Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolism of pancreatic cancer: paving the way to better anticancer strategies

Identifieur interne : 000248 ( Pmc/Corpus ); précédent : 000247; suivant : 000249

Metabolism of pancreatic cancer: paving the way to better anticancer strategies

Auteurs : Cheng Qin ; Gang Yang ; Jinshou Yang ; Bo Ren ; Huanyu Wang ; Guangyu Chen ; Fangyu Zhao ; Lei You ; Weibin Wang ; Yupei Zhao

Source :

RBID : PMC:7053123

Abstract

Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.


Url:
DOI: 10.1186/s12943-020-01169-7
PubMed: 32122374
PubMed Central: 7053123

Links to Exploration step

PMC:7053123

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolism of pancreatic cancer: paving the way to better anticancer strategies</title>
<author>
<name sortKey="Qin, Cheng" sort="Qin, Cheng" uniqKey="Qin C" first="Cheng" last="Qin">Cheng Qin</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Gang" sort="Yang, Gang" uniqKey="Yang G" first="Gang" last="Yang">Gang Yang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jinshou" sort="Yang, Jinshou" uniqKey="Yang J" first="Jinshou" last="Yang">Jinshou Yang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ren, Bo" sort="Ren, Bo" uniqKey="Ren B" first="Bo" last="Ren">Bo Ren</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Huanyu" sort="Wang, Huanyu" uniqKey="Wang H" first="Huanyu" last="Wang">Huanyu Wang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Guangyu" sort="Chen, Guangyu" uniqKey="Chen G" first="Guangyu" last="Chen">Guangyu Chen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Fangyu" sort="Zhao, Fangyu" uniqKey="Zhao F" first="Fangyu" last="Zhao">Fangyu Zhao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="You, Lei" sort="You, Lei" uniqKey="You L" first="Lei" last="You">Lei You</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weibin" sort="Wang, Weibin" uniqKey="Wang W" first="Weibin" last="Wang">Weibin Wang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Yupei" sort="Zhao, Yupei" uniqKey="Zhao Y" first="Yupei" last="Zhao">Yupei Zhao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32122374</idno>
<idno type="pmc">7053123</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053123</idno>
<idno type="RBID">PMC:7053123</idno>
<idno type="doi">10.1186/s12943-020-01169-7</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Metabolism of pancreatic cancer: paving the way to better anticancer strategies</title>
<author>
<name sortKey="Qin, Cheng" sort="Qin, Cheng" uniqKey="Qin C" first="Cheng" last="Qin">Cheng Qin</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Gang" sort="Yang, Gang" uniqKey="Yang G" first="Gang" last="Yang">Gang Yang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jinshou" sort="Yang, Jinshou" uniqKey="Yang J" first="Jinshou" last="Yang">Jinshou Yang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ren, Bo" sort="Ren, Bo" uniqKey="Ren B" first="Bo" last="Ren">Bo Ren</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Huanyu" sort="Wang, Huanyu" uniqKey="Wang H" first="Huanyu" last="Wang">Huanyu Wang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Guangyu" sort="Chen, Guangyu" uniqKey="Chen G" first="Guangyu" last="Chen">Guangyu Chen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Fangyu" sort="Zhao, Fangyu" uniqKey="Zhao F" first="Fangyu" last="Zhao">Fangyu Zhao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="You, Lei" sort="You, Lei" uniqKey="You L" first="Lei" last="You">Lei You</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weibin" sort="Wang, Weibin" uniqKey="Wang W" first="Weibin" last="Wang">Weibin Wang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Yupei" sort="Zhao, Yupei" uniqKey="Zhao Y" first="Yupei" last="Zhao">Yupei Zhao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular Cancer</title>
<idno type="eISSN">1476-4598</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, Rl" uniqKey="Siegel R">RL Siegel</name>
</author>
<author>
<name sortKey="Miller, Kd" uniqKey="Miller K">KD Miller</name>
</author>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Zheng, R" uniqKey="Zheng R">R Zheng</name>
</author>
<author>
<name sortKey="Baade, Pd" uniqKey="Baade P">PD Baade</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
<author>
<name sortKey="Bray, F" uniqKey="Bray F">F Bray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahib, L" uniqKey="Rahib L">L Rahib</name>
</author>
<author>
<name sortKey="Smith, Bd" uniqKey="Smith B">BD Smith</name>
</author>
<author>
<name sortKey="Aizenberg, R" uniqKey="Aizenberg R">R Aizenberg</name>
</author>
<author>
<name sortKey="Rosenzweig, Ab" uniqKey="Rosenzweig A">AB Rosenzweig</name>
</author>
<author>
<name sortKey="Fleshman, Jm" uniqKey="Fleshman J">JM Fleshman</name>
</author>
<author>
<name sortKey="Matrisian, Lm" uniqKey="Matrisian L">LM Matrisian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L Huang</name>
</author>
<author>
<name sortKey="Jansen, L" uniqKey="Jansen L">L Jansen</name>
</author>
<author>
<name sortKey="Balavarca, Y" uniqKey="Balavarca Y">Y Balavarca</name>
</author>
<author>
<name sortKey="Molina Montes, E" uniqKey="Molina Montes E">E Molina-Montes</name>
</author>
<author>
<name sortKey="Babaei, M" uniqKey="Babaei M">M Babaei</name>
</author>
<author>
<name sortKey="Van Der Geest, L" uniqKey="Van Der Geest L">L van der Geest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleeff, J" uniqKey="Kleeff J">J Kleeff</name>
</author>
<author>
<name sortKey="Reiser, C" uniqKey="Reiser C">C Reiser</name>
</author>
<author>
<name sortKey="Hinz, U" uniqKey="Hinz U">U Hinz</name>
</author>
<author>
<name sortKey="Bachmann, J" uniqKey="Bachmann J">J Bachmann</name>
</author>
<author>
<name sortKey="Debus, J" uniqKey="Debus J">J Debus</name>
</author>
<author>
<name sortKey="Jaeger, D" uniqKey="Jaeger D">D Jaeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Mp" uniqKey="Kim M">MP Kim</name>
</author>
<author>
<name sortKey="Gallick, Ge" uniqKey="Gallick G">GE Gallick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buwenge, M" uniqKey="Buwenge M">M Buwenge</name>
</author>
<author>
<name sortKey="Macchia, G" uniqKey="Macchia G">G Macchia</name>
</author>
<author>
<name sortKey="Arcelli, A" uniqKey="Arcelli A">A Arcelli</name>
</author>
<author>
<name sortKey="Frakulli, R" uniqKey="Frakulli R">R Frakulli</name>
</author>
<author>
<name sortKey="Fuccio, L" uniqKey="Fuccio L">L Fuccio</name>
</author>
<author>
<name sortKey="Guerri, S" uniqKey="Guerri S">S Guerri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanmamed, Mf" uniqKey="Sanmamed M">MF Sanmamed</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Yt" uniqKey="Lee Y">YT Lee</name>
</author>
<author>
<name sortKey="Tan, Yj" uniqKey="Tan Y">YJ Tan</name>
</author>
<author>
<name sortKey="Oon, Ce" uniqKey="Oon C">CE Oon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colli, Lm" uniqKey="Colli L">LM Colli</name>
</author>
<author>
<name sortKey="Machiela, Mj" uniqKey="Machiela M">MJ Machiela</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Myers, Ta" uniqKey="Myers T">TA Myers</name>
</author>
<author>
<name sortKey="Jessop, L" uniqKey="Jessop L">L Jessop</name>
</author>
<author>
<name sortKey="Delattre, O" uniqKey="Delattre O">O Delattre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, M" uniqKey="Feng M">M Feng</name>
</author>
<author>
<name sortKey="Xiong, G" uniqKey="Xiong G">G Xiong</name>
</author>
<author>
<name sortKey="Cao, Z" uniqKey="Cao Z">Z Cao</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S Zheng</name>
</author>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akce, M" uniqKey="Akce M">M Akce</name>
</author>
<author>
<name sortKey="Zaidi, My" uniqKey="Zaidi M">MY Zaidi</name>
</author>
<author>
<name sortKey="Waller, Ek" uniqKey="Waller E">EK Waller</name>
</author>
<author>
<name sortKey="El Rayes, Bf" uniqKey="El Rayes B">BF El-Rayes</name>
</author>
<author>
<name sortKey="Lesinski, Gb" uniqKey="Lesinski G">GB Lesinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mosquera, C" uniqKey="Mosquera C">C Mosquera</name>
</author>
<author>
<name sortKey="Maglic, D" uniqKey="Maglic D">D Maglic</name>
</author>
<author>
<name sortKey="Zervos, Ee" uniqKey="Zervos E">EE Zervos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, S" uniqKey="Jones S">S Jones</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Parsons, Dw" uniqKey="Parsons D">DW Parsons</name>
</author>
<author>
<name sortKey="Lin, Jc" uniqKey="Lin J">JC Lin</name>
</author>
<author>
<name sortKey="Leary, Rj" uniqKey="Leary R">RJ Leary</name>
</author>
<author>
<name sortKey="Angenendt, P" uniqKey="Angenendt P">P Angenendt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neesse, A" uniqKey="Neesse A">A Neesse</name>
</author>
<author>
<name sortKey="Algul, H" uniqKey="Algul H">H Algul</name>
</author>
<author>
<name sortKey="Tuveson, Da" uniqKey="Tuveson D">DA Tuveson</name>
</author>
<author>
<name sortKey="Gress, Tm" uniqKey="Gress T">TM Gress</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanahan, D" uniqKey="Hanahan D">D Hanahan</name>
</author>
<author>
<name sortKey="Weinberg, Ra" uniqKey="Weinberg R">RA Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cairns, Ra" uniqKey="Cairns R">RA Cairns</name>
</author>
<author>
<name sortKey="Harris, Is" uniqKey="Harris I">IS Harris</name>
</author>
<author>
<name sortKey="Mak, Tw" uniqKey="Mak T">TW Mak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lyssiotis, Ca" uniqKey="Lyssiotis C">CA Lyssiotis</name>
</author>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olivares, O" uniqKey="Olivares O">O Olivares</name>
</author>
<author>
<name sortKey="Mayers, Jr" uniqKey="Mayers J">JR Mayers</name>
</author>
<author>
<name sortKey="Gouirand, V" uniqKey="Gouirand V">V Gouirand</name>
</author>
<author>
<name sortKey="Torrence, Me" uniqKey="Torrence M">ME Torrence</name>
</author>
<author>
<name sortKey="Gicquel, T" uniqKey="Gicquel T">T Gicquel</name>
</author>
<author>
<name sortKey="Borge, L" uniqKey="Borge L">L Borge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flint, Tr" uniqKey="Flint T">TR Flint</name>
</author>
<author>
<name sortKey="Janowitz, T" uniqKey="Janowitz T">T Janowitz</name>
</author>
<author>
<name sortKey="Connell, Cm" uniqKey="Connell C">CM Connell</name>
</author>
<author>
<name sortKey="Roberts, Ew" uniqKey="Roberts E">EW Roberts</name>
</author>
<author>
<name sortKey="Denton, Ae" uniqKey="Denton A">AE Denton</name>
</author>
<author>
<name sortKey="Coll, Ap" uniqKey="Coll A">AP Coll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdonald, Og" uniqKey="Mcdonald O">OG McDonald</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Saunders, T" uniqKey="Saunders T">T Saunders</name>
</author>
<author>
<name sortKey="Tryggvadottir, R" uniqKey="Tryggvadottir R">R Tryggvadottir</name>
</author>
<author>
<name sortKey="Mentch, Sj" uniqKey="Mentch S">SJ Mentch</name>
</author>
<author>
<name sortKey="Warmoes, Mo" uniqKey="Warmoes M">MO Warmoes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carrer, A" uniqKey="Carrer A">A Carrer</name>
</author>
<author>
<name sortKey="Trefely, S" uniqKey="Trefely S">S Trefely</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S Zhao</name>
</author>
<author>
<name sortKey="Campbell, Sl" uniqKey="Campbell S">SL Campbell</name>
</author>
<author>
<name sortKey="Norgard, Rj" uniqKey="Norgard R">RJ Norgard</name>
</author>
<author>
<name sortKey="Schultz, Kc" uniqKey="Schultz K">KC Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grasso, C" uniqKey="Grasso C">C Grasso</name>
</author>
<author>
<name sortKey="Jansen, G" uniqKey="Jansen G">G Jansen</name>
</author>
<author>
<name sortKey="Giovannetti, E" uniqKey="Giovannetti E">E Giovannetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gunda, V" uniqKey="Gunda V">V Gunda</name>
</author>
<author>
<name sortKey="Souchek, J" uniqKey="Souchek J">J Souchek</name>
</author>
<author>
<name sortKey="Abrego, J" uniqKey="Abrego J">J Abrego</name>
</author>
<author>
<name sortKey="Shukla, Sk" uniqKey="Shukla S">SK Shukla</name>
</author>
<author>
<name sortKey="Goode, Gd" uniqKey="Goode G">GD Goode</name>
</author>
<author>
