Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bitter Taste Receptors for Asthma Therapeutics

Identifieur interne : 000579 ( Pmc/Corpus ); précédent : 000578; suivant : 000580

Bitter Taste Receptors for Asthma Therapeutics

Auteurs : Ajay P. Nayak ; Sushrut D. Shah ; James V. Michael ; Deepak A. Deshpande

Source :

RBID : PMC:6647873

Abstract

Clinical management of asthma and chronic obstructive pulmonary disease (COPD) has primarily relied on the use of beta 2 adrenergic receptor agonists (bronchodilators) and corticosteroids, and more recently, monoclonal antibody therapies (biologics) targeting specific cytokines and their functions. Although these approaches provide relief from exacerbations, questions remain on their long-term efficacy and safety. Furthermore, current therapeutics do not address progressive airway remodeling (AR), a key pathological feature of severe obstructive lung disease. Strikingly, agonists of the bitter taste receptors (TAS2Rs) deliver robust bronchodilation, curtail allergen-induced inflammatory responses in the airways and regulate airway smooth muscle (ASM) cell proliferation and mitigate features of AR in vitro and in animal models. The scope of this review is to provide a comprehensive and systematic insight into our current understanding of TAS2Rs with an emphasis on the molecular events that ensue TAS2R activation in distinct airway cell types and expand on the pleiotropic effects of TAS2R targeting in mitigating various pathological features of obstructive lung diseases. Finally, we will discuss specific opportunities that could help the development of selective agonists for specific TAS2R subtypes in the treatment of asthma.


Url:
DOI: 10.3389/fphys.2019.00884
PubMed: 31379597
PubMed Central: 6647873

Links to Exploration step

PMC:6647873

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bitter Taste Receptors for Asthma Therapeutics</title>
<author>
<name sortKey="Nayak, Ajay P" sort="Nayak, Ajay P" uniqKey="Nayak A" first="Ajay P." last="Nayak">Ajay P. Nayak</name>
</author>
<author>
<name sortKey="Shah, Sushrut D" sort="Shah, Sushrut D" uniqKey="Shah S" first="Sushrut D." last="Shah">Sushrut D. Shah</name>
</author>
<author>
<name sortKey="Michael, James V" sort="Michael, James V" uniqKey="Michael J" first="James V." last="Michael">James V. Michael</name>
</author>
<author>
<name sortKey="Deshpande, Deepak A" sort="Deshpande, Deepak A" uniqKey="Deshpande D" first="Deepak A." last="Deshpande">Deepak A. Deshpande</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31379597</idno>
<idno type="pmc">6647873</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647873</idno>
<idno type="RBID">PMC:6647873</idno>
<idno type="doi">10.3389/fphys.2019.00884</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000579</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000579</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bitter Taste Receptors for Asthma Therapeutics</title>
<author>
<name sortKey="Nayak, Ajay P" sort="Nayak, Ajay P" uniqKey="Nayak A" first="Ajay P." last="Nayak">Ajay P. Nayak</name>
</author>
<author>
<name sortKey="Shah, Sushrut D" sort="Shah, Sushrut D" uniqKey="Shah S" first="Sushrut D." last="Shah">Sushrut D. Shah</name>
</author>
<author>
<name sortKey="Michael, James V" sort="Michael, James V" uniqKey="Michael J" first="James V." last="Michael">James V. Michael</name>
</author>
<author>
<name sortKey="Deshpande, Deepak A" sort="Deshpande, Deepak A" uniqKey="Deshpande D" first="Deepak A." last="Deshpande">Deepak A. Deshpande</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in Physiology</title>
<idno type="eISSN">1664-042X</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Clinical management of asthma and chronic obstructive pulmonary disease (COPD) has primarily relied on the use of beta 2 adrenergic receptor agonists (bronchodilators) and corticosteroids, and more recently, monoclonal antibody therapies (biologics) targeting specific cytokines and their functions. Although these approaches provide relief from exacerbations, questions remain on their long-term efficacy and safety. Furthermore, current therapeutics do not address progressive airway remodeling (AR), a key pathological feature of severe obstructive lung disease. Strikingly, agonists of the bitter taste receptors (TAS2Rs) deliver robust bronchodilation, curtail allergen-induced inflammatory responses in the airways and regulate airway smooth muscle (ASM) cell proliferation and mitigate features of AR
<italic>in vitro</italic>
and in animal models. The scope of this review is to provide a comprehensive and systematic insight into our current understanding of TAS2Rs with an emphasis on the molecular events that ensue TAS2R activation in distinct airway cell types and expand on the pleiotropic effects of TAS2R targeting in mitigating various pathological features of obstructive lung diseases. Finally, we will discuss specific opportunities that could help the development of selective agonists for specific TAS2R subtypes in the treatment of asthma.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adappa, N" uniqKey="Adappa N">N. Adappa</name>
</author>
<author>
<name sortKey="Howland, T J" uniqKey="Howland T">T. J. Howland</name>
</author>
<author>
<name sortKey="Palmer, J N" uniqKey="Palmer J">J. N. Palmer</name>
</author>
<author>
<name sortKey="Kennedy, D W" uniqKey="Kennedy D">D. W. Kennedy</name>
</author>
<author>
<name sortKey="Doghramji, L" uniqKey="Doghramji L">L. Doghramji</name>
</author>
<author>
<name sortKey="Lysenko, A" uniqKey="Lysenko A">A. Lysenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adler, E" uniqKey="Adler E">E. Adler</name>
</author>
<author>
<name sortKey="Hoon, M A" uniqKey="Hoon M">M. A. Hoon</name>
</author>
<author>
<name sortKey="Mueller, K L" uniqKey="Mueller K">K. L. Mueller</name>
</author>
<author>
<name sortKey="Chandrashekar, J" uniqKey="Chandrashekar J">J. Chandrashekar</name>
</author>
<author>
<name sortKey="Ryba, N J" uniqKey="Ryba N">N. J. Ryba</name>
</author>
<author>
<name sortKey="Zuker, C S" uniqKey="Zuker C">C. S. Zuker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Robinett, K S" uniqKey="Robinett K">K. S. Robinett</name>
</author>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Wang, W C" uniqKey="Wang W">W. C. Wang</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Wang, W C" uniqKey="Wang W">W. C. Wang</name>
</author>
<author>
<name sortKey="Koziol White, C J" uniqKey="Koziol White C">C. J. Koziol-White</name>
</author>
<author>
<name sortKey="Ahn, K" uniqKey="Ahn K">K. Ahn</name>
</author>
<author>
<name sortKey="Lee, D Y" uniqKey="Lee D">D. Y. Lee</name>
</author>
<author>
<name sortKey="Kurten, R C" uniqKey="Kurten R">R. C. Kurten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aoki, M" uniqKey="Aoki M">M. Aoki</name>
</author>
<author>
<name sortKey="Takao, T" uniqKey="Takao T">T. Takao</name>
</author>
<author>
<name sortKey="Takao, K" uniqKey="Takao K">K. Takao</name>
</author>
<author>
<name sortKey="Koike, F" uniqKey="Koike F">F. Koike</name>
</author>
<author>
<name sortKey="Suganuma, N" uniqKey="Suganuma N">N. Suganuma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avau, B" uniqKey="Avau B">B. Avau</name>
</author>
<author>
<name sortKey="Rotondo, A" uniqKey="Rotondo A">A. Rotondo</name>
</author>
<author>
<name sortKey="Thijs, T" uniqKey="Thijs T">T. Thijs</name>
</author>
<author>
<name sortKey="Andrews, C N" uniqKey="Andrews C">C. N. Andrews</name>
</author>
<author>
<name sortKey="Janssen, P" uniqKey="Janssen P">P. Janssen</name>
</author>
<author>
<name sortKey="Tack, J" uniqKey="Tack J">J. Tack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachmanov, A A" uniqKey="Bachmanov A">A. A. Bachmanov</name>
</author>
<author>
<name sortKey="Beauchamp, G K" uniqKey="Beauchamp G">G. K. Beauchamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barham, H P" uniqKey="Barham H">H. P. Barham</name>
</author>
<author>
<name sortKey="Cooper, S E" uniqKey="Cooper S">S. E. Cooper</name>
</author>
<author>
<name sortKey="Anderson, C B" uniqKey="Anderson C">C. B. Anderson</name>
</author>
<author>
<name sortKey="Tizzano, M" uniqKey="Tizzano M">M. Tizzano</name>
</author>
<author>
<name sortKey="Kingdom, T T" uniqKey="Kingdom T">T. T. Kingdom</name>
</author>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beasley, R" uniqKey="Beasley R">R. Beasley</name>
</author>
<author>
<name sortKey="Pearce, N" uniqKey="Pearce N">N. Pearce</name>
</author>
<author>
<name sortKey="Crane, J" uniqKey="Crane J">J. Crane</name>
</author>
<author>
<name sortKey="Burgess, C" uniqKey="Burgess C">C. Burgess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C. Kuhn</name>
</author>
<author>
<name sortKey="Bufe, B" uniqKey="Bufe B">B. Bufe</name>
</author>
<author>
<name sortKey="Winnig, M" uniqKey="Winnig M">M. Winnig</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belvisi, M G" uniqKey="Belvisi M">M. G. Belvisi</name>
</author>
<author>
<name sortKey="Dale, N" uniqKey="Dale N">N. Dale</name>
</author>
<author>
<name sortKey="Birrell, M A" uniqKey="Birrell M">M. A. Birrell</name>
</author>
<author>
<name sortKey="Canning, B J" uniqKey="Canning B">B. J. Canning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bezencon, C" uniqKey="Bezencon C">C. Bezencon</name>
</author>
<author>
<name sortKey="Furholz, A" uniqKey="Furholz A">A. Furholz</name>
</author>
<author>
<name sortKey="Raymond, F" uniqKey="Raymond F">F. Raymond</name>
</author>
<author>
<name sortKey="Mansourian, R" uniqKey="Mansourian R">R. Mansourian</name>
</author>
<author>
<name sortKey="Metairon, S" uniqKey="Metairon S">S. Metairon</name>
</author>
<author>
<name sortKey="Le Coutre, J" uniqKey="Le Coutre J">J. Le Coutre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Billington, C K" uniqKey="Billington C">C. K. Billington</name>
</author>
<author>
<name sortKey="Penn, R B" uniqKey="Penn R">R. B. Penn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonacci, J V" uniqKey="Bonacci J">J. V. Bonacci</name>
</author>
<author>
<name sortKey="Stewart, A G" uniqKey="Stewart A">A. G. Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Born, S" uniqKey="Born S">S. Born</name>
</author>
<author>
<name sortKey="Levit, A" uniqKey="Levit A">A. Levit</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brightling, C E" uniqKey="Brightling C">C. E. Brightling</name>
</author>
<author>
<name sortKey="Bradding, P" uniqKey="Bradding P">P. Bradding</name>
</author>
<author>
<name sortKey="Symon, F A" uniqKey="Symon F">F. A. Symon</name>
</author>
<author>
<name sortKey="Holgate, S T" uniqKey="Holgate S">S. T. Holgate</name>
</author>
<author>
<name sortKey="Wardlaw, A J" uniqKey="Wardlaw A">A. J. Wardlaw</name>
</author>
<author>
<name sortKey="Pavord, I D" uniqKey="Pavord I">I. D. Pavord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Camoretti Mercado, B" uniqKey="Camoretti Mercado B">B. Camoretti-Mercado</name>
</author>
<author>
<name sortKey="Pauer, S H" uniqKey="Pauer S">S. H. Pauer</name>
</author>
<author>
<name sortKey="Yong, H M" uniqKey="Yong H">H. M. Yong</name>
</author>
<author>
<name sortKey="Smith, D C" uniqKey="Smith D">D. C. Smith</name>
</author>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chamoun, E" uniqKey="Chamoun E">E. Chamoun</name>
</author>
<author>
<name sortKey="Mutch, D M" uniqKey="Mutch D">D. M. Mutch</name>
</author>
<author>
<name sortKey="Allen Vercoe, E" uniqKey="Allen Vercoe E">E. Allen-Vercoe</name>
</author>
<author>
<name sortKey="Buchholz, A C" uniqKey="Buchholz A">A. C. Buchholz</name>
</author>
<author>
<name sortKey="Duncan, A M" uniqKey="Duncan A">A. M. Duncan</name>
</author>
<author>
<name sortKey="Spriet, L L" uniqKey="Spriet L">L. L. Spriet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chandrashekar, J" uniqKey="Chandrashekar J">J. Chandrashekar</name>
</author>
<author>
<name sortKey="Mueller, K L" uniqKey="Mueller K">K. L. Mueller</name>
</author>
<author>
<name sortKey="Hoon, M A" uniqKey="Hoon M">M. A. Hoon</name>
</author>
<author>
<name sortKey="Adler, E" uniqKey="Adler E">E. Adler</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L. Feng</name>
</author>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaudhari, N" uniqKey="Chaudhari N">N. Chaudhari</name>
</author>
<author>
<name sortKey="Roper, S D" uniqKey="Roper S">S. D. Roper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung, D" uniqKey="Cheung D">D. Cheung</name>
</author>
<author>
<name sortKey="Timmers, M C" uniqKey="Timmers M">M. C. Timmers</name>
</author>
<author>
<name sortKey="Zwinderman, A H" uniqKey="Zwinderman A">A. H. Zwinderman</name>
</author>
<author>
<name sortKey="Bel, E H" uniqKey="Bel E">E. H. Bel</name>
</author>
<author>
<name sortKey="Dijkman, J H" uniqKey="Dijkman J">J. H. Dijkman</name>
</author>
<author>
<name sortKey="Sterk, P J" uniqKey="Sterk P">P. J. Sterk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, A" uniqKey="Clark A">A. Clark</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
<author>
<name sortKey="Munger, S D" uniqKey="Munger S">S. D. Munger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, N" uniqKey="Cohen N">N. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Penn, R B" uniqKey="Penn R">R. B. Penn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Robinett, K S" uniqKey="Robinett K">K. S. Robinett</name>
</author>
<author>
<name sortKey="Wang, W C" uniqKey="Wang W">W. C. Wang</name>
</author>
<author>
<name sortKey="Sham, J S" uniqKey="Sham J">J. S. Sham</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Wang, W C" uniqKey="Wang W">W. C. Wang</name>
</author>
<author>
<name sortKey="Mcilmoyle, E L" uniqKey="Mcilmoyle E">E. L. McIlmoyle</name>
</author>
<author>
<name sortKey="Robinett, K S" uniqKey="Robinett K">K. S. Robinett</name>
</author>
<author>
<name sortKey="Schillinger, R M" uniqKey="Schillinger R">R. M. Schillinger</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Levit, A" uniqKey="Levit A">A. Levit</name>
</author>
<author>
<name sortKey="Slutzki, M" uniqKey="Slutzki M">M. Slutzki</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Karaman, R" uniqKey="Karaman R">R. Karaman</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donlan, R" uniqKey="Donlan R">R. Donlan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drayna, D" uniqKey="Drayna D">D. Drayna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekoff, M" uniqKey="Ekoff M">M. Ekoff</name>
</author>
<author>
<name sortKey="Choi, J H" uniqKey="Choi J">J. H. Choi</name>
</author>
<author>
<name sortKey="James, A" uniqKey="James A">A. James</name>
</author>
<author>
<name sortKey="Dahlen, B" uniqKey="Dahlen B">B. Dahlen</name>
</author>
<author>
<name sortKey="Nilsson, G" uniqKey="Nilsson G">G. Nilsson</name>
</author>
<author>
<name sortKey="Dahlen, S E" uniqKey="Dahlen S">S. E. Dahlen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fakler, B" uniqKey="Fakler B">B. Fakler</name>
</author>
<author>
<name sortKey="Adelman, J P" uniqKey="Adelman J">J. P. Adelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
<author>
<name sortKey="Bottger, B" uniqKey="Bottger B">B. Bottger</name>
</author>
<author>
<name sortKey="Hansen, A" uniqKey="Hansen A">A. Hansen</name>
</author>
<author>
<name sortKey="Anderson, K T" uniqKey="Anderson K">K. T. Anderson</name>
</author>
<author>
<name sortKey="Alimohammadi, H" uniqKey="Alimohammadi H">H. Alimohammadi</name>
</author>
<author>
<name sortKey="Silver, W L" uniqKey="Silver W">W. L. Silver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
<author>
<name sortKey="Danilova, V" uniqKey="Danilova V">V. Danilova</name>
</author>
<author>
<name sortKey="Barrows, J" uniqKey="Barrows J">J. Barrows</name>
</author>
<author>
<name sortKey="Bartel, D L" uniqKey="Bartel D">D. L. Bartel</name>
</author>
<author>
<name sortKey="Vigers, A J" uniqKey="Vigers A">A. J. Vigers</name>
</author>
<author>
<name sortKey="Stone, L" uniqKey="Stone L">L. Stone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaida, M M" uniqKey="Gaida M">M. M. Gaida</name>
</author>
<author>
<name sortKey="Dapunt, U" uniqKey="Dapunt U">U. Dapunt</name>
</author>
<author>
<name sortKey="Hansch, G M" uniqKey="Hansch G">G. M. Hansch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallo, S" uniqKey="Gallo S">S. Gallo</name>
</author>
<author>
<name sortKey="Grossi, S" uniqKey="Grossi S">S. Grossi</name>
</author>
<author>
<name sortKey="Montrasio, G" uniqKey="Montrasio G">G. Montrasio</name>
</author>
<author>
<name sortKey="Binelli, G" uniqKey="Binelli G">G. Binelli</name>
</author>
<author>
<name sortKey="Cinquetti, R" uniqKey="Cinquetti R">R. Cinquetti</name>
</author>
<author>
<name sortKey="Simmen, D" uniqKey="Simmen D">D. Simmen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerthoffer, W T" uniqKey="Gerthoffer W">W. T. Gerthoffer</name>
</author>
<author>
<name sortKey="Solway, J" uniqKey="Solway J">J. Solway</name>
</author>
<author>
<name sortKey="Camoretti Mercado, B" uniqKey="Camoretti Mercado B">B. Camoretti-Mercado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilbertson, T A" uniqKey="Gilbertson T">T. A. Gilbertson</name>
</author>
<author>
<name sortKey="Damak, S" uniqKey="Damak S">S. Damak</name>
</author>
<author>
<name sortKey="Margolskee, R F" uniqKey="Margolskee R">R. F. Margolskee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girodet, P O" uniqKey="Girodet P">P. O. Girodet</name>
</author>
<author>
<name sortKey="Ozier, A" uniqKey="Ozier A">A. Ozier</name>
</author>
<author>
<name sortKey="Bara, I" uniqKey="Bara I">I. Bara</name>
</author>
<author>
<name sortKey="Tunon De Lara, J M" uniqKey="Tunon De Lara J">J. M. Tunon de Lara</name>
</author>
<author>
<name sortKey="Marthan, R" uniqKey="Marthan R">R. Marthan</name>
</author>
<author>
<name sortKey="Berger, P" uniqKey="Berger P">P. Berger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grassin Delyle, S" uniqKey="Grassin Delyle S">S. Grassin-Delyle</name>
</author>
<author>
<name sortKey="Abrial, C" uniqKey="Abrial C">C. Abrial</name>
</author>
<author>
<name sortKey="Fayad Kobeissi, S" uniqKey="Fayad Kobeissi S">S. Fayad-Kobeissi</name>
</author>
<author>
<name sortKey="Brollo, M" uniqKey="Brollo M">M. Brollo</name>
</author>
<author>
<name sortKey="Faisy, C" uniqKey="Faisy C">C. Faisy</name>
</author>
<author>
<name sortKey="Alvarez, J C" uniqKey="Alvarez J">J. C. Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gulbransen, B" uniqKey="Gulbransen B">B. Gulbransen</name>
</author>
<author>
<name sortKey="Clapp, T R" uniqKey="Clapp T">T. R. Clapp</name>
</author>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
<author>
<name sortKey="Kinnamon, S C" uniqKey="Kinnamon S">S. C. Kinnamon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halwani, R" uniqKey="Halwani R">R. Halwani</name>
</author>
<author>
<name sortKey="Al Muhsen, S" uniqKey="Al Muhsen S">S. Al-Muhsen</name>
</author>
<author>
<name sortKey="Hamid, Q" uniqKey="Hamid Q">Q. Hamid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hassan, M" uniqKey="Hassan M">M. Hassan</name>
</author>
<author>
<name sortKey="Jo, T" uniqKey="Jo T">T. Jo</name>
</author>
<author>
<name sortKey="Risse, P A" uniqKey="Risse P">P. A. Risse</name>
</author>
<author>
<name sortKey="Tolloczko, B" uniqKey="Tolloczko B">B. Tolloczko</name>
</author>
<author>
<name sortKey="Lemiere, C" uniqKey="Lemiere C">C. Lemiere</name>
</author>
<author>
<name sortKey="Olivenstein, R" uniqKey="Olivenstein R">R. Olivenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heck, G L" uniqKey="Heck G">G. L. Heck</name>
</author>
<author>
<name sortKey="Mierson, S" uniqKey="Mierson S">S. Mierson</name>
</author>
<author>
<name sortKey="Desimone, J A" uniqKey="Desimone J">J. A. DeSimone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ianaro, A" uniqKey="Ianaro A">A. Ianaro</name>
</author>
<author>
<name sortKey="Ialenti, A" uniqKey="Ialenti A">A. Ialenti</name>
</author>
<author>
<name sortKey="Maffia, P" uniqKey="Maffia P">P. Maffia</name>
</author>
<author>
<name sortKey="Sautebin, L" uniqKey="Sautebin L">L. Sautebin</name>
</author>
<author>
<name sortKey="Rombola, L" uniqKey="Rombola L">L. Rombola</name>
</author>
<author>
<name sortKey="Carnuccio, R" uniqKey="Carnuccio R">R. Carnuccio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, C H" uniqKey="Jang C">C. H. Jang</name>
</author>
<author>
<name sortKey="Choi, J H" uniqKey="Choi J">J. H. Choi</name>
</author>
<author>
<name sortKey="Byun, M S" uniqKey="Byun M">M. S. Byun</name>
</author>
<author>
<name sortKey="Jue, D M" uniqKey="Jue D">D. M. Jue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeong, J Y" uniqKey="Jeong J">J. Y. Jeong</name>
</author>
<author>
<name sortKey="Jue, D M" uniqKey="Jue D">D. M. Jue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karaman, R" uniqKey="Karaman R">R. Karaman</name>
</author>
<author>
<name sortKey="Nowak, S" uniqKey="Nowak S">S. Nowak</name>
</author>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Kitaneh, H" uniqKey="Kitaneh H">H. Kitaneh</name>
</author>
<author>
<name sortKey="Abu Jaish, A" uniqKey="Abu Jaish A">A. Abu-Jaish</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, M" uniqKey="Keller M">M. Keller</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Wohland, T" uniqKey="Wohland T">T. Wohland</name>
</author>
<author>
<name sortKey="Rohde, K" uniqKey="Rohde K">K. Rohde</name>
</author>
<author>
<name sortKey="Gast, M T" uniqKey="Gast M">M. T. Gast</name>
</author>
<author>
<name sortKey="Stumvoll, M" uniqKey="Stumvoll M">M. Stumvoll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly, M M" uniqKey="Kelly M">M. M. Kelly</name>
</author>
<author>
<name sortKey="O Onnor, T M" uniqKey="O Onnor T">T. M. O’Connor</name>
</author>
<author>
<name sortKey="Leigh, R" uniqKey="Leigh R">R. Leigh</name>
</author>
<author>
<name sortKey="Otis, J" uniqKey="Otis J">J. Otis</name>
</author>
<author>
<name sortKey="Gwozd, C" uniqKey="Gwozd C">C. Gwozd</name>
</author>
<author>
<name sortKey="Gauvreau, G M" uniqKey="Gauvreau G">G. M. Gauvreau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Cho, S" uniqKey="Cho S">S. Cho</name>
</author>
<author>
<name sortKey="Castano, M A" uniqKey="Castano M">M. A. Castano</name>
