Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine

Identifieur interne : 000578 ( Pmc/Corpus ); précédent : 000577; suivant : 000579

Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine

Auteurs : Mingzhi Luo ; Kai Ni ; Yang Jin ; Zifan Yu ; Linhong Deng

Source :

RBID : PMC:6647893

Abstract

Significant advances have been made in the past decade in mapping the distributions and the physiological functions of extra-oral bitter taste receptors (TAS2Rs) in non-gustatory tissues. In particular, it has been found that TAS2Rs are expressed in various muscle tissues and activation of TAS2Rs can lead to muscle cell relaxation, which suggests that TAS2Rs may be important new targets in muscle relaxation therapy for various muscle-related diseases. So far, however, there is a lack of potent extra-oral TAS2R agonists that can be used as novel drug agents in muscle relaxation therapies. Interestingly, traditional Chinese medicine (TCM) often characterizes a drug’s property in terms of five distinct flavors (bitter, sweet, sour, salty, and pungent) according to its taste and function, and commonly regards “bitterness” as an intrinsic property of “good medicine.” In addition, many bitter flavored TCM are known in practice to cause muscle relaxation after long term use, and in lab experiments the compounds identified from some bitter flavored TCM do activate TAS2Rs and thus relax muscle cells. Therefore, it is highly possible to discover very useful extra-oral TAS2R agonists for muscle relaxation therapies among the abundant bitter compounds used in bitter flavored TCM. With this perspective, we reviewed in literature the distribution of TAS2Rs in different muscle systems with a focus on the map of bitter flavored TCM which can regulate muscle contractility and related functional chemical components. We also reviewed the recently established databases of TCM chemical components and the bioinformatics software which can be used for high-throughput screening and data mining of the chemical components associated with bitter flavored TCM. All together, we aim to present a knowledge-based approach and technological platform for identification or discovery of extra-oral TAS2R agonists that can be used as novel drug agents for muscle relaxation therapies through screening and evaluation of chemical compounds used in bitter flavored TCM.


Url:
DOI: 10.3389/fphys.2019.00861
PubMed: 31379593
PubMed Central: 6647893

Links to Exploration step

PMC:6647893

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine</title>
<author>
<name sortKey="Luo, Mingzhi" sort="Luo, Mingzhi" uniqKey="Luo M" first="Mingzhi" last="Luo">Mingzhi Luo</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ni, Kai" sort="Ni, Kai" uniqKey="Ni K" first="Kai" last="Ni">Kai Ni</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Yang" sort="Jin, Yang" uniqKey="Jin Y" first="Yang" last="Jin">Yang Jin</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Bioengineering College, Chongqing University</institution>
,
<addr-line>Chongqing</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Zifan" sort="Yu, Zifan" uniqKey="Yu Z" first="Zifan" last="Yu">Zifan Yu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deng, Linhong" sort="Deng, Linhong" uniqKey="Deng L" first="Linhong" last="Deng">Linhong Deng</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31379593</idno>
<idno type="pmc">6647893</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647893</idno>
<idno type="RBID">PMC:6647893</idno>
<idno type="doi">10.3389/fphys.2019.00861</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000578</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000578</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine</title>
<author>
<name sortKey="Luo, Mingzhi" sort="Luo, Mingzhi" uniqKey="Luo M" first="Mingzhi" last="Luo">Mingzhi Luo</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ni, Kai" sort="Ni, Kai" uniqKey="Ni K" first="Kai" last="Ni">Kai Ni</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Yang" sort="Jin, Yang" uniqKey="Jin Y" first="Yang" last="Jin">Yang Jin</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Bioengineering College, Chongqing University</institution>
,
<addr-line>Chongqing</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Zifan" sort="Yu, Zifan" uniqKey="Yu Z" first="Zifan" last="Yu">Zifan Yu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deng, Linhong" sort="Deng, Linhong" uniqKey="Deng L" first="Linhong" last="Deng">Linhong Deng</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Physiology</title>
<idno type="eISSN">1664-042X</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Significant advances have been made in the past decade in mapping the distributions and the physiological functions of extra-oral bitter taste receptors (TAS2Rs) in non-gustatory tissues. In particular, it has been found that TAS2Rs are expressed in various muscle tissues and activation of TAS2Rs can lead to muscle cell relaxation, which suggests that TAS2Rs may be important new targets in muscle relaxation therapy for various muscle-related diseases. So far, however, there is a lack of potent extra-oral TAS2R agonists that can be used as novel drug agents in muscle relaxation therapies. Interestingly, traditional Chinese medicine (TCM) often characterizes a drug’s property in terms of five distinct flavors (bitter, sweet, sour, salty, and pungent) according to its taste and function, and commonly regards “bitterness” as an intrinsic property of “good medicine.” In addition, many bitter flavored TCM are known in practice to cause muscle relaxation after long term use, and in lab experiments the compounds identified from some bitter flavored TCM do activate TAS2Rs and thus relax muscle cells. Therefore, it is highly possible to discover very useful extra-oral TAS2R agonists for muscle relaxation therapies among the abundant bitter compounds used in bitter flavored TCM. With this perspective, we reviewed in literature the distribution of TAS2Rs in different muscle systems with a focus on the map of bitter flavored TCM which can regulate muscle contractility and related functional chemical components. We also reviewed the recently established databases of TCM chemical components and the bioinformatics software which can be used for high-throughput screening and data mining of the chemical components associated with bitter flavored TCM. All together, we aim to present a knowledge-based approach and technological platform for identification or discovery of extra-oral TAS2R agonists that can be used as novel drug agents for muscle relaxation therapies through screening and evaluation of chemical compounds used in bitter flavored TCM.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adler, E" uniqKey="Adler E">E. Adler</name>
</author>
<author>
<name sortKey="Hoon, M A" uniqKey="Hoon M">M. A. Hoon</name>
</author>
<author>
<name sortKey="Mueller, K L" uniqKey="Mueller K">K. L. Mueller</name>
</author>
<author>
<name sortKey="Chandrashekar, J" uniqKey="Chandrashekar J">J. Chandrashekar</name>
</author>
<author>
<name sortKey="Ryba, N J P" uniqKey="Ryba N">N. J. P. Ryba</name>
</author>
<author>
<name sortKey="Zuker, C S" uniqKey="Zuker C">C. S. Zuker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alfonso Prieto, M" uniqKey="Alfonso Prieto M">M. Alfonso-Prieto</name>
</author>
<author>
<name sortKey="Navarini, L" uniqKey="Navarini L">L. Navarini</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avau, B" uniqKey="Avau B">B. Avau</name>
</author>
<author>
<name sortKey="Depoortere, I" uniqKey="Depoortere I">I. Depoortere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avau, B" uniqKey="Avau B">B. Avau</name>
</author>
<author>
<name sortKey="Rotondo, A" uniqKey="Rotondo A">A. Rotondo</name>
</author>
<author>
<name sortKey="Thijs, T" uniqKey="Thijs T">T. Thijs</name>
</author>
<author>
<name sortKey="Andrews, C N" uniqKey="Andrews C">C. N. Andrews</name>
</author>
<author>
<name sortKey="Janssen, P" uniqKey="Janssen P">P. Janssen</name>
</author>
<author>
<name sortKey="Tack, J" uniqKey="Tack J">J. Tack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahia, M S" uniqKey="Bahia M">M. S. Bahia</name>
</author>
<author>
<name sortKey="Nissim, I" uniqKey="Nissim I">I. Nissim</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C. Kuhn</name>
</author>
<author>
<name sortKey="Bufe, B" uniqKey="Bufe B">B. Bufe</name>
</author>
<author>
<name sortKey="Winnig, M" uniqKey="Winnig M">M. Winnig</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Redel, U" uniqKey="Redel U">U. Redel</name>
</author>
<author>
<name sortKey="Blank, K" uniqKey="Blank K">K. Blank</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beuming, T" uniqKey="Beuming T">T. Beuming</name>
</author>
<author>
<name sortKey="Sherman, W" uniqKey="Sherman W">W. Sherman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biarnes, X" uniqKey="Biarnes X">X. Biarnés</name>
</author>
<author>
<name sortKey="Marchiori, A" uniqKey="Marchiori A">A. Marchiori</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Lanzara, C" uniqKey="Lanzara C">C. Lanzara</name>
</author>
<author>
<name sortKey="Gasparini, P" uniqKey="Gasparini P">P. Gasparini</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Born, S" uniqKey="Born S">S. Born</name>
</author>
<author>
<name sortKey="Levit, A" uniqKey="Levit A">A. Levit</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Massarotti, A" uniqKey="Massarotti A">A. Massarotti</name>
</author>
<author>
<name sortKey="Appendino, G" uniqKey="Appendino G">G. Appendino</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Roudnitzky, N" uniqKey="Roudnitzky N">N. Roudnitzky</name>
</author>
<author>
<name sortKey="Appendino, G" uniqKey="Appendino G">G. Appendino</name>
</author>
<author>
<name sortKey="Avonto, C" uniqKey="Avonto C">C. Avonto</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bufe, B" uniqKey="Bufe B">B. Bufe</name>
</author>
<author>
<name sortKey="Hofmann, T" uniqKey="Hofmann T">T. Hofmann</name>
</author>
<author>
<name sortKey="Krautwurst, D" uniqKey="Krautwurst D">D. Krautwurst</name>
</author>
<author>
<name sortKey="Raguse, J D" uniqKey="Raguse J">J. -D. Raguse</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chandrashekar, J" uniqKey="Chandrashekar J">J. Chandrashekar</name>
</author>
<author>
<name sortKey="Mueller, K L" uniqKey="Mueller K">K. L. Mueller</name>
</author>
<author>
<name sortKey="Hoon, M A" uniqKey="Hoon M">M. A. Hoon</name>
</author>
<author>
<name sortKey="Adler, E" uniqKey="Adler E">E. Adler</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L. Feng</name>
</author>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Ping, N" uniqKey="Ping N">N. Ping</name>
</author>
<author>
<name sortKey="Liang, D" uniqKey="Liang D">D. Liang</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M. Li</name>
</author>
<author>
<name sortKey="Mi, Y" uniqKey="Mi Y">Y. Mi</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Dong, S" uniqKey="Dong S">S. Dong</name>
</author>
<author>
<name sortKey="Meng, F" uniqKey="Meng F">F. Meng</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y. Liang</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung, F" uniqKey="Cheung F">F. Cheung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, A A" uniqKey="Clark A">A. A. Clark</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
<author>
<name sortKey="Munger, S D" uniqKey="Munger S">S. D. Munger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dagan Wiener, A" uniqKey="Dagan Wiener A">A. Dagan-Wiener</name>
</author>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Nissim, I" uniqKey="Nissim I">I. Nissim</name>
</author>
<author>
<name sortKey="Bahia, M S" uniqKey="Bahia M">M. S. Bahia</name>
</author>
<author>
<name sortKey="Dubovski, N" uniqKey="Dubovski N">N. Dubovski</name>
</author>
<author>
<name sortKey="Margulis, E" uniqKey="Margulis E">E. Margulis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dagan Wiener, A" uniqKey="Dagan Wiener A">A. Dagan-Wiener</name>
</author>
<author>
<name sortKey="Nissim, I" uniqKey="Nissim I">I. Nissim</name>
</author>
<author>
<name sortKey="Ben Abu, N" uniqKey="Ben Abu N">N. Ben Abu</name>
</author>
<author>
<name sortKey="Borgonovo, G" uniqKey="Borgonovo G">G. Borgonovo</name>
</author>
<author>
<name sortKey="Bassoli, A" uniqKey="Bassoli A">A. Bassoli</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deloose, E" uniqKey="Deloose E">E. Deloose</name>
</author>
<author>
<name sortKey="Janssen, P" uniqKey="Janssen P">P. Janssen</name>
</author>
<author>
<name sortKey="Corsetti, M" uniqKey="Corsetti M">M. Corsetti</name>
</author>
<author>
<name sortKey="Biesiekierski, J" uniqKey="Biesiekierski J">J. Biesiekierski</name>
</author>
<author>
<name sortKey="Masuy, I" uniqKey="Masuy I">I. Masuy</name>
</author>
<author>
<name sortKey="Rotondo, A" uniqKey="Rotondo A">A. Rotondo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
<author>
<name sortKey="Wang, W C H" uniqKey="Wang W">W. C. H. Wang</name>
</author>
<author>
<name sortKey="Mcilmoyle, E L" uniqKey="Mcilmoyle E">E. L. McIlmoyle</name>
</author>
<author>
<name sortKey="Robinett, K S" uniqKey="Robinett K">K. S. Robinett</name>
</author>
<author>
<name sortKey="Schillinger, R M" uniqKey="Schillinger R">R. M. Schillinger</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Niv, M" uniqKey="Niv M">M. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dipizio, A" uniqKey="Dipizio A">A. DiPizio</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Krautwurst, D" uniqKey="Krautwurst D">D. Krautwurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Levit, A" uniqKey="Levit A">A. Levit</name>
</author>
<author>
<name sortKey="Slutzki, M" uniqKey="Slutzki M">M. Slutzki</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Karaman, R" uniqKey="Karaman R">R. Karaman</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Shy, N" uniqKey="Shy N">N. Shy</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Niv, M" uniqKey="Niv M">M. Niv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dragos, D" uniqKey="Dragos D">D. Dragos</name>
</author>
<author>
<name sortKey="Gilca, M" uniqKey="Gilca M">M. Gilca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drewnowski, A" uniqKey="Drewnowski A">A. Drewnowski</name>
</author>
<author>
<name sortKey="Gomez Carneros, C" uniqKey="Gomez Carneros C">C. Gomez-Carneros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drossman, D A" uniqKey="Drossman D">D. A. Drossman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Escobar, M F" uniqKey="Escobar M">M. F. Escobar</name>
</author>
<author>
<name sortKey="Mora, B L" uniqKey="Mora B">B. L. Mora</name>
</author>
<author>
<name sortKey="Cedano, J A" uniqKey="Cedano J">J. A. Cedano</name>
</author>
<author>
<name sortKey="Loaiza, S" uniqKey="Loaiza S">S. Loaiza</name>
</author>
<author>
<name sortKey="Rosso, F" uniqKey="Rosso F">F. Rosso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fierro, F" uniqKey="Fierro F">F. Fierro</name>
</author>
<author>
<name sortKey="Suku, E" uniqKey="Suku E">E. Suku</name>
</author>
<author>
<name sortKey="Alfonso Prieto, M" uniqKey="Alfonso Prieto M">M. Alfonso-Prieto</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Cichon, S" uniqKey="Cichon S">S. Cichon</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fletcher, J N" uniqKey="Fletcher J">J. N. Fletcher</name>
</author>
<author>
<name sortKey="Pan, L" uniqKey="Pan L">L. Pan</name>
</author>
<author>
<name sortKey="Kinghorn, A D" uniqKey="Kinghorn A">A. D. Kinghorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, S R" uniqKey="Foster S">S. R. Foster</name>
</author>
<author>
<name sortKey="Blank, K" uniqKey="Blank K">K. Blank</name>
</author>
<author>
<name sortKey="See Hoe, L E" uniqKey="See Hoe L">L. E. See Hoe</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Peart, J N" uniqKey="Peart J">J. N. Peart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, S R" uniqKey="Foster S">S. R. Foster</name>
</author>
<author>
<name sortKey="Porrello, E R" uniqKey="Porrello E">E. R. Porrello</name>
</author>
<author>
<name sortKey="Purdue, B" uniqKey="Purdue B">B. Purdue</name>
</author>
<author>
<name sortKey="Chan, H W" uniqKey="Chan H">H. -W. Chan</name>
</author>
<author>
<name sortKey="Voigt, A" uniqKey="Voigt A">A. Voigt</name>
</author>
<author>
<name sortKey="Frenzel, S" uniqKey="Frenzel S">S. Frenzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, S R" uniqKey="Foster S">S. R. Foster</name>
</author>
<author>
<name sortKey="Roura, E" uniqKey="Roura E">E. Roura</name>
</author>
<author>
<name sortKey="Thomas, W G" uniqKey="Thomas W">W. G. Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilca, M" uniqKey="Gilca M">M. Gilca</name>
</author>
<author>
<name sortKey="Barbulescu, A" uniqKey="Barbulescu A">A. Barbulescu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilca, M" uniqKey="Gilca M">M. Gilca</name>
</author>
<author>
<name sortKey="Dragos, D" uniqKey="Dragos D">D. Dragos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gotoh, M" uniqKey="Gotoh M">M. Gotoh</name>
</author>
<author>
<name sortKey="Kaminuma, O" uniqKey="Kaminuma O">O. Kaminuma</name>
</author>
<author>
<name sortKey="Nakaya, A" uniqKey="Nakaya A">A. Nakaya</name>
</author>
<author>
<name sortKey="Katayama, K" uniqKey="Katayama K">K. Katayama</name>
</author>
<author>
<name sortKey="Watanabe, N" uniqKey="Watanabe N">N. Watanabe</name>
</author>
<author>
<name sortKey="Saeki, M" uniqKey="Saeki M">M. Saeki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grassin Delyle, S" uniqKey="Grassin Delyle S">S. Grassin-Delyle</name>
</author>
<author>
<name sortKey="Abrial, C" uniqKey="Abrial C">C. Abrial</name>
</author>
<author>
<name sortKey="Fayad Kobeissi, S" uniqKey="Fayad Kobeissi S">S. Fayad-Kobeissi</name>
</author>
<author>
<name sortKey="Brollo, M" uniqKey="Brollo M">M. Brollo</name>
</author>
<author>
<name sortKey="Faisy, C" uniqKey="Faisy C">C. Faisy</name>
</author>
<author>
<name sortKey="Alvarez, J C" uniqKey="Alvarez J">J.-C. Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gruber, C W" uniqKey="Gruber C">C. W. Gruber</name>
</author>
<author>
<name sortKey="O Rien, M" uniqKey="O Rien M">M. O’Brien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hesketh, T" uniqKey="Hesketh T">T. Hesketh</name>
</author>
<author>
<name sortKey="Zhu, W X" uniqKey="Zhu W">W. X. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
</author>
<author>
<name sortKey="Shen, Q" uniqKey="Shen Q">Q. Shen</name>
</author>
<author>
<name sortKey="Su, X" uniqKey="Su X">X. Su</name>
</author>
<author>
<name sortKey="Ji, M" uniqKey="Ji M">M. Ji</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jafurulla, M" uniqKey="Jafurulla M">M. Jafurulla</name>
</author>
<author>
<name sortKey="Tiwari, S" uniqKey="Tiwari S">S. Tiwari</name>
</author>
<author>
<name sortKey="Chattopadhyay, A" uniqKey="Chattopadhyay A">A. Chattopadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaggupilli, A" uniqKey="Jaggupilli A">A. Jaggupilli</name>
</author>
<author>
<name sortKey="Howard, R" uniqKey="Howard R">R. Howard</name>
</author>
<author>
<name sortKey="Upadhyaya, J D" uniqKey="Upadhyaya J">J. D. Upadhyaya</name>
</author>
<author>
<name sortKey="Bhullar, R P" uniqKey="Bhullar R">R. P. Bhullar</name>
</author>
<author>
<name sortKey="Chelikani, P" uniqKey="Chelikani P">P. Chelikani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaggupilli, A" uniqKey="Jaggupilli A">A. Jaggupilli</name>
</author>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N. Singh</name>
</author>
<author>
<name sortKey="De Jesus, V C" uniqKey="De Jesus V">V. C. De Jesus</name>
</author>
<author>
<name sortKey="Gounni, M S" uniqKey="Gounni M">M. S. Gounni</name>
</author>
<author>
<name sortKey="Dhanaraj, P" uniqKey="Dhanaraj P">P. Dhanaraj</name>
</author>
<author>
<name sortKey="Chelikani, P" uniqKey="Chelikani P">P. Chelikani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaggupilli, A" uniqKey="Jaggupilli A">A. Jaggupilli</name>
</author>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N. Singh</name>
</author>
<author>
<name sortKey="Upadhyaya, J" uniqKey="Upadhyaya J">J. Upadhyaya</name>
</author>
<author>
<name sortKey="Sikarwar, A S" uniqKey="Sikarwar A">A. S. Sikarwar</name>
</author>
<author>
<name sortKey="Arakawa, M" uniqKey="Arakawa M">M. Arakawa</name>
</author>
<author>
<name sortKey="Dakshinamurti, S" uniqKey="Dakshinamurti S">S. Dakshinamurti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jayaram, P M" uniqKey="Jayaram P">P. M. Jayaram</name>
</author>
<author>
<name sortKey="Mohan, M K" uniqKey="Mohan M">M. K. Mohan</name>
</author>
<author>
<name sortKey="Farid, I" uniqKey="Farid I">I. Farid</name>
</author>
<author>
<name sortKey="Lindow, S" uniqKey="Lindow S">S. Lindow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karaman, R" uniqKey="Karaman R">R. Karaman</name>
</author>
<author>
<name sortKey="Nowak, S" uniqKey="Nowak S">S. Nowak</name>
</author>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Kitaneh, H" uniqKey="Kitaneh H">H. Kitaneh</name>
</author>
<author>
<name sortKey="Abu Jaish, A" uniqKey="Abu Jaish A">A. Abu-Jaish</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katritch, V" uniqKey="Katritch V">V. Katritch</name>
</author>
<author>
<name sortKey="Cherezov, V" uniqKey="Cherezov V">V. Cherezov</name>
</author>
<author>
<name sortKey="Stevens, R C" uniqKey="Stevens R">R. C. Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Cho, S" uniqKey="Cho S">S. Cho</name>
</author>
<author>
<name sortKey="Casta O, M A" uniqKey="Casta O M">M. A. Castaño</name>
</author>
<author>
<name sortKey="Panettieri, R A" uniqKey="Panettieri R">R. A. Panettieri</name>
</author>
<author>
<name sortKey="Woo, J A" uniqKey="Woo J">J. A. Woo</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D. Kim</name>
</author>
<author>
<name sortKey="Woo, J A" uniqKey="Woo J">J. A. Woo</name>
</author>
<author>
<name sortKey="Geffken, E" uniqKey="Geffken E">E. Geffken</name>
</author>
<author>
<name sortKey="An, S S" uniqKey="An S">S. S. An</name>
</author>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C. Kuhn</name>
</author>
<author>
<name sortKey="Bufe, B" uniqKey="Bufe B">B. Bufe</name>
</author>
<author>
<name sortKey="Winnig, M" uniqKey="Winnig M">M. Winnig</name>
</author>
<author>
<name sortKey="Hofmann, T" uniqKey="Hofmann T">T. Hofmann</name>
</author>
<author>
<name sortKey="Frank, O" uniqKey="Frank O">O. Frank</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S J" uniqKey="Lee S">S. J. Lee</name>
</author>
<author>
<name sortKey="Depoortere, I" uniqKey="Depoortere I">I. Depoortere</name>
</author>
<author>
<name sortKey="Hatt, H" uniqKey="Hatt H">H. Hatt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leem, J" uniqKey="Leem J">J. Leem</name>
</author>
<author>
<name sortKey="Jung, W" uniqKey="Jung W">W. Jung</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y. Kim</name>
</author>
<author>
<name sortKey="Kim, B" uniqKey="Kim B">B. Kim</name>
</author>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leguebe, M" uniqKey="Leguebe M">M. Leguebe</name>
</author>
<author>
<name sortKey="Nguyen, C" uniqKey="Nguyen C">C. Nguyen</name>
</author>
<author>