<name sortKey="Vernucci, E" uniqKey="Vernucci E">E Vernucci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Ch" uniqKey="Chang C">CH Chang</name>
</author>
<author>
<name sortKey="Qiu, J" uniqKey="Qiu J">J Qiu</name>
</author>
<author>
<name sortKey="O Sullivan, D" uniqKey="O Sullivan D">D O'Sullivan</name>
</author>
<author>
<name sortKey="Buck, Md" uniqKey="Buck M">MD Buck</name>
</author>
<author>
<name sortKey="Noguchi, T" uniqKey="Noguchi T">T Noguchi</name>
</author>
<author>
<name sortKey="Curtis, Jd" uniqKey="Curtis J">JD Curtis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karasinska, Jm" uniqKey="Karasinska J">JM Karasinska</name>
</author>
<author>
<name sortKey="Topham, Jt" uniqKey="Topham J">JT Topham</name>
</author>
<author>
<name sortKey="Kalloger, Se" uniqKey="Kalloger S">SE Kalloger</name>
</author>
<author>
<name sortKey="Jang, Gh" uniqKey="Jang G">GH Jang</name>
</author>
<author>
<name sortKey="Denroche, Re" uniqKey="Denroche R">RE Denroche</name>
</author>
<author>
<name sortKey="Culibrk, L" uniqKey="Culibrk L">L Culibrk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehla, K" uniqKey="Mehla K">K Mehla</name>
</author>
<author>
<name sortKey="Singh, Pk" uniqKey="Singh P">PK Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Outschoorn, Ue" uniqKey="Martinez Outschoorn U">UE Martinez-Outschoorn</name>
</author>
<author>
<name sortKey="Peiris Pages, M" uniqKey="Peiris Pages M">M Peiris-Pages</name>
</author>
<author>
<name sortKey="Pestell, Rg" uniqKey="Pestell R">RG Pestell</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuneva, Mo" uniqKey="Yuneva M">MO Yuneva</name>
</author>
<author>
<name sortKey="Fan, Tw" uniqKey="Fan T">TW Fan</name>
</author>
<author>
<name sortKey="Allen, Td" uniqKey="Allen T">TD Allen</name>
</author>
<author>
<name sortKey="Higashi, Rm" uniqKey="Higashi R">RM Higashi</name>
</author>
<author>
<name sortKey="Ferraris, Dv" uniqKey="Ferraris D">DV Ferraris</name>
</author>
<author>
<name sortKey="Tsukamoto, T" uniqKey="Tsukamoto T">T Tsukamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayers, Jr" uniqKey="Mayers J">JR Mayers</name>
</author>
<author>
<name sortKey="Vander Heiden, Mg" uniqKey="Vander Heiden M">MG Vander Heiden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaika, Nv" uniqKey="Chaika N">NV Chaika</name>
</author>
<author>
<name sortKey="Yu, F" uniqKey="Yu F">F Yu</name>
</author>
<author>
<name sortKey="Purohit, V" uniqKey="Purohit V">V Purohit</name>
</author>
<author>
<name sortKey="Mehla, K" uniqKey="Mehla K">K Mehla</name>
</author>
<author>
<name sortKey="Lazenby, Aj" uniqKey="Lazenby A">AJ Lazenby</name>
</author>
<author>
<name sortKey="Dimaio, D" uniqKey="Dimaio D">D DiMaio</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stylianopoulos, T" uniqKey="Stylianopoulos T">T Stylianopoulos</name>
</author>
<author>
<name sortKey="Martin, Jd" uniqKey="Martin J">JD Martin</name>
</author>
<author>
<name sortKey="Chauhan, Vp" uniqKey="Chauhan V">VP Chauhan</name>
</author>
<author>
<name sortKey="Jain, Sr" uniqKey="Jain S">SR Jain</name>
</author>
<author>
<name sortKey="Diop Frimpong, B" uniqKey="Diop Frimpong B">B Diop-Frimpong</name>
</author>
<author>
<name sortKey="Bardeesy, N" uniqKey="Bardeesy N">N Bardeesy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halbrook, Cj" uniqKey="Halbrook C">CJ Halbrook</name>
</author>
<author>
<name sortKey="Lyssiotis, Ca" uniqKey="Lyssiotis C">CA Lyssiotis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koppenol, Wh" uniqKey="Koppenol W">WH Koppenol</name>
</author>
<author>
<name sortKey="Bounds, Pl" uniqKey="Bounds P">PL Bounds</name>
</author>
<author>
<name sortKey="Dang, Cv" uniqKey="Dang C">CV Dang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfeiffer, T" uniqKey="Pfeiffer T">T Pfeiffer</name>
</author>
<author>
<name sortKey="Schuster, S" uniqKey="Schuster S">S Schuster</name>
</author>
<author>
<name sortKey="Bonhoeffer, S" uniqKey="Bonhoeffer S">S Bonhoeffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liberti, Mv" uniqKey="Liberti M">MV Liberti</name>
</author>
<author>
<name sortKey="Locasale, Jw" uniqKey="Locasale J">JW Locasale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayers, Jr" uniqKey="Mayers J">JR Mayers</name>
</author>
<author>
<name sortKey="Torrence, Me" uniqKey="Torrence M">ME Torrence</name>
</author>
<author>
<name sortKey="Danai, Lv" uniqKey="Danai L">LV Danai</name>
</author>
<author>
<name sortKey="Papagiannakopoulos, T" uniqKey="Papagiannakopoulos T">T Papagiannakopoulos</name>
</author>
<author>
<name sortKey="Davidson, Sm" uniqKey="Davidson S">SM Davidson</name>
</author>
<author>
<name sortKey="Bauer, Mr" uniqKey="Bauer M">MR Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, H" uniqKey="Ying H">H Ying</name>
</author>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
<author>
<name sortKey="Lyssiotis, Ca" uniqKey="Lyssiotis C">CA Lyssiotis</name>
</author>
<author>
<name sortKey="Hua, S" uniqKey="Hua S">S Hua</name>
</author>
<author>
<name sortKey="Chu, Gc" uniqKey="Chu G">GC Chu</name>
</author>
<author>
<name sortKey="Fletcher Sananikone, E" uniqKey="Fletcher Sananikone E">E Fletcher-Sananikone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagarajan, A" uniqKey="Nagarajan A">A Nagarajan</name>
</author>
<author>
<name sortKey="Dogra, Sk" uniqKey="Dogra S">SK Dogra</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Gandotra, N" uniqKey="Gandotra N">N Gandotra</name>
</author>
<author>
<name sortKey="Ho, T" uniqKey="Ho T">T Ho</name>
</author>
<author>
<name sortKey="Cai, G" uniqKey="Cai G">G Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherman, Mh" uniqKey="Sherman M">MH Sherman</name>
</author>
<author>
<name sortKey="Yu, Rt" uniqKey="Yu R">RT Yu</name>
</author>
<author>
<name sortKey="Tseng, Tw" uniqKey="Tseng T">TW Tseng</name>
</author>
<author>
<name sortKey="Sousa, Cm" uniqKey="Sousa C">CM Sousa</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Truitt, Ml" uniqKey="Truitt M">ML Truitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sancho, P" uniqKey="Sancho P">P Sancho</name>
</author>
<author>
<name sortKey="Burgos Ramos, E" uniqKey="Burgos Ramos E">E Burgos-Ramos</name>
</author>
<author>
<name sortKey="Tavera, A" uniqKey="Tavera A">A Tavera</name>
</author>
<author>
<name sortKey="Bou Kheir, T" uniqKey="Bou Kheir T">T Bou Kheir</name>
</author>
<author>
<name sortKey="Jagust, P" uniqKey="Jagust P">P Jagust</name>
</author>
<author>
<name sortKey="Schoenhals, M" uniqKey="Schoenhals M">M Schoenhals</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daemen, A" uniqKey="Daemen A">A Daemen</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D Peterson</name>
</author>
<author>
<name sortKey="Sahu, N" uniqKey="Sahu N">N Sahu</name>
</author>
<author>
<name sortKey="Mccord, R" uniqKey="Mccord R">R McCord</name>
</author>
<author>
<name sortKey="Du, X" uniqKey="Du X">X Du</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, C" uniqKey="Liang C">C Liang</name>
</author>
<author>
<name sortKey="Qin, Y" uniqKey="Qin Y">Y Qin</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
<author>
<name sortKey="Ji, S" uniqKey="Ji S">S Ji</name>
</author>
<author>
<name sortKey="Shi, S" uniqKey="Shi S">S Shi</name>
</author>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y Liang</name>
</author>
<author>
<name sortKey="Wu, R" uniqKey="Wu R">R Wu</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Hong, X" uniqKey="Hong X">X Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Meisenhelder, J" uniqKey="Meisenhelder J">J Meisenhelder</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W Yang</name>
</author>
<author>
<name sortKey="Hawke, Dh" uniqKey="Hawke D">DH Hawke</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Dh" uniqKey="Wu D">DH Wu</name>
</author>
<author>
<name sortKey="Liang, H" uniqKey="Liang H">H Liang</name>
</author>
<author>
<name sortKey="Lu, Sn" uniqKey="Lu S">SN Lu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Su, Zl" uniqKey="Su Z">ZL Su</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, Sc" uniqKey="Kong S">SC Kong</name>
</author>
<author>
<name sortKey="Nohr Nielsen, A" uniqKey="Nohr Nielsen A">A Nohr-Nielsen</name>
</author>
<author>
<name sortKey="Zeeberg, K" uniqKey="Zeeberg K">K Zeeberg</name>
</author>
<author>
<name sortKey="Reshkin, Sj" uniqKey="Reshkin S">SJ Reshkin</name>
</author>
<author>
<name sortKey="Hoffmann, Ek" uniqKey="Hoffmann E">EK Hoffmann</name>
</author>
<author>
<name sortKey="Novak, I" uniqKey="Novak I">I Novak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneiderhan, W" uniqKey="Schneiderhan W">W Schneiderhan</name>
</author>
<author>
<name sortKey="Scheler, M" uniqKey="Scheler M">M Scheler</name>
</author>
<author>
<name sortKey="Holzmann, Kh" uniqKey="Holzmann K">KH Holzmann</name>
</author>
<author>
<name sortKey="Marx, M" uniqKey="Marx M">M Marx</name>
</author>
<author>
<name sortKey="Gschwend, Je" uniqKey="Gschwend J">JE Gschwend</name>
</author>
<author>
<name sortKey="Bucholz, M" uniqKey="Bucholz M">M Bucholz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santana Codina, N" uniqKey="Santana Codina N">N Santana-Codina</name>
</author>
<author>
<name sortKey="Roeth, Aa" uniqKey="Roeth A">AA Roeth</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Yang, A" uniqKey="Yang A">A Yang</name>
</author>
<author>
<name sortKey="Mashadova, O" uniqKey="Mashadova O">O Mashadova</name>
</author>
<author>
<name sortKey="Asara, Jm" uniqKey="Asara J">JM Asara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawada, K" uniqKey="Kawada K">K Kawada</name>
</author>
<author>
<name sortKey="Toda, K" uniqKey="Toda K">K Toda</name>
</author>
<author>
<name sortKey="Sakai, Y" uniqKey="Sakai Y">Y Sakai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slawson, C" uniqKey="Slawson C">C Slawson</name>
</author>
<author>
<name sortKey="Hart, Gw" uniqKey="Hart G">GW Hart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ju, Hq" uniqKey="Ju H">HQ Ju</name>
</author>
<author>
<name sortKey="Zhuang, Zn" uniqKey="Zhuang Z">ZN Zhuang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Tian, T" uniqKey="Tian T">T Tian</name>
</author>
<author>
<name sortKey="Lu, Yx" uniqKey="Lu Y">YX Lu</name>
</author>
<author>
<name sortKey="Fan, Xq" uniqKey="Fan X">XQ Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bryant, Kl" uniqKey="Bryant K">KL Bryant</name>
</author>
<author>
<name sortKey="Mancias, Jd" uniqKey="Mancias J">JD Mancias</name>
</author>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
<author>
<name sortKey="Der, Cj" uniqKey="Der C">CJ Der</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, J" uniqKey="Yun J">J Yun</name>
</author>
<author>
<name sortKey="Rago, C" uniqKey="Rago C">C Rago</name>
</author>
<author>
<name sortKey="Cheong, I" uniqKey="Cheong I">I Cheong</name>
</author>
<author>
<name sortKey="Pagliarini, R" uniqKey="Pagliarini R">R Pagliarini</name>
</author>
<author>
<name sortKey="Angenendt, P" uniqKey="Angenendt P">P Angenendt</name>
</author>
<author>
<name sortKey="Rajagopalan, H" uniqKey="Rajagopalan H">H Rajagopalan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schofield, Hk" uniqKey="Schofield H">HK Schofield</name>
</author>
<author>
<name sortKey="Zeller, J" uniqKey="Zeller J">J Zeller</name>
</author>
<author>
<name sortKey="Espinoza, C" uniqKey="Espinoza C">C Espinoza</name>
</author>
<author>
<name sortKey="Halbrook, Cj" uniqKey="Halbrook C">CJ Halbrook</name>
</author>
<author>
<name sortKey="Del Vecchio, A" uniqKey="Del Vecchio A">A Del Vecchio</name>
</author>
<author>
<name sortKey="Magnuson, B" uniqKey="Magnuson B">B Magnuson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajeshkumar, Nv" uniqKey="Rajeshkumar N">NV Rajeshkumar</name>
</author>
<author>
<name sortKey="Dutta, P" uniqKey="Dutta P">P Dutta</name>
</author>
<author>
<name sortKey="Yabuuchi, S" uniqKey="Yabuuchi S">S Yabuuchi</name>
</author>
<author>
<name sortKey="De Wilde, Rf" uniqKey="De Wilde R">RF de Wilde</name>
</author>
<author>
<name sortKey="Martinez, Gv" uniqKey="Martinez G">GV Martinez</name>
</author>
<author>
<name sortKey="Le, A" uniqKey="Le A">A Le</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bensaad, K" uniqKey="Bensaad K">K Bensaad</name>