</author>
<author>
<name sortKey="Panettieri, R A" uniqKey="Panettieri R">R. A. Panettieri</name>
</author>
<author>
<name sortKey="Woo, J A" uniqKey="Woo J">J. A. Woo</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Woo, J A" uniqKey="Woo J">J. A. Woo</name>
</author>
<author>
<name sortKey="Geffken, E" uniqKey="Geffken E">E. Geffken</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinnamon, S C" uniqKey="Kinnamon S">S. C. Kinnamon</name>
</author>
<author>
<name sortKey="Dionne, V E" uniqKey="Dionne V">V. E. Dionne</name>
</author>
<author>
<name sortKey="Beam, K G" uniqKey="Beam K">K. G. Beam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, K C" uniqKey="Kong K">K. C. Kong</name>
</author>
<author>
<name sortKey="Gandhi, U" uniqKey="Gandhi U">U. Gandhi</name>
</author>
<author>
<name sortKey="Martin, T J" uniqKey="Martin T">T. J. Martin</name>
</author>
<author>
<name sortKey="Anz, C B" uniqKey="Anz C">C. B. Anz</name>
</author>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Misior, A M" uniqKey="Misior A">A. M. Misior</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kraan, J" uniqKey="Kraan J">J. Kraan</name>
</author>
<author>
<name sortKey="Koeter, G H" uniqKey="Koeter G">G. H. Koeter</name>
</author>
<author>
<name sortKey="Vd Mark, T W" uniqKey="Vd Mark T">T. W. vd Mark</name>
</author>
<author>
<name sortKey="Sluiter, H J" uniqKey="Sluiter H">H. J. Sluiter</name>
</author>
<author>
<name sortKey="De Vries, K" uniqKey="De Vries K">K. de Vries</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krasteva, G" uniqKey="Krasteva G">G. Krasteva</name>
</author>
<author>
<name sortKey="Canning, B J" uniqKey="Canning B">B. J. Canning</name>
</author>
<author>
<name sortKey="Hartmann, P" uniqKey="Hartmann P">P. Hartmann</name>
</author>
<author>
<name sortKey="Veres, T Z" uniqKey="Veres T">T. Z. Veres</name>
</author>
<author>
<name sortKey="Papadakis, T" uniqKey="Papadakis T">T. Papadakis</name>
</author>
<author>
<name sortKey="Muhlfeld, C" uniqKey="Muhlfeld C">C. Muhlfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krasteva, G" uniqKey="Krasteva G">G. Krasteva</name>
</author>
<author>
<name sortKey="Canning, B J" uniqKey="Canning B">B. J. Canning</name>
</author>
<author>
<name sortKey="Papadakis, T" uniqKey="Papadakis T">T. Papadakis</name>
</author>
<author>
<name sortKey="Kummer, W" uniqKey="Kummer W">W. Kummer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, R J" uniqKey="Lee R">R. J. Lee</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B. Chen</name>
</author>
<author>
<name sortKey="Redding, K M" uniqKey="Redding K">K. M. Redding</name>
</author>
<author>
<name sortKey="Margolskee, R F" uniqKey="Margolskee R">R. F. Margolskee</name>
</author>
<author>
<name sortKey="Cohen, N A" uniqKey="Cohen N">N. A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, R J" uniqKey="Lee R">R. J. Lee</name>
</author>
<author>
<name sortKey="Cohen, N A" uniqKey="Cohen N">N. A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, R J" uniqKey="Lee R">R. J. Lee</name>
</author>
<author>
<name sortKey="Xiong, G" uniqKey="Xiong G">G. Xiong</name>
</author>
<author>
<name sortKey="Kofonow, J M" uniqKey="Kofonow J">J. M. Kofonow</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B. Chen</name>
</author>
<author>
<name sortKey="Lysenko, A" uniqKey="Lysenko A">A. Lysenko</name>
</author>
<author>
<name sortKey="Jiang, P" uniqKey="Jiang P">P. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S. Lu</name>
</author>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R. Xu</name>
</author>
<author>
<name sortKey="Atzberger, A" uniqKey="Atzberger A">A. Atzberger</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S. Gunther</name>
</author>
<author>
<name sortKey="Wettschureck, N" uniqKey="Wettschureck N">N. Wettschureck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lund, T C" uniqKey="Lund T">T. C. Lund</name>
</author>
<author>
<name sortKey="Kobs, A J" uniqKey="Kobs A">A. J. Kobs</name>
</author>
<author>
<name sortKey="Kramer, A" uniqKey="Kramer A">A. Kramer</name>
</author>
<author>
<name sortKey="Nyquist, M" uniqKey="Nyquist M">M. Nyquist</name>
</author>
<author>
<name sortKey="Kuroki, M T" uniqKey="Kuroki M">M. T. Kuroki</name>
</author>
<author>
<name sortKey="Osborn, J" uniqKey="Osborn J">J. Osborn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, X C" uniqKey="Luo X">X. C. Luo</name>
</author>
<author>
<name sortKey="Chen, Z H" uniqKey="Chen Z">Z. H. Chen</name>
</author>
<author>
<name sortKey="Xue, J B" uniqKey="Xue J">J. B. Xue</name>
</author>
<author>
<name sortKey="Zhao, D X" uniqKey="Zhao D">D. X. Zhao</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C. Lu</name>
</author>
<author>
<name sortKey="Li, Y H" uniqKey="Li Y">Y. H. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malki, A" uniqKey="Malki A">A. Malki</name>
</author>
<author>
<name sortKey="Fiedler, J" uniqKey="Fiedler J">J. Fiedler</name>
</author>
<author>
<name sortKey="Fricke, K" uniqKey="Fricke K">K. Fricke</name>
</author>
<author>
<name sortKey="Ballweg, I" uniqKey="Ballweg I">I. Ballweg</name>
</author>
<author>
<name sortKey="Pfaffl, M W" uniqKey="Pfaffl M">M. W. Pfaffl</name>
</author>
<author>
<name sortKey="Krautwurst, D" uniqKey="Krautwurst D">D. Krautwurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mangold, J" uniqKey="Mangold J">J. Mangold</name>
</author>
<author>
<name sortKey="Payne, T J" uniqKey="Payne T">T. J. Payne</name>
</author>
<author>
<name sortKey="Ma, J Z" uniqKey="Ma J">J. Z. Ma</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
<author>
<name sortKey="Li, M D" uniqKey="Li M">M. D. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, G" uniqKey="Martin G">G. Martin</name>
</author>
<author>
<name sortKey="O Onnell, R J" uniqKey="O Onnell R">R. J. O’Connell</name>
</author>
<author>
<name sortKey="Pietrzykowski, A Z" uniqKey="Pietrzykowski A">A. Z. Pietrzykowski</name>
</author>
<author>
<name sortKey="Treistman, S N" uniqKey="Treistman S">S. N. Treistman</name>
</author>
<author>
<name sortKey="Ethier, M F" uniqKey="Ethier M">M. F. Ethier</name>
</author>
<author>
<name sortKey="Madison, J M" uniqKey="Madison J">J. M. Madison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maurer, S" uniqKey="Maurer S">S. Maurer</name>
</author>
<author>
<name sortKey="Wabnitz, G H" uniqKey="Wabnitz G">G. H. Wabnitz</name>
</author>
<author>
<name sortKey="Kahle, N A" uniqKey="Kahle N">N. A. Kahle</name>
</author>
<author>
<name sortKey="Stegmaier, S" uniqKey="Stegmaier S">S. Stegmaier</name>
</author>
<author>
<name sortKey="Prior, B" uniqKey="Prior B">B. Prior</name>
</author>
<author>
<name sortKey="Giese, T" uniqKey="Giese T">T. Giese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merigo, F" uniqKey="Merigo F">F. Merigo</name>
</author>
<author>
<name sortKey="Benati, D" uniqKey="Benati D">D. Benati</name>
</author>
<author>
<name sortKey="Di Chio, M" uniqKey="Di Chio M">M. Di Chio</name>
</author>
<author>
<name sortKey="Osculati, F" uniqKey="Osculati F">F. Osculati</name>
</author>
<author>
<name sortKey="Sbarbati, A" uniqKey="Sbarbati A">A. Sbarbati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Batram, C" uniqKey="Batram C">C. Batram</name>
</author>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C. Kuhn</name>
</author>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Chudoba, E" uniqKey="Chudoba E">E. Chudoba</name>
</author>
<author>
<name sortKey="Bufe, B" uniqKey="Bufe B">B. Bufe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mfuna, E L" uniqKey="Mfuna E">E. L. Mfuna</name>
</author>
<author>
<name sortKey="Filali Mouhim, A" uniqKey="Filali Mouhim A">A. Filali-Mouhim</name>
</author>
<author>
<name sortKey="Boisvert, P" uniqKey="Boisvert P">P. Boisvert</name>
</author>
<author>
<name sortKey="Boulet, L P" uniqKey="Boulet L">L. P. Boulet</name>
</author>
<author>
<name sortKey="Bosse, Y" uniqKey="Bosse Y">Y. Bossé</name>
</author>
<author>
<name sortKey="Desrosiers, M" uniqKey="Desrosiers M">M. Desrosiers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michael, J V" uniqKey="Michael J">J. V. Michael</name>
</author>
<author>
<name sortKey="Gavrila, A" uniqKey="Gavrila A">A. Gavrila</name>
</author>
<author>
<name sortKey="Nayak, A P" uniqKey="Nayak A">A. P. Nayak</name>
</author>
<author>
<name sortKey="Pera, T" uniqKey="Pera T">T. Pera</name>
</author>
<author>
<name sortKey="Liberato, J R" uniqKey="Liberato J">J. R. Liberato</name>
</author>
<author>
<name sortKey="Polischak, S R" uniqKey="Polischak S">S. R. Polischak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morice, A H" uniqKey="Morice A">A. H. Morice</name>
</author>
<author>
<name sortKey="Bennett, R T" uniqKey="Bennett R">R. T. Bennett</name>
</author>
<author>
<name sortKey="Chaudhry, M A" uniqKey="Chaudhry M">M. A. Chaudhry</name>
</author>
<author>
<name sortKey="Cowen, M E" uniqKey="Cowen M">M. E. Cowen</name>
</author>
<author>
<name sortKey="Griffin, S C" uniqKey="Griffin S">S. C. Griffin</name>
</author>
<author>
<name sortKey="Loubani, M" uniqKey="Loubani M">M. Loubani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morin, C" uniqKey="Morin C">C. Morin</name>
</author>
<author>
<name sortKey="Sirois, M" uniqKey="Sirois M">M. Sirois</name>
</author>
<author>
<name sortKey="Echave, V" uniqKey="Echave V">V. Echave</name>
</author>
<author>
<name sortKey="Gomes, M M" uniqKey="Gomes M">M. M. Gomes</name>
</author>
<author>
<name sortKey="Rousseau, E" uniqKey="Rousseau E">E. Rousseau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nayak, A P" uniqKey="Nayak A">A. P. Nayak</name>
</author>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Penn, R B" uniqKey="Penn R">R. B. Penn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, L P" uniqKey="Nguyen L">L. P. Nguyen</name>
</author>
<author>
<name sortKey="Al Sawalha, N A" uniqKey="Al Sawalha N">N. A. Al-Sawalha</name>
</author>
<author>
<name sortKey="Parra, S" uniqKey="Parra S">S. Parra</name>
</author>
<author>
<name sortKey="Pokkunuri, I" uniqKey="Pokkunuri I">I. Pokkunuri</name>
</author>
<author>
<name sortKey="Omoluabi, O" uniqKey="Omoluabi O">O. Omoluabi</name>
</author>
<author>
<name sortKey="Okulate, A A" uniqKey="Okulate A">A. A. Okulate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogino, H" uniqKey="Ogino H">H. Ogino</name>
</author>
<author>
<name sortKey="Fujii, M" uniqKey="Fujii M">M. Fujii</name>
</author>
<author>
<name sortKey="Ono, M" uniqKey="Ono M">M. Ono</name>
</author>
<author>
<name sortKey="Maezawa, K" uniqKey="Maezawa K">K. Maezawa</name>
</author>
<author>
<name sortKey="Hori, S" uniqKey="Hori S">S. Hori</name>
</author>
<author>
<name sortKey="Kizu, J" uniqKey="Kizu J">J. Kizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orsmark Pietras, C" uniqKey="Orsmark Pietras C">C. Orsmark-Pietras</name>
</author>
<author>
<name sortKey="James, A" uniqKey="James A">A. James</name>
</author>
<author>
<name sortKey="Konradsen, J R" uniqKey="Konradsen J">J. R. Konradsen</name>
</author>
<author>
<name sortKey="Nordlund, B" uniqKey="Nordlund B">B. Nordlund</name>
</author>
<author>
<name sortKey="Soderhall, C" uniqKey="Soderhall C">C. Soderhall</name>
</author>
<author>
<name sortKey="Pulkkinen, V" uniqKey="Pulkkinen V">V. Pulkkinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Page, S" uniqKey="Page S">S. Page</name>
</author>
<author>
<name sortKey="Ammit, A J" uniqKey="Ammit A">A. J. Ammit</name>
</author>
<author>
<name sortKey="Black, J L" uniqKey="Black J">J. L. Black</name>
</author>
<author>
<name sortKey="Armour, C L" uniqKey="Armour C">C. L. Armour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, S" uniqKey="Pan S">S. Pan</name>
</author>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P. Sharma</name>
</author>
<author>
<name sortKey="Shah, S D" uniqKey="Shah S">S. D. Shah</name>
</author>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y. Peng</name>
</author>
<author>
<name sortKey="Gillis Smith, S" uniqKey="Gillis Smith S">S. Gillis-Smith</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H. Jin</name>
</author>
<author>
<name sortKey="Trankner, D" uniqKey="Trankner D">D. Trankner</name>
</author>
<author>
<name sortKey="Ryba, N J" uniqKey="Ryba N">N. J. Ryba</name>
</author>
<author>
<name sortKey="Zuker, C S" uniqKey="Zuker C">C. S. Zuker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pera, T" uniqKey="Pera T">T. Pera</name>
</author>
<author>
<name sortKey="Penn, R B" uniqKey="Penn R">R. B. Penn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plumb, J" uniqKey="Plumb J">J. Plumb</name>
</author>
<author>
<name sortKey="Gaffey, K" uniqKey="Gaffey K">K. Gaffey</name>
</author>
<author>
<name sortKey="Kane, B" uniqKey="Kane B">B. Kane</name>
</author>
<author>
<name sortKey="Malia Milanes, B" uniqKey="Malia Milanes B">B. Malia-Milanes</name>
</author>
<author>
<name sortKey="Shah, R" uniqKey="Shah R">R. Shah</name>
</author>
<author>
<name sortKey="Bentley, A" uniqKey="Bentley A">A. Bentley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pulkkinen, V" uniqKey="Pulkkinen V">V. Pulkkinen</name>
</author>
<author>
<name sortKey="Manson, M L" uniqKey="Manson M">M. L. Manson</name>
</author>
<author>
<name sortKey="Safholm, J" uniqKey="Safholm J">J. Safholm</name>
</author>
<author>
<name sortKey="Adner, M" uniqKey="Adner M">M. Adner</name>
</author>
<author>
<name sortKey="Dahlen, S E" uniqKey="Dahlen S">S. E. Dahlen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Risso, D" uniqKey="Risso D">D. Risso</name>
</author>
<author>
<name sortKey="Kozlitina, J" uniqKey="Kozlitina J">J. Kozlitina</name>
</author>
<author>
<name sortKey="Sainz, E" uniqKey="Sainz E">E. Sainz</name>
</author>
<author>
<name sortKey="Gutierrez, J" uniqKey="Gutierrez J">J. Gutierrez</name>
</author>
<author>
<name sortKey="Wooding, S" uniqKey="Wooding S">S. Wooding</name>
</author>
<author>
<name sortKey="Getachew, B" uniqKey="Getachew B">B. Getachew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinett, K S" uniqKey="Robinett K">K. S. Robinett</name>
</author>
<author>
<name sortKey="Koziol White, C J" uniqKey="Koziol White C">C. J. Koziol-White</name>
</author>
<author>
<name sortKey="Akoluk, A" uniqKey="Akoluk A">A. Akoluk</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Panettieri, R A" uniqKey="Panettieri R">R. A. Panettieri</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sainz, E" uniqKey="Sainz E">E. Sainz</name>
</author>
<author>
<name sortKey="Korley, J N" uniqKey="Korley J">J. N. Korley</name>
</author>
<author>
<name sortKey="Battey, J F" uniqKey="Battey J">J. F. Battey</name>
</author>
<author>
<name sortKey="Sullivan, S L" uniqKey="Sullivan S">S. L. Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salathe, M" uniqKey="Salathe M">M. Salathe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salpeter, S R" uniqKey="Salpeter S">S. R. Salpeter</name>
</author>
<author>
<name sortKey="Wall, A J" uniqKey="Wall A">A. J. Wall</name>
</author>
<author>
<name sortKey="Buckley, N S" uniqKey="Buckley N">N. S. Buckley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, C J" uniqKey="Saunders C">C. J. Saunders</name>
</author>
<author>
<name sortKey="Christensen, M" uniqKey="Christensen M">M. Christensen</name>
</author>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
<author>
<name sortKey="Tizzano, M" uniqKey="Tizzano M">M. Tizzano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, C J" uniqKey="Saunders C">C. J. Saunders</name>
</author>
<author>
<name sortKey="Reynolds, S D" uniqKey="Reynolds S">S. D. Reynolds</name>
</author>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sbarbati, A" uniqKey="Sbarbati A">A. Sbarbati</name>
</author>
<author>
<name sortKey="Osculati, F" uniqKey="Osculati F">F. Osculati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schierbeck, H" uniqKey="Schierbeck H">H. Schierbeck</name>
</author>
<author>
<name sortKey="Wahamaa, H" uniqKey="Wahamaa H">H. Wahamaa</name>
</author>
<author>
<name sortKey="Andersson, U" uniqKey="Andersson U">U. Andersson</name>
</author>
<author>
<name sortKey="Harris, H E" uniqKey="Harris H">H. E. Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, A S" uniqKey="Shah A">A. S. Shah</name>
</author>
<author>
<name sortKey="Ben Shahar, Y" uniqKey="Ben Shahar Y">Y. Ben-Shahar</name>
</author>
<author>
<name sortKey="Moninger, T O" uniqKey="Moninger T">T. O. Moninger</name>
</author>
<author>
<name sortKey="Kline, J N" uniqKey="Kline J">J. N. Kline</name>
</author>
<author>
<name sortKey="Welsh, M J" uniqKey="Welsh M">M. J. Welsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P. Sharma</name>
</author>
<author>
<name sortKey="Panebra, A" uniqKey="Panebra A">A. Panebra</name>
</author>
<author>
<name sortKey="Pera, T" uniqKey="Pera T">T. Pera</name>
</author>
<author>
<name sortKey="Tiegs, B C" uniqKey="Tiegs B">B. C. Tiegs</name>
</author>
<author>
<name sortKey="Hershfeld, A" uniqKey="Hershfeld A">A. Hershfeld</name>
</author>
<author>
<name sortKey="Kenyon, L C" uniqKey="Kenyon L">L. C. Kenyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P. Sharma</name>
</author>
<author>
<name sortKey="Yi, R" uniqKey="Yi R">R. Yi</name>
</author>
<author>
<name sortKey="Nayak, A P" uniqKey="Nayak A">A. P. Nayak</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Tang, F" uniqKey="Tang F">F. Tang</name>
</author>
<author>
<name sortKey="Knight, M J" uniqKey="Knight M">M. J. Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sternini, C" uniqKey="Sternini C">C. Sternini</name>
</author>
<author>
<name sortKey="Anselmi, L" uniqKey="Anselmi L">L. Anselmi</name>
</author>
<author>
<name sortKey="Rozengurt, E" uniqKey="Rozengurt E">E. Rozengurt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taghadosi, R" uniqKey="Taghadosi R">R. Taghadosi</name>
</author>
<author>
<name sortKey="Shakibaie, M R" uniqKey="Shakibaie M">M. R. Shakibaie</name>
</author>
<author>
<name sortKey="Masoumi, S" uniqKey="Masoumi S">S. Masoumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X. Tan</name>
</author>
<author>
<name sortKey="Sanderson, M J" uniqKey="Sanderson M">M. J. Sanderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taruno, A" uniqKey="Taruno A">A. Taruno</name>
</author>
<author>
<name sortKey="Vingtdeux, V" uniqKey="Vingtdeux V">V. Vingtdeux</name>
</author>
<author>
<name sortKey="Ohmoto, M" uniqKey="Ohmoto M">M. Ohmoto</name>
</author>
<author>
<name sortKey="Ma, Z" uniqKey="Ma Z">Z. Ma</name>
</author>
<author>
<name sortKey="Dvoryanchikov, G" uniqKey="Dvoryanchikov G">G. Dvoryanchikov</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tazzeo, T" uniqKey="Tazzeo T">T. Tazzeo</name>
</author>
<author>
<name sortKey="Bates, G" uniqKey="Bates G">G. Bates</name>
</author>
<author>
<name sortKey="Roman, H N" uniqKey="Roman H">H. N. Roman</name>
</author>
<author>
<name sortKey="Lauzon, A M" uniqKey="Lauzon A">A. M. Lauzon</name>
</author>
<author>
<name sortKey="Khasnis, M D" uniqKey="Khasnis M">M. D. Khasnis</name>
</author>
<author>
<name sortKey="Eto, M" uniqKey="Eto M">M. Eto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tizzano, M" uniqKey="Tizzano M">M. Tizzano</name>
</author>
<author>
<name sortKey="Cristofoletti, M" uniqKey="Cristofoletti M">M. Cristofoletti</name>
</author>
<author>
<name sortKey="Sbarbati, A" uniqKey="Sbarbati A">A. Sbarbati</name>
</author>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tizzano, M" uniqKey="Tizzano M">M. Tizzano</name>
</author>
<author>
<name sortKey="Finger, T E" uniqKey="Finger T">T. E. Finger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tizzano, M" uniqKey="Tizzano M">M. Tizzano</name>
</author>
<author>
<name sortKey="Gulbransen, B D" uniqKey="Gulbransen B">B. D. Gulbransen</name>
</author>
<author>
<name sortKey="Vandenbeuch, A" uniqKey="Vandenbeuch A">A. Vandenbeuch</name>
</author>
<author>
<name sortKey="Clapp, T R" uniqKey="Clapp T">T. R. Clapp</name>
</author>
<author>
<name sortKey="Herman, J P" uniqKey="Herman J">J. P. Herman</name>
</author>
<author>
<name sortKey="Sibhatu, H M" uniqKey="Sibhatu H">H. M. Sibhatu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tizzano, M" uniqKey="Tizzano M">M. Tizzano</name>
</author>
<author>
<name sortKey="Merigo, F" uniqKey="Merigo F">F. Merigo</name>
</author>
<author>
<name sortKey="Sbarbati, A" uniqKey="Sbarbati A">A. Sbarbati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tran, H T T" uniqKey="Tran H">H. T. T. Tran</name>
</author>
<author>
<name sortKey="Herz, C" uniqKey="Herz C">C. Herz</name>
</author>
<author>
<name sortKey="Ruf, P" uniqKey="Ruf P">P. Ruf</name>
</author>
<author>
<name sortKey="Stetter, R" uniqKey="Stetter R">R. Stetter</name>
</author>
<author>
<name sortKey="Lamy, E" uniqKey="Lamy E">E. Lamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trian, T" uniqKey="Trian T">T. Trian</name>
</author>
<author>
<name sortKey="Allard, B" uniqKey="Allard B">B. Allard</name>
</author>
<author>
<name sortKey="Dupin, I" uniqKey="Dupin I">I. Dupin</name>
</author>
<author>
<name sortKey="Carvalho, G" uniqKey="Carvalho G">G. Carvalho</name>
</author>
<author>
<name sortKey="Ousova, O" uniqKey="Ousova O">O. Ousova</name>
</author>
<author>
<name sortKey="Maurat, E" uniqKey="Maurat E">E. Maurat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ugawa, S" uniqKey="Ugawa S">S. Ugawa</name>
</author>
<author>
<name sortKey="Minami, Y" uniqKey="Minami Y">Y. Minami</name>
</author>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W. Guo</name>
</author>
<author>
<name sortKey="Saishin, Y" uniqKey="Saishin Y">Y. Saishin</name>
</author>
<author>
<name sortKey="Takatsuji, K" uniqKey="Takatsuji K">K. Takatsuji</name>
</author>
<author>
<name sortKey="Yamamoto, T" uniqKey="Yamamoto T">T. Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vrancic, M" uniqKey="Vrancic M">M. Vrancic</name>
</author>
<author>
<name sortKey="Banjanac, M" uniqKey="Banjanac M">M. Banjanac</name>
</author>
<author>
<name sortKey="Nujic, K" uniqKey="Nujic K">K. Nujic</name>
</author>
<author>
<name sortKey="Bosnar, M" uniqKey="Bosnar M">M. Bosnar</name>
</author>
<author>
<name sortKey="Murati, T" uniqKey="Murati T">T. Murati</name>
</author>
<author>
<name sortKey="Munic, V" uniqKey="Munic V">V. Munic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, J K" uniqKey="Walker J">J. K. Walker</name>