<name sortKey="Capece, L" uniqKey="Capece L">L. Capece</name>
</author>
<author>
<name sortKey="Hoang, Z" uniqKey="Hoang Z">Z. Hoang</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levit, A" uniqKey="Levit A">A. Levit</name>
</author>
<author>
<name sortKey="Nowak, S" uniqKey="Nowak S">S. Nowak</name>
</author>
<author>
<name sortKey="Peters, M" uniqKey="Peters M">M. Peters</name>
</author>
<author>
<name sortKey="Wiener, A" uniqKey="Wiener A">A. Wiener</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C. Ma</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Hu, Z" uniqKey="Hu Z">Z. Hu</name>
</author>
<author>
<name sortKey="Du, T" uniqKey="Du T">T. Du</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liggett, S B" uniqKey="Liggett S">S. B. Liggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, K" uniqKey="Liu K">K. Liu</name>
</author>
<author>
<name sortKey="Jaggupilli, A" uniqKey="Jaggupilli A">A. Jaggupilli</name>
</author>
<author>
<name sortKey="Premnath, D" uniqKey="Premnath D">D. Premnath</name>
</author>
<author>
<name sortKey="Chelikani, P" uniqKey="Chelikani P">P. Chelikani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lossow, K" uniqKey="Lossow K">K. Lossow</name>
</author>
<author>
<name sortKey="Hubner, S" uniqKey="Hubner S">S. Hübner</name>
</author>
<author>
<name sortKey="Roudnitzky, N" uniqKey="Roudnitzky N">N. Roudnitzky</name>
</author>
<author>
<name sortKey="Slack, J P" uniqKey="Slack J">J. P. Slack</name>
</author>
<author>
<name sortKey="Pollastro, F" uniqKey="Pollastro F">F. Pollastro</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P. Lu</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Lifshitz, L M" uniqKey="Lifshitz L">L. M. Lifshitz</name>
</author>
<author>
<name sortKey="Zhuge, R" uniqKey="Zhuge R">R. ZhuGe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lukman, S" uniqKey="Lukman S">S. Lukman</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
<author>
<name sortKey="Hui, S" uniqKey="Hui S">S. Hui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lund, T C" uniqKey="Lund T">T. C. Lund</name>
</author>
<author>
<name sortKey="Kobs, A J" uniqKey="Kobs A">A. J. Kobs</name>
</author>
<author>
<name sortKey="Kramer, A" uniqKey="Kramer A">A. Kramer</name>
</author>
<author>
<name sortKey="Nyquist, M" uniqKey="Nyquist M">M. Nyquist</name>
</author>
<author>
<name sortKey="Kuroki, M T" uniqKey="Kuroki M">M. T. Kuroki</name>
</author>
<author>
<name sortKey="Osborn, J" uniqKey="Osborn J">J. Osborn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, H" uniqKey="Ma H">H. Ma</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
<author>
<name sortKey="Tian, Z" uniqKey="Tian Z">Z. Tian</name>
</author>
<author>
<name sortKey="Lian, Z" uniqKey="Lian Z">Z. Lian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maina, I W" uniqKey="Maina I">I. W. Maina</name>
</author>
<author>
<name sortKey="Workman, A D" uniqKey="Workman A">A. D. Workman</name>
</author>
<author>
<name sortKey="Cohen, N A" uniqKey="Cohen N">N. A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mak, G" uniqKey="Mak G">G. Mak</name>
</author>
<author>
<name sortKey="Hanania, N A" uniqKey="Hanania N">N. A. Hanania</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manson, M L" uniqKey="Manson M">M. L. Manson</name>
</author>
<author>
<name sortKey="Safholm, J" uniqKey="Safholm J">J. Safholm</name>
</author>
<author>
<name sortKey="Alameri, M" uniqKey="Alameri M">M. Alameri</name>
</author>
<author>
<name sortKey="Bergman, P" uniqKey="Bergman P">P. Bergman</name>
</author>
<author>
<name sortKey="Orre, A C" uniqKey="Orre A">A. C. Orre</name>
</author>
<author>
<name sortKey="Sward, K" uniqKey="Sward K">K. Sward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchiori, A" uniqKey="Marchiori A">A. Marchiori</name>
</author>
<author>
<name sortKey="Capece, L" uniqKey="Capece L">L. Capece</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Gasparini, P" uniqKey="Gasparini P">P. Gasparini</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mennella, J A" uniqKey="Mennella J">J. A. Mennella</name>
</author>
<author>
<name sortKey="Reed, D R" uniqKey="Reed D">D. R. Reed</name>
</author>
<author>
<name sortKey="Roberts, K M" uniqKey="Roberts K">K. M. Roberts</name>
</author>
<author>
<name sortKey="Mathew, P S" uniqKey="Mathew P">P. S. Mathew</name>
</author>
<author>
<name sortKey="Mansfield, C J" uniqKey="Mansfield C">C. J. Mansfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Batram, C" uniqKey="Batram C">C. Batram</name>
</author>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C. Kuhn</name>
</author>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Chudoba, E" uniqKey="Chudoba E">E. Chudoba</name>
</author>
<author>
<name sortKey="Bufe, B" uniqKey="Bufe B">B. Bufe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mikami, M" uniqKey="Mikami M">M. Mikami</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Danielsson, J" uniqKey="Danielsson J">J. Danielsson</name>
</author>
<author>
<name sortKey="Joell, T" uniqKey="Joell T">T. Joell</name>
</author>
<author>
<name sortKey="Yong, H M" uniqKey="Yong H">H. M. Yong</name>
</author>
<author>
<name sortKey="Townsend, E" uniqKey="Townsend E">E. Townsend</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowak, S" uniqKey="Nowak S">S. Nowak</name>
</author>
<author>
<name sortKey="Di Pizio, A" uniqKey="Di Pizio A">A. Di Pizio</name>
</author>
<author>
<name sortKey="Levit, A" uniqKey="Levit A">A. Levit</name>
</author>
<author>
<name sortKey="Niv, M Y" uniqKey="Niv M">M. Y. Niv</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orsmarkpietras, C" uniqKey="Orsmarkpietras C">C. Orsmarkpietras</name>
</author>
<author>
<name sortKey="James, A" uniqKey="James A">A. James</name>
</author>
<author>
<name sortKey="Konradsen, J R" uniqKey="Konradsen J">J. R. Konradsen</name>
</author>
<author>
<name sortKey="Nordlund, B" uniqKey="Nordlund B">B. Nordlund</name>
</author>
<author>
<name sortKey="Soderh Ll, C" uniqKey="Soderh Ll C">C. Söderhäll</name>
</author>
<author>
<name sortKey="Pulkkinen, V" uniqKey="Pulkkinen V">V. Pulkkinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, S" uniqKey="Pan S">S. Pan</name>
</author>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P. Sharma</name>
</author>
<author>
<name sortKey="Shah, S D" uniqKey="Shah S">S. D. Shah</name>
</author>
<author>
<name sortKey="Deshpande, D A" uniqKey="Deshpande D">D. A. Deshpande</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pearson, W R" uniqKey="Pearson W">W. R. Pearson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pieroni, A" uniqKey="Pieroni A">A. Pieroni</name>
</author>
<author>
<name sortKey="Giusti, M E" uniqKey="Giusti M">M. E. Giusti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roland, W S U" uniqKey="Roland W">W. S. U. Roland</name>
</author>
<author>
<name sortKey="Gouka, R J" uniqKey="Gouka R">R. J. Gouka</name>
</author>
<author>
<name sortKey="Gruppen, H" uniqKey="Gruppen H">H. Gruppen</name>
</author>
<author>
<name sortKey="Driesse, M" uniqKey="Driesse M">M. Driesse</name>
</author>
<author>
<name sortKey="Van Buren, L" uniqKey="Van Buren L">L. van Buren</name>
</author>
<author>
<name sortKey="Smit, G" uniqKey="Smit G">G. Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roland, W S U" uniqKey="Roland W">W. S. U. Roland</name>
</author>
<author>
<name sortKey="Van Buren, L" uniqKey="Van Buren L">L. van Buren</name>
</author>
<author>
<name sortKey="Gruppen, H" uniqKey="Gruppen H">H. Gruppen</name>
</author>
<author>
<name sortKey="Driesse, M" uniqKey="Driesse M">M. Driesse</name>
</author>
<author>
<name sortKey="Gouka, R J" uniqKey="Gouka R">R. J. Gouka</name>
</author>
<author>
<name sortKey="Smit, G" uniqKey="Smit G">G. Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roland, W S" uniqKey="Roland W">W. S. Roland</name>
</author>
<author>
<name sortKey="Vincken, J P" uniqKey="Vincken J">J. P. Vincken</name>
</author>
<author>
<name sortKey="Gouka, R J" uniqKey="Gouka R">R. J. Gouka</name>
</author>
<author>
<name sortKey="Van Buren, L" uniqKey="Van Buren L">L. van Buren</name>
</author>
<author>
<name sortKey="Gruppen, H" uniqKey="Gruppen H">H. Gruppen</name>
</author>
<author>
<name sortKey="Smit, G" uniqKey="Smit G">G. Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ru, J" uniqKey="Ru J">J. Ru</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W. Zhou</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sainz, E" uniqKey="Sainz E">E. Sainz</name>
</author>
<author>
<name sortKey="Cavenagh, M M" uniqKey="Cavenagh M">M. M. Cavenagh</name>
</author>
<author>
<name sortKey="Gutierrez, J" uniqKey="Gutierrez J">J. Gutierrez</name>
</author>
<author>
<name sortKey="Battey, J F" uniqKey="Battey J">J. F. Battey</name>
</author>
<author>
<name sortKey="Northup, J K" uniqKey="Northup J">J. K. Northup</name>
</author>
<author>
<name sortKey="Sullivan, S L" uniqKey="Sullivan S">S. L. Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakai, H" uniqKey="Sakai H">H. Sakai</name>
</author>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K. Sato</name>
</author>
<author>
<name sortKey="Kai, Y" uniqKey="Kai Y">Y. Kai</name>
</author>
<author>
<name sortKey="Chiba, Y" uniqKey="Chiba Y">Y. Chiba</name>
</author>
<author>
<name sortKey="Narita, M" uniqKey="Narita M">M. Narita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakurai, T" uniqKey="Sakurai T">T. Sakurai</name>
</author>
<author>
<name sortKey="Misaka, T" uniqKey="Misaka T">T. Misaka</name>
</author>
<author>
<name sortKey="Ishiguro, M" uniqKey="Ishiguro M">M. Ishiguro</name>
</author>
<author>
<name sortKey="Masuda, K" uniqKey="Masuda K">K. Masuda</name>
</author>
<author>
<name sortKey="Sugawara, T" uniqKey="Sugawara T">T. Sugawara</name>
</author>
<author>
<name sortKey="Ito, K" uniqKey="Ito K">K. Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sandal, M" uniqKey="Sandal M">M. Sandal</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
<author>
<name sortKey="Brockhoff, A" uniqKey="Brockhoff A">A. Brockhoff</name>
</author>
<author>
<name sortKey="Musiani, F" uniqKey="Musiani F">F. Musiani</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sandal, M" uniqKey="Sandal M">M. Sandal</name>
</author>
<author>
<name sortKey="Duy, T P" uniqKey="Duy T">T. P. Duy</name>
</author>
<author>
<name sortKey="Cona, M" uniqKey="Cona M">M. Cona</name>
</author>
<author>
<name sortKey="Zung, H" uniqKey="Zung H">H. Zung</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
<author>
<name sortKey="Musiani, F" uniqKey="Musiani F">F. Musiani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanders, K M" uniqKey="Sanders K">K. M. Sanders</name>
</author>
<author>
<name sortKey="Koh, S D" uniqKey="Koh S">S. D. Koh</name>
</author>
<author>
<name sortKey="Ro, S" uniqKey="Ro S">S. Ro</name>
</author>
<author>
<name sortKey="Ward, S M" uniqKey="Ward S">S. M. Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanematsu, K" uniqKey="Sanematsu K">K. Sanematsu</name>
</author>
<author>
<name sortKey="Yoshida, R" uniqKey="Yoshida R">R. Yoshida</name>
</author>
<author>
<name sortKey="Shigemura, N" uniqKey="Shigemura N">N. Shigemura</name>
</author>
<author>
<name sortKey="Ninomiya, Y" uniqKey="Ninomiya Y">Y. Ninomiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scadding, G K" uniqKey="Scadding G">G.K. Scadding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneider, J" uniqKey="Schneider J">J. Schneider</name>
</author>
<author>
<name sortKey="Korshunova, K" uniqKey="Korshunova K">K. Korshunova</name>
</author>
<author>
<name sortKey="Musiani, F" uniqKey="Musiani F">F. Musiani</name>
</author>
<author>
<name sortKey="Alfonso Prieto, M" uniqKey="Alfonso Prieto M">M. Alfonso-Prieto</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaik, F A" uniqKey="Shaik F">F. A. Shaik</name>
</author>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N. Singh</name>
</author>
<author>
<name sortKey="Arakawa, M" uniqKey="Arakawa M">M. Arakawa</name>
</author>
<author>
<name sortKey="Duan, K" uniqKey="Duan K">K. Duan</name>
</author>
<author>
<name sortKey="Bhullar, R P" uniqKey="Bhullar R">R. P. Bhullar</name>
</author>
<author>
<name sortKey="Chelikani, P" uniqKey="Chelikani P">P. Chelikani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, P" uniqKey="Shi P">P. Shi</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Zhang, Y P" uniqKey="Zhang Y">Y. P. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soares, S" uniqKey="Soares S">S. Soares</name>
</author>
<author>
<name sortKey="Kohl, S" uniqKey="Kohl S">S. Kohl</name>
</author>
<author>
<name sortKey="Thalmann, S" uniqKey="Thalmann S">S. Thalmann</name>
</author>
<author>
<name sortKey="Mateus, N" uniqKey="Mateus N">N. Mateus</name>
</author>
<author>
<name sortKey="Meyerhof, W" uniqKey="Meyerhof W">W. Meyerhof</name>
</author>
<author>
<name sortKey="De Freitas, V" uniqKey="De Freitas V">V. De Freitas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sousa, S F" uniqKey="Sousa S">S. F. Sousa</name>
</author>
<author>
<name sortKey="Ribeiro, A J" uniqKey="Ribeiro A">A. J. Ribeiro</name>
</author>
<author>
<name sortKey="Coimbra, J T" uniqKey="Coimbra J">J. T. Coimbra</name>
</author>
<author>
<name sortKey="Neves, R P" uniqKey="Neves R">R. P. Neves</name>
</author>
<author>
<name sortKey="Martins, S A" uniqKey="Martins S">S. A. Martins</name>
</author>
<author>
<name sortKey="Moorthy, N S" uniqKey="Moorthy N">N. S. Moorthy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, X" uniqKey="Su X">X. Su</name>
</author>
<author>
<name sortKey="Miller, L H" uniqKey="Miller L">L. H. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sucher, N J" uniqKey="Sucher N">N. J. Sucher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suku, E" uniqKey="Suku E">E. Suku</name>
</author>
<author>
<name sortKey="Fierro, F" uniqKey="Fierro F">F. Fierro</name>
</author>
<author>
<name sortKey="Giorgetti, A" uniqKey="Giorgetti A">A. Giorgetti</name>
</author>
<author>
<name sortKey="Alfonso Prieto, M" uniqKey="Alfonso Prieto M">M. Alfonso-Prieto</name>
</author>
<author>
<name sortKey="Carloni, P" uniqKey="Carloni P">P. Carloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, S" uniqKey="Tang S">S. Tang</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thawabteh, A" uniqKey="Thawabteh A">A. Thawabteh</name>
</author>
<author>
<name sortKey="Lelario, F" uniqKey="Lelario F">F. Lelario</name>
</author>
<author>
<name sortKey="Scrano, L" uniqKey="Scrano L">L. Scrano</name>
</author>
<author>
<name sortKey="Bufo, S A" uniqKey="Bufo S">S. A. Bufo</name>
</author>
<author>
<name sortKey="Nowak, S" uniqKey="Nowak S">S. Nowak</name>
</author>
<author>
<name sortKey="Behrens, M" uniqKey="Behrens M">M. Behrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuwani, R" uniqKey="Tuwani R">R. Tuwani</name>
</author>
<author>
<name sortKey="Wadhwa, S" uniqKey="Wadhwa S">S. Wadhwa</name>
</author>
<author>
<name sortKey="Bagler, G" uniqKey="Bagler G">G. Bagler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Upadhyaya, J D" uniqKey="Upadhyaya J">J. D. Upadhyaya</name>
</author>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N. Singh</name>
</author>
<author>
<name sortKey="Sikarwar, A S" uniqKey="Sikarwar A">A. S. Sikarwar</name>
</author>
<author>
<name sortKey="Chakraborty, R" uniqKey="Chakraborty R">R. Chakraborty</name>
</author>
<author>
<name sortKey="Pydi, S P" uniqKey="Pydi S">S. P. Pydi</name>
</author>
<author>
<name sortKey="Bhullar, R P" uniqKey="Bhullar R">R. P. Bhullar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M. Luo</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y. Pan</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H. Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, A" uniqKey="Wang A">A. Wang</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H. Zeng</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, S V" uniqKey="Wu S">S. V. Wu</name>
</author>
<author>
<name sortKey="Chen, M C" uniqKey="Chen M">M. C. Chen</name>
</author>
<author>
<name sortKey="Rozengurt, E" uniqKey="Rozengurt E">E. Rozengurt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xin, W" uniqKey="Xin W">W. Xin</name>
</author>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xin, W" uniqKey="Xin W">W. Xin</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Jing, Y" uniqKey="Jing Y">Y. Jing</name>
</author>
<author>
<name sortKey="Fernandes, V S L" uniqKey="Fernandes V">V. S. L. Fernandes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, S Y" uniqKey="Yoon S">S. Y. Yoon</name>
</author>
<author>
<name sortKey="Shin, E S" uniqKey="Shin E">E. S. Shin</name>
</author>
<author>
<name sortKey="Park, S Y" uniqKey="Park S">S. Y. Park</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Kwon, H S" uniqKey="Kwon H">H. S. Kwon</name>
</author>
<author>
<name sortKey="Cho, Y S" uniqKey="Cho Y">Y. S. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, B" uniqKey="Yu B">B. Yu</name>
</author>
<author>
<name sortKey="Cai, W" uniqKey="Cai W">W. Cai</name>
</author>
<author>
<name sortKey="Zhang, H H" uniqKey="Zhang H">H. H. Zhang</name>
</author>
<author>
<name sortKey="Zhong, Y S" uniqKey="Zhong Y">Y. S. Zhong</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J. Fang</name>
</author>
<author>
<name sortKey="Zhang, W Y" uniqKey="Zhang W">W. Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhai, K" uniqKey="Zhai K">K. Zhai</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Nyirimigabo, E" uniqKey="Nyirimigabo E">E. Nyirimigabo</name>
</author>
<author>
<name sortKey="Mi, Y" uniqKey="Mi Y">Y. Mi</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C H" uniqKey="Zhang C">C.-H. Zhang</name>
</author>
<author>
<name sortKey="Lifshitz, L M" uniqKey="Lifshitz L">L. M. Lifshitz</name>
</author>
<author>
<name sortKey="Uy, K F" uniqKey="Uy K">K. F. Uy</name>
</author>
<author>
<name sortKey="Ikebe, M" uniqKey="Ikebe M">M. Ikebe</name>
</author>
<author>
<name sortKey="Fogarty, K E" uniqKey="Fogarty K">K. E. Fogarty</name>
</author>
<author>
<name sortKey="Zhuge, R" uniqKey="Zhuge R">R. ZhuGe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Lifshitz, L M" uniqKey="Lifshitz L">L. M. Lifshitz</name>
</author>
<author>
<name sortKey="Fogarty, K E" uniqKey="Fogarty K">K. E. Fogarty</name>
</author>
<author>
<name sortKey="Zhu, M" uniqKey="Zhu M">M. Zhu</name>
</author>
<author>
<name sortKey="Zhuge, R" uniqKey="Zhuge R">R. ZhuGe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Qiao, A" uniqKey="Qiao A">A. Qiao</name>
</author>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D. Yang</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Dai, A" uniqKey="Dai A">A. Dai</name>
</author>
<author>
<name sortKey="De Graaf, C" uniqKey="De Graaf C">C. de Graaf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Qiao, Y" uniqKey="Qiao Y">Y. Qiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, K" uniqKey="Zheng K">K. Zheng</name>
</author>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P. Lu</name>
</author>
<author>
<name sortKey="Delpapa, E" uniqKey="Delpapa E">E. Delpapa</name>
</author>
<author>
<name sortKey="Bellve, K" uniqKey="Bellve K">K. Bellve</name>
</author>
<author>
<name sortKey="Deng, R" uniqKey="Deng R">R. Deng</name>
</author>
<author>
<name sortKey="Condon, J C" uniqKey="Condon J">J. C. Condon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S. Zheng</name>
</author>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M. Jiang</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C. Zhao</name>
</author>
<author>
<name sortKey="Zhu, R" uniqKey="Zhu R">R. Zhu</name>
</author>
<author>
<name sortKey="Hu, Z" uniqKey="Hu Z">Z. Hu</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Physiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Physiol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Physiol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Physiology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-042X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31379593</article-id>
<article-id pub-id-type="pmc">6647893</article-id>
<article-id pub-id-type="doi">10.3389/fphys.2019.00861</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Physiology</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Luo</surname>
<given-names>Mingzhi</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ni</surname>
<given-names>Kai</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jin</surname>
<given-names>Yang</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yu</surname>
<given-names>Zifan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Deng</surname>
<given-names>Linhong</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="c001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/681513/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University</institution>
,
<addr-line>Changzhou</addr-line>
,
<country>China</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Bioengineering College, Chongqing University</institution>
,
<addr-line>Chongqing</addr-line>
,
<country>China</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Ronghua ZhuGe, University of Massachusetts Medical School, United States</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Antonella Di Pizio, Technical University of Munich, Germany; Fangxiong Shi, Nanjing Agricultural University, China</p>
</fn>
<corresp id="c001">*Correspondence: Linhong Deng,
<email>dlh@cczu.edu.cn</email>
</corresp>
<fn fn-type="other" id="fn004">
<p>This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>16</day>
<month>7</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<volume>10</volume>
<elocation-id>861</elocation-id>
<history>
<date date-type="received">
<day>02</day>
<month>4</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>6</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Luo, Ni, Jin, Yu and Deng.</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Luo, Ni, Jin, Yu and Deng</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Significant advances have been made in the past decade in mapping the distributions and the physiological functions of extra-oral bitter taste receptors (TAS2Rs) in non-gustatory tissues. In particular, it has been found that TAS2Rs are expressed in various muscle tissues and activation of TAS2Rs can lead to muscle cell relaxation, which suggests that TAS2Rs may be important new targets in muscle relaxation therapy for various muscle-related diseases. So far, however, there is a lack of potent extra-oral TAS2R agonists that can be used as novel drug agents in muscle relaxation therapies. Interestingly, traditional Chinese medicine (TCM) often characterizes a drug’s property in terms of five distinct flavors (bitter, sweet, sour, salty, and pungent) according to its taste and function, and commonly regards “bitterness” as an intrinsic property of “good medicine.” In addition, many bitter flavored TCM are known in practice to cause muscle relaxation after long term use, and in lab experiments the compounds identified from some bitter flavored TCM do activate TAS2Rs and thus relax muscle cells. Therefore, it is highly possible to discover very useful extra-oral TAS2R agonists for muscle relaxation therapies among the abundant bitter compounds used in bitter flavored TCM. With this perspective, we reviewed in literature the distribution of TAS2Rs in different muscle systems with a focus on the map of bitter flavored TCM which can regulate muscle contractility and related functional chemical components. We also reviewed the recently established databases of TCM chemical components and the bioinformatics software which can be used for high-throughput screening and data mining of the chemical components associated with bitter flavored TCM. All together, we aim to present a knowledge-based approach and technological platform for identification or discovery of extra-oral TAS2R agonists that can be used as novel drug agents for muscle relaxation therapies through screening and evaluation of chemical compounds used in bitter flavored TCM.</p>
