful.</p>
</disp-quote>
<p>Thank you for your comments. The purpose of performing confocal microscopy of single cells was to identify whether HIF-1α is present in the nuclei, suggesting transcriptional activity of HIF-1α. Furthermore, due to the fact that we worked with precious human samples, and we could not perform fractionation of nuclear proteins (due to limited number of cells), we performed confocal microscopy instead. Based on the reviewer’s suggestion we performed regular immunofluorescent microscopy and quantitated the percentage of cells showing HIF-1α expression. It shows that about 60-90% of AMs show HIF-1α expression. We added a representative section of DAPI and HIF-1α in Figure 3.</p>
<disp-quote content-type="editor-comment">
<p>6) The authors say that they have observed similar results on liver and skin samples (subsection “Confocal microscopy of sarcoidosis AMs and immunohistochemistry of sarcoidosis tissues confirmed increased HIF-1α expression and its nuclear accumulation”). This is a bit too loose. How many samples? What does 'similar' exactly mean?</p>
</disp-quote>
<p>We assessed HIF-1α expression in two skin and two liver biopsies. In one liver biopsy, we noticed high HIF-1 a staining in granulomatous tissue and surrounding hepatocytes. This patient is a young woman (28 year old), who at 21 years of age developed sarcoidosis. She has severe multiorgan involvement, including lungs, eyes and heart’ as well as liver. Due to sarcoidosis uveitis she is now legally blind. She had very abnormal liver function tests. The purpose of performing a liver biopsy was to assess for her abnormal liver function tests. H&E staining showed severe granulomatous inflammation. There were extensive increased HIF-1α expression throughout the liver. While negative staining did not show non-specific staining. Therefore, we believe that increased HIF-1α staining in the hepatocytes may represent a true increased of HIF-1α associated with the severity of disease in this patient. We have now added Figure 3—figure supplement 1 in the final version to show there are multiple granulomas in the liver with increased mononuclear cell infiltrates. Yet, no significant fibrosis is seen in the H&E staining.</p>
<disp-quote content-type="editor-comment">
<p>7) In Figure 4, why were the cells not stimulated by LPS and why was only baseline expression measured? In Figure 5, the expression is measured after stimulation and it might be interesting to look at secreted IL-1β after stimulation in Figure 4 as well.</p>
</disp-quote>
<p>In Figure 4, we are showing the comparison between the baseline levels of pro- IL-1β between sarcoid patients and healthy controls. Therefore, we selected the unstimulated samples of patients and controls. As suggested by the reviewers we have added the data for secreted IL-1β with LPS stimulation in revised Figure 4F and 4G.</p>
<disp-quote content-type="editor-comment">
<p>Furthermore, in Figure 5C, the expression of pro-IL-1β (unstimulated pro-IL-1β) should be similar to the expression in Figure 4 (as it is the same measurement) but suddenly looks much lower. Why is this?</p>
</disp-quote>
<p>Figure 5C and Figure 4, Western blots are generated from different patient samples. As such, these are different biological replicates and not from the same subject. In Figure 5C, we used the lower exposure blot to show the changes in the pro-IL-1β levels after LPS stimulation and HIF-1α siRNA treatment.
<xref ref-type="fig" rid="respfig2">Author response image 2</xref>
is the Western blot of the same samples with higher exposure.</p>
<fig id="respfig2" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.023</object-id>
<label>Author response image 2.</label>
<graphic xlink:href="elife-44519-resp-fig2"></graphic>
</fig>
<disp-quote content-type="editor-comment">
<p>8) Was the viability of the cells checked after siRNA treatment? Primary cells usually don't like siRNA treatment and die. Please add proof of viability.</p>
</disp-quote>
<p>We usually assess cell viability in multiple ways after each experiment: (1) inspection by light microscopy, (2) trypan blue staining, and (3) MTT or MTS assay. The viability of the cells after siRNA treatment was determined by MTS assay (Promega). Both the AMs and PBMCs were viable after the siRNA treatment as shown in
<xref ref-type="fig" rid="respfig3">Author response image 3</xref>
.</p>
<fig id="respfig3" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.024</object-id>
<label>Author response image 3.</label>
<graphic xlink:href="elife-44519-resp-fig3"></graphic>
</fig>
<disp-quote content-type="editor-comment">
<p>9) In Figure 6B, the expression of IL-10 looks decreased. There is no statistical significance (as is hard to obtain with n=4 generally), but the same trend is seen in Figure 6A. What would happen if one would increase it to n=6, would that become statistically significant? Will that change the conclusions?</p>
</disp-quote>
<p>We agree that in Figure 6B, IL-10 trends to be lower after treatment of PBMCs with HIF-1α siRNA, although not statistically significant. Similarly, in Figure 5 the treatment of AMs with HIF-1α siRNA didn’t show a statistically significant decrease in IL-10. We agree that both Interferon and IL-10 show a trend to lower levels, which can be due to paracrine IL-1β function.</p>
<disp-quote content-type="editor-comment">
<p>10) In discussing the specificity of HIF for IL-17 and IL-1β, the data shows an impact on IL-6 also. Additionally, in discussions, the lack of significant impact on IFN-γ is noted but not considered of importance. IL-6 and IFN-γ are notably important cytokines in sarcoidosis, both being overexpressed in granulomatous tissue, so addressing these findings would be useful for wider context.</p>
</disp-quote>