</author>
<author>
<name sortKey="Penn, R B" uniqKey="Penn R">R. B. Penn</name>
</author>
<author>
<name sortKey="Hanania, N A" uniqKey="Hanania N">N. A. Hanania</name>
</author>
<author>
<name sortKey="Dickey, B F" uniqKey="Dickey B">B. F. Dickey</name>
</author>
<author>
<name sortKey="Bond, R A" uniqKey="Bond R">R. A. Bond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfle, U" uniqKey="Wolfle U">U. Wolfle</name>
</author>
<author>
<name sortKey="Elsholz, F A" uniqKey="Elsholz F">F. A. Elsholz</name>
</author>
<author>
<name sortKey="Kersten, A" uniqKey="Kersten A">A. Kersten</name>
</author>
<author>
<name sortKey="Haarhaus, B" uniqKey="Haarhaus B">B. Haarhaus</name>
</author>
<author>
<name sortKey="Schumacher, U" uniqKey="Schumacher U">U. Schumacher</name>
</author>
<author>
<name sortKey="Schempp, C M" uniqKey="Schempp C">C. M. Schempp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Workman, A D" uniqKey="Workman A">A. D. Workman</name>
</author>
<author>
<name sortKey="Palmer, J N" uniqKey="Palmer J">J. N. Palmer</name>
</author>
<author>
<name sortKey="Adappa, N D" uniqKey="Adappa N">N. D. Adappa</name>
</author>
<author>
<name sortKey="Cohen, N A" uniqKey="Cohen N">N. A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, S" uniqKey="Wu S">S. Wu</name>
</author>
<author>
<name sortKey="Rozengurt, N" uniqKey="Rozengurt N">N. Rozengurt</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
<author>
<name sortKey="Young, S H" uniqKey="Young S">S. H. Young</name>
</author>
<author>
<name sortKey="Sinnett Smith, J" uniqKey="Sinnett Smith J">J. Sinnett-Smith</name>
</author>
<author>
<name sortKey="Rozengurt, E" uniqKey="Rozengurt E">E. Rozengurt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Cao, J" uniqKey="Cao J">J. Cao</name>
</author>
<author>
<name sortKey="Iguchi, N" uniqKey="Iguchi N">N. Iguchi</name>
</author>
<author>
<name sortKey="Riethmacher, D" uniqKey="Riethmacher D">D. Riethmacher</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Misior, A M" uniqKey="Misior A">A. M. Misior</name>
</author>
<author>
<name sortKey="Miles, M C" uniqKey="Miles M">M. C. Miles</name>
</author>
<author>
<name sortKey="Saxena, H" uniqKey="Saxena H">H. Saxena</name>
</author>
<author>
<name sortKey="Riemer, E C" uniqKey="Riemer E">E. C. Riemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yasutomi, M" uniqKey="Yasutomi M">M. Yasutomi</name>
</author>
<author>
<name sortKey="Ohshima, Y" uniqKey="Ohshima Y">Y. Ohshima</name>
</author>
<author>
<name sortKey="Omata, N" uniqKey="Omata N">N. Omata</name>
</author>
<author>
<name sortKey="Yamada, A" uniqKey="Yamada A">A. Yamada</name>
</author>
<author>
<name sortKey="Iwasaki, H" uniqKey="Iwasaki H">H. Iwasaki</name>
</author>
<author>
<name sortKey="Urasaki, Y" uniqKey="Urasaki Y">Y. Urasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, S" uniqKey="Yoon S">S. Yoon</name>
</author>
<author>
<name sortKey="Shin, E S" uniqKey="Shin E">E. S. Shin</name>
</author>
<author>
<name sortKey="Park, S Y" uniqKey="Park S">S. Y. Park</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Kwon, H S" uniqKey="Kwon H">H. S. Kwon</name>
</author>
<author>
<name sortKey="Cho, Y S" uniqKey="Cho Y">Y. S. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhai, K" uniqKey="Zhai K">K. Zhai</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Nyirimigabo, E" uniqKey="Nyirimigabo E">E. Nyirimigabo</name>
</author>
<author>
<name sortKey="Mi, Y" uniqKey="Mi Y">Y. Mi</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C H" uniqKey="Zhang C">C. H. Zhang</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Lifshitz, L M" uniqKey="Lifshitz L">L. M. Lifshitz</name>
</author>
<author>
<name sortKey="Fogarty, K E" uniqKey="Fogarty K">K. E. Fogarty</name>
</author>
<author>
<name sortKey="Zhu, M S" uniqKey="Zhu M">M. S. Zhu</name>
</author>
<author>
<name sortKey="Zhuge, R" uniqKey="Zhuge R">R. ZhuGe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C H" uniqKey="Zhang C">C. H. Zhang</name>
</author>
<author>
<name sortKey="Lifshitz, L M" uniqKey="Lifshitz L">L. M. Lifshitz</name>
</author>
<author>
<name sortKey="Uy, K F" uniqKey="Uy K">K. F. Uy</name>
</author>
<author>
<name sortKey="Ikebe, M" uniqKey="Ikebe M">M. Ikebe</name>
</author>
<author>
<name sortKey="Fogarty, K E" uniqKey="Fogarty K">K. E. Fogarty</name>
</author>
<author>
<name sortKey="Zhuge, R" uniqKey="Zhuge R">R. ZhuGe</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Physiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Physiol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Physiol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Physiology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-042X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31379597</article-id>
<article-id pub-id-type="pmc">6647873</article-id>
<article-id pub-id-type="doi">10.3389/fphys.2019.00884</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Physiology</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Bitter Taste Receptors for Asthma Therapeutics</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nayak</surname>
<given-names>Ajay P.</given-names>
</name>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/731929/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shah</surname>
<given-names>Sushrut D.</given-names>
</name>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/744299/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Michael</surname>
<given-names>James V.</given-names>
</name>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/765083/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Deshpande</surname>
<given-names>Deepak A.</given-names>
</name>
<xref ref-type="corresp" rid="c001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/27552/overview"></uri>
</contrib>
</contrib-group>
<aff>
<institution>Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University</institution>
,
<addr-line>Philadelphia, PA</addr-line>
,
<country>United States</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Ronghua ZhuGe, University of Massachusetts Medical School, United States</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Robert Brenner, University of Texas Health Science Center at San Antonio, United States; Qing-Hua Liu, South-Central University for Nationalities, China</p>
</fn>
<corresp id="c001">*Correspondence: Deepak A. Deshpande,
<email>deepak.deshpande@jefferson.edu</email>
</corresp>
<fn fn-type="other" id="fn004">
<p>This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>16</day>
<month>7</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>10</volume>
<elocation-id>884</elocation-id>
<history>
<date date-type="received">
<day>02</day>
<month>5</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>6</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Nayak, Shah, Michael and Deshpande.</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Nayak, Shah, Michael and Deshpande</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Clinical management of asthma and chronic obstructive pulmonary disease (COPD) has primarily relied on the use of beta 2 adrenergic receptor agonists (bronchodilators) and corticosteroids, and more recently, monoclonal antibody therapies (biologics) targeting specific cytokines and their functions. Although these approaches provide relief from exacerbations, questions remain on their long-term efficacy and safety. Furthermore, current therapeutics do not address progressive airway remodeling (AR), a key pathological feature of severe obstructive lung disease. Strikingly, agonists of the bitter taste receptors (TAS2Rs) deliver robust bronchodilation, curtail allergen-induced inflammatory responses in the airways and regulate airway smooth muscle (ASM) cell proliferation and mitigate features of AR
<italic>in vitro</italic>
and in animal models. The scope of this review is to provide a comprehensive and systematic insight into our current understanding of TAS2Rs with an emphasis on the molecular events that ensue TAS2R activation in distinct airway cell types and expand on the pleiotropic effects of TAS2R targeting in mitigating various pathological features of obstructive lung diseases. Finally, we will discuss specific opportunities that could help the development of selective agonists for specific TAS2R subtypes in the treatment of asthma.</p>
</abstract>
<kwd-group>
<kwd>TAS2R</kwd>
<kwd>airway smooth muscle</kwd>
<kwd>gustducin</kwd>
<kwd>asthma</kwd>
<kwd>SCC</kwd>
<kwd>relaxation</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">American Asthma Foundation
<named-content content-type="fundref-id">10.13039/100008925</named-content>
</funding-source>
<award-id rid="cn001">HL137030</award-id>
<award-id rid="cn001">AAF 13-0063</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="3"></fig-count>
<table-count count="2"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="121"></ref-count>
<page-count count="15"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec id="S1">
<title>Introduction</title>
<p>Gustatory chemosensory perception within the oral cavity of vertebrates allows for discernment of bitter, sweet, sour, salty, and umami (savory taste associated with monosodium glutamate) stimuli associated with ingested foods. This sensation is communicated either through non-receptor or receptor mediated mechanisms and is commonly described as “taste.” While salt and sour taste perceptions are hypothesized to be driven by epithelial sodium channel (ENaC) and acid-sensing ion channels (ASICs), respectively, (
<xref rid="B45" ref-type="bibr">Heck et al., 1984</xref>
;
<xref rid="B54" ref-type="bibr">Kinnamon et al., 1988</xref>
;
<xref rid="B109" ref-type="bibr">Ugawa et al., 1998</xref>
), sweet, umami and bitter sensations are mediated by oligomeric G protein-coupled receptor (GPCR) isoforms (
<xref rid="B2" ref-type="bibr">Adler et al., 2000</xref>
;
<xref rid="B39" ref-type="bibr">Gilbertson et al., 2000</xref>
;
<xref rid="B88" ref-type="bibr">Sainz et al., 2001</xref>
). Collectively, these chemoreceptors and taste associated-ion channels have been comprehensively studied on taste cells which are organized in taste buds within the four different gustatory papillae on the dorsal surface of the mammalian tongue. Chemoperception of taste is initiated by interaction of specific taste stimulus with the highly specialized cognate receptors on type II taste cells on the tongue and subsequent transmission of signals to the brain through various cranial nerves (
<xref rid="B60" ref-type="bibr">Lee and Cohen, 2015</xref>
). Evolutionarily, perception of taste (along with olfaction) has been considered to provide dietary advantage since it may indicate whether a particular food is corrupted and potentially harmful for consumption.</p>
<p>Studied predominantly within the oral cavity, surprisingly taste receptors have been recently described in extra-oral physiological systems (respiratory, gastrointestinal, nervous, circulatory, dermal, and hematopoietic), indicating that taste receptors have adaptive functions. Specifically, bitter taste receptors (TAS2Rs) have been identified in various extra-oral tissues, including gut, pancreas, testes, lungs, and bladder (
<xref rid="B98" ref-type="bibr">Sternini et al., 2008</xref>
;
<xref rid="B26" ref-type="bibr">Deshpande et al., 2011</xref>
;
<xref rid="B23" ref-type="bibr">Clark et al., 2012</xref>
;
<xref rid="B115" ref-type="bibr">Xu et al., 2013</xref>
;
<xref rid="B112" ref-type="bibr">Wolfle et al., 2016</xref>
). TAS2Rs impart distinct biological functions within these different tissue environments, emphasizing physiological layering and versatility. Most importantly for the scope of discussion here, the ectopic distribution of TAS2Rs in upper and lower respiratory structural (epithelial and airway smooth muscle cells) and immune cells has also been described recently (
<xref rid="B26" ref-type="bibr">Deshpande et al., 2011</xref>
;
<xref rid="B23" ref-type="bibr">Clark et al., 2012</xref>
;
<xref rid="B60" ref-type="bibr">Lee and Cohen, 2015</xref>
). In this review, we will discuss TAS2R biology in distinct cell types associated with the respiratory system, the specific signaling events that ensue TAS2R activation, and the physiological outcomes in cells (
<italic>in vitro</italic>
) and integrative model systems (
<italic>ex vivo</italic>
and
<italic>in vivo</italic>
) relevant to the pathology of obstructive lung diseases.</p>
</sec>
<sec id="S2">
<title>TAS2Rs in Airway and Immune Cells: Subtypes and Physiological Functions</title>
<sec id="S2.SS1">
<title>TAS2R Expression in Distinct Airway Cell Types</title>
<p>In lungs, TAS2R expression has been confirmed in multiple airway cell types including airway smooth muscle (ASM) cells, distinct epithelial cell subtypes as well as resident (macrophages) and migratory hematopoietic (neutrophils, mast cells, lymphocytes) inflammatory cells (
<xref rid="B95" ref-type="bibr">Shah et al., 2009</xref>
;
<xref rid="B26" ref-type="bibr">Deshpande et al., 2011</xref>
;
<xref rid="B69" ref-type="bibr">Maurer et al., 2015</xref>
;
<xref rid="B107" ref-type="bibr">Tran et al., 2018</xref>
). In this section we will provide a brief overview of TAS2R expression in individual cell types.</p>
<sec id="S2.SS1.SSS1">
<title>Airway Smooth Muscle</title>
<p>In isolated ASM cells from healthy human donors, mRNA transcripts have been confirmed for multiple TAS2R subtypes (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Transcripts of different TAS2Rs were confirmed in ASM tissues freshly dissected from human lungs. Specifically, transcripts of
<italic>TAS2R10</italic>
,
<italic>TAS2R14</italic>
,
<italic>TAS2R31</italic>
are highly expressed in donor ASM cells with 3 to 4-fold higher levels relative to
<italic>ADRB2</italic>
(which encodes for the β
<sub>2</sub>
adrenergic receptor). Transcripts of other TAS2Rs such as
<italic>TAS2R5</italic>
,
<italic>TAS2R4</italic>
, and
<italic>TAS2R19</italic>
are also expressed at higher levels than
<italic>ADRB2</italic>
. In subsequent years, investigators have reported TAS2Rs in ASM isolated from guinea pigs and mice, thus providing useful
<italic>in vivo</italic>
and
<italic>ex vivo</italic>
systems to study the role of TAS2Rs in ASM cells (
<xref rid="B85" ref-type="bibr">Pulkkinen et al., 2012</xref>
;
<xref rid="B121" ref-type="bibr">Zhang et al., 2013</xref>
;
<xref rid="B100" ref-type="bibr">Tan and Sanderson, 2014</xref>
). Specifically, in these studies,
<italic>TAS2R4</italic>
,
<italic>TAS2R14</italic>
, and
<italic>TAS2R10</italic>
have been described in rodent ASM and TAS2R107 was shown in murine ASM. Immunofluorescence studies in both isolated ASM cells and tissue slices obtained from human and rodent lungs have confirmed the expression of different subtypes TAS2Rs at protein level. These findings suggest that the expression of TAS2Rs on ASM is evolutionarily conserved across multiple species. Of note, TAS2R subtypes are found in smooth muscle of other organs including vasculature, gastrointestinal tract and bladder and play a role in the physiological regulation of multiple organ systems (e.g., gastric emptying, vascular tone and bladder contractility) (
<xref rid="B64" ref-type="bibr">Lund et al., 2013</xref>
;
<xref rid="B6" ref-type="bibr">Avau et al., 2015</xref>
;
<xref rid="B63" ref-type="bibr">Liu et al., 2017</xref>
;
<xref rid="B119" ref-type="bibr">Zhai et al., 2016</xref>
).</p>
</sec>
<sec id="S2.SS1.SSS2">
<title>Airway Epithelial Cells</title>
<p>Within the nasal cavity many cells that express TAS2Rs have been shown to be gustducin-positive and isolated cells have been confirmed for expression of TAS2Rs at transcript level (
<xref rid="B34" ref-type="bibr">Finger et al., 2003</xref>
;
<xref rid="B95" ref-type="bibr">Shah et al., 2009</xref>
;
<xref rid="B114" ref-type="bibr">Wu et al., 2012</xref>
;
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
). Specialized ciliated epithelial cells and solitary chemosensory cells (SCCs) express various TAS2R isoforms that are capable of recognizing specific chemical constituents within inhaled toxins and acyl-homoserine-lactones (AHLs) released by microbes. SCCs comprise 1% of total respiratory surface area (
<xref rid="B113" ref-type="bibr">Workman et al., 2015</xref>
) and express multiple TAS2R subtypes that are responsive to bitter tastants. SCCs, however, do not express TAS2R38, which is found on ciliated epithelial cells (
<xref rid="B61" ref-type="bibr">Lee et al., 2012</xref>
,
<xref rid="B59" ref-type="bibr">2014</xref>
). For additional details on SCCs and their role in chemo-sensation and other physiological processes, the readers are referred to other reviews (
<xref rid="B93" ref-type="bibr">Sbarbati and Osculati, 2003</xref>
;
<xref rid="B8" ref-type="bibr">Barham et al., 2013</xref>
). In addition to SCCs, specialized chemosensory cells called
<italic>brush cells</italic>
(BCs) also express TAS2Rs (
<xref rid="B92" ref-type="bibr">Saunders et al., 2013</xref>
). TAS2Rs have also been shown to be expressed by motile cilia of the human airway epithelial cells (
<xref rid="B95" ref-type="bibr">Shah et al., 2009</xref>
). Gustducin-expressing epithelial cells are not limited to humans and have been reported to be scattered throughout the nasal epithelium in other species including rodents (
<xref rid="B34" ref-type="bibr">Finger et al., 2003</xref>
). Unlike ASM cells, expression of TAS2Rs on airway epithelium is restricted to specialized areas suggesting engagement of TAS2Rs in esoteric physiological and pathophysiological functions.</p>
<fig id="S2.F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>Expression of TAS2Rs and distinct functional outcomes of TAS2R agonism in airway cell types. Studies have demonstrated that different TAS2R subtypes are expressed on solitary chemosensory cells, ciliated epithelial cells, airway smooth muscle cells and immune cells. Proximal signaling events following TAS2R activation are invariant in taste cells and non-gustatory systems such as respiratory system. Moreover, these receptors have been evolutionarily engineered to adapt to the tissue environment. Consequently, TAS2R activation results in diverse functional outcomes depending on the cell type. While in taste cells, activation of TAS2Rs results in sensation of bitter taste, in epithelial cells and immune cells TAS2Rs play a crucial role in recognizing microbial products and mounting nuanced antimicrobial responses, specifically increased ciliary beat frequency, mucus clearance or antimicrobial nitric oxide generation. In ASM cells, TAS2Rs can be stimulated to induce ASM relaxation, bronchodilation, and inhibition of cellular proliferation. These functional outcomes of TAS2R activation in airway and immune cells prompt at potential therapeutic utility of the TAS2R agonism in obstructive lung diseases such as asthma.</p>
</caption>
<graphic xlink:href="fphys-10-00884-g001"></graphic>
</fig>
</sec>
<sec id="S2.SS1.SSS3">
<title>Immune Cells</title>
<p>In addition to structural cells of the lung tissue, TAS2Rs have also been identified in tissue resident and lung infiltrating immune cells (
<xref rid="B79" ref-type="bibr">Orsmark-Pietras et al., 2013</xref>
;
<xref rid="B32" ref-type="bibr">Ekoff et al., 2014</xref>
). TAS2Rs have been confirmed at transcript level using genome-wide expression analyses of isolated blood leukocytes. Furthermore, the expression of 3 TAS2Rs (13, 14, and 19) has been shown to be significantly increased in asthmatics (
<xref rid="B79" ref-type="bibr">Orsmark-Pietras et al., 2013</xref>
). In the same study, lymphocytes were demonstrated to have higher expression of many TAS2Rs relative to monocytes and neutrophils, with
<italic>TAS2R10</italic>
expression significantly upregulated in lymphocytic populations. Additionally, TAS2R38 has been reported in lymphocytes with high level of expression in CD4
<sup>+</sup>
T lymphocyte populations, with extensive phenotyping revealing that the expression levels are higher in activated and memory T cell populations relative to naïve CD4
<sup>+</sup>
T cells (
<xref rid="B107" ref-type="bibr">Tran et al., 2018</xref>
). In addition to lymphocytes, TAS2Rs have also been reported in monocytic and granulocytic innate immune cells (
<xref rid="B69" ref-type="bibr">Maurer et al., 2015</xref>
;
<xref rid="B36" ref-type="bibr">Gaida et al., 2016</xref>
). Of particular interest,
<italic>TAS2R38</italic>
expression has been reported in neutrophils by multiple investigators and has gained significant interest owing to its role in promoting antimicrobial action (
<xref rid="B69" ref-type="bibr">Maurer et al., 2015</xref>
;
<xref rid="B36" ref-type="bibr">Gaida et al., 2016</xref>
). Finally, nine distinct TAS2R subtypes have been reported in mast cells, with
<italic>TAS2Rs 4, 46</italic>
, and
<italic>14</italic>
expressed at high levels (
<xref rid="B32" ref-type="bibr">Ekoff et al., 2014</xref>
). Presence of TAS2Rs on immune cells opens a new avenue for therapeutic targeting in airway inflammatory diseases such as asthma (
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
).</p>
</sec>
</sec>
<sec id="S2.SS2">
<title>Functional Effects of Stimulation of TAS2Rs in Airway Cells</title>
<sec id="S2.SS2.SSS1">
<title>Airway Smooth Muscle</title>
<sec id="S2.SS2.SSS1.Px1">
<title>Relaxation</title>
<p>Activation of TAS2Rs on ASM cells results in robust relaxation (
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
), perhaps a serendipitous observation that attracted the attention of researchers from academia and pharmaceutical industry. The proximal signaling events that ensue TAS2R activation in ASM cells are marked by increased [Ca
<sup>2+</sup>
]
<sub>i</sub>
in ASM cells. Initially, it was presumed that the spike in [Ca
<sup>2+</sup>
]
<sub>i</sub>
in ASM cells following TAS2R activation by bitter taste compounds could result in ASM contraction (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). This is because, in cultured human ASM cells the magnitude of [Ca
<sup>2+</sup>
]
<sub>i</sub>
transients evoked by bitter tastants is comparable to that of Gα
<sub>
<italic>q</italic>
</sub>