</abstract>
<kwd-group>
<kwd>TAS2Rs</kwd>
<kwd>muscle relaxation</kwd>
<kwd>biomechanics</kwd>
<kwd>bitter compounds</kwd>
<kwd>TCM</kwd>
<kwd>drug screening</kwd>
<kwd>bioinformatics</kwd>
</kwd-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="4"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="123"></ref-count>
<page-count count="15"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec id="S1">
<title>Introduction</title>
<p>Humans can distinguish five basic taste modalities including bitter, sweet, sour, salty, and umami, classified by modern science, which forms the principal gustatory perception often experienced during food consumption (
<xref rid="B33" ref-type="bibr">Drewnowski and Gomez-Carneros, 2000</xref>
;
<xref rid="B76" ref-type="bibr">Meyerhof, 2005</xref>
). Interestingly, traditional Chinese medicine (TCM), developed over 1000 of years based on experience of fighting diseases, has also established a “Flavor Theory” that categorizes the medicinal materials into similar “five flavors” including bitter, sweet, sour, salty, and pungent, according to the material’s taste and function (
<xref rid="B47" ref-type="bibr">Hesketh and Zhu, 1997</xref>
;
<xref rid="B68" ref-type="bibr">Lukman et al., 2007</xref>
;
<xref rid="B70" ref-type="bibr">Ma et al., 2013</xref>
;
<xref rid="B121" ref-type="bibr">Zhang et al., 2016</xref>
;
<xref rid="B32" ref-type="bibr">Dragos and Gilca, 2018</xref>
).
<xref rid="T1" ref-type="table">Table 1</xref>
shows in parallel the five tastes in gustatory perception and the five flavors in TCM, which are very similar by all means.</p>
<table-wrap id="T1" position="float">
<label>TABLE 1</label>
<caption>
<p>Comparison of five tastes in gustatory perception and five flavors in TCM.</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Taste</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Common food</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Function substrate</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Targets</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Flavors</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Common TCM</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Function substrate</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Meridians</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Sour</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i001.jpg"></inline-graphic>
<break></break>
Lemon</td>
<td valign="top" align="left" rowspan="1" colspan="1">Acid</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ion channels</td>
<td valign="top" align="left" rowspan="1" colspan="1">Sour</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i002.jpg"></inline-graphic>
<break></break>
<italic>Cornus officinalis</italic>
fruit</td>
<td valign="top" align="left" rowspan="1" colspan="1">Organic acid Tannin</td>
<td valign="top" align="left" rowspan="1" colspan="1">Liver Kidney</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Salt</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i003.jpg"></inline-graphic>
<break></break>
Salt</td>
<td valign="top" align="left" rowspan="1" colspan="1">Salt chloride</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ion channel (ENaC)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Salt</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i004.jpg"></inline-graphic>
<break></break>
Mirabilite</td>
<td valign="top" align="left" rowspan="1" colspan="1">Salt sulfate</td>
<td valign="top" align="left" rowspan="1" colspan="1">Stomach Intestinal tract</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Bitter</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i005.jpg"></inline-graphic>
<break></break>
Coffee</td>
<td valign="top" align="left" rowspan="1" colspan="1">Coffeine</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R</td>
<td valign="top" align="left" rowspan="1" colspan="1">Bitter</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i006.jpg"></inline-graphic>
<break></break>
<italic>Coptis chinensis</italic>
root</td>
<td valign="top" align="left" rowspan="1" colspan="1">Alkaloid (Berberine) Flavone</td>
<td valign="top" align="left" rowspan="1" colspan="1">Liver Lung Stomach Intestinal tract Heart</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Sweet</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i007.jpg"></inline-graphic>
<break></break>
Honey</td>
<td valign="top" align="left" rowspan="1" colspan="1">Sugar</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS1R2 TAS1R3</td>
<td valign="top" align="left" rowspan="1" colspan="1">Sweet</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i008.jpg"></inline-graphic>
<break></break>
<italic>Codonopsis pilosula</italic>
root</td>
<td valign="top" align="left" rowspan="1" colspan="1">Polysaccharide Saponin</td>
<td valign="top" align="left" rowspan="1" colspan="1">Lung Spleen</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Umami</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i009.jpg"></inline-graphic>
<break></break>
Fish</td>
<td valign="top" align="left" rowspan="1" colspan="1">Amino acid (Glutamate)</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS1R1 TAS1R3</td>
<td valign="top" align="left" rowspan="1" colspan="1">Pungent</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<inline-graphic xlink:href="fphys-10-00861-i010.jpg"></inline-graphic>
<break></break>
<italic>Angelica sinensis</italic>
root</td>
<td valign="top" align="left" rowspan="1" colspan="1">Volatile oil (Ligustilide) Amino acid Saponin</td>
<td valign="top" align="left" rowspan="1" colspan="1">Heart Spleen Liver</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>It is also strongly believed and apparently supported by empirical evidences in TCM that “Good medicine tastes bitter” (
<xref rid="B67" ref-type="bibr">Lu et al., 2017</xref>
). In fact, even most of the modern medications also taste bitter. Conversely, it may also be true that bitter substance is good for medicine. According to a recent report, 38% of all the tested materials used for treating cardiovascular, respiratory and digestive diseases in TCM are of bitter flavors (
<xref rid="B105" ref-type="bibr">Tang et al., 2018</xref>
). To date, there has been a vast source of chemical compounds identified from bitter flavored TCM but their functional targets remain to be identified, which undoubtedly provides a gold mine for searching potential good drugs for treating various diseases (
<xref rid="B35" ref-type="bibr">Editorial, 2007</xref>
;
<xref rid="B21" ref-type="bibr">Cheung, 2011</xref>
).</p>
<p>Intriguingly, the type II taste receptors (TAS2Rs) that recognize bitter tastants have only been identified in 2000 (
<xref rid="B1" ref-type="bibr">Adler et al., 2000</xref>
;
<xref rid="B18" ref-type="bibr">Chandrashekar et al., 2000</xref>
). Since then, many studies have confirmed that TAS2Rs are expressed not only in taste buds but also in extra-oral tissues (
<xref rid="B7" ref-type="bibr">Behrens and Meyerhof, 2013</xref>
;
<xref rid="B71" ref-type="bibr">Maina et al., 2018</xref>
;
<xref rid="B96" ref-type="bibr">Scadding, 2018</xref>
) including heart, skeletal and smooth muscle (
<xref rid="B98" ref-type="bibr">Shaik et al., 2016</xref>
). Although bitter taste is initially assumed as a self-protection mechanism to prevent humans from ingesting toxins, it is now known that bitter taste can actually have far more roles to play than mere self-protection (
<xref rid="B59" ref-type="bibr">Lee et al., 2019</xref>
). For example, bitter taste substances such as quinine can cause airway smooth muscle relaxation, which may be useful for asthma treatment (
<xref rid="B26" ref-type="bibr">Deshpande et al., 2010</xref>
). Studies have also revealed that TAS2Rs mediate relaxation of smooth muscle in other organs such as bladder (
<xref rid="B117" ref-type="bibr">Zhai et al., 2016</xref>
), blood vessel (
<xref rid="B73" ref-type="bibr">Manson et al., 2014</xref>
), and uterus (
<xref rid="B122" ref-type="bibr">Zheng et al., 2017</xref>
). Therefore, TAS2Rs may be novel targets for screening and thus discovering new drug agents for muscle relaxation therapies to treat various diseases (
<xref rid="B56" ref-type="bibr">Kim et al., 2018</xref>
). In such pursuit, the existing databank of bitter flavored TCM and their correlated bitter components will be very useful as starting points (
<xref rid="B103" ref-type="bibr">Sucher, 2013</xref>
). On the other hand, the exploration of bitter flavored TCM for novel agonists that target TAS2Rs in extra-oral systems will inevitably contribute to modernizing TCM (
<xref rid="B84" ref-type="bibr">Pieroni and Giusti, 2009</xref>
;
<xref rid="B102" ref-type="bibr">Su and Miller, 2015</xref>
;
<xref rid="B44" ref-type="bibr">Gotoh et al., 2018</xref>
).</p>
<p>In this perspective, here, we reviewed the recent advances in the understanding about the structure, distribution and function of TAS2Rs in diverse muscle tissues, with highlights of the perceptive profile of TAS2Rs for bitter components from bitter flavored TCM. We also reviewed the bitter flavored TCM that are already used in treatment of muscle related symptoms in cardiovascular, respiratory, gastrointestinal, bladder, and uterus systems. Finally, we discussed the future opportunities of using
<italic>in silico</italic>
analysis to screen extra-oral TAS2R agonists as novel muscle relaxants from bitter flavored TCM.</p>
</sec>
<sec id="S2">
<title>Structure and Function of TAS2Rs</title>
<sec id="S2.SS1">
<title>Structure of TAS2Rs</title>
<p>In humans, TAS2Rs are a family of 25 type A G protein coupled receptors (GPCRs) (versus 35 TAS2Rs in rats and mice) according to their structure and binding site location (
<xref rid="B30" ref-type="bibr">Di Pizio et al., 2016</xref>
,
<xref rid="B29" ref-type="bibr">2019</xref>
;
<xref rid="B2" ref-type="bibr">Alfonso-Prieto et al., 2019</xref>
). Although TAS2Rs have been found in many species, in each species their genes are not highly conserved in terms of sequence. TAS2Rs contain 291–334 amino acids, share 23–86% sequence identity (
<xref rid="B18" ref-type="bibr">Chandrashekar et al., 2000</xref>
;
<xref rid="B96" ref-type="bibr">Scadding, 2018</xref>
), and cluster to chromosomes 5, 7, 12 in humans but 2, 3, 4, and 15, 2, 6 in rats and mice, respectively (
<xref rid="B112" ref-type="bibr">Wu et al., 2005</xref>
). Interesting is that 33 of 35
<italic>TAS2R</italic>
genes in rats and mice exhibit a one-to-one homology (
<xref rid="T2" ref-type="table">Table 2</xref>
). Furthermore, humans, rats and mice also contain 16 orthologous
<italic>TAS2R</italic>
genes (
<xref rid="B99" ref-type="bibr">Shi et al., 2003</xref>
;
<xref rid="B82" ref-type="bibr">Pearson, 2013</xref>
).</p>
<table-wrap id="T2" position="float">
<label>TABLE 2</label>
<caption>
<p>The orthologous genes in human, rat, and mouse (
<xref rid="B40" ref-type="bibr">Foster et al., 2013</xref>
).</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>No.</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Human</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Rat</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Mouse</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R1</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r119</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r119</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R3</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r137</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r137</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R4</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTTas2r108</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r108</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R5</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">5</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R7</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r130</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r130</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">6</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R8</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">7</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R9</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">8</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R10</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r114</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r114</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R13</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r121</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r121</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">10</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R14</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r140</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r140</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">11</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R16</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r118</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r118</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R19</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">13</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R20</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">14</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R30</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">15</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R31</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r136</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r136</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">16</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R38</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r138</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r138</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">17</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R39</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r139</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r139</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">18</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R40</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r144</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r144</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">19</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R41</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r126</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r126</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">20</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R42</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r145</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r131</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">21</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R43</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">22</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R45</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">23</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R46</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r120</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r120</italic>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">24</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R50</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">25</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>TAS2R60</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r135</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r135</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r102</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r102</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r103</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r103</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r104</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r104</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r105</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r105</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r106</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r106</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r107</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r107</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r109</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r109</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r110</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r110</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r113</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r113</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r116</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r116</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r117</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r117</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r123</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r123</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r124</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r124</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r125</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r125</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r129</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r129</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTas2r134</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r134</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r143</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r143</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r115</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>mTas2r122</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTAS2R7l</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>rTAS2R13</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<attrib>
<italic>Based on the ortholog analysis of TAS2Rs in human, rat, and mouse (
<xref rid="B112" ref-type="bibr">Wu et al., 2005</xref>
).</italic>
</attrib>
</table-wrap-foot>
</table-wrap>
<p>TAS2Rs consist of short extracellular N-terminus and intracellular C-terminus, seven transmembrane helices (TMs) connected by three extracellular loops (ECLs) and three intracellular loops (ICLs) (
<xref rid="B120" ref-type="bibr">Zhang et al., 2017</xref>
). TMs and ECLs contain binding sites where bitter tastants bind to and facilitate conformational changes of TAS2Rs toward an “active state,” which allows activation of TAS2Rs and downstream signaling (
<xref rid="B17" ref-type="bibr">Bufe et al., 2002</xref>
;
<xref rid="B12" ref-type="bibr">Biarnés et al., 2010</xref>
). ICLs play a major role in the interaction of TAS2Rs with G proteins (
<xref rid="B15" ref-type="bibr">Brockhoff et al., 2010</xref>
;
<xref rid="B95" ref-type="bibr">Sanematsu et al., 2014</xref>
). For instance, interaction at ICL3 may stabilize the inactive state of TAS2R16 while structural changes in the intracellular region are correlated with activation, as demonstrated by
<xref rid="B20" ref-type="bibr">Chen et al. (2018)</xref>
using molecular dynamics simulation.</p>
</sec>
<sec id="S2.SS2">
<title>Canonical Signaling of TAS2Rs</title>
<p>Activation of TAS2Rs initiates Ca
<sup>2+</sup>
signaling with a cascade reaction of G protein (α and βγ subunits), phospholipase C β2 (PLCβ2), and inositol trisphosphate (IP
<sub>3</sub>
). Upon receptor activation, the G protein dissociates α and βγ subunits. The latter activates PLCβ2, leading to a release of Ca
<sup>2+</sup>
from IP
<sub>3</sub>
-sensitive Ca
<sup>2+</sup>
stores. In addition, it has been found that the increase in intracellular free calcium concentration ([Ca
<sup>2+</sup>
]
<sub>i</sub>
) induced by TAS2R agonists is correlated with the expression level of the subtype of TAS2Rs (
<xref rid="B3" ref-type="bibr">An and Liggett, 2018</xref>
).</p>
<p>In taste cells, TAS2R signaling involves the coupling of G protein gustducin to PLCβ2 to induce Ca
<sup>2+</sup>
release from IP
<sub>3</sub>
-sensitive Ca
<sup>2+</sup>
stores, and Na
<sup>+</sup>
influx through transient receptor potential ion channels melastatin 5 (TRPM5) channels, which depolarizes the cell and causes the paracrine release of neurotransmitter ATP through the gap junction channels. Ultimately, ATP activates purinergic receptors on nerve cells to initiate the perception of bitterness. In other cell types, however, TAS2Rs can optionally couple to several G proteins in a cell type-dependent manner, such as the coupling of TAS2Rs to G
<sub>iα1,2,3</sub>
in human airway smooth muscle cells (SMCs;
<xref rid="B20" ref-type="bibr">Chen et al., 2018</xref>
).</p>
</sec>
<sec id="S2.SS3">
<title>Binding Site of TAS2Rs</title>
<p>It is generally believed that TAS2Rs possess only one binding site for both agonists and antagonists to bind (
<xref rid="B7" ref-type="bibr">Behrens and Meyerhof, 2013</xref>
), and it’s the type of interactions with selected residues in the binding site that determines whether the ligand is of agonistic or antagonistic nature (
<xref rid="B65" ref-type="bibr">Liu et al., 2018</xref>
). However, it has been recently suggested that, similar to class A GPCRs, TAS2Rs also possess an additional vestibular binding site that are transiently occupied by agonists. For example, TAS2R46, which has a broad agonist diversity, turned out to feature not only the orthosteric binding site, but also a second vestibular site, located above the orthosteric site. This two-site architecture might play a role as an access control to discriminate the highly structurally diverse agonists of TAS2R46 (
<xref rid="B92" ref-type="bibr">Sandal et al., 2015</xref>
). In addition, TAS2Rs can also achieve multi-specification toward a vast range of chemical structures by forming different types of interaction with different ligands (
<xref ref-type="fig" rid="F1">Figure 1</xref>
) (
<xref rid="B15" ref-type="bibr">Brockhoff et al., 2010</xref>
;
<xref rid="B91" ref-type="bibr">Sakurai et al., 2010</xref>
;
<xref rid="B13" ref-type="bibr">Born et al., 2013</xref>
;
<xref rid="B74" ref-type="bibr">Marchiori et al., 2013</xref>
;
<xref rid="B31" ref-type="bibr">Di Pizio et al., 2018</xref>
;
<xref rid="B79" ref-type="bibr">Nowak et al., 2018</xref>
;
<xref rid="B97" ref-type="bibr">Schneider et al., 2018</xref>
).</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>The activation profile of TAS2Rs by bitter components from bitter flavored TCM.