</author>
<author>
<name sortKey="Tsuruta, A" uniqKey="Tsuruta A">A Tsuruta</name>
</author>
<author>
<name sortKey="Selak, Ma" uniqKey="Selak M">MA Selak</name>
</author>
<author>
<name sortKey="Vidal, Mn" uniqKey="Vidal M">MN Vidal</name>
</author>
<author>
<name sortKey="Nakano, K" uniqKey="Nakano K">K Nakano</name>
</author>
<author>
<name sortKey="Bartrons, R" uniqKey="Bartrons R">R Bartrons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butera, G" uniqKey="Butera G">G Butera</name>
</author>
<author>
<name sortKey="Pacchiana, R" uniqKey="Pacchiana R">R Pacchiana</name>
</author>
<author>
<name sortKey="Mullappilly, N" uniqKey="Mullappilly N">N Mullappilly</name>
</author>
<author>
<name sortKey="Margiotta, M" uniqKey="Margiotta M">M Margiotta</name>
</author>
<author>
<name sortKey="Bruno, S" uniqKey="Bruno S">S Bruno</name>
</author>
<author>
<name sortKey="Conti, P" uniqKey="Conti P">P Conti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, J" uniqKey="Cui J">J Cui</name>
</author>
<author>
<name sortKey="Shi, M" uniqKey="Shi M">M Shi</name>
</author>
<author>
<name sortKey="Xie, D" uniqKey="Xie D">D Xie</name>
</author>
<author>
<name sortKey="Wei, D" uniqKey="Wei D">D Wei</name>
</author>
<author>
<name sortKey="Jia, Z" uniqKey="Jia Z">Z Jia</name>
</author>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, D" uniqKey="Zhao D">D Zhao</name>
</author>
<author>
<name sortKey="Zou, Sw" uniqKey="Zou S">SW Zou</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Mo, Y" uniqKey="Mo Y">Y Mo</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guillaumond, F" uniqKey="Guillaumond F">F Guillaumond</name>
</author>
<author>
<name sortKey="Leca, J" uniqKey="Leca J">J Leca</name>
</author>
<author>
<name sortKey="Olivares, O" uniqKey="Olivares O">O Olivares</name>
</author>
<author>
<name sortKey="Lavaut, Mn" uniqKey="Lavaut M">MN Lavaut</name>
</author>
<author>
<name sortKey="Vidal, N" uniqKey="Vidal N">N Vidal</name>
</author>
<author>
<name sortKey="Berthezene, P" uniqKey="Berthezene P">P Berthezene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Golias, T" uniqKey="Golias T">T Golias</name>
</author>
<author>
<name sortKey="Papandreou, I" uniqKey="Papandreou I">I Papandreou</name>
</author>
<author>
<name sortKey="Sun, R" uniqKey="Sun R">R Sun</name>
</author>
<author>
<name sortKey="Kumar, B" uniqKey="Kumar B">B Kumar</name>
</author>
<author>
<name sortKey="Brown, Nv" uniqKey="Brown N">NV Brown</name>
</author>
<author>
<name sortKey="Swanson, Bj" uniqKey="Swanson B">BJ Swanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Deng, S" uniqKey="Deng S">S Deng</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
<author>
<name sortKey="Jin, Y" uniqKey="Jin Y">Y Jin</name>
</author>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S Zhu</name>
</author>
<author>
<name sortKey="Deng, S" uniqKey="Deng S">S Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaira, K" uniqKey="Kaira K">K Kaira</name>
</author>
<author>
<name sortKey="Sunose, Y" uniqKey="Sunose Y">Y Sunose</name>
</author>
<author>
<name sortKey="Arakawa, K" uniqKey="Arakawa K">K Arakawa</name>
</author>
<author>
<name sortKey="Ogawa, T" uniqKey="Ogawa T">T Ogawa</name>
</author>
<author>
<name sortKey="Sunaga, N" uniqKey="Sunaga N">N Sunaga</name>
</author>
<author>
<name sortKey="Shimizu, K" uniqKey="Shimizu K">K Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coothankandaswamy, V" uniqKey="Coothankandaswamy V">V Coothankandaswamy</name>
</author>
<author>
<name sortKey="Cao, S" uniqKey="Cao S">S Cao</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
<author>
<name sortKey="Prasad, Pd" uniqKey="Prasad P">PD Prasad</name>
</author>
<author>
<name sortKey="Singh, Pk" uniqKey="Singh P">PK Singh</name>
</author>
<author>
<name sortKey="Reynolds, Cp" uniqKey="Reynolds C">CP Reynolds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shanware, Np" uniqKey="Shanware N">NP Shanware</name>
</author>
<author>
<name sortKey="Mullen, Ar" uniqKey="Mullen A">AR Mullen</name>
</author>
<author>
<name sortKey="Deberardinis, Rj" uniqKey="Deberardinis R">RJ DeBerardinis</name>
</author>
<author>
<name sortKey="Abraham, Rt" uniqKey="Abraham R">RT Abraham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wise, Dr" uniqKey="Wise D">DR Wise</name>
</author>
<author>
<name sortKey="Thompson, Cb" uniqKey="Thompson C">CB Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Son, J" uniqKey="Son J">J Son</name>
</author>
<author>
<name sortKey="Lyssiotis, Ca" uniqKey="Lyssiotis C">CA Lyssiotis</name>
</author>
<author>
<name sortKey="Ying, H" uniqKey="Ying H">H Ying</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Hua, S" uniqKey="Hua S">S Hua</name>
</author>
<author>
<name sortKey="Ligorio, M" uniqKey="Ligorio M">M Ligorio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abrego, J" uniqKey="Abrego J">J Abrego</name>
</author>
<author>
<name sortKey="Gunda, V" uniqKey="Gunda V">V Gunda</name>
</author>
<author>
<name sortKey="Vernucci, E" uniqKey="Vernucci E">E Vernucci</name>
</author>
<author>
<name sortKey="Shukla, Sk" uniqKey="Shukla S">SK Shukla</name>
</author>
<author>
<name sortKey="King, Rj" uniqKey="King R">RJ King</name>
</author>
<author>
<name sortKey="Dasgupta, A" uniqKey="Dasgupta A">A Dasgupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Yp" uniqKey="Wang Y">YP Wang</name>
</author>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Zuo, Y" uniqKey="Zuo Y">Y Zuo</name>
</author>
<author>
<name sortKey="Wang, Ts" uniqKey="Wang T">TS Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biancur, De" uniqKey="Biancur D">DE Biancur</name>
</author>
<author>
<name sortKey="Paulo, Ja" uniqKey="Paulo J">JA Paulo</name>
</author>
<author>
<name sortKey="Malachowska, B" uniqKey="Malachowska B">B Malachowska</name>
</author>
<author>
<name sortKey="Quiles Del Rey, M" uniqKey="Quiles Del Rey M">M Quiles Del Rey</name>
</author>
<author>
<name sortKey="Sousa, Cm" uniqKey="Sousa C">CM Sousa</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dufour, E" uniqKey="Dufour E">E Dufour</name>
</author>
<author>
<name sortKey="Gay, F" uniqKey="Gay F">F Gay</name>
</author>
<author>
<name sortKey="Aguera, K" uniqKey="Aguera K">K Aguera</name>
</author>
<author>
<name sortKey="Scoazec, Jy" uniqKey="Scoazec J">JY Scoazec</name>
</author>
<author>
<name sortKey="Horand, F" uniqKey="Horand F">F Horand</name>
</author>
<author>
<name sortKey="Lorenzi, Pl" uniqKey="Lorenzi P">PL Lorenzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayers, Jr" uniqKey="Mayers J">JR Mayers</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C Wu</name>
</author>
<author>
<name sortKey="Clish, Cb" uniqKey="Clish C">CB Clish</name>
</author>
<author>
<name sortKey="Kraft, P" uniqKey="Kraft P">P Kraft</name>
</author>
<author>
<name sortKey="Torrence, Me" uniqKey="Torrence M">ME Torrence</name>
</author>
<author>
<name sortKey="Fiske, Bp" uniqKey="Fiske B">BP Fiske</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaytouni, T" uniqKey="Zaytouni T">T Zaytouni</name>
</author>
<author>
<name sortKey="Tsai, Py" uniqKey="Tsai P">PY Tsai</name>
</author>
<author>
<name sortKey="Hitchcock, Ds" uniqKey="Hitchcock D">DS Hitchcock</name>
</author>
<author>
<name sortKey="Dubois, Cd" uniqKey="Dubois C">CD DuBois</name>
</author>
<author>
<name sortKey="Freinkman, E" uniqKey="Freinkman E">E Freinkman</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunami, Y" uniqKey="Sunami Y">Y Sunami</name>
</author>
<author>
<name sortKey="Rebelo, A" uniqKey="Rebelo A">A Rebelo</name>
</author>
<author>
<name sortKey="Kleeff, J" uniqKey="Kleeff J">J Kleeff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menendez, Ja" uniqKey="Menendez J">JA Menendez</name>
</author>
<author>
<name sortKey="Lupu, R" uniqKey="Lupu R">R Lupu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swierczynski, J" uniqKey="Swierczynski J">J Swierczynski</name>
</author>
<author>
<name sortKey="Hebanowska, A" uniqKey="Hebanowska A">A Hebanowska</name>
</author>
<author>
<name sortKey="Sledzinski, T" uniqKey="Sledzinski T">T Sledzinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guillaumond, F" uniqKey="Guillaumond F">F Guillaumond</name>
</author>
<author>
<name sortKey="Bidaut, G" uniqKey="Bidaut G">G Bidaut</name>
</author>
<author>
<name sortKey="Ouaissi, M" uniqKey="Ouaissi M">M Ouaissi</name>
</author>
<author>
<name sortKey="Servais, S" uniqKey="Servais S">S Servais</name>
</author>
<author>
<name sortKey="Gouirand, V" uniqKey="Gouirand V">V Gouirand</name>
</author>
<author>
<name sortKey="Olivares, O" uniqKey="Olivares O">O Olivares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamphorst, Jj" uniqKey="Kamphorst J">JJ Kamphorst</name>
</author>
<author>
<name sortKey="Cross, Jr" uniqKey="Cross J">JR Cross</name>
</author>
<author>
<name sortKey="Fan, J" uniqKey="Fan J">J Fan</name>
</author>
<author>
<name sortKey="De Stanchina, E" uniqKey="De Stanchina E">E de Stanchina</name>
</author>
<author>
<name sortKey="Mathew, R" uniqKey="Mathew R">R Mathew</name>
</author>
<author>
<name sortKey="White, Ep" uniqKey="White E">EP White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, Yt" uniqKey="Chung Y">YT Chung</name>
</author>
<author>
<name sortKey="Matkowskyj, Ka" uniqKey="Matkowskyj K">KA Matkowskyj</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Bai, H" uniqKey="Bai H">H Bai</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Tsao, Ms" uniqKey="Tsao M">MS Tsao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Liao, J" uniqKey="Liao J">J Liao</name>
</author>
<author>
<name sortKey="Yang, Gy" uniqKey="Yang G">GY Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Gu, D" uniqKey="Gu D">D Gu</name>
</author>
<author>
<name sortKey="Lee, Ss" uniqKey="Lee S">SS Lee</name>
</author>
<author>
<name sortKey="Song, B" uniqKey="Song B">B Song</name>
</author>
<author>
<name sortKey="Bandyopadhyay, S" uniqKey="Bandyopadhyay S">S Bandyopadhyay</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, M" uniqKey="Yu M">M Yu</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Duan, Y" uniqKey="Duan Y">Y Duan</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Mullapudi, B" uniqKey="Mullapudi B">B Mullapudi</name>
</author>
<author>
<name sortKey="Torres, C" uniqKey="Torres C">C Torres</name>
</author>
<author>
<name sortKey="Mascarinas, E" uniqKey="Mascarinas E">E Mascarinas</name>
</author>
<author>
<name sortKey="Mancinelli, G" uniqKey="Mancinelli G">G Mancinelli</name>
</author>
<author>
<name sortKey="Diaz, Am" uniqKey="Diaz A">AM Diaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G Zhang</name>
</author>
<author>
<name sortKey="He, P" uniqKey="He P">P He</name>
</author>
<author>
<name sortKey="Tan, H" uniqKey="Tan H">H Tan</name>
</author>
<author>
<name sortKey="Budhu, A" uniqKey="Budhu A">A Budhu</name>
</author>
<author>
<name sortKey="Gaedcke, J" uniqKey="Gaedcke J">J Gaedcke</name>
</author>
<author>
<name sortKey="Ghadimi, Bm" uniqKey="Ghadimi B">BM Ghadimi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Bz" uniqKey="Huang B">BZ Huang</name>
</author>
<author>
<name sortKey="Chang, Ji" uniqKey="Chang J">JI Chang</name>
</author>
<author>
<name sortKey="Li, E" uniqKey="Li E">E Li</name>
</author>
<author>
<name sortKey="Xiang, Ah" uniqKey="Xiang A">AH Xiang</name>
</author>
<author>
<name sortKey="Wu, Bu" uniqKey="Wu B">BU Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, Jy" uniqKey="Hong J">JY Hong</name>
</author>
<author>
<name sortKey="Nam, Em" uniqKey="Nam E">EM Nam</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Park, Jo" uniqKey="Park J">JO Park</name>
</author>
<author>
<name sortKey="Lee, Sc" uniqKey="Lee S">SC Lee</name>
</author>
<author>
<name sortKey="Song, Sy" uniqKey="Song S">SY Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamphorst, Jj" uniqKey="Kamphorst J">JJ Kamphorst</name>
</author>
<author>
<name sortKey="Nofal, M" uniqKey="Nofal M">M Nofal</name>
</author>
<author>
<name sortKey="Commisso, C" uniqKey="Commisso C">C Commisso</name>
</author>
<author>
<name sortKey="Hackett, Sr" uniqKey="Hackett S">SR Hackett</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Grabocka, E" uniqKey="Grabocka E">E Grabocka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, Sm" uniqKey="Davidson S">SM Davidson</name>