-coupled bronchoconstrictors, histamine, and bradykinin (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Constituents of environmental pollutants could be presumably bitter tasting compounds and may engage TAS2Rs in airways and promote ASM contraction and consequently the physiological rejection of inhaled toxicants. Surprisingly, stimulation of TAS2Rs on ASM induces a relaxation response with substantial reversal of pharmacologically- induced contraction as demonstrated using isolated intact murine tracheal rings and human main-stem bronchi (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B120" ref-type="bibr">Zhang et al., 2012</xref>
,
<xref rid="B121" ref-type="bibr">2013</xref>
). Further, microrheological techniques have demonstrated that the TAS2Rs expressed on isolated human ASM cells are primary targets that drive relaxation response on stimulation with bitter compounds (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). It is worth noting that TAS2R-mediated [Ca
<sup>2+</sup>
]
<sub>i</sub>
elevation in ASM cells was not observed in freshly isolated murine ASM cells (
<xref rid="B121" ref-type="bibr">Zhang et al., 2013</xref>
) and in murine lung slices (
<xref rid="B100" ref-type="bibr">Tan and Sanderson, 2014</xref>
) contrary to what was seen in cultured human ASM cells. This discrepancy could stem from difference in the experimental model used in different studies. Furthermore, TAS2R activation in the presence of a contractile agonist results in inhibition of contractile agonist-induced elevation of [Ca
<sup>2+</sup>
]
<sub>i</sub>
in ASM cells (
<xref rid="B18" ref-type="bibr">Camoretti-Mercado et al., 2015</xref>
).</p>
<p>Studies on TAS2Rs in ASM cells have shown that agonists of these receptors can reverse contraction induced by diverse contractile agonists. In our studies with murine tracheal tissue, we demonstrated that both quinine and chloroquine can reverse contraction induced by acetylcholine (ACh) and serotonin (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Similarly,
<xref rid="B12" ref-type="bibr">Belvisi et al. (2011)</xref>
demonstrated that chloroquine can relax human airways contracted with histamine or carbachol. Airway relaxation following TAS2R agonism has since been unequivocally demonstrated by multiple groups in cells and tissues from mice (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B121" ref-type="bibr">Zhang et al., 2013</xref>
;
<xref rid="B100" ref-type="bibr">Tan and Sanderson, 2014</xref>
), humans (
<xref rid="B12" ref-type="bibr">Belvisi et al., 2011</xref>
;
<xref rid="B41" ref-type="bibr">Grassin-Delyle et al., 2013</xref>
) and guinea pigs (
<xref rid="B85" ref-type="bibr">Pulkkinen et al., 2012</xref>
) using isolated airways and lung slices. More recently, it was suggested that there is heterogeneity among TAS2R agonists in their ability to inhibit responses induced by distinct contractile agonists (
<xref rid="B18" ref-type="bibr">Camoretti-Mercado et al., 2015</xref>
). Specifically, chloroquine and denatonium demonstrate differential regulation of guinea pig ASM when pre-contracted with different contractile agonists (
<xref rid="B85" ref-type="bibr">Pulkkinen et al., 2012</xref>
). While denatonium (agonist for T2R4 and T2R10) preferentially inhibits cholinergic stimulation of guinea pig trachea, chloroquine (agonist for T2R3 and T2R10) can inhibit responses initiated by a broad spectrum of contractile agonists. Similar observations have been reported in human ASM cells where chloroquine and aristolochic acid (both bitter tastants) have been shown to differentially inhibit [Ca
<sup>2+</sup>
]
<sub>i</sub>
elevation induced by histamine and endothelin (
<xref rid="B18" ref-type="bibr">Camoretti-Mercado et al., 2015</xref>
). Furthermore, in
<italic>in vivo</italic>
mouse model studies it was further demonstrated that TAS2R agonists reverse methacholine-induced bronchoconstriction (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Collectively, these findings establish bitter tastants as novel bronchodilators.</p>
</sec>
<sec id="S2.SS2.SSS1.Px2">
<title>Proliferation</title>
<p>In addition to being the main structural contributor of hypercontractile pathology in obstructive lung diseases, ASM cells can demonstrate a hyperplastic/hypertrophic phenotype that contributes to the airway remodeling in the lungs. This pathology is marked by an increase in fixed airway resistance (
<xref rid="B76" ref-type="bibr">Nayak et al., 2018</xref>
). In
<italic>in vitro</italic>
and
<italic>in vivo</italic>
(described in detail in later section) studies, agonists of the bitter taste receptor have demonstrated promising antiproliferative effects (
<xref rid="B96" ref-type="bibr">Sharma et al., 2016</xref>
). Our studies and a recent study from Liggett’s laboratory demonstrated that bitter taste receptor agonists such chloroquine, quinine and saccharin inhibit growth factor (PDGF)-induced ASM cell proliferation
<italic>in vitro</italic>
(
<xref rid="B96" ref-type="bibr">Sharma et al., 2016</xref>
;
<xref rid="B52" ref-type="bibr">Kim et al., 2019</xref>
). In murine model of asthma, studies further demonstrated mitigation of ASM cell proliferation by bitter tastants providing
<italic>in vivo</italic>
evidence for anti-mitogenic effect of TAS2R agonists (
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
). Collectively, TAS2R agonist inhibit both ASM contraction and proliferation providing an opportunity to overcome two key features of asthma with TAS2R agonism.</p>
</sec>
</sec>
<sec id="S2.SS2.SSS2">
<title>Airway Epithelial Cells</title>
<p>Multiple epithelial cell types possess TAS2R and the key components of the signaling machinery that facilitate intracellular calcium signaling in response to stimulation by bitter agonists (i.e., gustducin, PLCβ
<sub>2</sub>
, TRPM5, and IP
<sub>3</sub>
R
<sub>3</sub>
) (
<xref rid="B34" ref-type="bibr">Finger et al., 2003</xref>
;
<xref rid="B106" ref-type="bibr">Tizzano et al., 2006</xref>
,
<xref rid="B103" ref-type="bibr">2011</xref>
;
<xref rid="B70" ref-type="bibr">Merigo et al., 2007</xref>
;
<xref rid="B42" ref-type="bibr">Gulbransen et al., 2008</xref>
;
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
). Consistent with their ability to promote repulsive responses to noxious stimuli, TAS2Rs on upper airway (nasal) epithelial cells play a role in innate recognition and removal of harmful pathogens thus promoting immunity. This biological response to microbial secondary metabolites requires PLCβ2 and TRPM5 (
<xref rid="B59" ref-type="bibr">Lee et al., 2014</xref>
). SCCs regulate respiratory rate owing to their close proximity to parasympathetic nerve terminals and ability to release acetylcholine (ACh) (
<xref rid="B57" ref-type="bibr">Krasteva et al., 2011</xref>
,
<xref rid="B58" ref-type="bibr">2012</xref>
). Stimulation of TAS2Rs on SCCs stimulates release of the neurotransmitter acetylcholine, which drives innate defenses by either eliciting a neurogenic inflammation or depressing respiration rate to limit continued inhalation of foreign insult (
<xref rid="B34" ref-type="bibr">Finger et al., 2003</xref>
;
<xref rid="B105" ref-type="bibr">Tizzano et al., 2010</xref>
;
<xref rid="B57" ref-type="bibr">Krasteva et al., 2011</xref>
,
<xref rid="B58" ref-type="bibr">2012</xref>
;
<xref rid="B91" ref-type="bibr">Saunders et al., 2014</xref>
). In sinonasal epithelial cells, activation of TAS2R38 increases mucociliary clearance and directly kills bacteria suggesting bactericidal effect of TAS2Rs. Activation of TAS2Rs on human mucus secreting ciliated epithelial cells with bitter tastants results in an elevation of intracellular calcium, increased ciliary beat frequency and improved mucus clearance (
<xref rid="B95" ref-type="bibr">Shah et al., 2009</xref>
). TAS2Rs are located both extracellularly on the motile cilia and on the apical membrane of the cell. Receptor activation on ciliated epithelial cells may also result in induction of anti-microbial nitric oxide (
<xref rid="B61" ref-type="bibr">Lee et al., 2012</xref>
).</p>
<p>Within the nasal respiratory epithelium, chemosensory receptors are located on (1) a specialized population of trigeminal chemosensory cells that provide innate defense whereby inhaled toxic dusts or aerosols can trigger a physiological response which causes respiratory reflexes (
<xref rid="B54" ref-type="bibr">Kinnamon et al., 1988</xref>
;
<xref rid="B59" ref-type="bibr">Lee et al., 2014</xref>
), (2) SCCs that are uniquely positioned in close proximity to parasympathetic (vagus) nerve terminals (
<xref rid="B109" ref-type="bibr">Ugawa et al., 1998</xref>
;
<xref rid="B57" ref-type="bibr">Krasteva et al., 2011</xref>
,
<xref rid="B58" ref-type="bibr">2012</xref>
;
<xref rid="B92" ref-type="bibr">Saunders et al., 2013</xref>
,
<xref rid="B91" ref-type="bibr">2014</xref>
), (3) mucus producing ciliary epithelial cells that facilitate mucus clearance (
<xref rid="B95" ref-type="bibr">Shah et al., 2009</xref>
). Therefore, airway epithelial TAS2Rs play critical role in multitudes of airway pathologies. In the context of allergic airway diseases, certain microbes (such as molds) can be major sources of potent allergens that may exacerbate underlying asthma. Innate recognition of such toxic dusts and microbes could potentially help protecting the respiratory system from constant damage. Further, chemosensory cells in airway epithelium may also act as focal point of initiation and orchestration of allergen-induced type 2 immune response similar to what has been shown for tuft cells (chemosensory cells of gastrointestinal tract) in mediating parasite-induced Th2 immune response (
<xref rid="B65" ref-type="bibr">Luo et al., 2019</xref>
).</p>
</sec>
<sec id="S2.SS2.SSS3">
<title>Immune Cells</title>
<p>Similar to epithelial cells, immune cells serve a critical function of maintaining homeostasis in tissue environments by neutralizing foreign insults. Immune cells are primarily armed with multiple cell surface receptors (TLRs and CLRs) and cytosolic proteins (cryopyrin or NALP3) that recognize specific pathogen associated molecular patterns (PAMPs). Immune cells also express TAS2Rs that further consolidate their ability to recognize microbial products and mount the appropriate response. In IgE-receptor–activated primary human mast cells, TAS2R agonists are found to inhibit the release of histamine and prostaglandin D2 (
<xref rid="B32" ref-type="bibr">Ekoff et al., 2014</xref>
). TAS2R agonists inhibit the release of multiple proinflammatory cytokines and eicosanoids in human blood leukocytes (
<xref rid="B79" ref-type="bibr">Orsmark-Pietras et al., 2013</xref>
). Bitter tastants (such as chloroquine, colchicine, erythromycin or ofloxacin) can inhibit cytokine release from tissue macrophages, myeloid-derived cell lines, circulating monocytes and monocyte-derived macrophages/dendritic cells (
<xref rid="B48" ref-type="bibr">Jeong and Jue, 1997</xref>
;
<xref rid="B46" ref-type="bibr">Ianaro et al., 2000</xref>
;
<xref rid="B117" ref-type="bibr">Yasutomi et al., 2005</xref>
;
<xref rid="B47" ref-type="bibr">Jang et al., 2006</xref>
;
<xref rid="B78" ref-type="bibr">Ogino et al., 2009</xref>
;
<xref rid="B94" ref-type="bibr">Schierbeck et al., 2010</xref>
;
<xref rid="B110" ref-type="bibr">Vrancic et al., 2012</xref>
). In addition to inhibiting cytokine production, our study in isolated human peripheral blood neutrophils suggest that activation of TAS2Rs results in inhibition of migration of immune cells (
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
). Overall the studies noted above suggest that TAS2R agonism can inhibit cytokine/chemokine production and inflammatory cell chemotaxis resulting in a robust anti-inflammatory effect and promotion of immune tolerance. The molecular mechanisms underlying the anti-inflammatory effects of TAS2R activation need additional investigation.</p>
</sec>
</sec>
<sec id="S2.SS3">
<title>TAS2R – Receptor Organization, Core Signaling Events and Related Functional Outcomes</title>
<p>G protein-coupled receptors mediate signal transduction in all physiological systems and are activated by a wide range of endogenous ligands including chemicals, peptides and proteins. They are often critical for maintaining homeostatic functions in various tissue systems and consequently have been targeted for drug discovery in various diseases. Engagement of activating molecules (i.e., agonists) to the GPCR induces a conformational change in the receptor within the plasma membrane, allowing for binding of cognate heterotrimeric G proteins (G
<sub>q</sub>
, G
<sub>s</sub>
, G
<sub>i</sub>
subunits) which initiates downstream signaling and accumulation of second messengers (e.g., Ca
<sup>2+</sup>
, cAMP) that culminates in distinct biological outcomes (
<xref rid="B14" ref-type="bibr">Billington and Penn, 2003</xref>
;
<xref rid="B25" ref-type="bibr">Deshpande and Penn, 2006</xref>
). Receptors of bitter taste sensation belong to the GPCR super-family of proteins and possess the typical structure of seven plasma membrane-spanning domains with a short extracellular N-terminal domain and an intracellular C-terminal domain. However, TAS2Rs differ from prototypical GPCRs in that TAS2Rs primarily associate with the cognate heterotrimeric G protein (gustducin) composed of Gα
<sub>gust</sub>
and Gβγ subunits (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B104" ref-type="bibr">Tizzano and Finger, 2013</xref>
;
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
). Although gustducin expression is demonstrated in airway epithelial and smooth muscle cells, the functional role of Gα
<sub>gust</sub>
in these non-gustatory cells remains unclear. Recently, it has been suggested that TAS2R signaling in ASM does not involve Gα
<sub>gust</sub>
but instead ASM TAS2Rs couple to Gα
<sub>i</sub>
subunits to induce airway relaxation (
<xref rid="B53" ref-type="bibr">Kim et al., 2017</xref>
). However, additional studies are needed to ascertain the role of Gα
<sub>gust</sub>
or other Gα
<sub>i</sub>
G proteins in airway relaxation and bronchodilation
<italic>ex vivo</italic>
and
<italic>in vivo</italic>
using knockout mice. It is also worth noting here that the Gα
<sub>gust</sub>
is highly homologous to other members of the G
<sub>i</sub>
family of G proteins.</p>
<p>Typically, ligand interaction with the receptor results in a conformational change of the receptor and subsequent association and then the dissociation of the G
<sub>α</sub>
and G
<sub>β</sub>
<sub>bbb</sub>
subunits. The conformation states of TAS2Rs with or without agonist activation is not well understood. Moreover, each of the TAS2R subtypes can be activated by multiple, chemically diverse group of agonists making the structure-activity relationship very complex. However, recent advances in computational analysis has provided hints at structural requirements of different domains on TAS2R for agonist binding (
<xref rid="B16" ref-type="bibr">Born et al., 2013</xref>
;
<xref rid="B29" ref-type="bibr">Di Pizio and Niv, 2015</xref>
;
<xref rid="B28" ref-type="bibr">Di Pizio et al., 2016</xref>
). Presumably, the disengaged G protein subunit mobilizes the membrane-associated phospholipase Cβ 2 (PLCβ2) enzyme, which in turn catalyzes the cleavage of the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP
<sub>2</sub>
) into second messengers, inositol 1,4,5-triphosphate (IP
<sub>3</sub>
) and diacylglycerol (DAG) (
<xref rid="B14" ref-type="bibr">Billington and Penn, 2003</xref>
). Cytosolic interactions between IP
<sub>3</sub>
and its receptor IP
<sub>3</sub>
R, an ion channel present on sarcoplasmic reticulum could result in elevation of [Ca
<sup>2+</sup>
]
<sub>i</sub>
. In taste cells, this signaling cascade results in elevation of intracellular calcium, opening of TRPM5 channel and in influx of Na
<sup>+</sup>
causing depolarization at the cellular membrane resulting in release of ATP which acts as a neurotransmitter by activating purinergic receptors on nerves associated with taste buds. The resulting impulse is transmitted to the brain as bitter taste sensation (
<xref rid="B35" ref-type="bibr">Finger et al., 2005</xref>
;
<xref rid="B21" ref-type="bibr">Chaudhari and Roper, 2010</xref>
;
<xref rid="B101" ref-type="bibr">Taruno et al., 2013</xref>
;
<xref rid="B82" ref-type="bibr">Peng et al., 2015</xref>
). Absence of any of these signaling proteins, results in loss of sensation of bitter taste suggesting the necessary role of TAS2R-mediated signal transduction mechanism involving calcium. This signaling cascade is invariant and forms the core intracellular response in distinct cell types, however, the functional outcome is different and is tailored to the physiological environment wherein these receptors reside (
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
).</p>
<sec id="S2.SS3.SSS1">
<title>Mechanistic Basis of ASM Relaxation by TAS2Rs</title>
<p>Independent research studies have consistently asserted that TAS2R agonism induces airway relaxation, however, the exact mechanism(s) by which this occurs is unclear (
<xref ref-type="fig" rid="S2.F2">Figure 2</xref>
). Detailed investigation into the mechanism of ASM relaxation induced by TAS2R activation suggests that unlike activation of β
<sub>2</sub>
adrenergic receptor by receptor selective agonists, bitter tastants induce relaxation through mechanisms not dependent on generation of prototypical Gs-coupled signaling second messengers such as cAMP and activation of PKA, effects deemed essential for relaxation of ASM (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Furthermore, neither epithelial cell generated nitric oxide nor PGE
<sub>2</sub>
via activation of soluble guanylyl cyclase and prostaglandin receptors respectively, contributes toward TAS2R-mediated airway relaxation.</p>
<fig id="S2.F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>TAS2R signaling mediating relaxation in ASM cells. Activation of TAS2Rs on ASM cells results in relaxation, however, diversity in proximal signaling following receptor activation may occur with different agonists and agonist concentrations. Three basic mechanisms of action have been proposed: (1) elevation in intracellular Ca
<sup>2+</sup>
from SR stores that in turn activate large conductance Ca
<sup>2+</sup>
activated K
<sup>+</sup>
(BK
<sub>Ca</sub>
) channels, alter membrane potential (hyperpolarize) and relax the smooth muscle; (2) Gβγ subunit-mediated inhibition of voltage-dependent calcium channel that are activated upon stimulation of ASM cells with contractile agonist thereby inhibiting calcium elevation and contraction; (3) inhibition of Ca
<sup>2+</sup>
release from IP3 stores by Gq-coupled GPCR agonists thereby attenuating agonist-induced calcium elevation and contraction.</p>
</caption>
<graphic xlink:href="fphys-10-00884-g002"></graphic>
</fig>
<p>Findings from multiple groups suggest that TAS2Rs signaling in ASM cells involves complex interaction of diverse second messengers. Signaling via TAS2R in ASM is mediated via Gβγ subunit (contrary to other GPCRs in ASM) similar to what has been shown in taste cells (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Further, TAS2R-induced ASM relaxation is dependent on activation of phospholipase C. However, the specific signaling downstream of PLC activation is somewhat controversial. In cultured ASM cells, our studies reveal elevation in intracellular calcium concentration by a variety of bitter tastants including chloroquine, quinine and saccharine (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Although, the accumulation of [Ca
<sup>2+</sup>
]
<sub>i</sub>
by bitter tastants and contractile agents such as histamine evoke differential functional outcomes. One leading hypothesis is that the stimulation by either agonist drives distinct spatiotemporal distribution of intracellular calcium. Stimulation with bitter tastants possibly compartmentalizes Ca
<sup>2+</sup>
near the cell membrane resulting in opening of channels that collectively contribute to hyperpolarization at the cellular membrane (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). A similar mechanism has been described in neuronal cells where microdomains of concentrated [Ca
<sup>2+</sup>
]
<sub>i</sub>
are associated with opening of BK
<sub>
<italic>Ca</italic>
</sub>
channels (
<xref rid="B33" ref-type="bibr">Fakler and Adelman, 2008</xref>
). In ASM cells, activation of TAS2Rs and H
<sub>1</sub>
histamine receptor by ligands (bitter tastants and histamine, respectively) results in generation of [Ca
<sup>2+</sup>
]
<sub>i</sub>
signals within the cell. However, activation of TAS2Rs results in rapid and localized mobilization of [Ca
<sup>2+</sup>
]
<sub>i</sub>
unlike response to histamine, which is predominantly diffused and delayed. However, in murine ASM cells and lung slices bitter tastants do not elicit calcium response but inhibit calcium elevation mediated by contractile agonists (
<xref rid="B100" ref-type="bibr">Tan and Sanderson, 2014</xref>
). Furthermore, a recent study revealed that modulation of calcium response in ASM is bitter tastant- and contractile agonist-dependent (
<xref rid="B18" ref-type="bibr">Camoretti-Mercado et al., 2015</xref>
). Calcium elevation, a rather atypical TAS2R signaling event appears to be heterogeneous and is restricted to specific combinations of a select few bitter tastants that may also activate/inhibit other heterotrimeric G
<sub>
<italic>q</italic>
</sub>
or G
<sub>i</sub>
-coupled receptors. Currently, the specific factors that contribute to the compartmentalization of [Ca
<sup>2+</sup>
]
<sub>i</sub>
and generation of possible microdomains remain unclear. Furthermore, the spatiotemporal dynamics of [Ca
<sup>2+</sup>
]
<sub>i</sub>
following activation of TAS2Rs by distinct agonists remain ill-defined and is a subject of future research.</p>
<p>Studies have shown that downstream of TAS2R activation, large conductance Ca
<sup>2+</sup>
-activated potassium channels (BK
<sub>Ca</sub>
) are opened (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). BK
<sub>Ca</sub>
channels that are gated by localized increase in calcium concentration and membrane potential are expressed on human ASM and are involved in regulating airway muscle tone (