<bold>(A)</bold>
Bar graph shows the TAS2Rs that can be activated by different bitter components.
<bold>(B)</bold>
The profile of bitter components which can activate different number of TAS2Rs.
<bold>(C)</bold>
The family in which bitter components with specific TAS2R have been found. The primary data are shown in
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S1</xref>
.</p>
</caption>
<graphic xlink:href="fphys-10-00861-g001"></graphic>
</fig>
<p>The interaction between TAS2Rs and bitter tastants at the binding site is dictated by multiple factors including the type of ligands, the membrane lipids and the movements of TMs and ECLs (
<xref rid="B65" ref-type="bibr">Liu et al., 2018</xref>
). Among these factors, the cholesterol components in the cell membrane are particularly important, because the majority of human TAS2Rs has been found to consist of a cholesterol interaction amino acid motif (LxxYxxK/R) that affects the location and function of TAS2Rs in the cell membrane where cholesterols aggregate to form caveolae (
<xref rid="B49" ref-type="bibr">Jafurulla et al., 2011</xref>
). It has also been shown that mice deficient of caveolin-1 (a protein for forming caveolae) exhibit markedly impaired response to bitter substance (e.g., chloroquine) in terms of relaxing the pre-contracted aorta (
<xref rid="B73" ref-type="bibr">Manson et al., 2014</xref>
), suggesting that membrane lipid and caveolae are the essential players in the TAS2R-mediated signal transduction.</p>
</sec>
</sec>
<sec id="S3">
<title>Distribution and Function of TAS2Rs in Cardiac and Smooth Muscle Cells</title>
<p>Over the past decade, studies have shown that TAS2Rs are expressed in diverse types of muscle cells including cardiac muscle cells (cardiomyocytes), and SMCs in various organs such as blood vessels, pulmonary airways, gastrointestinal tracts, and so on (
<xref rid="T3" ref-type="table">Table 3</xref>
;
<xref rid="B41" ref-type="bibr">Foster et al., 2014b</xref>
;
<xref rid="B98" ref-type="bibr">Shaik et al., 2016</xref>
;
<xref rid="B67" ref-type="bibr">Lu et al., 2017</xref>
). It is clear that the distribution and expression of TAS2Rs in different kinds of muscle cells vary considerably. However, there appears a certain pattern in all kinds of muscle cells that TAS2R3, 4, 5, 10, 13, 19, and 50 are always expressed at moderate levels and TAS2R14 is always expressed at high level (
<xref rid="B52" ref-type="bibr">Jaggupilli et al., 2017</xref>
). Intriguingly, studies have shown that TAS2Rs can mediate either relaxation of SMCs (e.g., in airway, bladder, and uterus) (
<xref rid="B64" ref-type="bibr">Liggett, 2014</xref>
;
<xref rid="B81" ref-type="bibr">Pan et al., 2017</xref>
;
<xref rid="B56" ref-type="bibr">Kim et al., 2018</xref>
), or contraction of SMCs [e.g., in pulmonary artery (
<xref rid="B108" ref-type="bibr">Upadhyaya et al., 2014</xref>
) and gastrointestinal tract (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
)]. Interestingly, the bitter components from TCM are often known to activate TAS2Rs expressed in different kinds of muscle cells (
<xref ref-type="fig" rid="F2">Figure 2</xref>
). Therefore, it is highly possible to explore the vast source of bitter flavored TCM for extra-oral TAS2R agonists as specific muscle relaxation agents based on their expression profiles in different muscle tissues.</p>
<table-wrap id="T3" position="float">
<label>TABLE 3</label>
<caption>
<p>The distribution of TAS2Rs in different muscle tissues.</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Species</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Cardial muscle</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Airway smooth muscle</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Pulmonary artery smooth muscle</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Vascular smooth muscle</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Gastrointestinal smooth muscle</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Uterine smooth muscle</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Bladder smooth muscle</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Human</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R14, TAS2R31, TAS2R30, TAS2R19, TAS2R13,
<xref rid="B40" ref-type="bibr">Foster et al.,2013</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R10, TAS2R14, TAS2R31,
<xref rid="B26" ref-type="bibr">Deshpande et al.,2010</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R3, TAS2R4, TAS2R14, TAS2R10,
<xref rid="B73" ref-type="bibr">Manson et al., 2014</xref>
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R3, TAS2R4, TAS2R7, TAS2R10, TAS2R14, TAS2R39, TAS2R40,
<xref rid="B19" ref-type="bibr">Chen et al., 2017</xref>
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R3, TAS2R4, TAS2R10,
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R14, TAS2R5, TAS2R10, TAS2R4, TAS2R13,
<xref rid="B122" ref-type="bibr">Zheng et al.,2017</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R7, TAS2R8, TAS2R13, TAS2R1, TAS2R9,
<xref rid="B117" ref-type="bibr">Zhai et al.,2016</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Rat</td>
<td valign="top" align="left" rowspan="1" colspan="1">rTAS2R143, rTAS2R126, rTAS2R135, rTAS2R121, rTAS2R120,
<xref rid="B40" ref-type="bibr">Foster et al.,2013</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">rTAS2R39, rTAS2R40, rTAS2R108, rTAS2R130, rTAS2R137, rTAS2R140,
<xref rid="B19" ref-type="bibr">Chen et al., 2017</xref>
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Mouse</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">mTAS2R108, mTAS2R135, mTAS2R137,
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">mTAS2R135, mTAS2R143, mTAS2R126,
<xref rid="B122" ref-type="bibr">Zheng et al.,2017</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">mTAS2R144, mTAS2R138, mTAS2R117, mTAS2R130, mTAS2R114,
<xref rid="B117" ref-type="bibr">Zhai et al.,2016</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<attrib>
<italic>The rank order of TAS2Rs are according to their expression level except for labeled with asterisk.</italic>
</attrib>
</table-wrap-foot>
</table-wrap>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>The expression map of TAS2Rs in different muscle tissues which can be activated by bitter components from bitter flavored TCM. EC represents efficiency concentration.</p>
</caption>
<graphic xlink:href="fphys-10-00861-g002"></graphic>
</fig>
<sec id="S3.SS1">
<title>TAS2Rs in Cardiac Muscle Cells</title>
<p>Contraction of cardiac muscle cells (cardiomyocytes) determines the pump function of the heart, but too fast contraction leads to ventricular tachycardia. In mice it has been shown that TAS2Rs agonists such as denatonium and quinine can inhibit cardiac contraction induced by electrical field/epinephrine-stimulation via TAS2Rs activation (
<xref rid="B39" ref-type="bibr">Foster et al., 2014a</xref>
). The expression map of TAS2Rs in cardiomyocytes from humans, rats and mice are significantly different. In neonatal rat cardiomyocytes, it has been shown that the top five genes for TAS2Rs are
<italic>TAS2R143, 126, 135, 121, 120</italic>
(in the order of mRNA expression level) (
<xref rid="B40" ref-type="bibr">Foster et al., 2013</xref>
). In adult rat cardiomyocytes, however, the top three genes are
<italic>TAS2R120, 143, 121</italic>
(in the order of mRNA expression level) (
<xref rid="B114" ref-type="bibr">Xin et al., 2018</xref>
). In human cardiomyocytes,
<italic>TAS2R14, 31, 30, 19, 13</italic>
are the top five TAS2Rs (in the order of mRNA expression level) (
<xref rid="B40" ref-type="bibr">Foster et al., 2013</xref>
). Additionally, the expression levels of TAS2Rs in cardiomyocytes are dynamic during heart development. For example, in rats
<italic>TAS2R120, 121</italic>
increased their expressions nearly 20-fold during development and changed from being the last two of the top five genes of TAS2Rs in neonatal cardiomyocytes to become the dominating first and third top ones in adult cardiomyocytes (
<xref rid="B40" ref-type="bibr">Foster et al., 2013</xref>
). Therefore, TAS2Rs agonists may have important inotropic effects on cardiomyocytes, which can be useful in development of pharmacological tools for the treatment of ventricular tachycardia.</p>
</sec>
<sec id="S3.SS2">
<title>TAS2Rs in Airway Smooth Muscle Cells</title>
<p>Airway smooth muscle cells control the diameter of the pulmonary airways by contraction/relaxation. Hypercontraction of ASMCs will lead to airway constriction and obstruction which is the cardinal character of asthma. Bronchodilators are central in the treatment of airway hypercontractile diseases such as asthma and chronic obstructive pulmonary disease (COPD). In human ASMCs, it has been shown that TAS2R10, 14, 31 are the three most highly expressed subtypes of TAS2Rs, and activation of the TAS2Rs by bitter tastants induces significant bronchodilatory effect (
<xref rid="B26" ref-type="bibr">Deshpande et al., 2010</xref>
). In addition, the subtype of TAS2R5 is also considered to have a prime role in bronchodilation just like TAS2R10, 14, although it is expressed at a much lower level (
<xref rid="B45" ref-type="bibr">Grassin-Delyle et al., 2013</xref>
). Together, bitter agonists are considered as a novel class of bronchodilators in treatment of obstructive airway diseases such as asthma and COPD (
<xref rid="B80" ref-type="bibr">Orsmarkpietras et al., 2013</xref>
).</p>
</sec>
<sec id="S3.SS3">
<title>TAS2Rs in Vascular Smooth Muscle Cells</title>
<p>Vascular smooth muscle cells (VSMCs) regulate the caliber of blood vessels and associated blood pressure by contraction/relaxation. It is reported that TAS2Rs are expressed in VSMCs of aorta, pulmonary artery, and system artery, and bitter agonists can exert profound vascular activities including dilation and antagonism of α-adrenoceptors, as described below.</p>
<p>In guinea pigs, bitter agonists for TAS2R3, 4, 10, and 14 have been shown to induce strong relaxation in phenylephrine pre-contracted aorta (
<xref rid="B73" ref-type="bibr">Manson et al., 2014</xref>
). In human VSMCs the expression of TAS2R46 is confirmed, and in rats the intravenous injection of denatonium (TAS2R agonist) leads to a transient drop in blood pressure (
<xref rid="B69" ref-type="bibr">Lund et al., 2013</xref>
). Additionally, the activation of TAS2Rs by either denatonium or quinine (also a known TAS2R agonist) can reduce the tension of pre-contracted rat aorta (
<xref rid="B113" ref-type="bibr">Xin and Chen, 2017</xref>
).</p>
<p>In human pulmonary artery,
<xref rid="B108" ref-type="bibr">Upadhyaya et al. (2014)</xref>
reported that 21 subtypes of TAS2Rs are expressed. Interestingly, this study showed that bitter agonist, dextromethorphan induces vasoconstriction via a TAS2R1-mediated Ca
<sup>2+</sup>
response in human pulmonary arterial VSMCs. Other bitter agonists including chloroquine (ChQ) and noscapine, however, are shown to mediate relaxation of human pulmonary arteries (
<xref rid="B73" ref-type="bibr">Manson et al., 2014</xref>
).</p>
<p>In rat mesenteric and cerebral arterial VSMCs,
<italic>TAS2R108, 130, 137, 139, 140</italic>
are shown to be expressed while in human omental arterial VSMCs,
<italic>TAS2R3, 4, 7, 10, 14, 39, 40</italic>
are expressed, and activation of these TAS2Rs by CHQ and quinine relaxes rat mesenteric and cerebral arteries and human omental arteries (
<xref rid="B19" ref-type="bibr">Chen et al., 2017</xref>
). Therefore, TAS2R agonists may be useful pharmacological tools for treatment of hypertension.</p>
</sec>
<sec id="S3.SS4">
<title>TAS2Rs in Gastrointestinal Smooth Muscle Cells</title>
<p>Gastrointestinal smooth muscle cells (GSMCs) via their contraction and relaxation are essential for either maintaining the normal motility of the gastrointestinal tract during the process of digestion (
<xref rid="B94" ref-type="bibr">Sanders et al., 2012</xref>
), or causing the hyper/hypo motility of the gastrointestinal tract that can lead to diarrhea/constipation (
<xref rid="B34" ref-type="bibr">Drossman, 2016</xref>
). Although in GVSMCs TAS2Rs are shown to be expressed, but their function remains controversial (
<xref rid="B4" ref-type="bibr">Avau and Depoortere, 2016</xref>
). In human GSMCs, it was reported that
<italic>TAS2R3, 4, 10</italic>
are expressed, and in mouse GSMCs
<italic>TAS2R108, 135, 137</italic>
are expressed (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
). However, it appears that TAS2R agonists such as denatonium can induce either contraction or relaxation of GSMCs, depending on not only the agonist concentration but also the region of the gastrointestinal tract (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
). It has also been shown in mice that the gastric muscle relaxation induced by TAS2R agonists such as denatonium and phenyltiocarbamide (PTC) can be correlated with the decreased hunger and increased satiety ratings after a meal, which shows potential of targeting TAS2Rs for decreasing caloric intake (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
;
<xref rid="B25" ref-type="bibr">Deloose et al., 2017</xref>
).</p>
<p>These observed TAS2R-mediated contractility or relaxation of GSMCs suggest possibilities of treating gastrointestinal motility diseases such as ileus and constipation with bitter agonists. In addition, the effect of bitter tastants on gastric emptying and hence on satiation may encompass a therapeutic potential in the treatment of obesity.</p>
</sec>
<sec id="S3.SS5">
<title>TAS2Rs in Uterine Smooth Muscle Cells</title>
<p>Uterine smooth muscle cells (USMCs) relax and contract to a great extent during pregnancy and child birth, but that there are few measures to prevent and treat unwanted contraction of USMCs remains a central feature of preterm birth (PTB) which is the leading cause of neonatal mortality and morbidity. Therefore, identifying novel targets for tocolytics are essential for more successful management of PTB. In a recent study, it has been shown that in human and mouse USMCs, TAS2R4, 5, 10, 13, 14 and their canonical signaling components (gustducin, PLCβ) are expressed (
<xref rid="B122" ref-type="bibr">Zheng et al., 2017</xref>
). Furthermore, bitter compound, ChQ at 10 mM can induce [Ca
<sup>2+</sup>
]
<sub>i</sub>
rise and completely relax human USMCs pre-contracted by different uterotonics, which is mediated though TAS2R14 but not TAS2R10. Therefore, targeting TAS2Rs may be an attractive approach to developing effective tocolytics for PTB management.</p>
</sec>
<sec id="S3.SS6">
<title>TAS2Rs in Bladder Smooth Muscle Cells</title>
<p>Bladder smooth muscle cells (BSMCs) contract and relax to control the disposal of urine and the overactive dysfunction of them will lead to bladder syndrome characterized by the presence of incontinence, frequency, and nocturia, which has serious effects on quality of life. Recently, it is reported that TAS2R7, 8 are the most abundant TAS2Rs in human BSMCs. Additionally, the activation of TAS2Rs inhibited spontaneous and electrical field stimulation-induced contraction of BSMCs and relaxed carbachol- and KCl-induced contractions of BSMCs (
<xref rid="B117" ref-type="bibr">Zhai et al., 2016</xref>
). Thus, TAS2Rs may be a new target to develop drugs for overactive bladder symptoms.</p>
<p>Taken together, the functional implications of TAS2Rs widely dispersed in various types of muscle cells shed light on discovering of muscle relaxant from bitter flavored TCM (
<xref rid="B42" ref-type="bibr">Gilca and Barbulescu, 2015</xref>
).</p>
</sec>
</sec>
<sec id="S4">
<title>Signaling Mechanisms of TAS2Rs in Different Muscle Cells</title>
<p>It is important to note that bitter tastants can induce signaling that diverges to execute different biological roles depending on cell types (
<xref ref-type="fig" rid="F3">Figure 3</xref>
). There are three different signaling cascades following Ca
<sup>2+</sup>
signaling which induce the perception of bitter taste, muscle relaxation, and muscle contraction, respectively.</p>
<fig id="F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>Proposed model of signal transduction of TAS2Rs in different cell types to mediate the perception of bitter taste (adapted from
<xref rid="B8" ref-type="bibr">Behrens and Meyerhof, 2015</xref>
;
<xref rid="B4" ref-type="bibr">Avau and Depoortere, 2016</xref>
;
<xref rid="B98" ref-type="bibr">Shaik et al., 2016</xref>
;
<xref rid="B67" ref-type="bibr">Lu et al., 2017</xref>
)
<bold>(A)</bold>
, muscle relaxation (adapted from
<xref rid="B117" ref-type="bibr">Zhai et al., 2016</xref>
;
<xref rid="B57" ref-type="bibr">Kim et al., 2017</xref>
;
<xref rid="B81" ref-type="bibr">Pan et al., 2017</xref>
;
<xref rid="B122" ref-type="bibr">Zheng et al., 2017</xref>
;
<xref rid="B3" ref-type="bibr">An and Liggett, 2018</xref>
;
<xref rid="B96" ref-type="bibr">Scadding, 2018</xref>
)
<bold>(B)</bold>
or muscle contraction (adapted from
<xref rid="B108" ref-type="bibr">Upadhyaya et al., 2014</xref>
;
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
)
<bold>(C)</bold>
.</p>
</caption>
<graphic xlink:href="fphys-10-00861-g003"></graphic>
</fig>
<p>In cardiomyocytes, TAS2Rs agonists inhibit cardiac contractions by attenuating the voltage-dependent calcium channels (VDCC), and the consequent Ca
<sup>2+</sup>
release by ryanodine receptors (
<xref rid="B72" ref-type="bibr">Mak and Hanania, 2012</xref>
;
<xref rid="B39" ref-type="bibr">Foster et al., 2014a</xref>
;
<xref rid="B114" ref-type="bibr">Xin et al., 2018</xref>
).</p>
<p>In ASMCs, Kim et al. identified the role of G
<sub>αi</sub>
in transmitting TAS2R signaling and found a very low expression of G
<sub>αgust</sub>
, which together indicates that TAS2Rs can couple to different G
<sub>α</sub>
in a cell-type dependent manner (
<xref rid="B57" ref-type="bibr">Kim et al., 2017</xref>
;
<xref rid="B3" ref-type="bibr">An and Liggett, 2018</xref>
). Furthermore,
<xref rid="B26" ref-type="bibr">Deshpande et al. (2010)</xref>
proposed that the activation of TAS2Rs induces a microdomain [Ca
<sup>2+</sup>
]
<sub>i</sub>
response close to the cell membrane, which opens large-conductance Ca
<sup>2+</sup>
-activated K
<sup>+</sup>
(BK) channels, leading membrane hyperpolarization and muscle relaxation (
<xref rid="B26" ref-type="bibr">Deshpande et al., 2010</xref>
). But further direct measurement of BK channel currents indicates that bitter tastants induce relaxation of ASMCs not through BK channels (
<xref rid="B119" ref-type="bibr">Zhang et al., 2012</xref>
) but instead by inhibiting L-type VDCC to decrease [Ca
<sup>2+</sup>
]
<sub>i</sub>
(
<xref rid="B26" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B118" ref-type="bibr">Zhang et al., 2013</xref>
;
<xref rid="B114" ref-type="bibr">Xin et al., 2018</xref>
).</p>
<p>Gelsolin is a calcium-activated actin-severing and -capping protein found in ASMCs and plays a critical role in ASMC relaxation.