</author>
<author>
<name sortKey="Jonas, O" uniqKey="Jonas O">O Jonas</name>
</author>
<author>
<name sortKey="Keibler, Ma" uniqKey="Keibler M">MA Keibler</name>
</author>
<author>
<name sortKey="Hou, Hw" uniqKey="Hou H">HW Hou</name>
</author>
<author>
<name sortKey="Luengo, A" uniqKey="Luengo A">A Luengo</name>
</author>
<author>
<name sortKey="Mayers, Jr" uniqKey="Mayers J">JR Mayers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Commisso, C" uniqKey="Commisso C">C Commisso</name>
</author>
<author>
<name sortKey="Davidson, Sm" uniqKey="Davidson S">SM Davidson</name>
</author>
<author>
<name sortKey="Soydaner Azeloglu, Rg" uniqKey="Soydaner Azeloglu R">RG Soydaner-Azeloglu</name>
</author>
<author>
<name sortKey="Parker, Sj" uniqKey="Parker S">SJ Parker</name>
</author>
<author>
<name sortKey="Kamphorst, Jj" uniqKey="Kamphorst J">JJ Kamphorst</name>
</author>
<author>
<name sortKey="Hackett, S" uniqKey="Hackett S">S Hackett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seguin, L" uniqKey="Seguin L">L Seguin</name>
</author>
<author>
<name sortKey="Camargo, Mf" uniqKey="Camargo M">MF Camargo</name>
</author>
<author>
<name sortKey="Wettersten, Hi" uniqKey="Wettersten H">HI Wettersten</name>
</author>
<author>
<name sortKey="Kato, S" uniqKey="Kato S">S Kato</name>
</author>
<author>
<name sortKey="Desgrosellier, Js" uniqKey="Desgrosellier J">JS Desgrosellier</name>
</author>
<author>
<name sortKey="Von Schalscha, T" uniqKey="Von Schalscha T">T von Schalscha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
<author>
<name sortKey="White, E" uniqKey="White E">E White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S Yang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Contino, G" uniqKey="Contino G">G Contino</name>
</author>
<author>
<name sortKey="Liesa, M" uniqKey="Liesa M">M Liesa</name>
</author>
<author>
<name sortKey="Sahin, E" uniqKey="Sahin E">E Sahin</name>
</author>
<author>
<name sortKey="Ying, H" uniqKey="Ying H">H Ying</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinsey, Cg" uniqKey="Kinsey C">CG Kinsey</name>
</author>
<author>
<name sortKey="Camolotto, Sa" uniqKey="Camolotto S">SA Camolotto</name>
</author>
<author>
<name sortKey="Boespflug, Am" uniqKey="Boespflug A">AM Boespflug</name>
</author>
<author>
<name sortKey="Guillen, Kp" uniqKey="Guillen K">KP Guillen</name>
</author>
<author>
<name sortKey="Foth, M" uniqKey="Foth M">M Foth</name>
</author>
<author>
<name sortKey="Truong, A" uniqKey="Truong A">A Truong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bryant, Kl" uniqKey="Bryant K">KL Bryant</name>
</author>
<author>
<name sortKey="Stalnecker, Ca" uniqKey="Stalnecker C">CA Stalnecker</name>
</author>
<author>
<name sortKey="Zeitouni, D" uniqKey="Zeitouni D">D Zeitouni</name>
</author>
<author>
<name sortKey="Klomp, Je" uniqKey="Klomp J">JE Klomp</name>
</author>
<author>
<name sortKey="Peng, S" uniqKey="Peng S">S Peng</name>
</author>
<author>
<name sortKey="Tikunov, Ap" uniqKey="Tikunov A">AP Tikunov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenfeldt, Mt" uniqKey="Rosenfeldt M">MT Rosenfeldt</name>
</author>
<author>
<name sortKey="O Prey, J" uniqKey="O Prey J">J O'Prey</name>
</author>
<author>
<name sortKey="Morton, Jp" uniqKey="Morton J">JP Morton</name>
</author>
<author>
<name sortKey="Nixon, C" uniqKey="Nixon C">C Nixon</name>
</author>
<author>
<name sortKey="Mackay, G" uniqKey="Mackay G">G MacKay</name>
</author>
<author>
<name sortKey="Mrowinska, A" uniqKey="Mrowinska A">A Mrowinska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, A" uniqKey="Yang A">A Yang</name>
</author>
<author>
<name sortKey="Rajeshkumar, Nv" uniqKey="Rajeshkumar N">NV Rajeshkumar</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Yabuuchi, S" uniqKey="Yabuuchi S">S Yabuuchi</name>
</author>
<author>
<name sortKey="Alexander, Bm" uniqKey="Alexander B">BM Alexander</name>
</author>
<author>
<name sortKey="Chu, Gc" uniqKey="Chu G">GC Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wyant, Ga" uniqKey="Wyant G">GA Wyant</name>
</author>
<author>
<name sortKey="Abu Remaileh, M" uniqKey="Abu Remaileh M">M Abu-Remaileh</name>
</author>
<author>
<name sortKey="Wolfson, Rl" uniqKey="Wolfson R">RL Wolfson</name>
</author>
<author>
<name sortKey="Chen, Ww" uniqKey="Chen W">WW Chen</name>
</author>
<author>
<name sortKey="Freinkman, E" uniqKey="Freinkman E">E Freinkman</name>
</author>
<author>
<name sortKey="Danai, Lv" uniqKey="Danai L">LV Danai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sengupta, S" uniqKey="Sengupta S">S Sengupta</name>
</author>
<author>
<name sortKey="Peterson, Tr" uniqKey="Peterson T">TR Peterson</name>
</author>
<author>
<name sortKey="Sabatini, Dm" uniqKey="Sabatini D">DM Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, C" uniqKey="He C">C He</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N Mizushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palm, W" uniqKey="Palm W">W Palm</name>
</author>
<author>
<name sortKey="Park, Y" uniqKey="Park Y">Y Park</name>
</author>
<author>
<name sortKey="Wright, K" uniqKey="Wright K">K Wright</name>
</author>
<author>
<name sortKey="Pavlova, Nn" uniqKey="Pavlova N">NN Pavlova</name>
</author>
<author>
<name sortKey="Tuveson, Da" uniqKey="Tuveson D">DA Tuveson</name>
</author>
<author>
<name sortKey="Thompson, Cb" uniqKey="Thompson C">CB Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pylayeva Gupta, Y" uniqKey="Pylayeva Gupta Y">Y Pylayeva-Gupta</name>
</author>
<author>
<name sortKey="Grabocka, E" uniqKey="Grabocka E">E Grabocka</name>
</author>
<author>
<name sortKey="Bar Sagi, D" uniqKey="Bar Sagi D">D Bar-Sagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perera, Rm" uniqKey="Perera R">RM Perera</name>
</author>
<author>
<name sortKey="Stoykova, S" uniqKey="Stoykova S">S Stoykova</name>
</author>
<author>
<name sortKey="Nicolay, Bn" uniqKey="Nicolay B">BN Nicolay</name>
</author>
<author>
<name sortKey="Ross, Kn" uniqKey="Ross K">KN Ross</name>
</author>
<author>
<name sortKey="Fitamant, J" uniqKey="Fitamant J">J Fitamant</name>
</author>
<author>
<name sortKey="Boukhali, M" uniqKey="Boukhali M">M Boukhali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nofal, M" uniqKey="Nofal M">M Nofal</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Han, S" uniqKey="Han S">S Han</name>
</author>
<author>
<name sortKey="Rabinowitz, Jd" uniqKey="Rabinowitz J">JD Rabinowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dougan, Sk" uniqKey="Dougan S">SK Dougan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, B" uniqKey="Ren B">B Ren</name>
</author>
<author>
<name sortKey="Cui, M" uniqKey="Cui M">M Cui</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Feng, M" uniqKey="Feng M">M Feng</name>
</author>
<author>
<name sortKey="You, L" uniqKey="You L">L You</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tung, Jc" uniqKey="Tung J">JC Tung</name>
</author>
<author>
<name sortKey="Barnes, Jm" uniqKey="Barnes J">JM Barnes</name>
</author>
<author>
<name sortKey="Desai, Sr" uniqKey="Desai S">SR Desai</name>
</author>
<author>
<name sortKey="Sistrunk, C" uniqKey="Sistrunk C">C Sistrunk</name>
</author>
<author>
<name sortKey="Conklin, Mw" uniqKey="Conklin M">MW Conklin</name>
</author>
<author>
<name sortKey="Schedin, P" uniqKey="Schedin P">P Schedin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dovmark, Th" uniqKey="Dovmark T">TH Dovmark</name>
</author>
<author>
<name sortKey="Saccomano, M" uniqKey="Saccomano M">M Saccomano</name>
</author>
<author>
<name sortKey="Hulikova, A" uniqKey="Hulikova A">A Hulikova</name>
</author>
<author>
<name sortKey="Alves, F" uniqKey="Alves F">F Alves</name>
</author>
<author>
<name sortKey="Swietach, P" uniqKey="Swietach P">P Swietach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roland, Cl" uniqKey="Roland C">CL Roland</name>
</author>
<author>
<name sortKey="Arumugam, T" uniqKey="Arumugam T">T Arumugam</name>
</author>
<author>
<name sortKey="Deng, D" uniqKey="Deng D">D Deng</name>
</author>
<author>
<name sortKey="Liu, Sh" uniqKey="Liu S">SH Liu</name>
</author>
<author>
<name sortKey="Philip, B" uniqKey="Philip B">B Philip</name>
</author>
<author>
<name sortKey="Gomez, S" uniqKey="Gomez S">S Gomez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hui, S" uniqKey="Hui S">S Hui</name>
</author>
<author>
<name sortKey="Ghergurovich, Jm" uniqKey="Ghergurovich J">JM Ghergurovich</name>
</author>
<author>
<name sortKey="Morscher, Rj" uniqKey="Morscher R">RJ Morscher</name>
</author>
<author>
<name sortKey="Jang, C" uniqKey="Jang C">C Jang</name>
</author>
<author>
<name sortKey="Teng, X" uniqKey="Teng X">X Teng</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="San Millan, I" uniqKey="San Millan I">I San-Millan</name>
</author>
<author>
<name sortKey="Brooks, Ga" uniqKey="Brooks G">GA Brooks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pavlides, S" uniqKey="Pavlides S">S Pavlides</name>
</author>
<author>
<name sortKey="Whitaker Menezes, D" uniqKey="Whitaker Menezes D">D Whitaker-Menezes</name>
</author>
<author>
<name sortKey="Castello Cros, R" uniqKey="Castello Cros R">R Castello-Cros</name>
</author>
<author>
<name sortKey="Flomenberg, N" uniqKey="Flomenberg N">N Flomenberg</name>
</author>
<author>
<name sortKey="Witkiewicz, Ak" uniqKey="Witkiewicz A">AK Witkiewicz</name>
</author>
<author>
<name sortKey="Frank, Pg" uniqKey="Frank P">PG Frank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Shan, T" uniqKey="Shan T">T Shan</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J Ma</name>
</author>
<author>
<name sortKey="Lin, W" uniqKey="Lin W">W Lin</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maertin, S" uniqKey="Maertin S">S Maertin</name>
</author>
<author>
<name sortKey="Elperin, Jm" uniqKey="Elperin J">JM Elperin</name>
</author>
<author>
<name sortKey="Lotshaw, E" uniqKey="Lotshaw E">E Lotshaw</name>
</author>
<author>
<name sortKey="Sendler, M" uniqKey="Sendler M">M Sendler</name>
</author>
<author>
<name sortKey="Speakman, Sd" uniqKey="Speakman S">SD Speakman</name>
</author>
<author>
<name sortKey="Takakura, K" uniqKey="Takakura K">K Takakura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashton, Tm" uniqKey="Ashton T">TM Ashton</name>
</author>
<author>
<name sortKey="Mckenna, Wg" uniqKey="Mckenna W">WG McKenna</name>
</author>
<author>
<name sortKey="Kunz Schughart, La" uniqKey="Kunz Schughart L">LA Kunz-Schughart</name>
</author>
<author>
<name sortKey="Higgins, Gs" uniqKey="Higgins G">GS Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Baddour, J" uniqKey="Baddour J">J Baddour</name>
</author>
<author>
<name sortKey="Achreja, A" uniqKey="Achreja A">A Achreja</name>
</author>
<author>
<name sortKey="Bernard, V" uniqKey="Bernard V">V Bernard</name>
</author>
<author>
<name sortKey="Moss, T" uniqKey="Moss T">T Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sousa, Cm" uniqKey="Sousa C">CM Sousa</name>
</author>
<author>
<name sortKey="Biancur, De" uniqKey="Biancur D">DE Biancur</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Halbrook, Cj" uniqKey="Halbrook C">CJ Halbrook</name>
</author>
<author>
<name sortKey="Sherman, Mh" uniqKey="Sherman M">MH Sherman</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tape, Cj" uniqKey="Tape C">CJ Tape</name>
</author>
<author>
<name sortKey="Ling, S" uniqKey="Ling S">S Ling</name>
</author>
<author>
<name sortKey="Dimitriadi, M" uniqKey="Dimitriadi M">M Dimitriadi</name>
</author>
<author>
<name sortKey="Mcmahon, Km" uniqKey="Mcmahon K">KM McMahon</name>
</author>
<author>
<name sortKey="Worboys, Jd" uniqKey="Worboys J">JD Worboys</name>
</author>
<author>
<name sortKey="Leong, Hs" uniqKey="Leong H">HS Leong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, B" uniqKey="Yan B">B Yan</name>
</author>
<author>
<name sortKey="Jiang, Z" uniqKey="Jiang Z">Z Jiang</name>
</author>
<author>
<name sortKey="Cheng, L" uniqKey="Cheng L">L Cheng</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C Zhou</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masamune, A" uniqKey="Masamune A">A Masamune</name>
</author>