<xref rid="B75" ref-type="bibr">Morin et al., 2007</xref>
;
<xref rid="B68" ref-type="bibr">Martin et al., 2008</xref>
). However, others have suggested that the activation of BK
<sub>Ca</sub>
channels may not be required for relaxation by bitter tastants (
<xref rid="B120" ref-type="bibr">Zhang et al., 2012</xref>
). Again, these discrepancies could arise from experimental models and use of bitter tastants alone or in combination with contractile agonist. A study by Zhuge group suggested that TAS2R activation leads to Gβγ–dependent inhibition of voltage-gated calcium channels that are required for Gq-coupled GPCR-mediated calcium elevation and contraction (
<xref rid="B120" ref-type="bibr">Zhang et al., 2012</xref>
). Inhibition of contractile agonist-induced calcium elevation by TAS2R activation was also demonstrated by Sanderson group (
<xref rid="B100" ref-type="bibr">Tan and Sanderson, 2014</xref>
). This study specifically demonstrated that TAS2R activation leads to Gβγ–dependent inhibition of IP
<sub>3</sub>
-mediated calcium oscillations in murine lung slices. Study by Tan and Anderson has shown that TAS2R agonists dilate airways not by increasing [Ca
<sup>2+</sup>
]
<sub>i</sub>
but through inhibition of IP
<sub>3</sub>
-mediated Ca
<sup>2+</sup>
oscillations induced by contractile agonists of the G
<sub>
<italic>q</italic>
</sub>
-coupled receptors. This limits the pool of Ca
<sup>2+</sup>
available to sustain the molecular signaling that contributes to contraction of ASM cells. Another study reaffirms findings by multiple investigators that TAS2Rs mediate ASM relaxation by unconventional mechanisms that are typical of bronchodilators currently in management of obstructive lung diseases. However, the findings from this group indicate that TAS2R agonists induce airway relaxation through inhibition of phosphatidylinositol-3 kinase (PI3K) (
<xref rid="B41" ref-type="bibr">Grassin-Delyle et al., 2013</xref>
). Specifically, inhibitors of PI3K (wortmannin, PI-828) potentiate the relaxing capabilities of bitter taste agonists. Elsewhere, it has been suggested that TAS2Rs regulate ASM function not by regulating pharmacomechanical coupling but by driving actin depolymerization and its subsequent dissociation from myosin (
<xref rid="B102" ref-type="bibr">Tazzeo et al., 2012</xref>
). While this mechanism has been specifically demonstrated for caffeine, it is unclear if this is a universal mechanism across all agonists.</p>
<p>Collectively, while multiple investigations described above have concluded that stimulation of TAS2Rs results in ASM relaxation, the specific mechanism/s by which this occurs has been controversial and has been debated extensively since the initial reporting of this phenomenon (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). The intrinsic heterogeneity within the TAS2R receptor-agonists combinations overlaid with species-specific variations in TAS2R expression may account for some of the differences. For instance, it was demonstrated that while agonist activity on TAS2R receptors increases [Ca
<sup>2+</sup>
]
<sub>i</sub>
, this phenomenon may not be universal for all bitter tasting compounds (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B18" ref-type="bibr">Camoretti-Mercado et al., 2015</xref>
). Furthermore, the authors also demonstrated that the choice of pre-contractile agonist could differentially alter intracellular Ca
<sup>2+</sup>
management in ASM cells suggesting differential regulation of compartmentalized signaling in ASM cells. As a consequence of this compartmentalized spatiotemporal regulation of Ca
<sup>2+</sup>
, the membrane potential changes are distinct (likely involving certain channels). The study concluded that TAS2R activation results in activation of principally two distinct pathways based on their efficiency in managing cellular Ca
<sup>2+</sup>
. The pathway that induces Ca
<sup>2+</sup>
accumulation is likely a less efficient pathway since the potency of agonists to achieve this response is high. Another second pathway likely competes with contractile agonists for the available Ca
<sup>2+</sup>
pool, thus driving a competitive inhibition of contraction (
<xref ref-type="fig" rid="S2.F2">Figure 2</xref>
). The pharmacological heterogeneity is also further complicated by the application of a mechanical stress/force change on ASM tissue in many of the
<italic>ex vivo</italic>
physiological evaluations describing TAS2R function. Another aspect that could contribute to differences is due to potential off-target effects of TAS2R agonists that are not completely understood. One approach that has previously worked for refining our understanding of heterogeneity in GPCR signaling involves distinct E-prostanoid (EP) receptor subtypes that bind to the endogenous ligand prostaglandin E2 (PGE
<sub>2</sub>
) resulting in diverse signaling and functional outcomes. The development of EP receptor subtype-specific agonists has provided clarity on the physiological attributes endowed to each receptor (
<xref rid="B73" ref-type="bibr">Michael et al., 2019</xref>
). Additional efforts that engender the development of TAS2R receptor subtype specific agonists could potentially clarify the perplexing signaling differences noted in multiple studies.</p>
<p>Finally, one puzzling aspect of TAS2R physiology in airways is that while stimulation of TAS2Rs across all species stimulates airway relaxation, the potency and efficacy of the relaxant effect is different in mice (including different subspecies) compared to humans (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
,
<xref rid="B26" ref-type="bibr">2011</xref>
;
<xref rid="B12" ref-type="bibr">Belvisi et al., 2011</xref>
;
<xref rid="B74" ref-type="bibr">Morice et al., 2011</xref>
;
<xref rid="B3" ref-type="bibr">An et al., 2012a</xref>
;
<xref rid="B120" ref-type="bibr">Zhang et al., 2012</xref>
). Broadly, the use of cells/tissues from different species could potentially explain some of the differences across the studies. Studies on tissues/cells sourced from human donors are also often fraught with intrinsic variabilities. Furthermore, the distribution of specific TAS2R subtypes within the human bronchial tree is uncharacterized and could possibly account toward variations. Finally, methodological discordances in defining baseline contractile tone or resting passive tension could explain the inconsistencies reported in these findings. In future, additional studies with more refined receptor subtype-specific agonists in a unified experimental system are needed to ascertain the relative contribution of each signal transduction pathway.</p>
</sec>
<sec id="S2.SS3.SSS2">
<title>Mechanistic Basis of Inhibition of ASM Proliferation by TAS2Rs</title>
<p>As noted earlier, one promising feature of TAS2R agonists is their ability to regulate ASM proliferation, a significant advantage over current asthma medications. Multiple studies have clarified the signaling mechanisms that regulate ASM proliferation (
<xref rid="B96" ref-type="bibr">Sharma et al., 2016</xref>
;
<xref rid="B81" ref-type="bibr">Pan et al., 2017</xref>
). Stimulation with growth factors results in proliferative signaling which are orchestrated and sustained by activation of distinct pathways. Firstly, growth factors can activate their cognate tyrosine-kinase receptors and activate the mitogen-activated protein (MAP) kinase pathway that promotes cell proliferation. Furthermore, activated receptors can also recruit cytosolic phosphoinositide-3-kinase (PI3K) that phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP
<sub>2</sub>
) to form phosphatidylinositol 3,4,5-triphosphate (PIP
<sub>3</sub>
), which is a second messenger that activates protein kinase B (Akt), which in turn can regulate activation of enzymes and transcription factors that promote cell growth (
<xref ref-type="fig" rid="S2.F3">Figure 3</xref>
). Agonists of TAS2Rs regulate ASM proliferation stimulated by growth factors by inhibiting specific checkpoints within these pro-growth pathways (
<xref rid="B96" ref-type="bibr">Sharma et al., 2016</xref>
). Specifically, TAS2R agonists (chloroquine and quinine) inhibit phosphorylation of Akt and p70-S6 kinase independent of PIP
<sub>3</sub>
regulation, suggesting that it occurs downstream of PI3K. Furthermore, while TAS2R agonists do not inhibit acute activation p42/44 and p38 following stimulation of ASM cells with growth factors, they inhibit activation of the transcription factors AP-1 (Activator protein-1), and E2F with an associated decrease in expression of cell cycle genes including cyclin D1, which are essential for cell cycle progression (
<xref ref-type="fig" rid="S2.F3">Figure 3</xref>
). Collectively, these findings demonstrate significant capability of TAS2R agonists in regulating ASM cell proliferation. A recent study by
<xref rid="B52" ref-type="bibr">Kim et al. (2019)</xref>
showed that TAS2R agonists inhibit cell proliferation in ASM cells obtained from healthy and asthmatic donors, and TAS2R agonist-induced antimitogenic effect on ASM involves inhibition of ERK MAP kinase activity in a time-dependent manner (
<xref ref-type="fig" rid="S2.F3">Figure 3</xref>
). The authors also demonstrate that different structurally diverse TAS2R agonists inhibit ASM proliferation to a different degree suggesting multiple mechanisms may contribute to the anti-mitogenic effect of TAS2R agonists (
<xref rid="B52" ref-type="bibr">Kim et al., 2019</xref>
).</p>
<fig id="S2.F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>Anti-proliferative actions of TAS2R agonism in ASM cells. In asthma, secreted growth factors from infiltrating immune cells and resident epithelial cells can promote ASM cell hyperplasia through PI3 and MAP kinase pathways. Activation of TAS2Rs can regulate ASM cell proliferation by (1) exerting inhibitory action on cell cycle progression (ERK/MAPK and PI3K) and (2) promoting mitochondrial fragmentation and autophagy, and inhibiting cell survival.</p>
</caption>
<graphic xlink:href="fphys-10-00884-g003"></graphic>
</fig>
<p>More recently, we have shown that in addition to arresting cell cycle progression, bitter tastants can also alter mitochondrial function and induce autophagy in ASM cells (
<xref rid="B81" ref-type="bibr">Pan et al., 2017</xref>
). Specifically, using a combination of ultrastructural analysis and biochemical approaches we demonstrate that TAS2R agonists stimulate formation of autophagosomes to inhibit cell survival (
<xref ref-type="fig" rid="S2.F3">Figure 3</xref>
). Furthermore, TAS2R agonists not only decrease mitochondrial membrane potential and increase ROS generation, they drive physical changes in mitochondrial structure by inducing fragmentation. Activation of TAS2Rs increased expression of Bnip3 and subsequently increased localization of dynamin-like protein 1 (DLP-1) to mitochondria with concurrent mitochondrial fragmentation and organelle dysfunction. These findings demonstrate that the activation of TAS2Rs induces cell death through diverse mechanisms, thus making them promising targets for development of anti-asthma therapy.</p>
</sec>
<sec id="S2.SS3.SSS3">
<title>Epithelial Cell Function Modulation by TAS2R Agonists</title>
<p>As noted earlier, the signaling events upon TAS2R activation are invariant in distinct cell types and results in mobilization of intracellular Ca
<sup>2+</sup>
from the intracellular stores. However, there is considerable diversity in specific events downstream of Ca
<sup>2+</sup>
accumulation within each cell type that contributes toward innate defense. For e.g., following stimulation by bitter tastants, sinonasal epithelial cells increase production of nitric oxide (NO) which can be toxic to invading pathogens (
<xref rid="B59" ref-type="bibr">Lee et al., 2014</xref>
). In particular, T2R38 has been shown to directly recognize
<italic>N</italic>
-acyl homoserine lactones (AHL) (a bitter tasting compound) from gram-negative bacteria (
<italic>Pseudomonas aeruginosa</italic>
) (
<xref rid="B61" ref-type="bibr">Lee et al., 2012</xref>
). In gram-negative bacteria and certain molds, accumulation of AHL serves as a quorum sensing strategy to regulate biofilm formation which is an assemblage of microbial cells that is enclosed within a polysaccharide matrix, and are an important sue toward controlling establishment of infectious diseases (
<xref rid="B30" ref-type="bibr">Donlan, 2002</xref>
;
<xref rid="B99" ref-type="bibr">Taghadosi et al., 2015</xref>
). T2R38-AHL interaction yields a Ca
<sup>2+</sup>
-dependent nitric oxide production, increased ciliary beat frequency, and increased mucociliary clearance of inhaled pathogens. Therefore, the airway epithelium TAS2R-mediated detection of AHL has an important role in imparting immunity in the airways, (
<xref rid="B105" ref-type="bibr">Tizzano et al., 2010</xref>
) in which TAS2Rs serve as pattern recognition receptors (PRRs) capable of directly engaging the molecules secreted by pathogens. While activation of TAS2R38 on ciliated epithelial cells generates bactericidal nitric oxide (
<xref rid="B61" ref-type="bibr">Lee et al., 2012</xref>
,
<xref rid="B59" ref-type="bibr">2014</xref>
), stimulation of TAS2Rs on SCCs stimulates release the neurotransmitter acetylcholine, which drives innate defenses by either eliciting a neurogenic inflammation or depressing respiration rate to limit continued inhalation of foreign insult (
<xref rid="B34" ref-type="bibr">Finger et al., 2003</xref>
;
<xref rid="B105" ref-type="bibr">Tizzano et al., 2010</xref>
;
<xref rid="B57" ref-type="bibr">Krasteva et al., 2011</xref>
,
<xref rid="B58" ref-type="bibr">2012</xref>
;
<xref rid="B91" ref-type="bibr">Saunders et al., 2014</xref>
). SCCs also demonstrate unique cooperative capabilities with adjacent cells to enhance innate immunity. Activation of TAS2Rs on SCCs stimulates a Ca
<sup>2+</sup>
wave within the cell, which propagates into adjoining cells through gap junctions and elicit release of antimicrobial peptides and β-defensins (
<xref rid="B13" ref-type="bibr">Bezencon et al., 2008</xref>
). In ciliated epithelial cells, TAS2Rs are located both extracellularly on the motile cilia and on the apical membrane of the cell, and receptor activation induces an increase in intracellular Ca
<sup>2+</sup>
, leading to increased ciliary beat frequency, possibly through induction of nitric oxide and cGMP-protein kinase G pathway (
<xref rid="B89" ref-type="bibr">Salathe, 2007</xref>
;
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
).</p>
<p>As we develop a better understanding of signaling in distinct airway epithelial cell types in normal and diseased state, and other factors that could serve as modulators of TAS2Rs signaling, we may be able to tease out the functional role for specific TAS2R subtypes and tailor specific agonists for desired physiological outcomes (
<xref rid="S2.T1" ref-type="table">Table 1</xref>
).</p>
<table-wrap id="S2.T1" position="float">
<label>TABLE 1</label>
<caption>
<p>TAS2R subtypes and broad selectivity of receptor agonists.</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Bitter tastants</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Human receptor</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>Murine receptor</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Denatonium</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R4, TAS2R10, TAS2R44</td>
<td valign="top" align="center" rowspan="1" colspan="1">TAS2R108</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">6-n-propyl-2-thiouracil (PROP)</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R4, TAS2R38, TAS2R51, TAS2R61</td>
<td valign="top" align="center" rowspan="1" colspan="1">TAS2R108</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Dextromethorphan</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R10</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">β-glucopyranosides</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R16</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Chloroquine</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R10, TAS2R3, TAS2R39, TAS2R7</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Acyl-homoserine lactones</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R38</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Quinine</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R10, TAS2R14, TAS2R4, TAS2R46, TAS2R39, TAS2R31, TAS2R7, TAS2R40</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Colchicine</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R4</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Strychnine</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R10, TAS2R46</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Noscapine</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R14</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Saccharin</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R31</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Cycloheximide</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">TAS2R5</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Lidocaine</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">TAS2R5</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Picrotoxinin</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R14</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
</sec>
</sec>
<sec id="S3">
<title>Role of TAS2Rs in Asthma: Findings From Animal Models and Human Cells and Tissues</title>
<sec id="S3.SS1">
<title>Animal Studies</title>
<p>Since their discovery on ASM cells, significant interest has been stimulated in gaining mechanistic insights into TAS2R signaling and their biology with an aim to regulate ASM function for therapeutic relief of obstructive lung diseases. Asthma is the leading cause of respiratory morbidity and increasing financial burden especially in developed countries. The disease has reached epidemic proportions affecting >330 million people worldwide, with over >250,000 deaths annually. Respiratory distress is primarily driven by airflow obstruction in the conducting airways resulting from constriction of ASM of the bronchi, excessive mucus production and airway inflammation orchestrated by cellular and secreted mediators. Clinical presentations can be managed with variable degree of success using therapeutic options available currently. However, the chronic pathological state in the lungs drives tissue remodeling (extensive structural changes to lung tissue), which is challenging to reverse with modern clinical interventions. Consequently, more than half the patients affected by asthma (and COPD) exhibit inadequate control of the disease with current therapeutic regimens (
<xref rid="B56" ref-type="bibr">Kraan et al., 1985</xref>
;
<xref rid="B22" ref-type="bibr">Cheung et al., 1992</xref>
). TAS2Rs have emerged as promising novel therapeutic targets owing to their efficacious bronchodilatory effect.</p>
<p>In the lung, the ASM cells express a repertoire of GPCRs that when activated modulate airway functions (contractile, proliferative and synthetic) (
<xref rid="B25" ref-type="bibr">Deshpande and Penn, 2006</xref>
). The discovery of TAS2Rs in structural and immune cells that drive asthma pathology provides an opportunity to mitigate the disease pathology through development of novel agonists that target these receptors. The unique physiological properties of TAS2Rs described here and elsewhere underline their clinical relevance (
<xref rid="B38" ref-type="bibr">Gerthoffer et al., 2013</xref>
;
<xref rid="B62" ref-type="bibr">Liggett, 2013</xref>
;
<xref rid="B83" ref-type="bibr">Pera and Penn, 2016</xref>
). Indeed, in severe asthmatics, upregulation of TAS2R sub-types on peripheral blood leucocytes has been established, underscoring their pharmacological accessibility as novel therapeutic targets for asthma (
<xref rid="B79" ref-type="bibr">Orsmark-Pietras et al., 2013</xref>
). Furthermore, in asthmatic ASM cells and lung tissue slices, neither the expression nor the signaling and function of TAS2Rs is impaired under inflammatory conditions (
<xref rid="B4" ref-type="bibr">An et al., 2012b</xref>
;
<xref rid="B87" ref-type="bibr">Robinett et al., 2014</xref>
). More importantly, TAS2R signal-function outcomes are not hindered by β2-adrenergic receptor tachyphylaxis (
<xref rid="B4" ref-type="bibr">An et al., 2012b</xref>
). This is very important because one of the challenges of using beta agonists is tachyphylaxis due to compromised functions of β
<sub>2</sub>
adrenergic receptors (
<xref rid="B9" ref-type="bibr">Beasley et al., 1999</xref>
;
<xref rid="B90" ref-type="bibr">Salpeter et al., 2010</xref>
;
<xref rid="B111" ref-type="bibr">Walker et al., 2011</xref>
). In fact, in murine model, TAS2R agonists inhibit bronchoconstriction induced by methacholine efficaciously despite a modest bronchodilation by beta agonist (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Furthermore, in the original article characterizing TAS2Rs on murine airway smooth muscle cells, a greater efficacy was demonstrated for bitter tastants in evoking bronchorelaxation compared to β
<sub>2</sub>
agonists, thus making them appealing therapeutic candidates for the management of airway diseases (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
).</p>
<p>In pre-clinical models of allergen-induced (house dust mite and ovalbumin) asthma, inhalation of bitter compounds grant bronchoprotection and mitigate allergen-induced airway inflammation (
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
). Treating mice with bitter taste compounds
<italic>via</italic>
inhalation of drug aerosols or intranasal administration results in ablation of most cardinal features of allergen-induced asthma (
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
).</p>
<p>Treatment with chloroquine and quinine also has a profound effect on infiltration by inflammatory cells in the airways and within the lung parenchyma. For many years, corticosteroids (inhaled and systemic) have been mainstay for management of bronchial inflammation in asthmatics. In addition to being a viable candidate for ASM relaxation, bitter compounds may be potentially employed in controlling airway inflammation. TAS2Rs have been reported on diverse human leukocyte populations, including circulating granulocytes, T lymphocytes and monocytes that are all central to asthma pathology (