<xref rid="B78" ref-type="bibr">Mikami et al. (2017)</xref>
found that the activation of gelsolin may contribute to relaxation induced by bitter tastants. Another experiment reported that bitter agonists (denatonium and PTC) attenuated acetylcholine-induced contraction via inhibiting the phosphorylation of myosin light chain (MLC;
<xref rid="B90" ref-type="bibr">Sakai et al., 2016</xref>
).</p>
<p>In human pulmonary arterial VSMCs,
<xref rid="B108" ref-type="bibr">Upadhyaya et al. (2014)</xref>
proposed that the calcium increase from the canonical TAS2Rs signaling pathway directly activates MLC kinase and subsequently increases the phosphorylated MLC, leading to constriction of pulmonary artery.</p>
<p>In USMCs (
<xref rid="B122" ref-type="bibr">Zheng et al., 2017</xref>
) and GSMCs (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
), the candidate TAS2R-coupled G-protein such as G
<sub>αgust</sub>
, PLC and TRPM5 are also expressed which indicates that the canonical TAS2R signaling pathway may function in regulating the contraction/relaxation of SMCs in uterus and gastrointestinal tract.</p>
</sec>
<sec id="S5">
<title>Molecular Receptive Ranges of TAS2Rs</title>
<p>To date, based on
<italic>TAS2Rs</italic>
heterologous expression system in HEK293 or insect Sf9 cell line, 21 of the 25
<italic>TAS2Rs</italic>
except for
<italic>TAS2R19, 42, 45, 60</italic>
(
<xref rid="B17" ref-type="bibr">Bufe et al., 2002</xref>
;
<xref rid="B9" ref-type="bibr">Behrens et al., 2004</xref>
;
<xref rid="B58" ref-type="bibr">Kuhn et al., 2004</xref>
;
<xref rid="B14" ref-type="bibr">Brockhoff et al., 2007</xref>
;
<xref rid="B77" ref-type="bibr">Meyerhof et al., 2010</xref>
;
<xref rid="B87" ref-type="bibr">Roland et al., 2011</xref>
) and 21 of the 35
<italic>Tas2rs</italic>
(hereafter, gene symbol:
<italic>TAS2R</italic>
for humans,
<italic>Tas2r</italic>
for rats and mice) have been found to have specific agonists (
<xref rid="B66" ref-type="bibr">Lossow et al., 2016</xref>
). Many TAS2Rs have a wide range of recognition of bitter tastants, leading humans to respond to 1000 of diverse bitter compounds (
<xref rid="B77" ref-type="bibr">Meyerhof et al., 2010</xref>
;
<xref rid="B66" ref-type="bibr">Lossow et al., 2016</xref>
). The top 6 of 25
<italic>TAS2Rs</italic>
according to receptive profile are
<italic>TAS2R14</italic>
>
<italic>TAS2R10</italic>
>
<italic>TAS2R1</italic>
>
<italic>TAS2R46</italic>
>
<italic>TAS2R4</italic>
>
<italic>TAS2R38</italic>
, and all these
<italic>TAS2Rs</italic>
have homologous genes in rats and mice (
<xref rid="B104" ref-type="bibr">Suku et al., 2017</xref>
). It was reported that three
<italic>TAS2Rs</italic>
(
<italic>TAS2R10, 14, 46</italic>
) can detect 50% of all the tested bitter compounds (
<xref rid="B89" ref-type="bibr">Sainz et al., 2007</xref>
;
<xref rid="B16" ref-type="bibr">Brockhoff et al., 2011</xref>
;
<xref rid="B62" ref-type="bibr">Levit et al., 2014</xref>
;
<xref rid="B50" ref-type="bibr">Jaggupilli et al., 2016</xref>
;
<xref rid="B79" ref-type="bibr">Nowak et al., 2018</xref>
). The top 4 of 35 mouse
<italic>Tas2rs</italic>
(
<italic>mTas2rs</italic>
) according to receptive range are
<italic>mTas2r10</italic>
5 >
<italic>mTas2r144</italic>
>
<italic>mTas2r121</italic>
>
<italic>mTas2r135</italic>
. Among them,
<italic>mTas2r121, 135, 144</italic>
have specific homologous genes in human with
<italic>TAS2R13, 60, 40</italic>
, respectively (
<xref rid="B66" ref-type="bibr">Lossow et al., 2016</xref>
). Therefore, a few of TAS2Rs play a more important role in mediating the function of bitter compounds, considering the relatively high expression in different muscle tissues (
<xref rid="T3" ref-type="table">Table 3</xref>
) and wide receptive ranges (
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S1</xref>
).</p>
<p>TAS2Rs with pronounced amino acid sequence differences can have agonists in common even though they recognize similar compounds by different binding modes (
<xref rid="B13" ref-type="bibr">Born et al., 2013</xref>
;
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
). An extensive study on 97 bitter compounds comprising flavonoids and isoflavonoids have identified 68 activating TAS2R14, and 70 activating TAS2R39 but 58 overlapping to activate both TAS2R14 and TAS2R39, although they are not closely related (
<xref rid="B87" ref-type="bibr">Roland et al., 2011</xref>
,
<xref rid="B86" ref-type="bibr">2013</xref>
;
<xref rid="B66" ref-type="bibr">Lossow et al., 2016</xref>
). Evidence that TAS2Rs overlap in ligand specificity also suggests that they may cause joint effects (
<xref rid="B27" ref-type="bibr">Di Pizio and Niv, 2015</xref>
). Recent findings show that orthologous TAS2Rs in humans, rats and mice do not share conserved agonists (
<xref rid="B66" ref-type="bibr">Lossow et al., 2016</xref>
).</p>
<p>Studies have shown that structurally diverse bitter components from bitter flavored TCM also can activate TAS2Rs. The general profiles of TAS2Rs agonists from bitter flavored TCM were summarized in
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S1</xref>
according to ETCM: an encyclopedia of TCM (
<xref rid="B105" ref-type="bibr">Tang et al., 2018</xref>
) and BitterDB (
<xref rid="B13" ref-type="bibr">Born et al., 2013</xref>
;
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
). It is shown that 16 of 25 TAS2Rs have natural agonists from bitter flavored TCM. Among them, TAS2R10, 14, 39, 46 can be activated by more than 20 bitter components from bitter flavored TCM, indicating that these TAS2Rs may be the primary functional targets of bitter flavors (
<xref ref-type="fig" rid="F1">Figure 1A</xref>
).
<xref ref-type="fig" rid="F1">Figure 1B</xref>
shows the profile of bitter tastants from bitter flavored TCM which can activate a number (from 1 to 9) of TAS2Rs. It is clear that the majority of the bitter components activate either one (30.16%) or two (39.68%) TAS2Rs, and only a small portion of them can activate more than two TAS2Rs. For example, picrotoxinin derived from
<italic>Artemisiae argyi</italic>
folium can activate 5 TAS2Rs (TAS2R1, 10, 14, 46, 47), which indicates that
<italic>A. argyi</italic>
folium may have a wide range of functions in different tissues (
<xref rid="B9" ref-type="bibr">Behrens et al., 2004</xref>
). Incidentally, ∼50% of the bitter components from bitter flavored TCM with specific TAS2Rs are derived from Asteraceae (
<xref ref-type="fig" rid="F1">Figure 1C</xref>
).</p>
</sec>
<sec id="S6">
<title>Bitter Components Extracted From Bitter Flavored TCM</title>
<p>Many bitter components extracted from bitter flavored TCM such as salicin and quinine have been identified with their specific TAS2Rs (
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S1</xref>
) and developed for treating diverse diseases (
<xref rid="B100" ref-type="bibr">Soares et al., 2013</xref>
;
<xref rid="B96" ref-type="bibr">Scadding, 2018</xref>
).</p>
<p>Intriguing, among the 625 materials of TCM reported in
<italic>the 2015 edition of the Chinese Pharmacopoeia</italic>
, 241 of them are bitter flavors and are mostly derived from plants (
<xref rid="B83" ref-type="bibr">Pharmacopoeia Committee of the People’s Republic of China, 2015</xref>
). According to their action dogma, the function of some TCM prescriptions such as hemostatic, blood-activating, stasis-dispelling medicinal, cough-suppressing, panting-calming medicinal, purgative, digestant medicinal, and tocolytics, labor promoting medicinal may be correlated with regulation of the muscle function in cardiovascular system, lung, gastrointestinal tract, and uterus, respectively (
<xref rid="B60" ref-type="bibr">Leem et al., 2018</xref>
). In this review, we show the bitter flavored TCM and their main components with related properties, which are manually selected according to the following criteria: (a) with the above mentioned action recorded in
<italic>The Pharmacopoeia of the People’s Republic of China</italic>
(PPRC) 2015
<italic>Edition</italic>
(
<xref rid="B83" ref-type="bibr">Pharmacopoeia Committee of the People’s Republic of China, 2015</xref>
) and the
<italic>National Compilation of Chinese Herbal Medicine (NCCHM)</italic>
(
<xref rid="B109" ref-type="bibr">Wang, 2014</xref>
). (b) the components of bitter flavors and some correlated TAS2Rs are clarified in the database of ETCM (
<xref rid="B105" ref-type="bibr">Tang et al., 2018</xref>
) and BitterDB (
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
), respectively (
<xref ref-type="supplementary-material" rid="SM1">Supplementary Tables S2</xref>
<xref ref-type="supplementary-material" rid="SM1">S5</xref>
).</p>
<p>Specifically,
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S2</xref>
shows 32 bitter flavored TCM with hemostatic, blood-activating, and stasis-dispelling functions, which are correlated with contraction/relaxation of cardiovascular SMCs. Structurally diverse range of bitter components have been identified from these 32 TCMs. Among them, naringenin (TAS2R14), quercetin (TAS2R14), scutellarin (TAS2R14, 39), (-)-epicatechin (EC) (TAS2R4, 5, 39), and kaempferol (TAS2R14, 39) can stimulate specific TAS2Rs (
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
). Since TAS2R4 and TAS2R14 are the abundantly expressed TAS2Rs in cardiovascular systems, these bitter components may function to relax cardiovascular SMCs via activating TAS2R signaling (
<xref rid="B40" ref-type="bibr">Foster et al., 2013</xref>
).</p>
<p>
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S3</xref>
shows the bitter flavored TCM with function to calm panting and suppress coughing, which have been reported to regulate the contractility of ASMCs. α-thujone (TAS2R10, 14), apigenin (TAS2R14, 39), absinthin (TAS2R10, 14, 46, 47), benzoin (TAS2R10, 14), camphor (TAS2R4, 10, 14, 47), dihydroxychalcone (TAS2R14, 39), epicatechin (TAS2R4, 5, 39), (-)-epicatechin (EC) (TAS2R4, 5, 39), flavone (TAS2R14, 39), kaempferol (TAS2R14, 39), quercetin (TAS2R14), and taurocholic acid (TAS2R4) extracted from these bitter flavored TCM have been found to activate one of the functional TAS2Rs (TAS2R5, 10, and 14) which may mediate the relaxation of ASMCs (
<xref rid="B26" ref-type="bibr">Deshpande et al., 2010</xref>
;
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
).</p>
<p>Interestingly, a recent study performed on a database of medicinal plants established a positive association between bitter herbs and “asthma relief” activity (
<xref rid="B42" ref-type="bibr">Gilca and Barbulescu, 2015</xref>
;
<xref rid="B32" ref-type="bibr">Dragos and Gilca, 2018</xref>
). We also found that naringin extracted from
<italic>Citrus paradisi</italic>
(
<xref rid="B110" ref-type="bibr">Wang et al., 2016</xref>
) and artesunate extracted from
<italic>Artemisia annua</italic>
(
<xref rid="B111" ref-type="bibr">Wang et al., 2018</xref>
) reduced airway resistance in ovalbumin (OVA)-treated mice
<italic>in vivo</italic>
, and reduce traction force of ASMCs
<italic>in vitro</italic>
most likely via TAS2Rs. These findings provide important evidence that naringin and artesunate may be bronchodilators for treating asthma.