<author>
<name sortKey="Hamada, S" uniqKey="Hamada S">S Hamada</name>
</author>
<author>
<name sortKey="Yoshida, N" uniqKey="Yoshida N">N Yoshida</name>
</author>
<author>
<name sortKey="Nabeshima, T" uniqKey="Nabeshima T">T Nabeshima</name>
</author>
<author>
<name sortKey="Shimosegawa, T" uniqKey="Shimosegawa T">T Shimosegawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ben Harosh, Y" uniqKey="Ben Harosh Y">Y Ben-Harosh</name>
</author>
<author>
<name sortKey="Anosov, M" uniqKey="Anosov M">M Anosov</name>
</author>
<author>
<name sortKey="Salem, H" uniqKey="Salem H">H Salem</name>
</author>
<author>
<name sortKey="Yatchenko, Y" uniqKey="Yatchenko Y">Y Yatchenko</name>
</author>
<author>
<name sortKey="Birk, R" uniqKey="Birk R">R Birk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haqq, J" uniqKey="Haqq J">J Haqq</name>
</author>
<author>
<name sortKey="Howells, Lm" uniqKey="Howells L">LM Howells</name>
</author>
<author>
<name sortKey="Garcea, G" uniqKey="Garcea G">G Garcea</name>
</author>
<author>
<name sortKey="Dennison, Ar" uniqKey="Dennison A">AR Dennison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Penny, Hl" uniqKey="Penny H">HL Penny</name>
</author>
<author>
<name sortKey="Sieow, Jl" uniqKey="Sieow J">JL Sieow</name>
</author>
<author>
<name sortKey="Adriani, G" uniqKey="Adriani G">G Adriani</name>
</author>
<author>
<name sortKey="Yeap, Wh" uniqKey="Yeap W">WH Yeap</name>
</author>
<author>
<name sortKey="See Chi Ee, P" uniqKey="See Chi Ee P">P See Chi Ee</name>
</author>
<author>
<name sortKey="San Luis, B" uniqKey="San Luis B">B San Luis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, H" uniqKey="Ye H">H Ye</name>
</author>
<author>
<name sortKey="Zhou, Q" uniqKey="Zhou Q">Q Zhou</name>
</author>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S Zheng</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G Li</name>
</author>
<author>
<name sortKey="Lin, Q" uniqKey="Lin Q">Q Lin</name>
</author>
<author>
<name sortKey="Wei, L" uniqKey="Wei L">L Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edderkaoui, M" uniqKey="Edderkaoui M">M Edderkaoui</name>
</author>
<author>
<name sortKey="Chheda, C" uniqKey="Chheda C">C Chheda</name>
</author>
<author>
<name sortKey="Soufi, B" uniqKey="Soufi B">B Soufi</name>
</author>
<author>
<name sortKey="Zayou, F" uniqKey="Zayou F">F Zayou</name>
</author>
<author>
<name sortKey="Hu, Rw" uniqKey="Hu R">RW Hu</name>
</author>
<author>
<name sortKey="Ramanujan, Vk" uniqKey="Ramanujan V">VK Ramanujan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z Cai</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y Liang</name>
</author>
<author>
<name sortKey="Xing, C" uniqKey="Xing C">C Xing</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Hu, P" uniqKey="Hu P">P Hu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, Ka" uniqKey="Meyer K">KA Meyer</name>
</author>
<author>
<name sortKey="Neeley, Ck" uniqKey="Neeley C">CK Neeley</name>
</author>
<author>
<name sortKey="Baker, Na" uniqKey="Baker N">NA Baker</name>
</author>
<author>
<name sortKey="Washabaugh, Ar" uniqKey="Washabaugh A">AR Washabaugh</name>
</author>
<author>
<name sortKey="Flesher, Cg" uniqKey="Flesher C">CG Flesher</name>
</author>
<author>
<name sortKey="Nelson, Bs" uniqKey="Nelson B">BS Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Incio, J" uniqKey="Incio J">J Incio</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Suboj, P" uniqKey="Suboj P">P Suboj</name>
</author>
<author>
<name sortKey="Chin, Sm" uniqKey="Chin S">SM Chin</name>
</author>
<author>
<name sortKey="Chen, Ix" uniqKey="Chen I">IX Chen</name>
</author>
<author>
<name sortKey="Pinter, M" uniqKey="Pinter M">M Pinter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amrutkar, M" uniqKey="Amrutkar M">M Amrutkar</name>
</author>
<author>
<name sortKey="Gladhaug, Ip" uniqKey="Gladhaug I">IP Gladhaug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P Huang</name>
</author>
<author>
<name sortKey="Chubb, S" uniqKey="Chubb S">S Chubb</name>
</author>
<author>
<name sortKey="Hertel, Lw" uniqKey="Hertel L">LW Hertel</name>
</author>
<author>
<name sortKey="Grindey, Gb" uniqKey="Grindey G">GB Grindey</name>
</author>
<author>
<name sortKey="Plunkett, W" uniqKey="Plunkett W">W Plunkett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saif, Mw" uniqKey="Saif M">MW Saif</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y Lee</name>
</author>
<author>
<name sortKey="Kim, R" uniqKey="Kim R">R Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yardley, Da" uniqKey="Yardley D">DA Yardley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giordano, G" uniqKey="Giordano G">G Giordano</name>
</author>
<author>
<name sortKey="Pancione, M" uniqKey="Pancione M">M Pancione</name>
</author>
<author>
<name sortKey="Olivieri, N" uniqKey="Olivieri N">N Olivieri</name>
</author>
<author>
<name sortKey="Parcesepe, P" uniqKey="Parcesepe P">P Parcesepe</name>
</author>
<author>
<name sortKey="Velocci, M" uniqKey="Velocci M">M Velocci</name>
</author>
<author>
<name sortKey="Di Raimo, T" uniqKey="Di Raimo T">T Di Raimo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frese, Kk" uniqKey="Frese K">KK Frese</name>
</author>
<author>
<name sortKey="Neesse, A" uniqKey="Neesse A">A Neesse</name>
</author>
<author>
<name sortKey="Cook, N" uniqKey="Cook N">N Cook</name>
</author>
<author>
<name sortKey="Bapiro, Te" uniqKey="Bapiro T">TE Bapiro</name>
</author>
<author>
<name sortKey="Lolkema, Mp" uniqKey="Lolkema M">MP Lolkema</name>
</author>
<author>
<name sortKey="Jodrell, Di" uniqKey="Jodrell D">DI Jodrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borsoi, C" uniqKey="Borsoi C">C Borsoi</name>
</author>
<author>
<name sortKey="Leonard, F" uniqKey="Leonard F">F Leonard</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y Lee</name>
</author>
<author>
<name sortKey="Zaid, M" uniqKey="Zaid M">M Zaid</name>
</author>
<author>
<name sortKey="Elganainy, D" uniqKey="Elganainy D">D Elganainy</name>
</author>
<author>
<name sortKey="Alexander, Jf" uniqKey="Alexander J">JF Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longley, Db" uniqKey="Longley D">DB Longley</name>
</author>
<author>
<name sortKey="Harkin, Dp" uniqKey="Harkin D">DP Harkin</name>
</author>
<author>
<name sortKey="Johnston, Pg" uniqKey="Johnston P">PG Johnston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burris, Ha" uniqKey="Burris H">HA Burris</name>
</author>
<author>
<name sortKey="Moore, Mj" uniqKey="Moore M">MJ Moore</name>
</author>
<author>
<name sortKey="Andersen, J" uniqKey="Andersen J">J Andersen</name>
</author>
<author>
<name sortKey="Green, Mr" uniqKey="Green M">MR Green</name>
</author>
<author>
<name sortKey="Rothenberg, Ml" uniqKey="Rothenberg M">ML Rothenberg</name>
</author>
<author>
<name sortKey="Modiano, Mr" uniqKey="Modiano M">MR Modiano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conroy, T" uniqKey="Conroy T">T Conroy</name>
</author>
<author>
<name sortKey="Hammel, P" uniqKey="Hammel P">P Hammel</name>
</author>
<author>
<name sortKey="Hebbar, M" uniqKey="Hebbar M">M Hebbar</name>
</author>
<author>
<name sortKey="Ben Abdelghani, M" uniqKey="Ben Abdelghani M">M Ben Abdelghani</name>
</author>
<author>
<name sortKey="Wei, Ac" uniqKey="Wei A">AC Wei</name>
</author>
<author>
<name sortKey="Raoul, Jl" uniqKey="Raoul J">JL Raoul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conroy, T" uniqKey="Conroy T">T Conroy</name>
</author>
<author>
<name sortKey="Desseigne, F" uniqKey="Desseigne F">F Desseigne</name>
</author>
<author>
<name sortKey="Ychou, M" uniqKey="Ychou M">M Ychou</name>
</author>
<author>
<name sortKey="Bouche, O" uniqKey="Bouche O">O Bouche</name>
</author>
<author>
<name sortKey="Guimbaud, R" uniqKey="Guimbaud R">R Guimbaud</name>
</author>
<author>
<name sortKey="Becouarn, Y" uniqKey="Becouarn Y">Y Becouarn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suker, M" uniqKey="Suker M">M Suker</name>
</author>
<author>
<name sortKey="Beumer, Br" uniqKey="Beumer B">BR Beumer</name>
</author>
<author>
<name sortKey="Sadot, E" uniqKey="Sadot E">E Sadot</name>
</author>
<author>
<name sortKey="Marthey, L" uniqKey="Marthey L">L Marthey</name>
</author>
<author>
<name sortKey="Faris, Je" uniqKey="Faris J">JE Faris</name>
</author>
<author>
<name sortKey="Mellon, Ea" uniqKey="Mellon E">EA Mellon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhir, M" uniqKey="Dhir M">M Dhir</name>
</author>
<author>
<name sortKey="Zenati, Ms" uniqKey="Zenati M">MS Zenati</name>
</author>
<author>
<name sortKey="Hamad, A" uniqKey="Hamad A">A Hamad</name>
</author>
<author>
<name sortKey="Singhi, Ad" uniqKey="Singhi A">AD Singhi</name>
</author>
<author>
<name sortKey="Bahary, N" uniqKey="Bahary N">N Bahary</name>
</author>
<author>
<name sortKey="Hogg, Me" uniqKey="Hogg M">ME Hogg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Kkw" uniqKey="Chan K">KKW Chan</name>
</author>
<author>
<name sortKey="Guo, H" uniqKey="Guo H">H Guo</name>
</author>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S Cheng</name>
</author>
<author>
<name sortKey="Beca, Jm" uniqKey="Beca J">JM Beca</name>
</author>
<author>
<name sortKey="Redmond Misner, R" uniqKey="Redmond Misner R">R Redmond-Misner</name>
</author>
<author>
<name sortKey="Isaranuwatchai, W" uniqKey="Isaranuwatchai W">W Isaranuwatchai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujimura, Y" uniqKey="Fujimura Y">Y Fujimura</name>
</author>
<author>
<name sortKey="Ikenaga, N" uniqKey="Ikenaga N">N Ikenaga</name>
</author>
<author>
<name sortKey="Ohuchida, K" uniqKey="Ohuchida K">K Ohuchida</name>
</author>
<author>
<name sortKey="Setoyama, D" uniqKey="Setoyama D">D Setoyama</name>
</author>
<author>
<name sortKey="Irie, M" uniqKey="Irie M">M Irie</name>
</author>
<author>
<name sortKey="Miura, D" uniqKey="Miura D">D Miura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Duan, Q" uniqKey="Duan Q">Q Duan</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H Wu</name>
</author>
<author>
<name sortKey="Shen, Q" uniqKey="Shen Q">Q Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaika, Nv" uniqKey="Chaika N">NV Chaika</name>
</author>
<author>
<name sortKey="Gebregiworgis, T" uniqKey="Gebregiworgis T">T Gebregiworgis</name>
</author>
<author>
<name sortKey="Lewallen, Me" uniqKey="Lewallen M">ME Lewallen</name>
</author>
<author>
<name sortKey="Purohit, V" uniqKey="Purohit V">V Purohit</name>
</author>
<author>
<name sortKey="Radhakrishnan, P" uniqKey="Radhakrishnan P">P Radhakrishnan</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehla, K" uniqKey="Mehla K">K Mehla</name>
</author>
<author>
<name sortKey="Singh, Pk" uniqKey="Singh P">PK Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shukla, Sk" uniqKey="Shukla S">SK Shukla</name>
</author>
<author>
<name sortKey="Purohit, V" uniqKey="Purohit V">V Purohit</name>
</author>
<author>
<name sortKey="Mehla, K" uniqKey="Mehla K">K Mehla</name>
</author>
<author>
<name sortKey="Gunda, V" uniqKey="Gunda V">V Gunda</name>
</author>
<author>
<name sortKey="Chaika, Nv" uniqKey="Chaika N">NV Chaika</name>
</author>
<author>
<name sortKey="Vernucci, E" uniqKey="Vernucci E">E Vernucci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trehoux, S" uniqKey="Trehoux S">S Trehoux</name>
</author>
<author>
<name sortKey="Duchene, B" uniqKey="Duchene B">B Duchene</name>
</author>
<author>
<name sortKey="Jonckheere, N" uniqKey="Jonckheere N">N Jonckheere</name>
</author>
<author>
<name sortKey="Van Seuningen, I" uniqKey="Van Seuningen I">I Van Seuningen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ji, S" uniqKey="Ji S">S Ji</name>
</author>
<author>
<name sortKey="Qin, Y" uniqKey="Qin Y">Y Qin</name>
</author>
<author>
<name sortKey="Liang, C" uniqKey="Liang C">C Liang</name>
</author>
<author>
<name sortKey="Huang, R" uniqKey="Huang R">R Huang</name>
</author>
<author>
<name sortKey="Shi, S" uniqKey="Shi S">S Shi</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, M" uniqKey="Feng M">M Feng</name>
</author>
<author>
<name sortKey="Xiong, G" uniqKey="Xiong G">G Xiong</name>
</author>
<author>
<name sortKey="Cao, Z" uniqKey="Cao Z">Z Cao</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S Zheng</name>