<xref rid="B66" ref-type="bibr">Malki et al., 2015</xref>
). Microarray methods to analyze global changes in gene expression in leukocytes isolated from severe asthmatics revealed significant upregulation of genes for various TAS2R subtypes (
<xref rid="B79" ref-type="bibr">Orsmark-Pietras et al., 2013</xref>
). Expression of multiple TAS2R transcripts is relatively higher in lymphocytes compared to monocytes or granulocytes, consistent with another study involving healthy donors (
<xref rid="B66" ref-type="bibr">Malki et al., 2015</xref>
). There is also a significant shift in expression of TAS2R subtypes among healthy donors and asthmatics. For instance, in healthy donors,
<italic>TAS2R31</italic>
transcripts are reportedly most abundant in isolated circulating cells. Further, while
<italic>TAS2R10</italic>
expression is highest in leukocytes from severe asthmatics, its expression is lowest among TAS2Rs evaluated in leukocytes isolated from healthy donors, indicating regulation of receptor expression in disease states. Furthermore,
<italic>TAS2R5</italic>
expression in leukocytes from asthmatics demonstrates significant correlation with bronchial hyperresponsiveness to methacholine challenge. In the same study, treatment of leukocytes from whole blood co-stimulated with LPS and chloroquine or denatonium resulted in significant inhibition of production of allergic cytokines IL-4, IL-5 and IL-13. However, few have investigated the precise mechanism by which TAS2R agonists regulate immune cell function. Bitter compounds may also limit airway inflammation by regulating chemotaxis of immune cells and consequently their recruitment to airways (
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
). Inhibition of neutrophil recruitment by TAS2R agonism could potentially benefit in cases of neutrophilic severe asthma or in mitigating COPD-associated exacerbations. In both cases patients respond poorly to inhaled corticosteroids possibly due to lower expression of glucocorticoid receptors in infiltrating neutrophils (
<xref rid="B84" ref-type="bibr">Plumb et al., 2012</xref>
).</p>
<p>Another proposed mechanism by which TAS2R agonists may regulate airway inflammation is by inhibiting IgE receptor crosslinking-dependent activation of mast cells (MCs) (
<xref rid="B32" ref-type="bibr">Ekoff et al., 2014</xref>
). Activated MCs are recruited to the ASM in asthmatics and contribute to airway hyperresponsiveness (
<xref rid="B17" ref-type="bibr">Brightling et al., 2002</xref>
). Airway infiltrating mast cells influence ASM function by secreting pro-contractile and proliferative mediators such as histamines, leukotrienes, tryptase, TGF-β etc., (
<xref rid="B80" ref-type="bibr">Page et al., 2001</xref>
). Human mast cells isolated from cord blood express multiple TAS2Rs with
<italic>TAS2R4</italic>
in relatively higher abundance (
<xref rid="B32" ref-type="bibr">Ekoff et al., 2014</xref>
). Brief treatment of isolated mast cells with bitter compounds (chloroquine, denatonium) prior to receptor crosslinking and subsequent activation significantly inhibits release of histamine and PGD
<sub>2</sub>
indicating a different mechanism of directly limiting exposure of ASM to pro-contractile agents. Finally, if epithelial TAS2R subtypes regulate allergen-induced airway inflammation similar to what has been shown in parasite-induced Th2 immune response by TAS2Rs expressed on tuft cells in intestinal tract is not known.</p>
<p>Along with airway inflammation, airway remodeling forms a crucial hallmark of asthma and chronic obstructive lung diseases. Remodeling is marked by the increased thickening of ASM resulting from underlying cellular proliferation. Remodeling causes conducting airways to be refractory to bronchodilatory treatments and current treatment regimens have suboptimal effect on airway remodeling (
<xref rid="B15" ref-type="bibr">Bonacci and Stewart, 2006</xref>
;
<xref rid="B43" ref-type="bibr">Halwani et al., 2010</xref>
). At clinical level, there is no evidence of significant inhibitory effects by β agonists, the current gold-standard of bronchorelaxation on airway remodeling (
<xref rid="B43" ref-type="bibr">Halwani et al., 2010</xref>
). Bronchial epithelial cells from severe asthmatics release paracrine factors such as leukotrienes that can regulate ASM proliferation (
<xref rid="B108" ref-type="bibr">Trian et al., 2015</xref>
) and although antagonists of CysLTR (montelukast) demonstrate significant anti-mitogenic effects
<italic>in vitro</italic>
and
<italic>in vivo</italic>
; no studies in humans have supported these findings (
<xref rid="B43" ref-type="bibr">Halwani et al., 2010</xref>
;
<xref rid="B51" ref-type="bibr">Kelly et al., 2010</xref>
). Thus, the therapeutic mitigation of remodeling has emerged as the “holy grail” of modern-day asthma therapy, and TAS2Rs provide a golden opportunity for anti-asthma drug development.</p>
<p>
<italic>In vitro</italic>
studies indicate that TAS2R agonists curtail growth factor-stimulated cell proliferation in ASM cells obtained from healthy and asthmatic donors alike in a dose-dependent manner (
<xref rid="B96" ref-type="bibr">Sharma et al., 2016</xref>
;
<xref rid="B52" ref-type="bibr">Kim et al., 2019</xref>
). Mechanistically, TAS2R agonists inhibit ASM proliferation by multiple mechanisms: (1) inhibiting the growth factor-activated protein kinase B (Akt) phosphorylation, (2) inhibiting transcription factors AP-1, STAT3, E2 factor and NFAT, and (3) inhibiting genes associated with cell cycle progression. The anti-mitogenic activity of TAS2R stimulation is independent of PKA activation, which is partly responsible for similar functions for β
<sub>2</sub>
AR (inhibition of ∼25%) and PGE
<sub>2</sub>
(inhibition of ∼75%) (
<xref rid="B55" ref-type="bibr">Kong et al., 2008</xref>
;
<xref rid="B116" ref-type="bibr">Yan et al., 2011</xref>
;
<xref rid="B96" ref-type="bibr">Sharma et al., 2016</xref>
). The anti-mitogenic effects of TAS2R agonists also translate in pre-clinical asthma model. Using a chronic allergen challenge model, where pathological features of remodeling can be studied extensively, treatment with bitter taste compounds (chloroquine and quinine) reverses cardinal features of airway remodeling (
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
). Specifically, treatment with bitter compounds inhibited the expression of calponin, smooth muscle α-actin, and smooth muscle myosin heavy chain. Furthermore, levels of MMP-8 (neutrophil collagenase), pro-MMP-9 (gelatinase) and MMP-12 (macrophage metalloelastase) were significantly lower in the tissues following treatment with TAS2R agonists. Collectively, these
<italic>in vitro</italic>
and
<italic>in vivo</italic>
studies suggest that TAS2R agonism mitigates features of fibrotic airway remodeling in asthma.</p>
<p>Treatment with bitter tastants also limits mucus secretion and goblet cell hyperplasia. As described above, TAS2Rs found on ciliary epithelial cells control ciliary beat frequency and mucus clearance. Recent studies suggest that chronic use of beta agonists promote mucus production potentially contributing to asthma severity (
<xref rid="B77" ref-type="bibr">Nguyen et al., 2017</xref>
). TAS2R-mediated inhibition of mucus accumulation favors therapeutic utility of TAS2Rs in asthma. In prophylactic as well as the treatment model, mice treated with chloroquine or quinine exhibit significant reduction in AHR following methacholine challenge (
<xref rid="B97" ref-type="bibr">Sharma et al., 2017</xref>
). Interestingly, following 3 weeks of treatment with chloroquine and quinine, the bronchodilatory effect of TAS2R agonists was not diminished in both PBS and HDM challenged animals. These data suggest that treatment with TAS2R does not lead to functional tachyphylaxis.</p>
<p>Collectively, these studies underline the multimodal and pleiotropic manner in which TAS2Rs can be targeted for asthma relief and underline the value of developing TAS2Rs as novel targets for asthma treatment either alone or as an accessory to current regimens (
<xref ref-type="fig" rid="S2.F1">Figure 1</xref>
).</p>
</sec>
</sec>
<sec id="S4">
<title>Receptor Polymorphisms, Disease Association and Development of Personalized Medicine-Based Approaches</title>
<p>To date, over 40 TAS2R genes have been discovered in humans and mice that encode for proteins of ∼ 300-330 amino acids in length (
<xref rid="B7" ref-type="bibr">Bachmanov and Beauchamp, 2007</xref>
;
<xref rid="B27" ref-type="bibr">Deshpande et al., 2010</xref>
). Genes coding for TAS2R subtypes are distributed on chromosomes 5, 7, and 12 in humans and chromosomes 2, 6, and 15 in mice. TAS2Rs constitute of 25 subtypes that share 30–70% of their amino acid sequence homology (
<xref rid="B11" ref-type="bibr">Behrens and Meyerhof, 2006</xref>
). Airway cells express multiple subtypes of TAS2Rs and up-regulation of TAS2R gene expression has been reported in leukocytes of subjects with severe asthma (
<xref rid="B85" ref-type="bibr">Pulkkinen et al., 2012</xref>
). These studies demonstrate that TAS2Rs contribute to physiological and pathological phenotypes and that TAS2R genetic variations may contribute to disease severity and risk. The next critical step in TAS2R research is to determine which specific TAS2R subtypes are most important with respect to asthma pathogenesis and potential anti-asthma therapy. Given the strong evidence that TAS2Rs are involved in ASM relaxation and ASM proliferation it is logical to assume that one or more TAS2R genes regulate airway functions. In fact, recent studies have suggested functional
<italic>bias</italic>
among different TAS2R agonists (
<xref rid="B18" ref-type="bibr">Camoretti-Mercado et al., 2015</xref>
). To further advance this field of TAS2R research, it is imperative that we determine specifically which TAS2Rs affect asthma phenotype.</p>
<p>Humans differ in perception of bitter taste which is attributed to single nucleotide polymorphisms (SNPs) in TAS2R genes (
<xref rid="S4.T2" ref-type="table">Table 2</xref>
;
<xref rid="B19" ref-type="bibr">Chamoun et al., 2018</xref>
). Substantial literature has been dedicated toward understanding the functional impact of polymorphisms associated with the
<italic>T2R38</italic>
gene owing to differential ability in taste perception of the bitter compound phenylthiocarbamide (PTC). Three SNPs (at positions 49, 262, and 296) of the
<italic>TAS2R38</italic>
gene form two common haplotypes- either PAV (proline, alanine and valine) or AVI (alanine, valine, and isoleucine). The PAV haplotype is considered a “taster,” while inheriting the AVI haplotype is considered a “non-taster” of bitter taste sensation (
<xref rid="B31" ref-type="bibr">Drayna, 2005</xref>
). Aside from taste preference, TAS2R SNPs may contribute to a range of pathologies. For instance, the
<italic>TAS2R38</italic>
PAV haplotype is correlated with a non-smoking preference, while the AVI (non-taster) haplotype is more common among smokers (
<xref rid="B86" ref-type="bibr">Risso et al., 2016</xref>
). Thus, possessing a specific TAS2R SNP distribution may be beneficial for aversion of unhealthy habits such as smoking although the current literature indicates conflicting observations which limits generalization (
<xref rid="B67" ref-type="bibr">Mangold et al., 2008</xref>
;
<xref rid="B50" ref-type="bibr">Keller et al., 2013</xref>
;
<xref rid="B5" ref-type="bibr">Aoki et al., 2014</xref>
).</p>
<table-wrap id="S4.T2" position="float">
<label>TABLE 2</label>
<caption>
<p>Taste receptor expressed on ASMs (order of level of expression) and their genetic variants.</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Genes</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Amino acid variations in protein</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R10</td>
<td valign="top" align="left" rowspan="1" colspan="1">T156M</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R14</td>
<td valign="top" align="left" rowspan="1" colspan="1">T86A, I118V, R174STOP, L201F, K225K</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R31</td>
<td valign="top" align="left" rowspan="1" colspan="1">R35W, M162L, Q217E, A227V, V240I</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R5</td>
<td valign="top" align="left" rowspan="1" colspan="1">G20S, S261?, P113L, Y167C, R209T, R213Q, R294L</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R4</td>
<td valign="top" align="left" rowspan="1" colspan="1">R3Q, Y6S, F7S, F62L, T74M, V96L, S171N, I191V</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R19</td>
<td valign="top" align="left" rowspan="1" colspan="1">F15S, V32I, C106Y, K126Q, R299C</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R3</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R20</td>
<td valign="top" align="left" rowspan="1" colspan="1">S75V, K79E, H143Q, H148N, I236V, F252S, R225L</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R45</td>
<td valign="top" align="left" rowspan="1" colspan="1">C76Y, V132M, Q210H, R298T</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R50</td>
<td valign="top" align="left" rowspan="1" colspan="1">S125N, C203Y</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R30</td>
<td valign="top" align="left" rowspan="1" colspan="1">L235F, C238R, C250L, F252L, L281W, P307H</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R9</td>
<td valign="top" align="left" rowspan="1" colspan="1">S104T, K170Q, A187V, L238V, L304F, P309L</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R13</td>
<td valign="top" align="left" rowspan="1" colspan="1">H94R, N149S, N259S</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R42</td>
<td valign="top" align="left" rowspan="1" colspan="1">Y175F, L187L, F196S, G255W, Y265C</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R46</td>
<td valign="top" align="left" rowspan="1" colspan="1">F36V, S201S, L228M, W250STOP, S309P</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R1</td>
<td valign="top" align="left" rowspan="1" colspan="1">P43L, R111H, C141, R206Y</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R8</td>
<td valign="top" align="left" rowspan="1" colspan="1">E16K, M308V</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<attrib>
<italic>Sourced from GPCR natural variant database (
<ext-link ext-link-type="uri" xlink:href="http://nava.liacs.nl">http://nava.liacs.nl</ext-link>
) and NCBI SNP database (dbSNP) (
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/snp">https://www.ncbi.nlm.nih.gov/snp</ext-link>
).</italic>
</attrib>
</table-wrap-foot>
</table-wrap>
<p>The extent to which polymorphisms of individual TAS2Rs impact the functionality of cells associated with the respiratory system is poorly understood. Polymorphisms in TAS2Rs have been linked to chronic rhinosinusitis (CRS), which is an inflammatory disorder of the nose and paranasal sinuses and in asthma (
<xref rid="B1" ref-type="bibr">Adappa et al., 2013</xref>
;
<xref rid="B37" ref-type="bibr">Gallo et al., 2016</xref>
;
<xref rid="B118" ref-type="bibr">Yoon et al., 2016</xref>
). Some have shown that the
<italic>rs10246939</italic>
SNP (
<italic>TAS2R38</italic>
nucleotide 296 to valine) and other TAS2R polymorphisms are associated with CRS (
<xref rid="B1" ref-type="bibr">Adappa et al., 2013</xref>
;
<xref rid="B72" ref-type="bibr">Mfuna et al., 2014</xref>
;
<xref rid="B24" ref-type="bibr">Cohen, 2017</xref>
). However, others have demonstrated a lack of an association of haplotypes between CRS patients, either with (CRSwNP) or without (CRSsNP) nasal polyps, (
<xref rid="B37" ref-type="bibr">Gallo et al., 2016</xref>
). However, at least one study strongly supports identification of polymorphisms in TAS2Rs as possible genetic markers to predict outcomes in asthma (
<xref rid="B118" ref-type="bibr">Yoon et al., 2016</xref>
). Although these association studies have identified a possible link between TAS2R polymorphisms and respiratory diseases, a causal link is yet to be established and the specific contribution toward physiological process remains to be defined.</p>
</sec>
<sec id="S5">
<title>Current Limitations and Future Opportunities</title>
<p>Advances in our understanding of the underlying mechanisms that result in airway relaxation and antimitogenic effect following activation of TAS2Rs has been fraught with few challenges. The expression of TAS2Rs and relaxant effect of TAS2R agonists is species dependent (
<xref rid="B26" ref-type="bibr">Deshpande et al., 2011</xref>
). Furthermore, between mice and humans, some TAS2Rs lack genetic or pharmacological homologs, making it difficult to interpret the data from different species.
<italic>In vitro</italic>
and
<italic>in vivo</italic>
studies have also identified bitter tasting ligands for most human, but not murine TAS2Rs (
<xref rid="S2.T1" ref-type="table">Table 1</xref>
;
<xref rid="B20" ref-type="bibr">Chandrashekar et al., 2000</xref>
;
<xref rid="B7" ref-type="bibr">Bachmanov and Beauchamp, 2007</xref>
;
<xref rid="B71" ref-type="bibr">Meyerhof et al., 2010</xref>
). Moreover, receptor specific knockout models are not practical considering multiple receptor subtypes can interact with a given ligand. Furthermore, expansive studies in human tissues and human subjects are challenging and lack of specific reagents (e.g., receptor-specific agonists and antagonists) to study TAS2R can all further complicate interpretation.</p>
<p>In the context of obstructive airways diseases, TAS2Rs clearly present promise of therapeutic potential due to their pleiotropic effects on multiple cell types in the lungs that collectively orchestrate distinct pathological features of the disease state. Unfortunately, currently available agonists of TAS2Rs demonstrate poor affinity to their targets and exhibit substantial promiscuity in activation of TAS2R subtypes. The number of compounds that trigger bitter taste sensation are significantly in excess to the number of
<italic>TAS2R</italic>
gene-encoded proteins, thus emphasizing promiscuity in receptor activation (
<xref rid="B10" ref-type="bibr">Behrens et al., 2004</xref>
;
<xref rid="B29" ref-type="bibr">Di Pizio and Niv, 2015</xref>
). It is possible that evolutionarily TAS2Rs have been adapted to be low-affinity receptors to allow for broad tuning of receptor activation by heterogeneous insults (
<xref rid="B16" ref-type="bibr">Born et al., 2013</xref>
). Nevertheless, gaining a better understanding of the structural details of refined agonists with higher affinity and receptor subtype selectivity will assist in clarifying the role of individual receptor subtypes on cell populations critical to asthma pathology. Development of TAS2R subtype selective agonists could be crucial in resolving some of these issues but has been hindered primarily due to unresolved crystal structure of a prototypical receptor. Discovery of TAS2R agonism in extra-oral tissue systems has generated significant interest in developing small molecules (agonists and antagonists) with improved receptor specificity and high-affinity. To this effect, traditional medicinal chemistry-based approaches as well as computational modeling have gained momentum (
<xref rid="B29" ref-type="bibr">Di Pizio and Niv, 2015</xref>
;
<xref rid="B28" ref-type="bibr">Di Pizio et al., 2016</xref>
;
<xref rid="B49" ref-type="bibr">Karaman et al., 2016</xref>
). Recently, significant strides have been made in exploiting the unique structural features of TAS2Rs that enable binding to diverse group of synthetic and naturally occurring chemical compounds (
<xref rid="B29" ref-type="bibr">Di Pizio and Niv, 2015</xref>
;
<xref rid="B28" ref-type="bibr">Di Pizio et al., 2016</xref>
;
<xref rid="B49" ref-type="bibr">Karaman et al., 2016</xref>
). Specifically, TAS2R promiscuity is owing to a large binding pocket and this structural disposition could possibly allow for engineering of novel agonists with modifications that could refine our ability to “fine tune” a “broadly tuned” receptor. These and other computation approaches may provide additional insight into TAS2R pharmacology and propel rational drug design.</p>
</sec>
<sec id="S6">
<title>Conclusion</title>
<p>Expression and functional role of TAS2Rs on immune cells, epithelial cells and ASM suggest that TAS2Rs may be potential targets for improving bronchodilatory function and resolving immunological dysregulation and remodeling changes in individuals with obstructive lung diseases. From a clinical perspective, the perceived superior efficacy of some of the bitter tastants, lack of receptor tachyphylaxis, and availability of a large pool of compounds with established pharmacokinetic and pharmacodynamics properties are all attractive (perhaps promising) features of TAS2Rs. TAS2R-mediated bronchodilatory effect is additive to beta agonist-induced bronchodilation suggesting potential use of bitter tastants as adjuvant therapies. Therefore, TAS2Rs are attractive candidates for multimodal treatment of obstructive lung diseases either alone or in combination with current therapeutic regimens. Research into TAS2R agonists with increased specificity to receptor subtypes will aid in providing clarity to TAS2R physiology.</p>
</sec>
<sec id="S7">
<title>Author Contributions</title>
<p>All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.</p>
</sec>
<sec id="conf1">
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding.</bold>
This study was supported by grants from the American Asthma Foundation, and National Heart, Lung, and Blood Institute Grant R01HL137030.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adappa</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Howland</surname>
<given-names>T. J.</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Doghramji</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lysenko</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention.</article-title>
<source>
<italic>Int. Forum Allergy Rhinol.</italic>
</source>
<volume>3</volume>
<fpage>184</fpage>
<lpage>187</lpage>
.