<xref rid="B116" ref-type="bibr">Yu et al. (2017)</xref>
investigated the protective mechanisms of bitter total flavonoids from
<italic>Selaginella uncinata</italic>
on airway hyperresponsiveness in a rat model of OVA-treated asthma. They demonstrated that total flavonoids exerted anti-inflammatory function through the activation of TAS2R10.</p>
<p>
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S4</xref>
shows the bitter flavored TCM with purgative and digestant functions which are correlated to regulate the contractility of GSMCs and thus the peristalsis of gastrointestinal tract. Intriguing is that some of the bitter flavored TCM have opposite effect on relaxation/contraction of gastrointestinal tract depending on the concentration, consistent with the reported effect of TAS2R signaling in GSMCs (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
). Many of the components extracted from these bitter flavored TCM such as costunolide (TAS2R10, 14, 46), (-)-epicatechin (EC) (TAS2R4, 5, 39), flavone (TAS2R14, 39), kaempferol (TAS2R14, 39), luteolin (TAS2R14, 39), naringenin (TAS2R14), papaverine (TAS2R7, 10, 14), quassin (TAS2R4, 10, 14, 46), quercetin (TAS2R14), and scutellarein (TAS2R14, 39) can activate some of the functional TAS2Rs in GSMCs (
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
). Since TAS2R4, 10 are the abundantly expressed bitter receptors in these cells, these bitter components may function on targeting bitter receptors to regulate the contractility of GSMCs (
<xref rid="B5" ref-type="bibr">Avau et al., 2015</xref>
).</p>
<p>Versatile plants exhibit biological activity that targets against uterine muscle contractility (
<xref rid="B46" ref-type="bibr">Gruber and O’Brien, 2011</xref>
). Atractylodis macrocephalae, Inulae radix, Scutellariae radix, Taxilli herba, and Visci herba are the five bitter flavored TCM which have anti-abortion effect, but Leonurus herba and Verbenae herba have the uterotonic effect recorded in PPRC/NCCHM (
<xref ref-type="supplementary-material" rid="SM1">Supplementary Table S5</xref>
). Interesting is that quercetin extracted from Taxilli herba, scutellarein extracted from Scutellariae radix and homoeriodictyol extracted from Visci herba can activate TAS2R14 (
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al., 2019</xref>
). Considering TAS2R14 is the abundantly expressed TAS2R in USMCs (
<xref rid="B122" ref-type="bibr">Zheng et al., 2017</xref>
), these bitter components may suppress (tocolytic agents) or induce (uterotonic agents) uterine contractions.</p>
<p>Magnesium sulfate has long been used for fetal neuroprotection (
<xref rid="B53" ref-type="bibr">Jayaram et al., 2018</xref>
) and to delay preterm labor (
<xref rid="B36" ref-type="bibr">Escobar et al., 2019</xref>
) in clinical practice with unclear molecular targets. Interestingly, magnesium sulfate is called bitter salts in TCM. Very recently, it is shown that TAS2R7 is the only receptor for bitter salt such as magnesium sulfate and manganese chloride (
<xref rid="B10" ref-type="bibr">Behrens et al., 2019</xref>
), perhaps correctly inferring that magnesium sulfate may function as a tocolytic agent via TAS2R7 signaling.</p>
</sec>
<sec id="S7">
<title>Bioinformatics-Aided Screening of Bitter Flavored TCM</title>
<p>In the last decade, many structurally diverse bitter tastants have been found to evoke the signaling of TAS2Rs in several types of muscle cells which are correlated with diverse physiological and pathological events (
<xref rid="B38" ref-type="bibr">Fletcher et al., 2017</xref>
), implying that bitter agonists may be novel potential drug agents. Additionally,
<xref rid="B29" ref-type="bibr">Di Pizio et al. (2019)</xref>
used Lipinski’s Rule of 5 to analyze the bitter compounds from BitterDB, and found that the majority of the bitter compounds can be considered drug-like. So far, however, there are no drugs approved yet, based on targeting TAS2Rs. Part of the reason can be attributed to the low affinity of bitter tastants with TAS2Rs. Thus, they often work at mid-to-high micromolar concentration, and such potency against TAS2Rs is practically insufficient for repurposing them to treat TAS2R-correlated decreases. Therefore, it is desirable to explore the widely available bitter tastants from bitter flavored TCM toward identification of more potent TAS2R agonist as drug agents for muscle relaxation therapy (
<xref rid="B29" ref-type="bibr">Di Pizio et al., 2019</xref>
;
<xref rid="B59" ref-type="bibr">Lee et al., 2019</xref>
).</p>
<p>For screening bitter components from the vast source of bitter flavored TCM, bioinformatics is a very useful tool to be employed (
<xref ref-type="fig" rid="F4">Figure 4</xref>
). The first step for drug discovery based on bitter flavored TCM is to understand their function and to identify the main components. Recently, many online databases about TCM and their components have been established [e.g., ETCM (
<xref rid="B105" ref-type="bibr">Tang et al., 2018</xref>
), TCMSP (
<xref rid="B88" ref-type="bibr">Ru et al., 2014</xref>
), and YaTCM (
<xref rid="B63" ref-type="bibr">Li et al., 2018</xref>
)], which are easy to use to clarify the type, function, and components of TCM (
<xref rid="T4" ref-type="table">Table 4</xref>
).</p>
<table-wrap id="T4" position="float">
<label>TABLE 4</label>
<caption>
<p>Databases and software for modern drug discovery based on bitter flavored TCM.</p>
</caption>
<table frame="hsides" rules="groups" cellspacing="5" cellpadding="5">
<thead>
<tr>
<td valign="top" align="left" colspan="2" rowspan="1">
<bold>Database/Software</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Description</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>Web address</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TCM and their components</td>
<td valign="top" align="left" rowspan="1" colspan="1">Acupuncture.com.au</td>
<td valign="top" align="left" rowspan="1" colspan="1">Classification of TCM formulations based on their actions</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.acupuncture.com.au/">http://www.acupuncture.com.au/</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B68" ref-type="bibr">Lukman et al.,2007</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Dictionary of Chinese Herbs</td>
<td valign="top" align="left" rowspan="1" colspan="1">Disease-specific TCM formulations, toxicity and side effects</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://alternativehealing.org/">http://alternativehealing.org/</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B68" ref-type="bibr">Lukman et al.,2007</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Plants For a Future</td>
<td valign="top" align="left" rowspan="1" colspan="1">TCM herbs with their potential side effects, physical characteristics, and medicinal usages substantiated by relevant scientific citations</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.pfaf.org">http://www.pfaf.org</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B68" ref-type="bibr">Lukman et al.,2007</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">TCM Knowledge Base Grid</td>
<td valign="top" align="left" rowspan="1" colspan="1">TCM medicine database, traditional Chinese drug database, TCM literature databases, traditional Tibetan drug database</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.cintcm.com">http://www.cintcm.com</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B68" ref-type="bibr">Lukman et al.,2007</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">ETCM</td>
<td valign="top" align="left" rowspan="1" colspan="1">ETCM includes comprehensive and standardized information for the commonly used herbs and formulas of TCM, as well as their ingredients. The herb basic property and quality control standard, formula composition, ingredient drug-likeness, as well as many other information provided by ETCM can serve as a convenient resource for users to obtain thorough information about a herb or a formula</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://www.nrc.ac.cn:9090/ETCM/">http://www.nrc.ac.cn:9090/ETCM/</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B105" ref-type="bibr">Tang et al.,2018</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">BATMAN-TCM</td>
<td valign="top" align="left" rowspan="1" colspan="1">BATMAN-TCM main functions include: (1) TCM ingredients’ target prediction, (2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses, (3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets, and (4) comparison analysis of multiple TCMs</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://bionet.ncpsb.org/batman-tcm/">http://bionet.ncpsb.org/batman-tcm/</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B10" ref-type="bibr">Behrens et al.,2019</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">YaTCM</td>
<td valign="top" align="left" rowspan="1" colspan="1">YaTCM is a free web-based toolkit, which provides comprehensive TCM information and is furnished with analysis tools</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://cadd.pharmacy.nankai.edu.cn/yatcm/home">http://cadd.pharmacy.nankai.edu.cn/yatcm/home</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B63" ref-type="bibr">Li et al.,2018</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">TCMSP</td>
<td valign="top" align="left" rowspan="1" colspan="1">TCMSP was built based on the framework of systems pharmacology for herbal medicines</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://lsp.nwu.edu.cn/browse.php?qc=herbs">http://lsp.nwu.edu.cn/browse.php?qc=herbs</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B88" ref-type="bibr">Ru et al.,2014</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Bitter tastants</td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterDB</td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterDB now holds over 1000 bitter molecules and provides a unique platform for structure-based studies with high-quality homology models and known ligands</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://bitterdb.agri.huji.ac.il">http://bitterdb.agri.huji.ac.il</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B23" ref-type="bibr">Dagan-Wiener et al.,2019</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Bitterness prediction</td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterPredict</td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterPredict predicts whether a compound is bitter or not, based on its chemical structure, which is a machine learning classifier</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://bitterdb.agri.huji.ac.il">http://bitterdb.agri.huji.ac.il</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B24" ref-type="bibr">Dagan-Wiener et al.,2017</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterX</td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterX is a web server on bitter compound identification and potential target prediction for small molecule compounds</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://mdl.shsmu.edu.cn/BitterX/">http://mdl.shsmu.edu.cn/BitterX/</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B48" ref-type="bibr">Huang et al.,2016</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">e-bitter</td>
<td valign="top" align="left" rowspan="1" colspan="1">Predict the bitterness with machine learning models</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B107" ref-type="bibr">Tuwani et al.,2018</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">BitterSweet Forest</td>
<td valign="top" align="left" rowspan="1" colspan="1">Predict the dichotomy of bitter–sweet taste</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B53" ref-type="bibr">Jayaram et al.,2018</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TAS2R prediction</td>
<td valign="top" align="left" rowspan="1" colspan="1">GOMoDo</td>
<td valign="top" align="left" rowspan="1" colspan="1">GOMoDo is a web server to seamlessly model GPCR structures and dock ligands to the models in a single consistent pipeline</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="uri" xlink:href="http://molsim.sci.univr.it/gomodo">http://molsim.sci.univr.it/gomodo</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<xref rid="B93" ref-type="bibr">Sandal et al.,2013</xref>
</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="F4" position="float">
<label>FIGURE 4</label>
<caption>
<p>Schematic diagram of the process of bioinformatics-aided
<italic>in silico</italic>
analysis of bitter flavored TCM from databanks in order to develop novel drugs for regulating muscle relaxation/contractility.</p>
</caption>
<graphic xlink:href="fphys-10-00861-g004"></graphic>
</fig>
<p>While 100 and 1000 of components have been clarified from bitter flavored TCM, their bitterness needs to be determined because we still do not know the bitter coding of bitter tastants and thus cannot intuitively take the component derived from bitter flavored TCM as being bitter itself. Since experimental-screening of the bitter tastants is very expensive and laborious, bitter prediction methods
<italic>in silico</italic>
receive much attention recently. There have been some software developed to predict the bitterness of one chemical compound (
<xref rid="T4" ref-type="table">Table 4</xref>
), achieved by using either ligand based, structure based or machine learning based methods (
<xref rid="B6" ref-type="bibr">Bahia et al., 2018</xref>
). For example, BitterPredict is a software for predicting the bitterness of compounds based on machine learning, which predicted that about 40% of random molecules, a large portion (66%) of clinical and experimental drugs, and natural products (77%) are bitter (
<xref rid="B24" ref-type="bibr">Dagan-Wiener et al., 2017</xref>
). BitterX (
<xref rid="B48" ref-type="bibr">Huang et al., 2016</xref>
) and e-Bitter (
<xref rid="B123" ref-type="bibr">Zheng et al., 2018</xref>
) are two open-access software for bitter prediction also based on machine learning. Interestingly, BitterSweet Forest (
<xref rid="B107" ref-type="bibr">Tuwani et al., 2018</xref>
) can predict the dichotomy of bitter–sweet taste. Results obtained by using these tools so far are encouraging, which may promote wider use of such reliable tools for bitter prediction.</p>
<p>Then, we also need to determine the receptors for these newly clarified bitter components. Similar to the prediction of bitterness, computational methods can be used to predict the TAS2Rs of bitter components, even the crystal structure of TAS2Rs and the recognition mechanisms are still unknown (
<xref rid="B55" ref-type="bibr">Katritch et al., 2013</xref>
). Techniques such as homology modeling, molecular docking (
<xref rid="B101" ref-type="bibr">Sousa et al., 2013</xref>
), and molecular dynamics simulation could in principle provide insights into the 3D structure of TAS2Rs and agonist/antagonist binding (
<xref rid="B86" ref-type="bibr">Roland et al., 2013</xref>
;
<xref rid="B104" ref-type="bibr">Suku et al., 2017</xref>
). Using homology modeling, molecular docking, and point mutagenesis experiments,
<xref rid="B79" ref-type="bibr">Nowak et al. (2018)</xref>
investigated the architecture of the TAS2R14 binding pocket and found that TAS2R14 provides a large number of agonist-selective contact points likely exceeding that of all other promiscuous TAS2Rs.</p>
<p>It is worthy to note that, although some web tools such as GOMoDo (
<xref rid="B93" ref-type="bibr">Sandal et al., 2013</xref>
) have been developed to seamlessly model GPCR structures and dock ligands to the models, homology model and molecular docking are still not suitable for TAS2R prediction due to the low sequence identity shared by TAS2Rs with the available GPCR templates and only low resolution homology models accessible (
<xref rid="B11" ref-type="bibr">Beuming and Sherman, 2012</xref>
). In addition, most docking algorithms neglect the presence of explicit solvent, even though water molecules may be crucial to stabilize the ligand in a variety of membrane proteins. In order to overcome this issue, methods that increase the sampling of the conformational space, such as flexible docking (
<xref rid="B15" ref-type="bibr">Brockhoff et al., 2010</xref>
;
<xref rid="B28" ref-type="bibr">DiPizio and Niv, 2014</xref>
;
<xref rid="B54" ref-type="bibr">Karaman et al., 2016</xref>
;
<xref rid="B79" ref-type="bibr">Nowak et al., 2018</xref>
;
<xref rid="B106" ref-type="bibr">Thawabteh et al., 2019</xref>
) or molecular dynamics (
<xref rid="B92" ref-type="bibr">Sandal et al., 2015</xref>
;
<xref rid="B20" ref-type="bibr">Chen et al., 2018</xref>
;
<xref rid="B65" ref-type="bibr">Liu et al., 2018</xref>
;
<xref rid="B51" ref-type="bibr">Jaggupilli et al., 2019</xref>
) can be used. Recently, the predictions are improved by molecular dynamics simulation approaches from all atom and coarse grained to hybrid methods bridging the two scales, which have provided exciting functional insights into TAS2Rs (
<xref rid="B97" ref-type="bibr">Schneider et al., 2018</xref>
). For example, subnanosecond all atom/molecular dynamics (AA/MD) simulation has been applied to study antibiotic binding to TAS2R7 (
<xref rid="B65" ref-type="bibr">Liu et al., 2018</xref>
), as well as TAS2R4, 14, and 20 (
<xref rid="B51" ref-type="bibr">Jaggupilli et al., 2019</xref>
). Beside AA/MD, hybrid molecular mechanics/coarse grained (MM/CG) simulations (
<xref rid="B61" ref-type="bibr">Leguebe et al., 2012</xref>
;
<xref rid="B74" ref-type="bibr">Marchiori et al., 2013</xref>
;
<xref rid="B92" ref-type="bibr">Sandal et al., 2015</xref>
;
<xref rid="B97" ref-type="bibr">Schneider et al., 2018</xref>
), used for soluble and membrane proteins, have been tailored for low resolution GPCR models, such as TAS2Rs. This approach has been applied to three ligand/TAS2R complexes so far, clearly improving the quality of the predictions (
<xref rid="B37" ref-type="bibr">Fierro et al., 2017</xref>
).</p>
<p>When combining these computational methods, the chemical property of components from TCM and the potential bitter receptors can be predicted which will promote the screening functional bitter compounds from large amount of bitter flavored TCMs. Nevertheless, these results predicted by informatics require further confirmation in experimental studies.</p>
</sec>
<sec id="S8">
<title>Discussion and Future Directions</title>
<p>Bitter components extracted from TCM cannot only be used for the treatment of disease but also a great resource for developing new modern drugs. To screen muscle relaxants based on the distribution and function of TAS2Rs in muscle tissues, it may be more efficient to directly screen from these well-known bitter flavored TCM. On the other hand, we need to pay attention to the side effects of bitter tastants for drugs since many bitter tastants are toxins. In fact, the extra-oral expression of TAS2Rs has been hypothesized to cause off-target effects of bitter medications (
<xref rid="B22" ref-type="bibr">Clark et al., 2012</xref>
;
<xref rid="B43" ref-type="bibr">Gilca and Dragos, 2017</xref>
). Therefore, the suitable dose will be critical for developing drugs based on bitter tastants.</p>
<p>We also need to carefully assess the therapy effect of bitter tastants for different individuals, considering there may be big differences in genetic expression types and abundance of TAS2Rs from person to person (
<xref rid="B115" ref-type="bibr">Yoon et al., 2016</xref>
). It is also well known that children are more sensitive to bitter tastants than adults (
<xref rid="B75" ref-type="bibr">Mennella et al., 2014</xref>
). These indicate that each individual may respond to bitter substance differently, which may influence the medical function of these bitter tastants.</p>
<p>Additionally, TAS2Rs polymorphisms are a common phenomenon in different species. For example, both the gene types and recognizing profiles are significantly different regarding the same tissue in humans, rats and mice. So that, the bitter compounds, β-glucopyranosides and PTC that elicit strong bitter taste in humans, are tasteless at all to mice (
<xref rid="B76" ref-type="bibr">Meyerhof, 2005</xref>
). This means that the function of bitter tastants acquired from animal studies cannot be directly referenced for functioning in humans.</p>
<p>Finally, in the application of TCM, it is found that usually the mixture of various substances produces more potent effect compared to a single component. However, promiscuity is common in bitter compound so that some bitter compounds can be agonistic to one TAS2R but antagonistic to another TAS2Rs. Therefore, it is unknown whether bitter-compound mixtures exert suppression and/or synergistic effects (
<xref rid="B16" ref-type="bibr">Brockhoff et al., 2011</xref>
;
<xref rid="B85" ref-type="bibr">Roland et al., 2014</xref>
), until they are thoroughly clarified, which is absolutely need in the development of bitter compound-based drugs.</p>
</sec>
<sec id="S9">
<title>Author Contributions</title>
<p>ML and LD conceived and designed the study. ML wrote the manuscript. KN, YJ, and ZY collected some data for this manuscript. LD revised the manuscript.</p>
</sec>
<sec id="conf1">
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding.</bold>
This work was supported by the Key Program of the NSF of China (No. 11532003), the NSF of China (31670950 and 21607016), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (17KJB130002), and the Applied Basic Research Project of Changzhou (CJ20179039).</p>
</fn>
</fn-group>
<sec id="S11" sec-type="supplementary material">
<title>Supplementary Material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="https://www.frontiersin.org/articles/10.3389/fphys.2019.00861/full#supplementary-material">https://www.frontiersin.org/articles/10.3389/fphys.2019.00861/full#supplementary-material</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Data_Sheet_1.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adler</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Chandrashekar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ryba</surname>
<given-names>N. J. P.</given-names>
</name>
<name>
<surname>Zuker</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>A novel family of mammalian taste receptors.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>100</volume>
<fpage>693</fpage>
<lpage>702</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0092-8674(00)80705-9</pub-id>
<pub-id pub-id-type="pmid">10761934</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alfonso-Prieto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Navarini</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Understanding ligand binding to g-protein coupled receptors using multiscale simulations.</article-title>
<source>
<italic>Front. Mol. Biosci.</italic>
</source>
<volume>6</volume>
:
<issue>29</issue>
<pub-id pub-id-type="doi">10.3389/fmolb.2019.00029</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Taste and smell GPCRs in the lung: evidence for a previously unrecognized widespread chemosensory system.</article-title>
<source>
<italic>Cell. Signal.</italic>
</source>
<volume>41</volume>
<fpage>82</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cellsig.2017.02.002</pub-id>
<pub-id pub-id-type="pmid">28167233</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Avau</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Depoortere</surname>
<given-names>I.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity.</article-title>
<source>
<italic>Acta Physiologica</italic>
</source>
<volume>216</volume>
<fpage>407</fpage>
<lpage>420</lpage>
.
<pub-id pub-id-type="doi">10.1111/apha.12621</pub-id>
<pub-id pub-id-type="pmid">26493384</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Avau</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rotondo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Thijs</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Andrews</surname>
<given-names>C. N.</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tack</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>5</volume>
<fpage>15985</fpage>
<lpage>15985</lpage>
.