</author>
<author>
<name sortKey="Qiu, J" uniqKey="Qiu J">J Qiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, Il" uniqKey="Lai I">IL Lai</name>
</author>
<author>
<name sortKey="Chou, Cc" uniqKey="Chou C">CC Chou</name>
</author>
<author>
<name sortKey="Lai, Pt" uniqKey="Lai P">PT Lai</name>
</author>
<author>
<name sortKey="Fang, Cs" uniqKey="Fang C">CS Fang</name>
</author>
<author>
<name sortKey="Shirley, La" uniqKey="Shirley L">LA Shirley</name>
</author>
<author>
<name sortKey="Yan, R" uniqKey="Yan R">R Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, G" uniqKey="Xia G">G Xia</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Song, Z" uniqKey="Song Z">Z Song</name>
</author>
<author>
<name sortKey="Meng, Q" uniqKey="Meng Q">Q Meng</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, X" uniqKey="Jin X">X Jin</name>
</author>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y Pan</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Ma, T" uniqKey="Ma T">T Ma</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Tang, Ah" uniqKey="Tang A">AH Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, R" uniqKey="Chen R">R Chen</name>
</author>
<author>
<name sortKey="Lai, La" uniqKey="Lai L">LA Lai</name>
</author>
<author>
<name sortKey="Sullivan, Y" uniqKey="Sullivan Y">Y Sullivan</name>
</author>
<author>
<name sortKey="Wong, M" uniqKey="Wong M">M Wong</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Riddell, J" uniqKey="Riddell J">J Riddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Duan, Q" uniqKey="Duan Q">Q Duan</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H Wu</name>
</author>
<author>
<name sortKey="Shen, Q" uniqKey="Shen Q">Q Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zarei, M" uniqKey="Zarei M">M Zarei</name>
</author>
<author>
<name sortKey="Lal, S" uniqKey="Lal S">S Lal</name>
</author>
<author>
<name sortKey="Parker, Sj" uniqKey="Parker S">SJ Parker</name>
</author>
<author>
<name sortKey="Nevler, A" uniqKey="Nevler A">A Nevler</name>
</author>
<author>
<name sortKey="Vaziri Gohar, A" uniqKey="Vaziri Gohar A">A Vaziri-Gohar</name>
</author>
<author>
<name sortKey="Dukleska, K" uniqKey="Dukleska K">K Dukleska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, S" uniqKey="Tian S">S Tian</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P Li</name>
</author>
<author>
<name sortKey="Sheng, S" uniqKey="Sheng S">S Sheng</name>
</author>
<author>
<name sortKey="Jin, X" uniqKey="Jin X">X Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Dj" uniqKey="Kim D">DJ Kim</name>
</author>
<author>
<name sortKey="Park, Ys" uniqKey="Park Y">YS Park</name>
</author>
<author>
<name sortKey="Kang, Mg" uniqKey="Kang M">MG Kang</name>
</author>
<author>
<name sortKey="You, Ym" uniqKey="You Y">YM You</name>
</author>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y Jung</name>
</author>
<author>
<name sortKey="Koo, H" uniqKey="Koo H">H Koo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tadros, S" uniqKey="Tadros S">S Tadros</name>
</author>
<author>
<name sortKey="Shukla, Sk" uniqKey="Shukla S">SK Shukla</name>
</author>
<author>
<name sortKey="King, Rj" uniqKey="King R">RJ King</name>
</author>
<author>
<name sortKey="Gunda, V" uniqKey="Gunda V">V Gunda</name>
</author>
<author>
<name sortKey="Vernucci, E" uniqKey="Vernucci E">E Vernucci</name>
</author>
<author>
<name sortKey="Abrego, J" uniqKey="Abrego J">J Abrego</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hering, J" uniqKey="Hering J">J Hering</name>
</author>
<author>
<name sortKey="Garrean, S" uniqKey="Garrean S">S Garrean</name>
</author>
<author>
<name sortKey="Dekoj, Tr" uniqKey="Dekoj T">TR Dekoj</name>
</author>
<author>
<name sortKey="Razzak, A" uniqKey="Razzak A">A Razzak</name>
</author>
<author>
<name sortKey="Saied, A" uniqKey="Saied A">A Saied</name>
</author>
<author>
<name sortKey="Trevino, J" uniqKey="Trevino J">J Trevino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arshad, A" uniqKey="Arshad A">A Arshad</name>
</author>
<author>
<name sortKey="Chung, Wy" uniqKey="Chung W">WY Chung</name>
</author>
<author>
<name sortKey="Steward, W" uniqKey="Steward W">W Steward</name>
</author>
<author>
<name sortKey="Metcalfe, Ms" uniqKey="Metcalfe M">MS Metcalfe</name>
</author>
<author>
<name sortKey="Dennison, Ar" uniqKey="Dennison A">AR Dennison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordes, N" uniqKey="Cordes N">N Cordes</name>
</author>
<author>
<name sortKey="Frick, S" uniqKey="Frick S">S Frick</name>
</author>
<author>
<name sortKey="Brunner, Tb" uniqKey="Brunner T">TB Brunner</name>
</author>
<author>
<name sortKey="Pilarsky, C" uniqKey="Pilarsky C">C Pilarsky</name>
</author>
<author>
<name sortKey="Grutzmann, R" uniqKey="Grutzmann R">R Grutzmann</name>
</author>
<author>
<name sortKey="Sipos, B" uniqKey="Sipos B">B Sipos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatterjee, M" uniqKey="Chatterjee M">M Chatterjee</name>
</author>
<author>
<name sortKey="Ben Josef, E" uniqKey="Ben Josef E">E Ben-Josef</name>
</author>
<author>
<name sortKey="Robb, R" uniqKey="Robb R">R Robb</name>
</author>
<author>
<name sortKey="Vedaie, M" uniqKey="Vedaie M">M Vedaie</name>
</author>
<author>
<name sortKey="Seum, S" uniqKey="Seum S">S Seum</name>
</author>
<author>
<name sortKey="Thirumoorthy, K" uniqKey="Thirumoorthy K">K Thirumoorthy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, Vk" uniqKey="Gupta V">VK Gupta</name>
</author>
<author>
<name sortKey="Sharma, Ns" uniqKey="Sharma N">NS Sharma</name>
</author>
<author>
<name sortKey="Kesh, K" uniqKey="Kesh K">K Kesh</name>
</author>
<author>
<name sortKey="Dauer, P" uniqKey="Dauer P">P Dauer</name>
</author>
<author>
<name sortKey="Nomura, A" uniqKey="Nomura A">A Nomura</name>
</author>
<author>
<name sortKey="Giri, B" uniqKey="Giri B">B Giri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Pietrocola, F" uniqKey="Pietrocola F">F Pietrocola</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, T" uniqKey="Ma T">T Ma</name>
</author>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Zhi, X" uniqKey="Zhi X">X Zhi</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Chen, Bw" uniqKey="Chen B">BW Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hashimoto, D" uniqKey="Hashimoto D">D Hashimoto</name>
</author>
<author>
<name sortKey="Blauer, M" uniqKey="Blauer M">M Blauer</name>
</author>
<author>
<name sortKey="Hirota, M" uniqKey="Hirota M">M Hirota</name>
</author>
<author>
<name sortKey="Ikonen, Nh" uniqKey="Ikonen N">NH Ikonen</name>
</author>
<author>
<name sortKey="Sand, J" uniqKey="Sand J">J Sand</name>
</author>
<author>
<name sortKey="Laukkarinen, J" uniqKey="Laukkarinen J">J Laukkarinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samaras, P" uniqKey="Samaras P">P Samaras</name>
</author>
<author>
<name sortKey="Tusup, M" uniqKey="Tusup M">M Tusup</name>
</author>
<author>
<name sortKey="Nguyen Kim, Tdl" uniqKey="Nguyen Kim T">TDL Nguyen-Kim</name>
</author>
<author>
<name sortKey="Seifert, B" uniqKey="Seifert B">B Seifert</name>
</author>
<author>
<name sortKey="Bachmann, H" uniqKey="Bachmann H">H Bachmann</name>
</author>
<author>
<name sortKey="Von Moos, R" uniqKey="Von Moos R">R von Moos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hessmann, E" uniqKey="Hessmann E">E Hessmann</name>
</author>
<author>
<name sortKey="Patzak, Ms" uniqKey="Patzak M">MS Patzak</name>
</author>
<author>
<name sortKey="Klein, L" uniqKey="Klein L">L Klein</name>
</author>
<author>
<name sortKey="Chen, N" uniqKey="Chen N">N Chen</name>
</author>
<author>
<name sortKey="Kari, V" uniqKey="Kari V">V Kari</name>
</author>
<author>
<name sortKey="Ramu, I" uniqKey="Ramu I">I Ramu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherman, Mh" uniqKey="Sherman M">MH Sherman</name>
</author>
<author>
<name sortKey="Yu, Rt" uniqKey="Yu R">RT Yu</name>
</author>
<author>
<name sortKey="Engle, Dd" uniqKey="Engle D">DD Engle</name>
</author>
<author>
<name sortKey="Ding, N" uniqKey="Ding N">N Ding</name>
</author>
<author>
<name sortKey="Atkins, Ar" uniqKey="Atkins A">AR Atkins</name>
</author>
<author>
<name sortKey="Tiriac, H" uniqKey="Tiriac H">H Tiriac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broekgaarden, M" uniqKey="Broekgaarden M">M Broekgaarden</name>
</author>
<author>
<name sortKey="Anbil, S" uniqKey="Anbil S">S Anbil</name>
</author>
<author>
<name sortKey="Bulin, Al" uniqKey="Bulin A">AL Bulin</name>
</author>
<author>
<name sortKey="Obaid, G" uniqKey="Obaid G">G Obaid</name>
</author>
<author>
<name sortKey="Mai, Z" uniqKey="Mai Z">Z Mai</name>
</author>
<author>
<name sortKey="Baglo, Y" uniqKey="Baglo Y">Y Baglo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cullis, J" uniqKey="Cullis J">J Cullis</name>
</author>
<author>
<name sortKey="Siolas, D" uniqKey="Siolas D">D Siolas</name>
</author>
<author>
<name sortKey="Avanzi, A" uniqKey="Avanzi A">A Avanzi</name>
</author>
<author>
<name sortKey="Barui, S" uniqKey="Barui S">S Barui</name>
</author>
<author>
<name sortKey="Maitra, A" uniqKey="Maitra A">A Maitra</name>
</author>
<author>
<name sortKey="Bar Sagi, D" uniqKey="Bar Sagi D">D Bar-Sagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neoptolemos, Jp" uniqKey="Neoptolemos J">JP Neoptolemos</name>
</author>
<author>
<name sortKey="Stocken, Dd" uniqKey="Stocken D">DD Stocken</name>
</author>
<author>
<name sortKey="Friess, H" uniqKey="Friess H">H Friess</name>
</author>
<author>
<name sortKey="Bassi, C" uniqKey="Bassi C">C Bassi</name>
</author>
<author>
<name sortKey="Dunn, Ja" uniqKey="Dunn J">JA Dunn</name>
</author>
<author>
<name sortKey="Hickey, H" uniqKey="Hickey H">H Hickey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loehrer, Pj" uniqKey="Loehrer P">PJ Loehrer</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
<author>
<name sortKey="Cardenes, H" uniqKey="Cardenes H">H Cardenes</name>
</author>
<author>
<name sortKey="Wagner, L" uniqKey="Wagner L">L Wagner</name>
</author>
<author>
<name sortKey="Brell, Jm" uniqKey="Brell J">JM Brell</name>
</author>
<author>
<name sortKey="Cella, D" uniqKey="Cella D">D Cella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutter, Ce" uniqKey="Rutter C">CE Rutter</name>
</author>
<author>
<name sortKey="Park, Hs" uniqKey="Park H">HS Park</name>
</author>
<author>
<name sortKey="Corso, Cd" uniqKey="Corso C">CD Corso</name>
</author>
<author>
<name sortKey="Lester Coll, Nh" uniqKey="Lester Coll N">NH Lester-Coll</name>
</author>
<author>
<name sortKey="Mancini, Br" uniqKey="Mancini B">BR Mancini</name>
</author>
<author>
<name sortKey="Yeboa, Dn" uniqKey="Yeboa D">DN Yeboa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badiyan, Sn" uniqKey="Badiyan S">SN Badiyan</name>
</author>
<author>
<name sortKey="Molitoris, Jk" uniqKey="Molitoris J">JK Molitoris</name>
</author>
<author>
<name sortKey="Chuong, Md" uniqKey="Chuong M">MD Chuong</name>
</author>
<author>
<name sortKey="Regine, Wf" uniqKey="Regine W">WF Regine</name>
</author>
<author>
<name sortKey="Kaiser, A" uniqKey="Kaiser A">A Kaiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seshacharyulu, P" uniqKey="Seshacharyulu P">P Seshacharyulu</name>
</author>
<author>
<name sortKey="Baine, Mj" uniqKey="Baine M">MJ Baine</name>
</author>
<author>
<name sortKey="Souchek, Jj" uniqKey="Souchek J">JJ Souchek</name>
</author>
<author>
<name sortKey="Menning, M" uniqKey="Menning M">M Menning</name>
</author>
<author>
<name sortKey="Kaur, S" uniqKey="Kaur S">S Kaur</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dholakia, As" uniqKey="Dholakia A">AS Dholakia</name>
</author>
<author>
<name sortKey="Chaudhry, M" uniqKey="Chaudhry M">M Chaudhry</name>
</author>
<author>
<name sortKey="Leal, Jp" uniqKey="Leal J">JP Leal</name>
</author>
<author>
<name sortKey="Chang, Dt" uniqKey="Chang D">DT Chang</name>
</author>
<author>
<name sortKey="Raman, Sp" uniqKey="Raman S">SP Raman</name>
</author>
<author>
<name sortKey="Hacker Prietz, A" uniqKey="Hacker Prietz A">A Hacker-Prietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurahara, H" uniqKey="Kurahara H">H Kurahara</name>
</author>
<author>
<name sortKey="Maemura, K" uniqKey="Maemura K">K Maemura</name>
</author>
<author>