<p>Thank you for the comment. Our current results show the co-regulation of IL-1β and IL-6 confirming our previous published results in sarcoidosis (Talreja et al., 2016). In this manuscript, we chose to be focused on IL-1β and IL-17. Based on reviewers’ suggestion we added a sentence to this fact.</p>
<disp-quote content-type="editor-comment">
<p>11) In the text explaining Figure 7A, it is mentioned that patients’ PBMCs have a higher expression of CD4
<sup>+</sup>
CD25
<sup>+</sup>
cells. But higher than what? There are no control PBMCs included in this analysis, is that correct? Why not? What is the baseline expression in control PBMCs?</p>
</disp-quote>
<p>We agree with reviewers that in the text we should mention the baseline expression of CD4
<sup>+</sup>
CD25
<sup>+</sup>
cells in control and sarcoid PBMCs. In fact, we have analyzed 23 PBMCs samples from sarcoid patients and 7 samples from healthy controls. The range of baseline expression of CD4
<sup>+</sup>
CD25
<sup>+</sup>
cells in control PBMCs is about 1-5% whereas in sarcoid patients it is about 2-25%.</p>
<p>After reviewing our data, we would like to replace the previous figure with results of a different patient, which is more representative of the study group. Therefore, we added a new Figure 7A-D, as this is more representative of sarcoidosis subjects.</p>
<p>In response to your question, we would like to provide a box plot of CD4
<sup>+</sup>
CD25
<sup>+</sup>
cells in control and sarcoid PBMCs obtained using flowcytometry. In the revised manuscript, we have provided these data in the Results section.</p>
<fig id="respfig4" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.44519.025</object-id>
<label>Author response image 4.</label>
<graphic xlink:href="elife-44519-resp-fig4"></graphic>
</fig>
<disp-quote content-type="editor-comment">
<p>12) The findings of sustained enhanced (spontaneous) IL-1 production and upregulated HIF-1α are reminiscent of the trained immunity state of mononuclear phagocytes, in which the metabolic shift (Warburg effect) and epigenetic reprogramming are tightly connected (see Cheng et al., 2014). This should be discussed.</p>
</disp-quote>
<p>We added that in the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>13) When IL-1β production is enhanced, the net biological effect is often dependent on the production level of IL-1Ra. If the investigators still have supernatants, it would be of interest to see whether IL-1Ra is also unregulated.</p>
</disp-quote>
<p>We agree with the reviewers that it is interesting to see whether IL-1Ra is also unregulated when IL-1β production is enhanced. As suggested, we have measured levels of IL-1Ra via ELISA in the supernatants of cultured AMs and PBMCs from patients and controls samples. We included IL-1Ra data in revised Figure 4H and 4I. Although, several previous studies have already reported increased IL-1Ra in sarcoidosis.</p>
<disp-quote content-type="editor-comment">
<p>14) A main criticism is the Discussion. This section could be much better structured and written, as the reviewers lost track of the authors' findings in their reasoning. Please start with a few sentences telling the key findings of this work, and put that into the perspective of what is known about this in sarcoidosis and in general. Thereafter, please go into the minor findings, to end with future perspectives (and speculate about the clinical implications of these very interesting findings).</p>
</disp-quote>
<p>We are thankful to reviewers for their valuable suggestions. We have revised the Discussion accordingly.</p>
<disp-quote content-type="editor-comment">
<p>15) In the Discussion, two interesting results of inhibitors used are mentioned with 'data not shown'. Why are these data not included in the manuscript? This would add some interesting pathway information to the story. It is preferable not to mention unpublished data, if at all possible.</p>
</disp-quote>
<p>We eliminated the statement regarding dual IRAK1/4 and RIP2 inhibitor. We previously reported the importance of p38 activation in sarcoidosis. Similarly, we and other groups have shown that p38 inhibitor decreases the level of HIF-1α. We felt we should connect this result with our previous finding, but we did not see any novelty to provide the data.</p>
<disp-quote content-type="editor-comment">
<p>[Editors' note: further revisions were requested prior to acceptance, as described below.]</p>
<p>The manuscript has been improved but there are some remaining issues that need to be addressed before acceptance, as outlined below:</p>
<p>1) The rebuttal to our major criticism 1 deserves a little more discussion. The rebuttal is quite OK but too little of it reached the revised manuscript. So please also incorporate the discrepancies with the Piotrowski paper.</p>
</disp-quote>
<p>We expanded the discussion about these two manuscripts.</p>
<disp-quote content-type="editor-comment">
<p>2) The figure presented in the rebuttal to our criticism #6 merits to be added as a supplementary figure with a short(er) description of the case in the legend.</p>
</disp-quote>
<p>We added the liver biopsy result in Figure 3—figure supplement 1, with description.</p>
<disp-quote content-type="editor-comment">
<p>3) The rebuttal under criticism #9 should also be reflected in the revision.</p>
</disp-quote>
<p>This is added in the Discussion.</p>
<disp-quote content-type="editor-comment">
<p>4) Give the full reference for the Avril paper.</p>
</disp-quote>
<p>It is now provided.</p>
</body>
</sub-article>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000840 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000840 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6506207
   |texte=   HIF-1α regulates IL-1β and IL-17 in sarcoidosis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:30946009" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021