<pub-id pub-id-type="pmid">26541810</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahia</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Nissim</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Bitterness prediction in-silico: a step towards better drugs.</article-title>
<source>
<italic>Int. J. Pharm.</italic>
</source>
<volume>536</volume>
<fpage>526</fpage>
<lpage>529</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2017.03.076</pub-id>
<pub-id pub-id-type="pmid">28363856</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs.</article-title>
<source>
<italic>Semin. Cell Dev. Biol.</italic>
</source>
<volume>24</volume>
<fpage>215</fpage>
<lpage>221</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.semcdb.2012.08.006</pub-id>
<pub-id pub-id-type="pmid">22947915</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2015</year>
). “
<article-title>14 - Taste receptors</article-title>
,” in:
<source>
<italic>Flavour Development, Analysis and Perception in Food and Beverages</italic>
,</source>
<role>eds</role>
<person-group person-group-type="editor">
<name>
<surname>Parker</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Elmore</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Methven</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<publisher-loc>Sawston</publisher-loc>
:
<publisher-name>Woodhead Publishing</publisher-name>
)
<fpage>297</fpage>
<lpage>329</lpage>
.</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bufe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Winnig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The human taste receptor hTAS2R14 responds to a variety of different bitter compounds.</article-title>
<source>
<italic>Biochem. Biophys. Res. Commun.</italic>
</source>
<volume>319</volume>
<fpage>479</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.05.019</pub-id>
<pub-id pub-id-type="pmid">15178431</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Redel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Blank</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts.</article-title>
<source>
<italic>Biochem. Biophys. Res. Commun.</italic>
</source>
<volume>512</volume>
<fpage>877</fpage>
<lpage>881</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2019.03.139</pub-id>
<pub-id pub-id-type="pmid">30928101</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beuming</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Current assessment of docking into gpcr crystal structures and homology models: successes, challenges, and guidelines.</article-title>
<source>
<italic>J. Chem. Inf. Model.</italic>
</source>
<volume>52</volume>
<fpage>3263</fpage>
<lpage>3277</lpage>
.
<pub-id pub-id-type="doi">10.1021/ci300411b</pub-id>
<pub-id pub-id-type="pmid">23121495</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biarnés</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Marchiori</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lanzara</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gasparini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Insights into the binding of phenyltiocarbamide (PTC) agonist to Its target human TAS2R38 bitter receptor.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>5</volume>
:
<issue>e12394</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0012394</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Born</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Levit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>33</volume>
<fpage>201</fpage>
<lpage>213</lpage>
.
<pub-id pub-id-type="doi">10.1523/jneurosci.3248-12.2013</pub-id>
<pub-id pub-id-type="pmid">23283334</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Massarotti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Appendino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium.</article-title>
<source>
<italic>J. Agric. Food Chem.</italic>
</source>
<volume>55</volume>
<fpage>6236</fpage>
<lpage>6243</lpage>
.
<pub-id pub-id-type="doi">10.1021/jf070503p</pub-id>
<pub-id pub-id-type="pmid">17595105</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Structural requirements of bitter taste receptor activation.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>107</volume>
<fpage>11110</fpage>
<lpage>11115</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0913862107</pub-id>
<pub-id pub-id-type="pmid">20534469</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roudnitzky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Appendino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Avonto</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Receptor agonism and antagonism of dietary bitter compounds.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>31</volume>
<fpage>14775</fpage>
<lpage>14782</lpage>
.
<pub-id pub-id-type="doi">10.1523/jneurosci.2923-11.2011</pub-id>
<pub-id pub-id-type="pmid">21994393</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bufe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hofmann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Krautwurst</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Raguse</surname>
<given-names>J. -D.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The human TAS2R16 receptor mediates bitter taste in response to [beta]-glucopyranosides.</article-title>
<source>
<italic>Nat. Genet.</italic>
</source>
<volume>32</volume>
<fpage>397</fpage>
<lpage>401</lpage>
.
<pub-id pub-id-type="doi">10.1038/ng1014</pub-id>
<pub-id pub-id-type="pmid">12379855</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chandrashekar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Hoon</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Adler</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2000</year>
).
<article-title>T2Rs function as bitter taste receptors.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>100</volume>
<fpage>703</fpage>
<lpage>711</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0092-8674(00)80706-0</pub-id>
<pub-id pub-id-type="pmid">10761935</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ping</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>The expression of bitter taste receptors in mesenteric, cerebral and omental arteries.</article-title>
<source>
<italic>Life Sci.</italic>
</source>
<volume>170</volume>
<fpage>16</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.lfs.2016.11.010</pub-id>
<pub-id pub-id-type="pmid">27863958</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Insights into the binding of agonist and antagonist to TAS2R16 receptor: a molecular simulation study.</article-title>
<source>
<italic>Mol. Simul.</italic>
</source>
<volume>44</volume>
<fpage>322</fpage>
<lpage>329</lpage>
.
<pub-id pub-id-type="doi">10.1080/08927022.2017.1376325</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>TCM: made in China.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>480</volume>
S82-S83.</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Munger</surname>
<given-names>S. D.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Extraoral bitter taste receptors as mediators of off-target drug effects.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>26</volume>
<fpage>4827</fpage>
<lpage>4831</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.12-215087</pub-id>
<pub-id pub-id-type="pmid">22964302</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dagan-Wiener</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nissim</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bahia</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Dubovski</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Margulis</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2019</year>
).
<article-title>BitterDB: taste ligands and receptors database in 2019.</article-title>
<source>
<italic>Nucleic Acids Res.</italic>
</source>
<volume>47</volume>
<fpage>D1179</fpage>
-
<lpage>D1185</lpage>
.
<pub-id pub-id-type="pmid">30357384</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dagan-Wiener</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nissim</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ben Abu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Borgonovo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bassoli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Bitter or not? bitterpredict, a tool for predicting taste from chemical structure.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>7</volume>
:
<issue>12074</issue>
.</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deloose</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Corsetti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Biesiekierski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Masuy</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Rotondo</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers.</article-title>
<source>
<italic>Am. J. Clin. Nutr.</italic>
</source>
<volume>105</volume>
<fpage>580</fpage>
<lpage>588</lpage>
.
<pub-id pub-id-type="doi">10.3945/ajcn.116.138297</pub-id>
<pub-id pub-id-type="pmid">28148502</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W. C. H.</given-names>
</name>
<name>
<surname>McIlmoyle</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Robinett</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Schillinger</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Bitter taste receptors on airway smooth muscle bronchodilate by a localized calcium flux and reverse obstruction.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>16</volume>
<fpage>1299</fpage>
<lpage>1304</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.2237</pub-id>
<pub-id pub-id-type="pmid">20972434</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Promiscuity, and selectivity of bitter molecules, and their receptors.</article-title>
<source>
<italic>Bioorg. Med. Chem.</italic>
</source>
<volume>23</volume>
<fpage>4082</fpage>
<lpage>4091</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bmc.2015.04.025</pub-id>
<pub-id pub-id-type="pmid">25934224</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DiPizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Computational studies of smell and taste receptors.</article-title>
<source>
<italic>Isr. J. Chem.</italic>
</source>
<volume>54</volume>
<fpage>1205</fpage>
<lpage>1218</lpage>
.
<pub-id pub-id-type="doi">10.1002/ijch.201400027</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Krautwurst</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors.</article-title>
<source>
<italic>Int. J. Mol. Sci.</italic>
</source>
<volume>20</volume>
:
<issue>1402</issue>
<pub-id pub-id-type="doi">10.3390/ijms20061402</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Levit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Slutzki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Karaman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
</person-group>
(
<year>2016</year>
). “
<article-title>Chapter 18 - Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios</article-title>
,” in
<source>
<italic>Methods in Cell Biology</italic>
</source>
,
<role>ed.</role>
<person-group person-group-type="editor">
<name>
<surname>Shukla</surname>
<given-names>A. K.</given-names>
</name>
</person-group>
(
<publisher-loc>Cambridge, MA</publisher-loc>
:
<publisher-name>Academic Press</publisher-name>
),
<fpage>401</fpage>
<lpage>427</lpage>
.
<pub-id pub-id-type="doi">10.1016/bs.mcb.2015.10.005</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shy</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Molecular features underlying selectivity in chicken bitter taste receptors.</article-title>
<source>
<italic>Front. Mol. Biosci.</italic>
</source>
<volume>5</volume>
:
<issue>6</issue>
<pub-id pub-id-type="doi">10.3389/fmolb.2018.00006.</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dragos</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gilca</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Taste of phytocompounds: a better predictor for ethnopharmacological activities of medicinal plants than the phytochemical class?</article-title>
<source>
<italic>J. Ethnopharmacol.</italic>
</source>
<volume>220</volume>
<fpage>129</fpage>
<lpage>146</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jep.2018.03.034</pub-id>
<pub-id pub-id-type="pmid">29604378</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drewnowski</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gomez-Carneros</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Bitter taste, phytonutrients, and the consumer: a review.</article-title>
<source>
<italic>Am. J. Clin. Nutr.</italic>
</source>
<volume>72</volume>
<fpage>1424</fpage>
<lpage>1435</lpage>
.
<pub-id pub-id-type="doi">10.1093/ajcn/72.6.1424</pub-id>
<pub-id pub-id-type="pmid">11101467</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drossman</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Functional gastrointestinal disorders: history, pathophysiology, clinical features, and rome IV.</article-title>
<source>
<italic>Gastroenterology</italic>
</source>
<volume>150</volume>
<fpage>1262</fpage>
<lpage>1279.e2</lpage>
.
<pub-id pub-id-type="doi">10.1053/j.gastro.2016.02.032</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<collab>Editorial</collab>
(
<year>2007</year>
).
<article-title>Hard to swallow.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>448</volume>
<fpage>105</fpage>
<lpage>106</lpage>
.</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Escobar</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Mora</surname>
<given-names>B. L.</given-names>
</name>
<name>
<surname>Cedano</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Loaiza</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rosso</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Comprehensive treatment in severe dengue during preterm and term labor: could tocolysis be useful?</article-title>
<source>J. Mater.Fetal Neonatal Med.</source>
<pub-id pub-id-type="doi">10.1080/14767058.2018.1554044</pub-id>
<comment>[Epub ahead of print]</comment>
.</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fierro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Suku</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Alfonso-Prieto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cichon</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Agonist binding to chemosensory receptors: a systematic bioinformatics analysis.</article-title>
<source>
<italic>Front. Mol. Biosci.</italic>
</source>
<volume>4</volume>
:
<issue>63</issue>
<pub-id pub-id-type="doi">10.3389/fmolb.2017.00063</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Fletcher</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kinghorn</surname>
<given-names>A. D.</given-names>
</name>
</person-group>
(
<year>2017</year>
). “
<article-title>Medicinal chemistry of plant naturals as agonists/antagonists for taste receptors</article-title>
,” in
<source>
<italic>Taste and Smell</italic>
</source>
<role>ed.</role>
<person-group person-group-type="editor">
<name>
<surname>Krautwurst</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<publisher-loc>Cham</publisher-loc>
:
<publisher-name>Springer International Publishing</publisher-name>
),
<fpage>35</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1007/7355_2014_81</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foster</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Blank</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>See Hoe</surname>
<given-names>L. E.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Peart</surname>
<given-names>J. N.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014a</year>
).
<article-title>Bitter taste receptor agonists elicit G-protein-dependent negative inotropy in the murine heart.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>28</volume>
<fpage>4497</fpage>
<lpage>4508</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.14-256305</pub-id>
<pub-id pub-id-type="pmid">25002118</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foster</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Porrello</surname>
<given-names>E. R.</given-names>
</name>
<name>
<surname>Purdue</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>H. -W.</given-names>
</name>
<name>
<surname>Voigt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Frenzel</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>8</volume>
:
<issue>e64579</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0064579</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foster</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Roura</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>W. G.</given-names>
</name>
</person-group>
(
<year>2014b</year>
).
<article-title>Extrasensory perception: odorant and taste receptors beyond the nose and mouth.</article-title>
<source>
<italic>Pharmacol. Ther.</italic>
</source>
<volume>142</volume>
<fpage>41</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2013.11.004</pub-id>
<pub-id pub-id-type="pmid">24280065</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilca</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Barbulescu</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Taste of medicinal plants: A potential tool in predicting ethnopharmacological activities?</article-title>
<source>
<italic>J. Ethnopharmacol.</italic>
</source>
<volume>174</volume>
<fpage>464</fpage>
<lpage>473</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jep.2015.08.040</pub-id>
<pub-id pub-id-type="pmid">26320686</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilca</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dragos</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Extraoral taste receptor discovery: new light on ayurvedic pharmacology.</article-title>
<source>
<italic>Evid. Based complement. Alternat. Med.</italic>
</source>
<volume>2017</volume>
:
<issue>5435831</issue>
.</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gotoh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaminuma</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Nakaya</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Katayama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Saeki</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>Involvement of taste receptors in the effectiveness of sublingual immunotherapy.</article-title>
<source>
<italic>Allergol. Int.</italic>
</source>
<volume>67</volume>
<fpage>421</fpage>
<lpage>424</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.alit.2018.02.003</pub-id>
<pub-id pub-id-type="pmid">29523454</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grassin-Delyle</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abrial</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fayad-Kobeissi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Brollo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Faisy</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>J.-C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>The expression and relaxant effect of bitter taste receptors in human bronchi.</article-title>
<source>
<italic>Respir. Res.</italic>
</source>
<volume>14</volume>
:
<issue>134</issue>
<pub-id pub-id-type="doi">10.1186/1465-9921-14-134</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gruber</surname>
<given-names>C. W.</given-names>
</name>
<name>
<surname>O’Brien</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Uterotonic plants and their bioactive constituents.</article-title>
<source>
<italic>Planta. Med.</italic>
</source>
<volume>77</volume>
<fpage>207</fpage>
<lpage>220</lpage>
.
<pub-id pub-id-type="doi">10.1055/s-0030-1250317</pub-id>
<pub-id pub-id-type="pmid">20845261</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hesketh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>W. X.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Health in China. traditional chinese medicine: one country, two systems.</article-title>
<source>
<italic>BMJ</italic>
</source>
<volume>315</volume>
<fpage>115</fpage>
-
<lpage>117</lpage>
.
<pub-id pub-id-type="pmid">9240055</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>BitterX: a tool for understanding bitter taste in humans.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>6</volume>
:
<issue>23450</issue>
.</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jafurulla</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors.</article-title>
<source>
<italic>Biochem. Biophys. Res. Commun.</italic>
</source>
<volume>404</volume>
<fpage>569</fpage>
<lpage>573</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2010.12.031</pub-id>
<pub-id pub-id-type="pmid">21146498</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaggupilli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Upadhyaya</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Bhullar</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Chelikani</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Bitter taste receptors: novel insights into the biochemistry and pharmacology.</article-title>
<source>
<italic>Int. J. Biochem. Cell Biol.</italic>
</source>
<volume>77</volume>
(Pt B)
<fpage>184</fpage>
<lpage>196</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biocel.2016.03.005</pub-id>
<pub-id pub-id-type="pmid">26995065</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaggupilli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>De Jesus</surname>
<given-names>V. C.</given-names>
</name>
<name>
<surname>Gounni</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Dhanaraj</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chelikani</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>33</volume>
<fpage>501</fpage>
<lpage>517</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.201800521rr</pub-id>
<pub-id pub-id-type="pmid">30011231</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaggupilli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Upadhyaya</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sikarwar</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dakshinamurti</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Analysis of the expression of human bitter taste receptors in extraoral tissues.</article-title>
<source>
<italic>Mol. Cell. Biochem.</italic>
</source>
<volume>426</volume>
<fpage>137</fpage>
<lpage>147</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11010-016-2902-z</pub-id>
<pub-id pub-id-type="pmid">28012014</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jayaram</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>M. K.</given-names>
</name>
<name>
<surname>Farid</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Lindow</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Antenatal magnesium sulfate for fetal neuroprotection: a critical appraisal and systematic review of clinical practice guidelines.</article-title>
<source>
<italic>J. Perinat. Med.</italic>
</source>
<volume>47</volume>
<fpage>262</fpage>
<lpage>269</lpage>
.
<pub-id pub-id-type="doi">10.1515/jpm-2018-0174</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karaman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kitaneh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Abu-Jaish</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Probing the binding pocket of the broadly tuned human bitter taste receptor tas2r14 by chemical modification of cognate agonists.</article-title>
<source>
<italic>Chem. Biol. Drug Des.</italic>
</source>
<volume>88</volume>
<fpage>66</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1111/cbdd.12734</pub-id>
<pub-id pub-id-type="pmid">26825540</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katritch</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cherezov</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>R. C.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Structure-function of the G protein-coupled receptor superfamily.</article-title>
<source>
<italic>Annu. Rev. Pharmacol. Toxicol.</italic>
</source>
<volume>53</volume>
<fpage>531</fpage>
<lpage>556</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-pharmtox-032112-135923</pub-id>
<pub-id pub-id-type="pmid">23140243</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Castaño</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Panettieri</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Biased TAS2R bronchodilators inhibit airway smooth muscle growth by downregulating pERK1/2.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>60</volume>
<fpage>532</fpage>
<lpage>540</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2018-0189oc</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Geffken</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>An</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via galphai1,2,3.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>56</volume>
<fpage>762</fpage>
<lpage>771</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2016-0373oc</pub-id>
<pub-id pub-id-type="pmid">28145731</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuhn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bufe</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Winnig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hofmann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Bitter taste receptors for saccharin and acesulfame K.</article-title>
<source>
<italic>J. Neurosci.</italic>
</source>
<volume>24</volume>
<fpage>10260</fpage>
<lpage>10265</lpage>
.
<pub-id pub-id-type="doi">10.1523/jneurosci.1225-04.2004</pub-id>
<pub-id pub-id-type="pmid">15537898</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Depoortere</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hatt</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2019</year>
).
<article-title>Therapeutic potential of ectopic olfactory and taste receptors.</article-title>
<source>
<italic>Nat. Rev. Drug Discov.</italic>
</source>
<volume>18</volume>
<fpage>116</fpage>
<lpage>138</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41573-018-0002-3</pub-id>
<pub-id pub-id-type="pmid">30504792</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leem</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Exploring the combination and modular characteristics of herbs for alopecia treatment in traditional Chinese medicine: an association rule mining and network analysis study.</article-title>
<source>
<italic>BMC Complement. Altern. Med.</italic>
</source>
<volume>18</volume>
:
<issue>204</issue>
<pub-id pub-id-type="doi">10.1186/s12906-018-2269-7</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leguebe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Capece</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hoang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Hybrid molecular mechanics/coarse-grained simulations for structural prediction of G-protein coupled receptor/ligand complexes.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>7</volume>
:
<issue>e47332</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0047332</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wiener</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>28</volume>
<fpage>1181</fpage>
<lpage>1197</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.13-242594</pub-id>
<pub-id pub-id-type="pmid">24285091</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>YaTCM: yet another traditional Chinese medicine database for drug discovery.</article-title>
<source>
<italic>Comput. Struct. Biotechnol. J.</italic>
</source>
<volume>16</volume>
<fpage>600</fpage>
<lpage>610</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.csbj.2018.11.002</pub-id>
<pub-id pub-id-type="pmid">30546860</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liggett</surname>
<given-names>S. B.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Bitter taste receptors in the wrong place: novel airway smooth muscle targets for treating asthma.</article-title>
<source>
<italic>Trans. Am. Clin. Climatol. Assoc.</italic>
</source>
<volume>125</volume>
<fpage>64</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="pmid">25125719</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jaggupilli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Premnath</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chelikani</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Plasticity of the ligand binding pocket in the bitter taste receptor T2R7.</article-title>
<source>
<italic>Biochim. Biophys. Acta Biomembr.</italic>
</source>
<volume>1860</volume>
<fpage>991</fpage>
<lpage>999</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbamem.2018.01.014</pub-id>
<pub-id pub-id-type="pmid">29355483</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lossow</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hübner</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Roudnitzky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Slack</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Pollastro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans.</article-title>
<source>
<italic>J. Biol. Chem.</italic>
</source>
<volume>291</volume>
<fpage>15358</fpage>
<lpage>15377</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.m116.718544</pub-id>
<pub-id pub-id-type="pmid">27226572</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lifshitz</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>ZhuGe</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Extraoral bitter taste receptors in health and disease.</article-title>
<source>
<italic>J. Gen. Physiol.</italic>
</source>
<volume>149</volume>
<fpage>181</fpage>
<lpage>197</lpage>
.