<name sortKey="Mataki, Y" uniqKey="Mataki Y">Y Mataki</name>
</author>
<author>
<name sortKey="Sakoda, M" uniqKey="Sakoda M">M Sakoda</name>
</author>
<author>
<name sortKey="Iino, S" uniqKey="Iino S">S Iino</name>
</author>
<author>
<name sortKey="Kawasaki, Y" uniqKey="Kawasaki Y">Y Kawasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, Mc" uniqKey="Coleman M">MC Coleman</name>
</author>
<author>
<name sortKey="Asbury, Cr" uniqKey="Asbury C">CR Asbury</name>
</author>
<author>
<name sortKey="Daniels, D" uniqKey="Daniels D">D Daniels</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J Du</name>
</author>
<author>
<name sortKey="Aykin Burns, N" uniqKey="Aykin Burns N">N Aykin-Burns</name>
</author>
<author>
<name sortKey="Smith, Bj" uniqKey="Smith B">BJ Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zahra, A" uniqKey="Zahra A">A Zahra</name>
</author>
<author>
<name sortKey="Fath, Ma" uniqKey="Fath M">MA Fath</name>
</author>
<author>
<name sortKey="Opat, E" uniqKey="Opat E">E Opat</name>
</author>
<author>
<name sortKey="Mapuskar, Ka" uniqKey="Mapuskar K">KA Mapuskar</name>
</author>
<author>
<name sortKey="Bhatia, Sk" uniqKey="Bhatia S">SK Bhatia</name>
</author>
<author>
<name sortKey="Ma, Dc" uniqKey="Ma D">DC Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z Zhao</name>
</author>
<author>
<name sortKey="Yip Schneider, M" uniqKey="Yip Schneider M">M Yip-Schneider</name>
</author>
<author>
<name sortKey="Fan, Q" uniqKey="Fan Q">Q Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Souchek, Jj" uniqKey="Souchek J">JJ Souchek</name>
</author>
<author>
<name sortKey="Baine, Mj" uniqKey="Baine M">MJ Baine</name>
</author>
<author>
<name sortKey="Lin, C" uniqKey="Lin C">C Lin</name>
</author>
<author>
<name sortKey="Rachagani, S" uniqKey="Rachagani S">S Rachagani</name>
</author>
<author>
<name sortKey="Gupta, S" uniqKey="Gupta S">S Gupta</name>
</author>
<author>
<name sortKey="Kaur, S" uniqKey="Kaur S">S Kaur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, Ce" uniqKey="Clark C">CE Clark</name>
</author>
<author>
<name sortKey="Beatty, Gl" uniqKey="Beatty G">GL Beatty</name>
</author>
<author>
<name sortKey="Vonderheide, Rh" uniqKey="Vonderheide R">RH Vonderheide</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ino, Y" uniqKey="Ino Y">Y Ino</name>
</author>
<author>
<name sortKey="Yamazaki Itoh, R" uniqKey="Yamazaki Itoh R">R Yamazaki-Itoh</name>
</author>
<author>
<name sortKey="Shimada, K" uniqKey="Shimada K">K Shimada</name>
</author>
<author>
<name sortKey="Iwasaki, M" uniqKey="Iwasaki M">M Iwasaki</name>
</author>
<author>
<name sortKey="Kosuge, T" uniqKey="Kosuge T">T Kosuge</name>
</author>
<author>
<name sortKey="Kanai, Y" uniqKey="Kanai Y">Y Kanai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cham, Cm" uniqKey="Cham C">CM Cham</name>
</author>
<author>
<name sortKey="Driessens, G" uniqKey="Driessens G">G Driessens</name>
</author>
<author>
<name sortKey="O Keefe, Jp" uniqKey="O Keefe J">JP O'Keefe</name>
</author>
<author>
<name sortKey="Gajewski, Tf" uniqKey="Gajewski T">TF Gajewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Ch" uniqKey="Chang C">CH Chang</name>
</author>
<author>
<name sortKey="Curtis, Jd" uniqKey="Curtis J">JD Curtis</name>
</author>
<author>
<name sortKey="Maggi, Lb" uniqKey="Maggi L">LB Maggi</name>
</author>
<author>
<name sortKey="Faubert, B" uniqKey="Faubert B">B Faubert</name>
</author>
<author>
<name sortKey="Villarino, Av" uniqKey="Villarino A">AV Villarino</name>
</author>
<author>
<name sortKey="O Sullivan, D" uniqKey="O Sullivan D">D O'Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michalek, Rd" uniqKey="Michalek R">RD Michalek</name>
</author>
<author>
<name sortKey="Gerriets, Va" uniqKey="Gerriets V">VA Gerriets</name>
</author>
<author>
<name sortKey="Jacobs, Sr" uniqKey="Jacobs S">SR Jacobs</name>
</author>
<author>
<name sortKey="Macintyre, An" uniqKey="Macintyre A">AN Macintyre</name>
</author>
<author>
<name sortKey="Maciver, Nj" uniqKey="Maciver N">NJ MacIver</name>
</author>
<author>
<name sortKey="Mason, Ef" uniqKey="Mason E">EF Mason</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Sc" uniqKey="Huang S">SC Huang</name>
</author>
<author>
<name sortKey="Everts, B" uniqKey="Everts B">B Everts</name>
</author>
<author>
<name sortKey="Ivanova, Y" uniqKey="Ivanova Y">Y Ivanova</name>
</author>
<author>
<name sortKey="O Sullivan, D" uniqKey="O Sullivan D">D O'Sullivan</name>
</author>
<author>
<name sortKey="Nascimento, M" uniqKey="Nascimento M">M Nascimento</name>
</author>
<author>
<name sortKey="Smith, Am" uniqKey="Smith A">AM Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hossain, F" uniqKey="Hossain F">F Hossain</name>
</author>
<author>
<name sortKey="Al Khami, Aa" uniqKey="Al Khami A">AA Al-Khami</name>
</author>
<author>
<name sortKey="Wyczechowska, D" uniqKey="Wyczechowska D">D Wyczechowska</name>
</author>
<author>
<name sortKey="Hernandez, C" uniqKey="Hernandez C">C Hernandez</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L Zheng</name>
</author>
<author>
<name sortKey="Reiss, K" uniqKey="Reiss K">K Reiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jian, Sl" uniqKey="Jian S">SL Jian</name>
</author>
<author>
<name sortKey="Chen, Ww" uniqKey="Chen W">WW Chen</name>
</author>
<author>
<name sortKey="Su, Yc" uniqKey="Su Y">YC Su</name>
</author>
<author>
<name sortKey="Su, Yw" uniqKey="Su Y">YW Su</name>
</author>
<author>
<name sortKey="Chuang, Th" uniqKey="Chuang T">TH Chuang</name>
</author>
<author>
<name sortKey="Hsu, Sc" uniqKey="Hsu S">SC Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colegio, Or" uniqKey="Colegio O">OR Colegio</name>
</author>
<author>
<name sortKey="Chu, Nq" uniqKey="Chu N">NQ Chu</name>
</author>
<author>
<name sortKey="Szabo, Al" uniqKey="Szabo A">AL Szabo</name>
</author>
<author>
<name sortKey="Chu, T" uniqKey="Chu T">T Chu</name>
</author>
<author>
<name sortKey="Rhebergen, Am" uniqKey="Rhebergen A">AM Rhebergen</name>
</author>
<author>
<name sortKey="Jairam, V" uniqKey="Jairam V">V Jairam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, K" uniqKey="Fischer K">K Fischer</name>
</author>
<author>
<name sortKey="Hoffmann, P" uniqKey="Hoffmann P">P Hoffmann</name>
</author>
<author>
<name sortKey="Voelkl, S" uniqKey="Voelkl S">S Voelkl</name>
</author>
<author>
<name sortKey="Meidenbauer, N" uniqKey="Meidenbauer N">N Meidenbauer</name>
</author>
<author>
<name sortKey="Ammer, J" uniqKey="Ammer J">J Ammer</name>
</author>
<author>
<name sortKey="Edinger, M" uniqKey="Edinger M">M Edinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Husain, Z" uniqKey="Husain Z">Z Husain</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Seth, P" uniqKey="Seth P">P Seth</name>
</author>
<author>
<name sortKey="Sukhatme, Vp" uniqKey="Sukhatme V">VP Sukhatme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ducreux, M" uniqKey="Ducreux M">M Ducreux</name>
</author>
<author>
<name sortKey="Seufferlein, T" uniqKey="Seufferlein T">T Seufferlein</name>
</author>
<author>
<name sortKey="Van Laethem, Jl" uniqKey="Van Laethem J">JL Van Laethem</name>
</author>
<author>
<name sortKey="Laurent Puig, P" uniqKey="Laurent Puig P">P Laurent-Puig</name>
</author>
<author>
<name sortKey="Smolenschi, C" uniqKey="Smolenschi C">C Smolenschi</name>
</author>
<author>
<name sortKey="Malka, D" uniqKey="Malka D">D Malka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foley, K" uniqKey="Foley K">K Foley</name>
</author>
<author>
<name sortKey="Kim, V" uniqKey="Kim V">V Kim</name>
</author>
<author>
<name sortKey="Jaffee, E" uniqKey="Jaffee E">E Jaffee</name>
</author>
<author>
<name sortKey="Zheng, L" uniqKey="Zheng L">L Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kishton, Rj" uniqKey="Kishton R">RJ Kishton</name>
</author>
<author>
<name sortKey="Sukumar, M" uniqKey="Sukumar M">M Sukumar</name>
</author>
<author>
<name sortKey="Restifo, Np" uniqKey="Restifo N">NP Restifo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franchina, Dg" uniqKey="Franchina D">DG Franchina</name>
</author>
<author>
<name sortKey="He, F" uniqKey="He F">F He</name>
</author>
<author>
<name sortKey="Brenner, D" uniqKey="Brenner D">D Brenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nywening, Tm" uniqKey="Nywening T">TM Nywening</name>
</author>
<author>
<name sortKey="Wang Gillam, A" uniqKey="Wang Gillam A">A Wang-Gillam</name>
</author>
<author>
<name sortKey="Sanford, De" uniqKey="Sanford D">DE Sanford</name>
</author>
<author>
<name sortKey="Belt, Ba" uniqKey="Belt B">BA Belt</name>
</author>
<author>
<name sortKey="Panni, Rz" uniqKey="Panni R">RZ Panni</name>
</author>
<author>
<name sortKey="Cusworth, Bm" uniqKey="Cusworth B">BM Cusworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uyttenhove, C" uniqKey="Uyttenhove C">C Uyttenhove</name>
</author>
<author>
<name sortKey="Pilotte, L" uniqKey="Pilotte L">L Pilotte</name>
</author>
<author>
<name sortKey="Theate, I" uniqKey="Theate I">I Theate</name>
</author>
<author>
<name sortKey="Stroobant, V" uniqKey="Stroobant V">V Stroobant</name>
</author>
<author>
<name sortKey="Colau, D" uniqKey="Colau D">D Colau</name>
</author>
<author>
<name sortKey="Parmentier, N" uniqKey="Parmentier N">N Parmentier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Saga, Y" uniqKey="Saga Y">Y Saga</name>
</author>
<author>
<name sortKey="Mizukami, H" uniqKey="Mizukami H">H Mizukami</name>
</author>
<author>
<name sortKey="Sato, N" uniqKey="Sato N">N Sato</name>
</author>
<author>
<name sortKey="Nonaka, H" uniqKey="Nonaka H">H Nonaka</name>
</author>
<author>
<name sortKey="Fujiwara, H" uniqKey="Fujiwara H">H Fujiwara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manuel, Er" uniqKey="Manuel E">ER Manuel</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="D Apuzzo, M" uniqKey="D Apuzzo M">M D'Apuzzo</name>
</author>
<author>
<name sortKey="Lampa, Mg" uniqKey="Lampa M">MG Lampa</name>
</author>
<author>
<name sortKey="Kaltcheva, Ti" uniqKey="Kaltcheva T">TI Kaltcheva</name>
</author>
<author>
<name sortKey="Thompson, Cb" uniqKey="Thompson C">CB Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinardo, Cd" uniqKey="Dinardo C">CD DiNardo</name>
</author>
<author>
<name sortKey="Stein, Em" uniqKey="Stein E">EM Stein</name>
</author>
<author>
<name sortKey="De Botton, S" uniqKey="De Botton S">S de Botton</name>
</author>
<author>
<name sortKey="Roboz, Gj" uniqKey="Roboz G">GJ Roboz</name>
</author>
<author>
<name sortKey="Altman, Jk" uniqKey="Altman J">JK Altman</name>
</author>
<author>
<name sortKey="Mims, As" uniqKey="Mims A">AS Mims</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singer, K" uniqKey="Singer K">K Singer</name>
</author>
<author>
<name sortKey="Dettmer, K" uniqKey="Dettmer K">K Dettmer</name>
</author>
<author>
<name sortKey="Unger, P" uniqKey="Unger P">P Unger</name>
</author>
<author>
<name sortKey="Schonhammer, G" uniqKey="Schonhammer G">G Schonhammer</name>
</author>
<author>
<name sortKey="Renner, K" uniqKey="Renner K">K Renner</name>
</author>
<author>
<name sortKey="Peter, K" uniqKey="Peter K">K Peter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajeshkumar, Nv" uniqKey="Rajeshkumar N">NV Rajeshkumar</name>
</author>
<author>
<name sortKey="Yabuuchi, S" uniqKey="Yabuuchi S">S Yabuuchi</name>
</author>
<author>
<name sortKey="Pai, Sg" uniqKey="Pai S">SG Pai</name>
</author>
<author>
<name sortKey="De Oliveira, E" uniqKey="De Oliveira E">E De Oliveira</name>
</author>
<author>
<name sortKey="Kamphorst, Jj" uniqKey="Kamphorst J">JJ Kamphorst</name>
</author>
<author>
<name sortKey="Rabinowitz, Jd" uniqKey="Rabinowitz J">JD Rabinowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhaw Luximon, A" uniqKey="Bhaw Luximon A">A Bhaw-Luximon</name>
</author>
<author>
<name sortKey="Jhurry, D" uniqKey="Jhurry D">D Jhurry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, W" uniqKey="Yue W">W Yue</name>
</author>
<author>
<name sortKey="Yang, Cs" uniqKey="Yang C">CS Yang</name>
</author>
<author>
<name sortKey="Dipaola, Rs" uniqKey="Dipaola R">RS DiPaola</name>
</author>
<author>
<name sortKey="Tan, Xl" uniqKey="Tan X">XL Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mormile, R" uniqKey="Mormile R">R Mormile</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raez, Le" uniqKey="Raez L">LE Raez</name>