<pub-id pub-id-type="doi">10.1002/alr.21140</pub-id>
<pub-id pub-id-type="pmid">23322450</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adler</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Chandrashekar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ryba</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Zuker</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>A novel family of mammalian taste receptors.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>100</volume>
<fpage>693</fpage>
<lpage>702</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0092-8674(00)80705-9</pub-id>
<pub-id pub-id-type="pmid">10761934</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Robinett</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2012a</year>
).
<article-title>Reply to: activation of BK channels may not be required for bitter tastant-induced bronchodilation.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>18</volume>
<fpage>650</fpage>
<lpage>651</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.2734</pub-id>
<pub-id pub-id-type="pmid">22561815</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>Koziol-White</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>D. Y.</given-names>
</name>
<name>
<surname>Kurten</surname>
<given-names>R. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012b</year>
).
<article-title>TAS2R activation promotes airway smooth muscle relaxation despite beta(2)-adrenergic receptor tachyphylaxis.</article-title>
<source>
<italic>Am. J. Physiol. Lung Cell. Mol. Physiol.</italic>
</source>
<volume>303</volume>
<fpage>L304</fpage>
<lpage>L311</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00126.2012</pub-id>
<pub-id pub-id-type="pmid">22683571</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aoki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takao</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takao</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Koike</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Suganuma</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Lower expressions of the human bitter taste receptor TAS2R in smokers: reverse transcriptase-polymerase chain reaction analysis.</article-title>
<source>
<italic>Tob. Induc. Dis.</italic>
</source>
<volume>12</volume>
:
<issue>12</issue>
.
<pub-id pub-id-type="doi">10.1186/1617-9625-12-12</pub-id>
<pub-id pub-id-type="pmid">25152706</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Avau</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rotondo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Thijs</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Andrews</surname>
<given-names>C. N.</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tack</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>5</volume>
:
<issue>15985</issue>
.
<pub-id pub-id-type="doi">10.1038/srep15985</pub-id>
<pub-id pub-id-type="pmid">26541810</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bachmanov</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Beauchamp</surname>
<given-names>G. K.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Taste receptor genes.</article-title>
<source>
<italic>Annu. Rev. Nutr.</italic>
</source>
<volume>27</volume>
<fpage>389</fpage>
<lpage>414</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.nutr.26.061505.111329</pub-id>
<pub-id pub-id-type="pmid">17444812</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barham</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>C. B.</given-names>
</name>
<name>
<surname>Tizzano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kingdom</surname>
<given-names>T. T.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa.</article-title>
<source>
<italic>Int. Forum. Allergy Rhinol.</italic>
</source>
<volume>3</volume>
<fpage>450</fpage>
<lpage>457</lpage>
.
<pub-id pub-id-type="doi">10.1002/alr.21149</pub-id>
<pub-id pub-id-type="pmid">23404938</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beasley</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pearce</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Crane</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Burgess</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Beta-agonists: what is the evidence that their use increases the risk of asthma morbidity and mortality?</article-title>
<source>
<italic>J. Allergy Clin. Immunol.</italic>
</source>
<volume>104</volume>
(2 Pt 2),
<fpage>S18</fpage>
<lpage>S30</lpage>
.
<pub-id pub-id-type="pmid">10452785</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bufe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Winnig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The human taste receptor hTAS2R14 responds to a variety of different bitter compounds.</article-title>
<source>
<italic>Biochem. Biophys. Res. Commun.</italic>
</source>
<volume>319</volume>
<fpage>479</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.05.019</pub-id>
<pub-id pub-id-type="pmid">15178431</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Bitter taste receptors and human bitter taste perception.</article-title>
<source>
<italic>Cell. Mol. Life Sci.</italic>
</source>
<volume>63</volume>
<fpage>1501</fpage>
<lpage>1509</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00018-006-6113-8</pub-id>
<pub-id pub-id-type="pmid">16732425</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belvisi</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Dale</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Birrell</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Canning</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Bronchodilator activity of bitter tastants in human tissue.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>17</volume>
:
<issue>776</issue>
<pub-id pub-id-type="doi">10.1038/nm0711-776a</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bezencon</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Furholz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Raymond</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mansourian</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Metairon</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Le Coutre</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells.</article-title>
<source>
<italic>J. Comp. Neurol.</italic>
</source>
<volume>509</volume>
<fpage>514</fpage>
<lpage>525</lpage>
.
<pub-id pub-id-type="doi">10.1002/cne.21768</pub-id>
<pub-id pub-id-type="pmid">18537122</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Billington</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>Penn</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Signaling and regulation of G protein-coupled receptors in airway smooth muscle.</article-title>
<source>
<italic>Respir Res.</italic>
</source>
<volume>4</volume>
:
<issue>2</issue>
.
<pub-id pub-id-type="pmid">12648290</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonacci</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>A. G.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Regulation of human airway mesenchymal cell proliferation by glucocorticoids and beta2-adrenoceptor agonists.</article-title>
<source>
<italic>Pulm. Pharmacol. Ther.</italic>
</source>
<volume>19</volume>
<fpage>32</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pupt.2005.02.011</pub-id>
<pub-id pub-id-type="pmid">16286235</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Born</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Levit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>33</volume>
<fpage>201</fpage>
<lpage>213</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3248-12.2013</pub-id>
<pub-id pub-id-type="pmid">23283334</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brightling</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Bradding</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Symon</surname>
<given-names>F. A.</given-names>
</name>
<name>
<surname>Holgate</surname>
<given-names>S. T.</given-names>
</name>
<name>
<surname>Wardlaw</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Pavord</surname>
<given-names>I. D.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Mast-cell infiltration of airway smooth muscle in asthma.</article-title>
<source>
<italic>N. Engl. J. Med.</italic>
</source>
<volume>346</volume>
<fpage>1699</fpage>
<lpage>1705</lpage>
.
<pub-id pub-id-type="pmid">12037149</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Camoretti-Mercado</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Pauer</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>D. C.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Pleiotropic effects of bitter taste receptors on [Ca2+]i mobilization, hyperpolarization, and relaxation of human airway smooth muscle cells.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>10</volume>
:
<issue>e0131582</issue>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0131582</pub-id>
<pub-id pub-id-type="pmid">26121686</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chamoun</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mutch</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Allen-Vercoe</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Buchholz</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Spriet</surname>
<given-names>L. L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health.</article-title>
<source>
<italic>Crit. Rev. Food Sci. Nutr.</italic>
</source>
<volume>58</volume>
<fpage>194</fpage>
<lpage>207</lpage>
.
<pub-id pub-id-type="doi">10.1080/10408398.2016.1152229</pub-id>
<pub-id pub-id-type="pmid">27247080</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chandrashekar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Adler</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2000</year>
).
<article-title>T2Rs function as bitter taste receptors.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>100</volume>
<fpage>703</fpage>
<lpage>711</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0092-8674(00)80706-0</pub-id>
<pub-id pub-id-type="pmid">10761935</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaudhari</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Roper</surname>
<given-names>S. D.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>The cell biology of taste.</article-title>
<source>
<italic>J. Cell Biol.</italic>
</source>
<volume>190</volume>
<fpage>285</fpage>
<lpage>296</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.201003144</pub-id>
<pub-id pub-id-type="pmid">20696704</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Timmers</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Zwinderman</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Bel</surname>
<given-names>E. H.</given-names>
</name>
<name>
<surname>Dijkman</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Sterk</surname>
<given-names>P. J.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Long-term effects of a long-acting beta 2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma.</article-title>
<source>
<italic>N. Engl. J. Med.</italic>
</source>
<volume>327</volume>
<fpage>1198</fpage>
<lpage>1203</lpage>
.
<pub-id pub-id-type="doi">10.1056/nejm199210223271703</pub-id>
<pub-id pub-id-type="pmid">1357550</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Munger</surname>
<given-names>S. D.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Extraoral bitter taste receptors as mediators of off-target drug effects.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>26</volume>
<fpage>4827</fpage>
<lpage>4831</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.12-215087</pub-id>
<pub-id pub-id-type="pmid">22964302</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis.</article-title>
<source>
<italic>Laryngoscope</italic>
</source>
<volume>127</volume>
<fpage>44</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="doi">10.1002/lary.26198</pub-id>
<pub-id pub-id-type="pmid">27650657</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Penn</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Targeting G protein-coupled receptor signaling in asthma.</article-title>
<source>
<italic>Cell Signal.</italic>
</source>
<volume>18</volume>
<fpage>2105</fpage>
<lpage>2120</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cellsig.2006.04.008</pub-id>
<pub-id pub-id-type="pmid">16828259</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Robinett</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>Sham</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Bronchodilator activity of bitter tastants in human tissue.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>17</volume>
<fpage>776</fpage>
<lpage>778</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm0711-776b</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>McIlmoyle</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Robinett</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Schillinger</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>16</volume>
<fpage>1299</fpage>
<lpage>1304</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.2237</pub-id>
<pub-id pub-id-type="pmid">20972434</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Levit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Slutzki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Karaman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Comparing class A GPCRs to bitter taste receptors: structural motifs, ligand interactions and agonist-to-antagonist ratios.</article-title>
<source>
<italic>Methods Cell Biol.</italic>
</source>
<volume>132</volume>
<fpage>401</fpage>
<lpage>427</lpage>
.
<pub-id pub-id-type="doi">10.1016/bs.mcb.2015.10.005</pub-id>
<pub-id pub-id-type="pmid">26928553</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Promiscuity and selectivity of bitter molecules and their receptors.</article-title>
<source>
<italic>Bioorg. Med. Chem.</italic>
</source>
<volume>23</volume>
<fpage>4082</fpage>
<lpage>4091</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bmc.2015.04.025</pub-id>
<pub-id pub-id-type="pmid">25934224</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donlan</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Biofilms: microbial life on surfaces.</article-title>
<source>
<italic>Emerg. Infect. Dis.</italic>
</source>
<volume>8</volume>
<fpage>881</fpage>
<lpage>890</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid0809.020063</pub-id>
<pub-id pub-id-type="pmid">12194761</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drayna</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Human taste genetics.</article-title>
<source>
<italic>Annu. Rev. Genomics Hum. Genet.</italic>
</source>
<volume>6</volume>
<fpage>217</fpage>
<lpage>235</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.genom.6.080604.162340</pub-id>
<pub-id pub-id-type="pmid">16124860</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekoff</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dahlen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Dahlen</surname>
<given-names>S. E.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation.</article-title>
<source>
<italic>J. Allergy Clin. Immunol.</italic>
</source>
<volume>134</volume>
<fpage>475</fpage>
<lpage>478</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2014.02.029</pub-id>
<pub-id pub-id-type="pmid">24755408</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fakler</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Adelman</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Control of K(Ca) channels by calcium nano/microdomains.</article-title>
<source>
<italic>Neuron</italic>
</source>
<volume>59</volume>
<fpage>873</fpage>
<lpage>881</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuron.2008.09.001</pub-id>
<pub-id pub-id-type="pmid">18817728</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Bottger</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>K. T.</given-names>
</name>
<name>
<surname>Alimohammadi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Silver</surname>
<given-names>W. L.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>100</volume>
<fpage>8981</fpage>
<lpage>8986</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1531172100</pub-id>
<pub-id pub-id-type="pmid">12857948</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Danilova</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Barrows</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Vigers</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>ATP signaling is crucial for communication from taste buds to gustatory nerves.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>310</volume>
<fpage>1495</fpage>
<lpage>1499</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1118435</pub-id>
<pub-id pub-id-type="pmid">16322458</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaida</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Dapunt</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Hansch</surname>
<given-names>G. M.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells.</article-title>
<source>
<italic>Pathog. Dis.</italic>
</source>
<volume>74</volume>
:
<issue>ftw004</issue>
.
<pub-id pub-id-type="doi">10.1093/femspd/ftw004</pub-id>
<pub-id pub-id-type="pmid">26782143</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Grossi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Montrasio</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Binelli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cinquetti</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Simmen</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>TAS2R38 taste receptor gene and chronic rhinosinusitis: new data from an Italian population.</article-title>
<source>
<italic>BMC Med. Genet.</italic>
</source>
<volume>17</volume>
:
<issue>54</issue>
.
<pub-id pub-id-type="doi">10.1186/s12881-016-0321-3</pub-id>
<pub-id pub-id-type="pmid">27515546</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerthoffer</surname>
<given-names>W. T.</given-names>
</name>
<name>
<surname>Solway</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Camoretti-Mercado</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Emerging targets for novel therapy of asthma.</article-title>
<source>
<italic>Curr. Opin. Pharmacol.</italic>
</source>
<volume>13</volume>
<fpage>324</fpage>
<lpage>330</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.coph.2013.04.002</pub-id>
<pub-id pub-id-type="pmid">23639507</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilbertson</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Damak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Margolskee</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>The molecular physiology of taste transduction.</article-title>
<source>
<italic>Curr. Opin. Neurobiol.</italic>
</source>
<volume>10</volume>
<fpage>519</fpage>
<lpage>527</lpage>
.
<pub-id pub-id-type="pmid">10981623</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girodet</surname>
<given-names>P. O.</given-names>
</name>
<name>
<surname>Ozier</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bara</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Tunon de Lara</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Marthan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention.</article-title>
<source>
<italic>Pharmacol. Ther.</italic>
</source>
<volume>130</volume>
<fpage>325</fpage>
<lpage>337</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2011.02.001</pub-id>
<pub-id pub-id-type="pmid">21334378</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grassin-Delyle</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abrial</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fayad-Kobeissi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Brollo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Faisy</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>J. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>The expression and relaxant effect of bitter taste receptors in human bronchi.</article-title>
<source>
<italic>Respir Res.</italic>
</source>
<volume>14</volume>
:
<issue>134</issue>
.
<pub-id pub-id-type="doi">10.1186/1465-9921-14-134</pub-id>
<pub-id pub-id-type="pmid">24266887</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gulbransen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Clapp</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Kinnamon</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.</article-title>
<source>
<italic>J. Neurophysiol.</italic>
</source>
<volume>99</volume>
<fpage>2929</fpage>
<lpage>2937</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.00066.2008</pub-id>
<pub-id pub-id-type="pmid">18417634</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halwani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Al-Muhsen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hamid</surname>
<given-names>Q.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Airway remodeling in asthma.</article-title>
<source>
<italic>Curr. Opin. Pharmacol.</italic>
</source>
<volume>10</volume>
<fpage>236</fpage>
<lpage>245</lpage>
.
<pub-id pub-id-type="pmid">20591736</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hassan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Risse</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Tolloczko</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lemiere</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Olivenstein</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Airway smooth muscle remodeling is a dynamic process in severe long-standing asthma.</article-title>
<source>
<italic>J. Allergy Clin. Immunol.</italic>
</source>
<volume>125</volume>
<fpage>1037</fpage>
<lpage>1045.e3</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2010.02.031</pub-id>
<pub-id pub-id-type="pmid">20451038</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heck</surname>
<given-names>G. L.</given-names>
</name>
<name>
<surname>Mierson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>DeSimone</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
(
<year>1984</year>
).
<article-title>Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>223</volume>
<fpage>403</fpage>
<lpage>405</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.6691151</pub-id>
<pub-id pub-id-type="pmid">6691151</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ianaro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ialenti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Maffia</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sautebin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rombola</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Carnuccio</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2000</year>
).
<article-title>Anti-inflammatory activity of macrolide antibiotics.</article-title>
<source>
<italic>J. Pharmacol. Exp. Ther.</italic>
</source>
<volume>292</volume>
<fpage>156</fpage>
<lpage>163</lpage>
.
<pub-id pub-id-type="pmid">10604943</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jang</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Byun</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Jue</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes.</article-title>
<source>
<italic>Rheumatology</italic>
</source>
<volume>45</volume>
<fpage>703</fpage>
<lpage>710</lpage>
.
<pub-id pub-id-type="doi">10.1093/rheumatology/kei282</pub-id>
<pub-id pub-id-type="pmid">16418198</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeong</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Jue</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages.</article-title>
<source>
<italic>J. Immunol.</italic>
</source>
<volume>158</volume>
<fpage>4901</fpage>
<lpage>4907</lpage>
.
<pub-id pub-id-type="pmid">9144507</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karaman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kitaneh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Abu-Jaish</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Probing the binding pocket of the broadly tuned human bitter taste receptor TAS2R14 by chemical modification of cognate agonists.</article-title>
<source>
<italic>Chem. Biol. Drug Des.</italic>
</source>
<volume>88</volume>
<fpage>66</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1111/cbdd.12734</pub-id>
<pub-id pub-id-type="pmid">26825540</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wohland</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Rohde</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gast</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Stumvoll</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>TAS2R38 and its influence on smoking behavior and glucose homeostasis in the German Sorbs.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>8</volume>
:
<issue>e80512</issue>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0080512</pub-id>
<pub-id pub-id-type="pmid">24312479</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kelly</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>O’Connor</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Leigh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Otis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gwozd</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gauvreau</surname>
<given-names>G. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Effects of budesonide and formoterol on allergen-induced airway responses, inflammation, and airway remodeling in asthma.</article-title>
<source>
<italic>J. Allergy Clin. Immunol.</italic>
</source>
<volume>125</volume>
<fpage>349</fpage>
<lpage>356.e13</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jaci.2009.09.011</pub-id>
<pub-id pub-id-type="pmid">19969339</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Castano</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Panettieri</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Biased TAS2R bronchodilators inhibit airway smooth muscle growth by downregulating phosphorylated extracellular signal-regulated kinase 1/2.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>60</volume>
<fpage>532</fpage>
<lpage>540</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2018-0189OC</pub-id>
<pub-id pub-id-type="pmid">30365340</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Geffken</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via galphai1,2,3.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>56</volume>
<fpage>762</fpage>
<lpage>771</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2016-0373OC</pub-id>
<pub-id pub-id-type="pmid">28145731</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kinnamon</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Dionne</surname>
<given-names>V. E.</given-names>
</name>
<name>
<surname>Beam</surname>
<given-names>K. G.</given-names>
</name>
</person-group>
(
<year>1988</year>
).
<article-title>Apical localization of K+ channels in taste cells provides the basis for sour taste transduction.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>85</volume>
<fpage>7023</fpage>
<lpage>7027</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.85.18.7023</pub-id>
<pub-id pub-id-type="pmid">2457924</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>K. C.</given-names>
</name>
<name>
<surname>Gandhi</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>T. J.</given-names>
</name>
<name>
<surname>Anz</surname>
<given-names>C. B.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Misior</surname>
<given-names>A. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Endogenous Gs-coupled receptors in smooth muscle exhibit differential susceptibility to GRK2/3-mediated desensitization.</article-title>
<source>
<italic>Biochemistry</italic>
</source>
<volume>47</volume>
<fpage>9279</fpage>
<lpage>9288</lpage>
.
<pub-id pub-id-type="doi">10.1021/bi801056w</pub-id>
<pub-id pub-id-type="pmid">18690720</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kraan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Koeter</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>vd Mark</surname>
<given-names>T. W.</given-names>
</name>
<name>
<surname>Sluiter</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>de Vries</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>1985</year>
).
<article-title>Changes in bronchial hyperreactivity induced by 4 weeks of treatment with antiasthmatic drugs in patients with allergic asthma: a comparison between budesonide and terbutaline.</article-title>
<source>
<italic>J. Allergy Clin. Immunol.</italic>
</source>
<volume>76</volume>
<fpage>628</fpage>
<lpage>636</lpage>
.
<pub-id pub-id-type="doi">10.1016/0091-6749(85)90786-9</pub-id>
<pub-id pub-id-type="pmid">4056250</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krasteva</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Canning</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Veres</surname>
<given-names>T. Z.</given-names>
</name>
<name>
<surname>Papadakis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Muhlfeld</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>Cholinergic chemosensory cells in the trachea regulate breathing.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>108</volume>
<fpage>9478</fpage>
<lpage>9483</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1019418108</pub-id>
<pub-id pub-id-type="pmid">21606356</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krasteva</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Canning</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Papadakis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kummer</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules.</article-title>
<source>
<italic>Life Sci.</italic>
</source>
<volume>91</volume>
<fpage>992</fpage>
<lpage>996</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.lfs.2012.06.014</pub-id>
<pub-id pub-id-type="pmid">22749863</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Redding</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Margolskee</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>N. A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Mouse nasal epithelial innate immune responses to
<italic>Pseudomonas aeruginosa</italic>
quorum-sensing molecules require taste signaling components.</article-title>
<source>
<italic>Innate Immun.</italic>
</source>
<volume>20</volume>
<fpage>606</fpage>
<lpage>617</lpage>
.
<pub-id pub-id-type="doi">10.1177/1753425913503386</pub-id>
<pub-id pub-id-type="pmid">24045336</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>N. A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Taste receptors in innate immunity.</article-title>
<source>
<italic>Cell. Mol. Life Sci.</italic>
</source>
<volume>72</volume>
<fpage>217</fpage>
<lpage>236</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00018-014-1736-7</pub-id>
<pub-id pub-id-type="pmid">25323130</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kofonow</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lysenko</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection.</article-title>
<source>
<italic>J. Clin. Invest.</italic>
</source>
<volume>122</volume>
<fpage>4145</fpage>
<lpage>4159</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI64240</pub-id>
<pub-id pub-id-type="pmid">23041624</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators.</article-title>
<source>
<italic>Expert Opin. Ther. Targets</italic>
</source>
<volume>17</volume>
<fpage>721</fpage>
<lpage>731</lpage>
.