<pub-id pub-id-type="doi">10.1085/jgp.201611637</pub-id>
<pub-id pub-id-type="pmid">28053191</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lukman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hui</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Computational methods for traditional Chinese medicine: a survey.</article-title>
<source>
<italic>Comput. Methods Programs</italic>
</source>
<volume>88</volume>
<fpage>283</fpage>
<lpage>294</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cmpb.2007.09.008</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lund</surname>
<given-names>T. C.</given-names>
</name>
<name>
<surname>Kobs</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nyquist</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kuroki</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Osborn</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Bone marrow stromal and vascular smooth muscle cells have chemosensory capacity via bitter taste receptor expression.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>8</volume>
:
<issue>e58945</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0058945</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lian</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Traditional chinese medicine and immune regulation.</article-title>
<source>
<italic>Clin. Rev. Allergy Immunol.</italic>
</source>
<volume>44</volume>
<fpage>229</fpage>
<lpage>241</lpage>
.
<pub-id pub-id-type="pmid">22826112</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maina</surname>
<given-names>I. W.</given-names>
</name>
<name>
<surname>Workman</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>N. A.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>The role of bitter and sweet taste receptors in upper airway innate immunity: recent advances and future directions.</article-title>
<source>
<italic>World J. Otorhinolaryngol. Head Neck Surg.</italic>
</source>
<volume>4</volume>
<fpage>200</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.wjorl.2018.07.003</pub-id>
<pub-id pub-id-type="pmid">30506052</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mak</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hanania</surname>
<given-names>N. A.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>New bronchodilators.</article-title>
<source>
<italic>Curr. Opin. Pharmacol.</italic>
</source>
<volume>12</volume>
<fpage>238</fpage>
<lpage>245</lpage>
.
<pub-id pub-id-type="pmid">22445544</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manson</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Safholm</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Alameri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bergman</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Orre</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Sward</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle.</article-title>
<source>
<italic>Eur. J. Pharmacol</italic>
</source>
<volume>740</volume>
<fpage>302</fpage>
<lpage>311</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ejphar.2014.07.005</pub-id>
<pub-id pub-id-type="pmid">25036266</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchiori</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Capece</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gasparini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Coarse-grained/molecular mechanics of the TAS2R38 bitter taste receptor: experimentally-validated detailed structural prediction of agonist binding.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>8</volume>
:
<issue>e64675</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0064675</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mennella</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Mansfield</surname>
<given-names>C. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Age-related differences in bitter taste and efficacy of bitter blockers.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>9</volume>
:
<issue>e103107</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0103107</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>2005</year>
). “
<article-title>Elucidation of mammalian bitter taste</article-title>
,” in
<source>
<italic>Reviews of Physiology, Biochemistry and Pharmacology</italic>
,</source>
<role>eds</role>
<person-group person-group-type="editor">
<name>
<surname>Amara</surname>
<given-names>S. G.</given-names>
</name>
<name>
<surname>Bamberg</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Grinstein</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hebert</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Jahn</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lederer</surname>
<given-names>W. J.</given-names>
</name>
<etal></etal>
</person-group>
(
<publisher-loc>Berlin</publisher-loc>
:
<publisher-name>Springer</publisher-name>
),
<fpage>37</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10254-005-0041-0</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Batram</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chudoba</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bufe</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>The molecular receptive ranges of human TAS2R bitter taste receptors.</article-title>
<source>
<italic>Chem. Senses</italic>
</source>
<volume>35</volume>
<fpage>157</fpage>
<lpage>170</lpage>
.
<pub-id pub-id-type="doi">10.1093/chemse/bjp092</pub-id>
<pub-id pub-id-type="pmid">20022913</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mikami</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Danielsson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Joell</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>Townsend</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Impaired relaxation of airway smooth muscle in mice lacking the actin-binding protein gelsolin.</article-title>
<source>
<italic>Am. J. Respir. Cell Mol. Biol.</italic>
</source>
<volume>56</volume>
<fpage>628</fpage>
<lpage>636</lpage>
.
<pub-id pub-id-type="doi">10.1165/rcmb.2016-0292oc</pub-id>
<pub-id pub-id-type="pmid">28118027</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Di Pizio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Levit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Niv</surname>
<given-names>M. Y.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14.</article-title>
<source>
<italic>Biochim. Biophys. Acta. Gene. Subj.</italic>
</source>
<volume>1862</volume>
<fpage>2162</fpage>
<lpage>2173</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbagen.2018.07.009</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orsmarkpietras</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>James</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Konradsen</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Nordlund</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Söderhäll</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pulkkinen</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics.</article-title>
<source>
<italic>Eur. Respir. J.</italic>
</source>
<volume>42</volume>
<fpage>65</fpage>
<lpage>78</lpage>
.
<pub-id pub-id-type="doi">10.1183/09031936.00077712</pub-id>
<pub-id pub-id-type="pmid">23222870</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Deshpande</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.</article-title>
<source>
<italic>Am. J. Physiol. Lung. Cell Mol. Physiol.</italic>
</source>
<volume>313</volume>
<fpage>154</fpage>
<lpage>165</lpage>
.</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pearson</surname>
<given-names>W. R.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>An introduction to sequence similarity (”homology”) searching.</article-title>
<source>
<italic>Curr. Protocols Bioinform.</italic>
</source>
<volume>42</volume>
<fpage>3.1.1</fpage>
<lpage>3.1.8</lpage>
.
<pub-id pub-id-type="doi">10.1002/0471250953.bi0301s42</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="book">
<collab>Pharmacopoeia Committee of the People’s Republic of China</collab>
(
<year>2015</year>
).
<source>Pharmacopoeia of the People’s Republic of China</source>
<edition>1st Edition</edition>
,
<publisher-loc>China</publisher-loc>
:
<publisher-name>Chinese Medical Science and Technology Press</publisher-name>
<pub-id pub-id-type="doi">10.1002/0471250953.bi0301s42</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pieroni</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Giusti</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Alpine ethnobotany in Italy: traditional knowledge of gastronomic and medicinal plants among the Occitans of the upper Varaita valley, Piedmont.</article-title>
<source>
<italic>J. Ethnobiol. Ethnomed.</italic>
</source>
<volume>5</volume>
<fpage>32</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">19895681</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roland</surname>
<given-names>W. S. U.</given-names>
</name>
<name>
<surname>Gouka</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Gruppen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Driesse</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van Buren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>6-Methoxyflavanones as bitter taste receptor blockers for hTAS2R39.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>9</volume>
:
<issue>e94451</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0094451</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roland</surname>
<given-names>W. S. U.</given-names>
</name>
<name>
<surname>van Buren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gruppen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Driesse</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gouka</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Bitter taste receptor activation by flavonoids and isoflavonoids: modeled structural requirements for activation of hTAS2R14 and hTAS2R39.</article-title>
<source>
<italic>J. Agric. Food Chem.</italic>
</source>
<volume>61</volume>
<fpage>10454</fpage>
<lpage>10466</lpage>
.
<pub-id pub-id-type="doi">10.1021/jf403387p</pub-id>
<pub-id pub-id-type="pmid">24117141</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roland</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Vincken</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Gouka</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>van Buren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gruppen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39.</article-title>
<source>
<italic>J. Agric. Food Chem.</italic>
</source>
<volume>59</volume>
<fpage>11764</fpage>
<lpage>11771</lpage>
.
<pub-id pub-id-type="doi">10.1021/jf202816u</pub-id>
<pub-id pub-id-type="pmid">21942422</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ru</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.</article-title>
<source>
<italic>J. Cheminform.</italic>
</source>
<volume>6</volume>
:
<issue>13</issue>
.</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sainz</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cavenagh</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Gutierrez</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Battey</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Northup</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>S. L.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Functional characterization of human bitter taste receptors.</article-title>
<source>
<italic>Biochem. J.</italic>
</source>
<volume>403</volume>
<fpage>537</fpage>
<lpage>543</lpage>
.
<pub-id pub-id-type="doi">10.1042/bj20061744</pub-id>
<pub-id pub-id-type="pmid">17253962</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chiba</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Narita</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Denatonium and 6-n-Propyl-2-thiouracil, agonists of bitter taste receptor, inhibit contraction of various types of smooth muscles in the rat and mouse.</article-title>
<source>
<italic>Biol. Pharm. Bull.</italic>
</source>
<volume>39</volume>
<fpage>33</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1248/bpb.b15-00426</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakurai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Misaka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ishiguro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sugawara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Characterization of the β-d-glucopyranoside binding site of the human bitter taste receptor hTAS2R16.</article-title>
<source>
<italic>J. Biol. Chem.</italic>
</source>
<volume>285</volume>
<fpage>28373</fpage>
<lpage>28378</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.m110.144444</pub-id>
<pub-id pub-id-type="pmid">20605788</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sandal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brockhoff</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Musiani</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Evidence for a transient additional ligand binding site in the TAS2R46 bitter taste receptor.</article-title>
<source>
<italic>J. Chem. Theory Comput.</italic>
</source>
<volume>11</volume>
<fpage>4439</fpage>
<lpage>4449</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.jctc.5b00472</pub-id>
<pub-id pub-id-type="pmid">26575934</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sandal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Duy</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Cona</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zung</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Musiani</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>GOMoDo: a gpcrs online modeling and docking webserver.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>8</volume>
:
<issue>e74092</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0074092</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanders</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Ro</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>S. M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Regulation of gastrointestinal motility–insights from smooth muscle biology.</article-title>
<source>
<italic>Nat. Rev. Gastroenterol. Hepatol.</italic>
</source>
<volume>9</volume>
<fpage>633</fpage>
<lpage>645</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrgastro.2012.168</pub-id>
<pub-id pub-id-type="pmid">22965426</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanematsu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shigemura</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ninomiya</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Structure, Function, and signaling of taste G-Protein-coupled receptors.</article-title>
<source>
<italic>Curr. Pharm. Biotechnol.</italic>
</source>
<volume>15</volume>
<fpage>951</fpage>
<lpage>961</lpage>
.
<pub-id pub-id-type="doi">10.2174/1389201015666140922105911</pub-id>
<pub-id pub-id-type="pmid">25248559</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scadding</surname>
<given-names>G.K.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>A taste of things to come?</article-title>
<source>
<italic>J. Allergy Clin. Immunol. Pract.</italic>
</source>
<volume>6</volume>
<fpage>1081</fpage>
-
<lpage>1082</lpage>
.
<pub-id pub-id-type="pmid">29747971</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneider</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Korshunova</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Musiani</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Alfonso-Prieto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>Predicting ligand binding poses for low-resolution membrane protein models: perspectives from multiscale simulations.</article-title>
<source>
<italic>Biochem. Biophys. Res. Commun.</italic>
</source>
<volume>498</volume>
<fpage>366</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.01.160</pub-id>
<pub-id pub-id-type="pmid">29409902</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaik</surname>
<given-names>F. A.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bhullar</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Chelikani</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Bitter taste receptors: extraoral roles in pathophysiology.</article-title>
<source>
<italic>Int. J. Biochem. Cell Biol.</italic>
</source>
<volume>77</volume>
(Pt B)
<fpage>197</fpage>
<lpage>204</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biocel.2016.03.011</pub-id>
<pub-id pub-id-type="pmid">27032752</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y. P.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Adaptive diversification of bitter taste receptor genes in Mammalian evolution.</article-title>
<source>
<italic>Mol. Biol. Evol.</italic>
</source>
<volume>20</volume>
<fpage>805</fpage>
<lpage>814</lpage>
.
<pub-id pub-id-type="doi">10.1093/molbev/msg083</pub-id>
<pub-id pub-id-type="pmid">12679530</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soares</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kohl</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Thalmann</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mateus</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Meyerhof</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>De Freitas</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Different phenolic compounds activate distinct human bitter taste receptors.</article-title>
<source>
<italic>J. Agric. Food Chem.</italic>
</source>
<volume>61</volume>
<fpage>1525</fpage>
<lpage>1533</lpage>
.
<pub-id pub-id-type="doi">10.1021/jf304198k</pub-id>
<pub-id pub-id-type="pmid">23311874</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sousa</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Coimbra</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Neves</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Martins</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Moorthy</surname>
<given-names>N. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Protein-ligand docking in the new millennium–a retrospective of 10 years in the field.</article-title>
<source>
<italic>Curr. Med. Chem.</italic>
</source>
<volume>20</volume>
<fpage>2296</fpage>
<lpage>2314</lpage>
.
<pub-id pub-id-type="doi">10.2174/0929867311320180002</pub-id>
<pub-id pub-id-type="pmid">23531220</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>L. H.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The discovery of artemisinin and the Nobel Prize in Physiology or Medicine.</article-title>
<source>
<italic>Sci. China Life Sci.</italic>
</source>
<volume>58</volume>
<fpage>1175</fpage>
<lpage>1179</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11427-015-4948-7</pub-id>
<pub-id pub-id-type="pmid">26481135</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sucher</surname>
<given-names>N. J.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>The application of Chinese medicine to novel drug discovery expert opinion on drug discovery.</article-title>
<source>
<italic>Expert Opin. Drug Discov.</italic>
</source>
<volume>8</volume>
<fpage>21</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1517/17460441.2013.739602</pub-id>
<pub-id pub-id-type="pmid">23170842</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suku</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Fierro</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Giorgetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Alfonso-Prieto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carloni</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>Multi-scale simulations of membrane proteins: the case of bitter taste receptors.</article-title>
<source>
<italic>J. Sci. Adv. Mater. Dev.</italic>
</source>
<volume>2</volume>
<fpage>15</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jsamd.2017.03.001</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>ETCM: an encyclopaedia of traditional Chinese medicine.</article-title>
<source>
<italic>Nucleic Acids Res.</italic>
</source>
<volume>47</volume>
<fpage>D976</fpage>
-
<lpage>D982</lpage>
.</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thawabteh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lelario</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Scrano</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bufo</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2019</year>
).
<article-title>Bitterless guaifenesin prodrugs-design, synthesis, characterization, in vitro kinetics, and bitterness studies.</article-title>
<source>
<italic>Chem. Biol. Drug Des.</italic>
</source>
<volume>93</volume>
<fpage>262</fpage>
<lpage>271</lpage>
.
<pub-id pub-id-type="doi">10.1111/cbdd.13409</pub-id>
<pub-id pub-id-type="pmid">30276968</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuwani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wadhwa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bagler</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>BitterSweet: building machine learning models for predicting the bitter and sweet taste of small molecules.</article-title>
<source>
<italic>bioRxiv.</italic>
</source>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Upadhyaya</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sikarwar</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Chakraborty</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pydi</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>Bhullar</surname>
<given-names>R. P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction.</article-title>
<source>
<italic>PLoS One</italic>
</source>
<volume>9</volume>
:
<issue>e110373</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0110373</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<source>
<italic>National Compilation of Chinese Herbal Medicine</italic>
</source>
,
<publisher-loc>China</publisher-loc>
:
<publisher-name>People Public Health Press</publisher-name>
.</mixed-citation>
</ref>
<ref id="B110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice.</article-title>
<source>
<italic>Biomed. rep.</italic>
</source>
<volume>5</volume>
<fpage>715</fpage>
<lpage>722</lpage>
.
<pub-id pub-id-type="doi">10.3892/br.2016.797</pub-id>
<pub-id pub-id-type="pmid">28101344</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>Artesunate attenuates airway resistance in vivo and relaxes airway smooth muscle cells in vitro via bitter taste receptor-dependent calcium signalling.</article-title>
<source>Exp. Physiol.</source>
<volume>104</volume>
<fpage>231</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="pmid">30379382</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>S. V.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Rozengurt</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat.</article-title>
<source>
<italic>Physiol. Genomics</italic>
</source>
<volume>22</volume>
<fpage>139</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="doi">10.1152/physiolgenomics.00030.2005</pub-id>
<pub-id pub-id-type="pmid">15886333</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
</person-group>
(
<year>2017</year>
).
<article-title>The cellular mechanism of bitter taste receptor mediated relaxation of rat aorta.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>31</volume>
:
<issue>672.5</issue>
.</mixed-citation>
</ref>
<ref id="B114">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fernandes</surname>
<given-names>V. S. L.</given-names>
</name>
</person-group>
(
<year>2018</year>
).
<article-title>The novel mechanism of bitter taste receptors attenuating rat ventricular contractility.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>32</volume>
<fpage>839.10</fpage>
<lpage>839.10</lpage>
.</mixed-citation>
</ref>
<ref id="B115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>E. S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>Y. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Association between polymorphisms in bitter taste receptor genes and clinical features in korean asthmatics.</article-title>
<source>
<italic>Respiration</italic>
</source>
<volume>91</volume>
<fpage>141</fpage>
<lpage>150</lpage>
.
<pub-id pub-id-type="doi">10.1159/000443796</pub-id>
<pub-id pub-id-type="pmid">26812163</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H. H.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>Y. S.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W. Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Selaginella uncinata flavonoids ameliorated ovalbumin-induced airway inflammation in a rat model of asthma.</article-title>
<source>
<italic>J. Ethnopharmacol.</italic>
</source>
<volume>195</volume>
<fpage>71</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jep.2016.11.049</pub-id>
<pub-id pub-id-type="pmid">27916586</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhai</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Nyirimigabo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2016</year>
).
<article-title>Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms.</article-title>
<source>
<italic>Oncotarget</italic>
</source>
<volume>7</volume>
<fpage>21156</fpage>
<lpage>21167</lpage>
.
<pub-id pub-id-type="pmid">27056888</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C.-H.</given-names>
</name>
<name>
<surname>Lifshitz</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Uy</surname>
<given-names>K. F.</given-names>
</name>
<name>
<surname>Ikebe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fogarty</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>ZhuGe</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>The cellular and molecular basis of bitter tastant-induced bronchodilation.</article-title>
<source>
<italic>PLoS Biol.</italic>
</source>
<volume>11</volume>
:
<issue>e1001501</issue>
<pub-id pub-id-type="doi">10.1371/journal.pbio.1001501</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lifshitz</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Fogarty</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>ZhuGe</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Activation of BK channels may not be required for bitter tastant-induced bronchodilation.</article-title>
<source>
<italic>Nat. Med.</italic>
</source>
<volume>18</volume>
<fpage>648</fpage>
<lpage>650</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm.2733</pub-id>
<pub-id pub-id-type="pmid">22561814</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>de Graaf</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Structure of the full-length glucagon class B G-protein-coupled receptor.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>546</volume>
<fpage>259</fpage>
<lpage>264</lpage>
.
<pub-id pub-id-type="pmid">28514451</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Traditional Chinese bitter flavor theory: is there any relation with taste type II receptors?</article-title>
<source>
<italic>Er. J. Integr. Med.</italic>
</source>
<volume>8</volume>
<fpage>980</fpage>
<lpage>990</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.eujim.2016.04.011</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Delpapa</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bellve</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Condon</surname>
<given-names>J. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2017</year>
).
<article-title>Bitter taste receptors as targets for tocolytics in preterm labor therapy.</article-title>
<source>
<italic>FASEB J.</italic>
</source>
<volume>31</volume>
<fpage>4037</fpage>
<lpage>4052</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.201601323rr</pub-id>
<pub-id pub-id-type="pmid">28559440</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2018</year>
).
<article-title>E-bitter: bitterant prediction by the consensus voting from the machine-learning methods.</article-title>
<source>
<italic>Front. Chem.</italic>
</source>
<volume>6</volume>
:
<issue>82</issue>
<pub-id pub-id-type="doi">10.3389/fchem.2018.00082</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000578 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000578 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6647893
   |texte=   Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31379593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021