<pub-id pub-id-type="doi">10.1517/14728222.2013.782395</pub-id>
<pub-id pub-id-type="pmid">23577615</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Atzberger</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wettschureck</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Members of bitter taste receptor cluster Tas2r143/Tas2r135/Tas2r126 are expressed in the epithelium of murine airways and other non-gustatory tissues.</article-title>
<source>
<italic>Front. Physiol.</italic>
</source>
<volume>8</volume>
:
<issue>849</issue>
.
<pub-id pub-id-type="doi">10.3389/fphys.2017.00849</pub-id>
<pub-id pub-id-type="pmid">29163195</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lund</surname>
<given-names>T. C.</given-names>
</name>
<name>
<surname>Kobs</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nyquist</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kuroki</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Osborn</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Bone marrow stromal and vascular smooth muscle cells have chemosensory capacity via bitter taste receptor expression.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>8</volume>
:
<issue>e58945</issue>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0058945</pub-id>
<pub-id pub-id-type="pmid">23520545</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>X. C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z. H.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>D. X.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y. H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2019</year>
).
<article-title>Infection by the parasitic helminth
<italic>Trichinella spiralis</italic>
activates a Tas2r-mediated signaling pathway in intestinal tuft cells.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>116</volume>
<fpage>5564</fpage>
<lpage>5569</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1812901116</pub-id>
<pub-id pub-id-type="pmid">30819885</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fiedler</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fricke</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ballweg</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pfaffl</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Krautwurst</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes.</article-title>
<source>
<italic>J. Leukoc. Biol.</italic>
</source>
<volume>97</volume>
<fpage>533</fpage>
<lpage>545</lpage>
.
<pub-id pub-id-type="doi">10.1189/jlb.2A0714-331RR</pub-id>
<pub-id pub-id-type="pmid">25624459</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mangold</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>T. J.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J. Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M. D.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Bitter taste receptor gene polymorphisms are an important factor in the development of nicotine dependence in African Americans.</article-title>
<source>
<italic>J. Med. Genet.</italic>
</source>
<volume>45</volume>
<fpage>578</fpage>
<lpage>582</lpage>
.
<pub-id pub-id-type="doi">10.1136/jmg.2008.057844</pub-id>
<pub-id pub-id-type="pmid">18524836</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>O’Connell</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Pietrzykowski</surname>
<given-names>A. Z.</given-names>
</name>
<name>
<surname>Treistman</surname>
<given-names>S. N.</given-names>
</name>
<name>
<surname>Ethier</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Madison</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells.</article-title>
<source>
<italic>Exp. Physiol.</italic>
</source>
<volume>93</volume>
<fpage>908</fpage>
<lpage>918</lpage>
.
<pub-id pub-id-type="doi">10.1113/expphysiol.2008.042432</pub-id>
<pub-id pub-id-type="pmid">18403443</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maurer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wabnitz</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Kahle</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Stegmaier</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Prior</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Giese</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Tasting
<italic>Pseudomonas aeruginosa</italic>
biofilms: human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-Oxododecanoyl)-l-homoserine lactone.</article-title>
<source>
<italic>Front. Immunol.</italic>
</source>
<volume>6</volume>
:
<issue>369</issue>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2015.00369</pub-id>
<pub-id pub-id-type="pmid">26257736</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merigo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Benati</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Di Chio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Osculati</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sbarbati</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Secretory cells of the airway express molecules of the chemoreceptive cascade.</article-title>
<source>
<italic>Cell Tissue Res.</italic>
</source>
<volume>327</volume>
<fpage>231</fpage>
<lpage>247</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00441-006-0280-7</pub-id>
<pub-id pub-id-type="pmid">17024421</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Batram</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chudoba</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bufe</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>The molecular receptive ranges of human TAS2R bitter taste receptors.</article-title>
<source>
<italic>Chem. Senses</italic>
</source>
<volume>35</volume>
<fpage>157</fpage>
<lpage>170</lpage>
.
<pub-id pub-id-type="doi">10.1093/chemse/bjp092</pub-id>
<pub-id pub-id-type="pmid">20022913</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mfuna</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Filali-Mouhim</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Boisvert</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Boulet</surname>
<given-names>L. P.</given-names>
</name>
<name>
<surname>Bossé</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Desrosiers</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study.</article-title>
<source>
<italic>Int. Forum Allergy Rhinol.</italic>
</source>
<volume>4</volume>
<fpage>200</fpage>
<lpage>206</lpage>
.
<pub-id pub-id-type="doi">10.1002/alr.21275</pub-id>
<pub-id pub-id-type="pmid">24415641</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michael</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Gavrila</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nayak</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Pera</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liberato</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Polischak</surname>
<given-names>S. R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2019</year>
).
<article-title>Cooperativity of E-prostanoid receptor subtypes in regulating signaling and growth inhibition in human airway smooth muscle.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>33</volume>
<fpage>4780</fpage>
<lpage>4789</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.201801959R</pub-id>
<pub-id pub-id-type="pmid">30601680</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morice</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>R. T.</given-names>
</name>
<name>
<surname>Chaudhry</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Cowen</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Loubani</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Effect of bitter tastants on human bronchi.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>17</volume>
:
<issue>775</issue>
<pub-id pub-id-type="doi">10.1038/nm0711-775</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sirois</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Echave</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Rousseau</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Relaxing effects of 5-oxo-ETE on human bronchi involve BK Ca channel activation.</article-title>
<source>
<italic>Prostaglandins Other Lipid Mediat.</italic>
</source>
<volume>83</volume>
<fpage>311</fpage>
<lpage>319</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.prostaglandins.2007.03.001</pub-id>
<pub-id pub-id-type="pmid">17499751</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nayak</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Penn</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>New targets for resolution of airway remodeling in obstructive lung diseases.</article-title>
<source>
<italic>F1000Res</italic>
</source>
<volume>7</volume>
:
<fpage>F1000FacultyRev</fpage>
<lpage>680</lpage>
.
<pub-id pub-id-type="doi">10.12688/f1000research.14581.1</pub-id>
<pub-id pub-id-type="pmid">29904584</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>L. P.</given-names>
</name>
<name>
<surname>Al-Sawalha</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Parra</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pokkunuri</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Omoluabi</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Okulate</surname>
<given-names>A. A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>beta2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>114</volume>
<fpage>E9163</fpage>
<lpage>E9171</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1710196114</pub-id>
<pub-id pub-id-type="pmid">29073113</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogino</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ono</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Maezawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hori</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kizu</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production.</article-title>
<source>
<italic>J. Infect. Chemother.</italic>
</source>
<volume>15</volume>
<fpage>168</fpage>
<lpage>173</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10156-009-0680-1</pub-id>
<pub-id pub-id-type="pmid">19554401</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orsmark-Pietras</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Konradsen</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Nordlund</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Soderhall</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pulkkinen</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics.</article-title>
<source>
<italic>Eur. Respir. J.</italic>
</source>
<volume>42</volume>
<fpage>65</fpage>
<lpage>78</lpage>
.
<pub-id pub-id-type="doi">10.1183/09031936.00077712</pub-id>
<pub-id pub-id-type="pmid">23222870</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Page</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ammit</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Black</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Armour</surname>
<given-names>C. L.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Human mast cell and airway smooth muscle cell interactions: implications for asthma.</article-title>
<source>
<italic>Am. J. Physiol. Lung Cell. Mol. Physiol.</italic>
</source>
<volume>281</volume>
<fpage>L1313</fpage>
<lpage>L1323</lpage>
.
<pub-id pub-id-type="pmid">11704524</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.</article-title>
<source>
<italic>Am. J. Physiol. Lung Cell. Mol. Physiol.</italic>
</source>
<volume>313</volume>
<fpage>L154</fpage>
<lpage>L165</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00106.2017</pub-id>
<pub-id pub-id-type="pmid">28450286</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gillis-Smith</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Trankner</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ryba</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Zuker</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Sweet and bitter taste in the brain of awake behaving animals.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>527</volume>
<fpage>512</fpage>
<lpage>515</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature15763</pub-id>
<pub-id pub-id-type="pmid">26580015</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pera</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Penn</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Bronchoprotection and bronchorelaxation in asthma: new targets, and new ways to target the old ones.</article-title>
<source>
<italic>Pharmacol. Ther.</italic>
</source>
<volume>164</volume>
<fpage>82</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2016.04.002</pub-id>
<pub-id pub-id-type="pmid">27113408</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plumb</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gaffey</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Malia-Milanes</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bentley</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Reduced glucocorticoid receptor expression and function in airway neutrophils.</article-title>
<source>
<italic>Int. Immunopharmacol.</italic>
</source>
<volume>12</volume>
<fpage>26</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.intimp.2011.10.006</pub-id>
<pub-id pub-id-type="pmid">22032841</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pulkkinen</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Manson</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Safholm</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Adner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dahlen</surname>
<given-names>S. E.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea.</article-title>
<source>
<italic>Am. J. Physiol. Lung Cell. Mol. Physiol.</italic>
</source>
<volume>303</volume>
<fpage>L956</fpage>
<lpage>L966</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00205.2012</pub-id>
<pub-id pub-id-type="pmid">22962016</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Risso</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kozlitina</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sainz</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gutierrez</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wooding</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Getachew</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Genetic variation in the TAS2R38 bitter taste receptor and smoking behaviors.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>11</volume>
:
<issue>e0164157</issue>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0164157</pub-id>
<pub-id pub-id-type="pmid">27711175</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinett</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Koziol-White</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Akoluk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Panettieri</surname>
<given-names>R. A.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>50</volume>
<fpage>678</fpage>
<lpage>683</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2013-0439RC</pub-id>
<pub-id pub-id-type="pmid">24219573</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sainz</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Korley</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Battey</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>S. L.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Identification of a novel member of the T1R family of putative taste receptors.</article-title>
<source>
<italic>J. Neurochem.</italic>
</source>
<volume>77</volume>
<fpage>896</fpage>
<lpage>903</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1471-4159.2001.00292.x</pub-id>
<pub-id pub-id-type="pmid">11331418</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salathe</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Regulation of mammalian ciliary beating.</article-title>
<source>
<italic>Annu. Rev. Physiol.</italic>
</source>
<volume>69</volume>
<fpage>401</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.physiol.69.040705.141253</pub-id>
<pub-id pub-id-type="pmid">16945069</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salpeter</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Buckley</surname>
<given-names>N. S.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Long-acting beta-agonists with and without inhaled corticosteroids and catastrophic asthma events.</article-title>
<source>
<italic>Am. J. Med.</italic>
</source>
<volume>123</volume>
<fpage>322</fpage>
<lpage>328.e2</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.amjmed.2009.07.035</pub-id>
<pub-id pub-id-type="pmid">20176343</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Christensen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Tizzano</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>111</volume>
<fpage>6075</fpage>
<lpage>6080</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1402251111</pub-id>
<pub-id pub-id-type="pmid">24711432</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saunders</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>49</volume>
<fpage>190</fpage>
<lpage>196</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2012-0485OC</pub-id>
<pub-id pub-id-type="pmid">23526223</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sbarbati</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Osculati</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Solitary chemosensory cells in mammals?</article-title>
<source>
<italic>Cells Tissues Organs</italic>
</source>
<volume>175</volume>
<fpage>51</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1159/000073437</pub-id>
<pub-id pub-id-type="pmid">14605495</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schierbeck</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wahamaa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>H. E.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Immunomodulatory drugs regulate HMGB1 release from activated human monocytes.</article-title>
<source>
<italic>Mol. Med.</italic>
</source>
<volume>16</volume>
<fpage>343</fpage>
<lpage>351</lpage>
.
<pub-id pub-id-type="doi">10.2119/molmed.2010.00031</pub-id>
<pub-id pub-id-type="pmid">20386869</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shah</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Ben-Shahar</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Moninger</surname>
<given-names>T. O.</given-names>
</name>
<name>
<surname>Kline</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Welsh</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Motile cilia of human airway epithelia are chemosensory.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>325</volume>
<fpage>1131</fpage>
<lpage>1134</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1173869</pub-id>
<pub-id pub-id-type="pmid">19628819</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Panebra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pera</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tiegs</surname>
<given-names>B. C.</given-names>
</name>
<name>
<surname>Hershfeld</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kenyon</surname>
<given-names>L. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.</article-title>
<source>
<italic>Am. J. Physiol. Lung Cell. Mol. Physiol.</italic>
</source>
<volume>310</volume>
<fpage>L365</fpage>
<lpage>L376</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00373.2015</pub-id>
<pub-id pub-id-type="pmid">26684251</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nayak</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>M. J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Bitter taste receptor agonists mitigate features of allergic asthma in mice.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>7</volume>
:
<issue>46166</issue>
.
<pub-id pub-id-type="doi">10.1038/srep46166</pub-id>
<pub-id pub-id-type="pmid">28397820</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sternini</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Anselmi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rozengurt</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing.</article-title>
<source>
<italic>Curr. Opin. Endocrinol. Diabetes Obes.</italic>
</source>
<volume>15</volume>
<fpage>73</fpage>
<lpage>78</lpage>
.
<pub-id pub-id-type="doi">10.1097/MED.0b013e3282f43a73</pub-id>
<pub-id pub-id-type="pmid">18185066</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taghadosi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shakibaie</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Masoumi</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Biochemical detection of N-Acyl homoserine lactone from biofilm-forming uropathogenic
<italic>Escherichia coli</italic>
isolated from urinary tract infection samples.</article-title>
<source>
<italic>Rep. Biochem. Mol. Biol.</italic>
</source>
<volume>3</volume>
<fpage>56</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="pmid">26989738</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sanderson</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.</article-title>
<source>
<italic>Br. J. Pharmacol.</italic>
</source>
<volume>171</volume>
<fpage>646</fpage>
<lpage>662</lpage>
.
<pub-id pub-id-type="doi">10.1111/bph.12460</pub-id>
<pub-id pub-id-type="pmid">24117140</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taruno</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vingtdeux</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Ohmoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Dvoryanchikov</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>495</volume>
<fpage>223</fpage>
<lpage>226</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature11906</pub-id>
<pub-id pub-id-type="pmid">23467090</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tazzeo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Roman</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Lauzon</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Khasnis</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Eto</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Caffeine relaxes smooth muscle through actin depolymerization.</article-title>
<source>
<italic>Am. J. Physiol. Lung Cell. Mol. Physiol.</italic>
</source>
<volume>303</volume>
<fpage>L334</fpage>
<lpage>L342</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00103.2012</pub-id>
<pub-id pub-id-type="pmid">22683573</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tizzano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cristofoletti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sbarbati</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Expression of taste receptors in solitary chemosensory cells of rodent airways.</article-title>
<source>
<italic>BMC Pulm. Med.</italic>
</source>
<volume>11</volume>
:
<issue>3</issue>
.
<pub-id pub-id-type="doi">10.1186/1471-2466-11-3</pub-id>
<pub-id pub-id-type="pmid">21232137</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tizzano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Finger</surname>
<given-names>T. E.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Chemosensors in the nose: guardians of the airways.</article-title>
<source>
<italic>Physiology</italic>
</source>
<volume>28</volume>
<fpage>51</fpage>
<lpage>60</lpage>
.
<pub-id pub-id-type="doi">10.1152/physiol.00035.2012</pub-id>
<pub-id pub-id-type="pmid">23280357</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tizzano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gulbransen</surname>
<given-names>B. D.</given-names>
</name>
<name>
<surname>Vandenbeuch</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Clapp</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Sibhatu</surname>
<given-names>H. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>107</volume>
<fpage>3210</fpage>
<lpage>3215</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0911934107</pub-id>
<pub-id pub-id-type="pmid">20133764</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tizzano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Merigo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sbarbati</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Evidence of solitary chemosensory cells in a large mammal: the diffuse chemosensory system in
<italic>Bos taurus</italic>
airways.</article-title>
<source>
<italic>J. Anat.</italic>
</source>
<volume>209</volume>
<fpage>333</fpage>
<lpage>337</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-7580.2006.00617.x</pub-id>
<pub-id pub-id-type="pmid">16928202</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tran</surname>
<given-names>H. T. T.</given-names>
</name>
<name>
<surname>Herz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ruf</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Stetter</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lamy</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Human T2R38 bitter taste receptor expression in resting and activated lymphocytes.</article-title>
<source>
<italic>Front. Immunol.</italic>
</source>
<volume>9</volume>
:
<issue>2949</issue>
.
<pub-id pub-id-type="doi">10.3389/fimmu.2018.02949</pub-id>
<pub-id pub-id-type="pmid">30619309</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trian</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Allard</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dupin</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Carvalho</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ousova</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Maurat</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>House dust mites induce proliferation of severe asthmatic smooth muscle cells via an epithelium-dependent pathway.</article-title>
<source>
<italic>Am. J. Respir. Crit. Care Med.</italic>
</source>
<volume>191</volume>
<fpage>538</fpage>
<lpage>546</lpage>
.
<pub-id pub-id-type="doi">10.1164/rccm.201409-1582oc</pub-id>
<pub-id pub-id-type="pmid">25569771</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ugawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Minami</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Saishin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takatsuji</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1998</year>
).
<article-title>Receptor that leaves a sour taste in the mouth.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>395</volume>
<fpage>555</fpage>
<lpage>556</lpage>
.
<pub-id pub-id-type="doi">10.1038/26882</pub-id>
<pub-id pub-id-type="pmid">9783580</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vrancic</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Banjanac</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nujic</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bosnar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Murati</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Munic</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Azithromycin distinctively modulates classical activation of human monocytes in vitro.</article-title>
<source>
<italic>Br. J. Pharmacol.</italic>
</source>
<volume>165</volume>
<fpage>1348</fpage>
<lpage>1360</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1476-5381.2011.01576.x</pub-id>
<pub-id pub-id-type="pmid">21726210</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walker</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Penn</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Hanania</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Dickey</surname>
<given-names>B. F.</given-names>
</name>
<name>
<surname>Bond</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>New perspectives regarding beta(2) -adrenoceptor ligands in the treatment of asthma.</article-title>
<source>
<italic>Br. J. Pharmacol.</italic>
</source>
<volume>163</volume>
<fpage>18</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1476-5381.2010.01178.x</pub-id>
<pub-id pub-id-type="pmid">21175591</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfle</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Elsholz</surname>
<given-names>F. A.</given-names>
</name>
<name>
<surname>Kersten</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Haarhaus</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Schumacher</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Schempp</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Expression and functional activity of the human bitter taste receptor TAS2R38 in human placental tissues and JEG-3 cells.</article-title>
<source>
<italic>Molecules</italic>
</source>
<volume>21</volume>
:
<issue>306</issue>
.
<pub-id pub-id-type="doi">10.3390/molecules21030306</pub-id>
<pub-id pub-id-type="pmid">26950109</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Workman</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Adappa</surname>
<given-names>N. D.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>N. A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The role of bitter and sweet taste receptors in upper airway immunity.</article-title>
<source>
<italic>Curr. Allergy Asthma Rep.</italic>
</source>
<volume>15</volume>
:
<issue>72</issue>
.
<pub-id pub-id-type="doi">10.1007/s11882-015-0571-8</pub-id>
<pub-id pub-id-type="pmid">26492878</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rozengurt</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Sinnett-Smith</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rozengurt</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>99</volume>
<fpage>2392</fpage>
<lpage>2397</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.042617699</pub-id>
<pub-id pub-id-type="pmid">11854532</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Iguchi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Riethmacher</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Functional characterization of bitter-taste receptors expressed in mammalian testis.</article-title>
<source>
<italic>Mol. Hum. Reprod.</italic>
</source>
<volume>19</volume>
<fpage>17</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="doi">10.1093/molehr/gas040</pub-id>
<pub-id pub-id-type="pmid">22983952</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Misior</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Miles</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Saxena</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>Anti-mitogenic effects of beta-agonists and PGE2 on airway smooth muscle are PKA dependent.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>25</volume>
<fpage>389</fpage>
<lpage>397</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.10-164798</pub-id>
<pub-id pub-id-type="pmid">20805374</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yasutomi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ohshima</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Omata</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Urasaki</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Erythromycin differentially inhibits lipopolysaccharide- or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells.</article-title>
<source>
<italic>J. Immunol.</italic>
</source>
<volume>175</volume>
<fpage>8069</fpage>
<lpage>8076</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.175.12.8069</pub-id>
<pub-id pub-id-type="pmid">16339544</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>E. S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>Y. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Association between polymorphisms in bitter taste receptor genes and clinical features in korean asthmatics.</article-title>
<source>
<italic>Respiration</italic>
</source>
<volume>91</volume>
<fpage>141</fpage>
<lpage>150</lpage>
.
<pub-id pub-id-type="doi">10.1159/000443796</pub-id>
<pub-id pub-id-type="pmid">26812163</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhai</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Nyirimigabo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms.</article-title>
<source>
<italic>Oncotarget</italic>
</source>
<volume>7</volume>
<fpage>21156</fpage>
<lpage>21167</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.8549</pub-id>
<pub-id pub-id-type="pmid">27056888</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lifshitz</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Fogarty</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>ZhuGe</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Activation of BK channels may not be required for bitter tastant-induced bronchodilation.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>18</volume>
<fpage>648</fpage>
<lpage>650</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.2733</pub-id>
<pub-id pub-id-type="pmid">22561814</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Lifshitz</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Uy</surname>
<given-names>K. F.</given-names>
</name>
<name>
<surname>Ikebe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fogarty</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>ZhuGe</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>The cellular and molecular basis of bitter tastant-induced bronchodilation.</article-title>
<source>
<italic>PLoS Biol.</italic>
</source>
<volume>11</volume>
:
<issue>e1001501</issue>
.
<pub-id pub-id-type="doi">10.1371/journal.pbio.1001501</pub-id>
<pub-id pub-id-type="pmid">23472053</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000579 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000579 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6647873
   |texte=   Bitter Taste Receptors for Asthma Therapeutics
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31379597" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021