</author>
<author>
<name sortKey="Papadopoulos, K" uniqKey="Papadopoulos K">K Papadopoulos</name>
</author>
<author>
<name sortKey="Ricart, Ad" uniqKey="Ricart A">AD Ricart</name>
</author>
<author>
<name sortKey="Chiorean, Eg" uniqKey="Chiorean E">EG Chiorean</name>
</author>
<author>
<name sortKey="Dipaola, Rs" uniqKey="Dipaola R">RS Dipaola</name>
</author>
<author>
<name sortKey="Stein, Mn" uniqKey="Stein M">MN Stein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zachar, Z" uniqKey="Zachar Z">Z Zachar</name>
</author>
<author>
<name sortKey="Marecek, J" uniqKey="Marecek J">J Marecek</name>
</author>
<author>
<name sortKey="Maturo, C" uniqKey="Maturo C">C Maturo</name>
</author>
<author>
<name sortKey="Gupta, S" uniqKey="Gupta S">S Gupta</name>
</author>
<author>
<name sortKey="Stuart, Sd" uniqKey="Stuart S">SD Stuart</name>
</author>
<author>
<name sortKey="Howell, K" uniqKey="Howell K">K Howell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alistar, A" uniqKey="Alistar A">A Alistar</name>
</author>
<author>
<name sortKey="Morris, Bb" uniqKey="Morris B">BB Morris</name>
</author>
<author>
<name sortKey="Desnoyer, R" uniqKey="Desnoyer R">R Desnoyer</name>
</author>
<author>
<name sortKey="Klepin, Hd" uniqKey="Klepin H">HD Klepin</name>
</author>
<author>
<name sortKey="Hosseinzadeh, K" uniqKey="Hosseinzadeh K">K Hosseinzadeh</name>
</author>
<author>
<name sortKey="Clark, C" uniqKey="Clark C">C Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakrabarti, G" uniqKey="Chakrabarti G">G Chakrabarti</name>
</author>
<author>
<name sortKey="Moore, Zr" uniqKey="Moore Z">ZR Moore</name>
</author>
<author>
<name sortKey="Luo, X" uniqKey="Luo X">X Luo</name>
</author>
<author>
<name sortKey="Ilcheva, M" uniqKey="Ilcheva M">M Ilcheva</name>
</author>
<author>
<name sortKey="Ali, A" uniqKey="Ali A">A Ali</name>
</author>
<author>
<name sortKey="Padanad, M" uniqKey="Padanad M">M Padanad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachet, Jb" uniqKey="Bachet J">JB Bachet</name>
</author>
<author>
<name sortKey="Gay, F" uniqKey="Gay F">F Gay</name>
</author>
<author>
<name sortKey="Marechal, R" uniqKey="Marechal R">R Marechal</name>
</author>
<author>
<name sortKey="Galais, Mp" uniqKey="Galais M">MP Galais</name>
</author>
<author>
<name sortKey="Adenis, A" uniqKey="Adenis A">A Adenis</name>
</author>
<author>
<name sortKey="Ms, Cd" uniqKey="Ms C">CD Ms</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpin, Bm" uniqKey="Wolpin B">BM Wolpin</name>
</author>
<author>
<name sortKey="Hezel, Af" uniqKey="Hezel A">AF Hezel</name>
</author>
<author>
<name sortKey="Abrams, T" uniqKey="Abrams T">T Abrams</name>
</author>
<author>
<name sortKey="Blaszkowsky, Ls" uniqKey="Blaszkowsky L">LS Blaszkowsky</name>
</author>
<author>
<name sortKey="Meyerhardt, Ja" uniqKey="Meyerhardt J">JA Meyerhardt</name>
</author>
<author>
<name sortKey="Chan, Ja" uniqKey="Chan J">JA Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kordes, S" uniqKey="Kordes S">S Kordes</name>
</author>
<author>
<name sortKey="Klumpen, Hj" uniqKey="Klumpen H">HJ Klumpen</name>
</author>
<author>
<name sortKey="Weterman, Mj" uniqKey="Weterman M">MJ Weterman</name>
</author>
<author>
<name sortKey="Schellens, Jh" uniqKey="Schellens J">JH Schellens</name>
</author>
<author>
<name sortKey="Richel, Dj" uniqKey="Richel D">DJ Richel</name>
</author>
<author>
<name sortKey="Wilmink, Jw" uniqKey="Wilmink J">JW Wilmink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voss, M" uniqKey="Voss M">M Voss</name>
</author>
<author>
<name sortKey="Lorenz, Ni" uniqKey="Lorenz N">NI Lorenz</name>
</author>
<author>
<name sortKey="Luger, Al" uniqKey="Luger A">AL Luger</name>
</author>
<author>
<name sortKey="Steinbach, Jp" uniqKey="Steinbach J">JP Steinbach</name>
</author>
<author>
<name sortKey="Rieger, J" uniqKey="Rieger J">J Rieger</name>
</author>
<author>
<name sortKey="Ronellenfitsch, Mw" uniqKey="Ronellenfitsch M">MW Ronellenfitsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biancur, De" uniqKey="Biancur D">DE Biancur</name>
</author>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mol Cancer</journal-id>
<journal-id journal-id-type="iso-abbrev">Mol. Cancer</journal-id>
<journal-title-group>
<journal-title>Molecular Cancer</journal-title>
</journal-title-group>
<issn pub-type="epub">1476-4598</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32122374</article-id>
<article-id pub-id-type="pmc">7053123</article-id>
<article-id pub-id-type="publisher-id">1169</article-id>
<article-id pub-id-type="doi">10.1186/s12943-020-01169-7</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Metabolism of pancreatic cancer: paving the way to better anticancer strategies</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Qin</surname>
<given-names>Cheng</given-names>
</name>
<address>
<email>chengqin185@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Gang</given-names>
</name>
<address>
<email>doc.gang@qq.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Jinshou</given-names>
</name>
<address>
<email>jinshouyang@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ren</surname>
<given-names>Bo</given-names>
</name>
<address>
<email>berserker94@icloud.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Huanyu</given-names>
</name>
<address>
<email>menghai.333@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Guangyu</given-names>
</name>
<address>
<email>chengyu0304@hotmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Fangyu</given-names>
</name>
<address>
<email>fangyuzhao08@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>You</surname>
<given-names>Lei</given-names>
</name>
<address>
<email>florayo@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Wang</surname>
<given-names>Weibin</given-names>
</name>
<address>
<email>wwb_xh@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Zhao</surname>
<given-names>Yupei</given-names>
</name>
<address>
<email>zhao8028@263.net</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100730 PR China</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.12527.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0662 3178</institution-id>
<institution>Department of General Surgery, Peking Union Medical College Hospital,</institution>
<institution>Chinese Academy of Medical Sciences, Peking Union Medical College,</institution>
</institution-wrap>
Beijing, 100023 PR China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>2</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>2</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<volume>19</volume>
<elocation-id>50</elocation-id>
<history>
<date date-type="received">
<day>1</day>
<month>9</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>2</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Pancreatic cancer</kwd>
<kwd>Metabolism</kwd>
<kwd>Chemoresistance</kwd>
<kwd>Gemcitabine</kwd>
<kwd>Radioresistance</kwd>
<kwd>Immunosuppression</kwd>
<kwd>Clinical trials</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100001809</institution-id>
<institution>National Natural Science Foundation of China</institution>
</institution-wrap>
</funding-source>
<award-id>81974376</award-id>
<award-id>81972321</award-id>
<principal-award-recipient>
<name>
<surname>You</surname>
<given-names>Lei</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Yupei</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>
<institution>National Natural Science Foundation of China (CN)</institution>
</funding-source>
<award-id>81773215</award-id>
<principal-award-recipient>
<name>
<surname>Wang</surname>
<given-names>Weibin</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>
<institution>Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences</institution>
</funding-source>
<award-id>2018PT32014</award-id>
<principal-award-recipient>
<name>
<surname>Zhao</surname>
<given-names>Yupei</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p id="Par69">Pancreatic cancer is one of the most aggressive diseases; it has a poor prognosis, and its five-year survival rate remains lower than 9% despite decades of continuous efforts. According to recent data, pancreatic cancer is the fourth and sixth leading cause of cancer-related mortality in the U.S. and China, respectively [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
]. Furthermore, it is predicted to be the second leading cause of cancer-related deaths in the U.S. in 2030 [
<xref ref-type="bibr" rid="CR3">3</xref>
]. Surgery remains the only way to cure pancreatic cancer. However, because most patients are diagnosed with a nonresectable disease due to the lack of symptoms in the early stage, only up to 20% of patients have the opportunity to receive initial surgical resection [
<xref ref-type="bibr" rid="CR4">4</xref>
]. Even for patients who undergo a successful operation, over 80% of them still eventually develop local recurrence or metastases [
<xref ref-type="bibr" rid="CR5">5</xref>
]. Therefore, in addition to surgery, comprehensive treatment following multidisciplinary management should be given more attention. Indeed, there remain many challenging problems. Chemotherapy is still recommended as the primary treatment for patients who have nonresectable pancreatic cancer and patients who undergo resection. Depending on different patient statuses, there are several distinct recommended chemotherapy regimens, which mainly include gemcitabine, FOLFIRINOX, and albumin-bound paclitaxel. However, the rapid and common development of chemoresistance usually leads to poor prognosis [
<xref ref-type="bibr" rid="CR6">6</xref>
]. Although radiation is another relatively well-established anticancer method, it is currently regarded as a palliative way to relieve pain caused by advanced pancreatic cancer [
<xref ref-type="bibr" rid="CR7">7</xref>
]. In addition to chemotherapy and radiotherapy, immunotherapy and targeted therapy are emerging as remarkable anticancer strategies [
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR10">10</xref>
]. Nevertheless, many successful immunotherapies against other cancer types are not as effective in pancreatic cancer treatment [
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
], and most clinical trials focusing on targeted therapy fail to show satisfying outcomes [
<xref ref-type="bibr" rid="CR13">13</xref>
]. Therefore, breakthroughs in pancreatic cancer treatment are needed.</p>
<p id="Par70">In pancreatic cancer cells, several genetic alterations are considered to be the basis for pancreatic cancer progression and its dismal prognosis; these alterations include oncogenic
<italic>KRAS</italic>
mutations, which occur in over 90% of cases, and inactivating mutations in suppressor genes such as
<italic>TP53</italic>
,
<italic>SMAD4</italic>
, and
<italic>CDKN2A</italic>
[
<xref ref-type="bibr" rid="CR14">14</xref>
]. Moreover, the aforementioned dilemma in comprehensive treatments is also largely determined by other biological features, such as extensive dense desmoplasia, hypoperfusion and an immunosuppressive microenvironment [
<xref ref-type="bibr" rid="CR15">15</xref>
]. Additionally, many recent reports have indicated that distinct cancer metabolism is important for restricting the therapeutic effect.</p>
<p id="Par71">Reprogrammed cellular energy metabolism, one of the emerging hallmarks of cancer [
<xref ref-type="bibr" rid="CR16">16</xref>
], has been refocused over the past decade [
<xref ref-type="bibr" rid="CR17">17</xref>
]. Cancer cells rewire many metabolic pathways to facilitate their survival, unlimited cell growth, and division. In addition, they also rely on extensive metabolic interactions with other nonmalignant cells and with the extracellular matrix (ECM) within the tumor microenvironment [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
]. Beyond the tissue level, the local tumor can affect host metabolism via cachexia, impairing antitumor immunity [
<xref ref-type="bibr" rid="CR20">20</xref>
]. Interestingly, several recent studies also demonstrated that metabolic alterations can promote pancreatic tumorigenesis and metastasis through epigenetic regulation [
<xref ref-type="bibr" rid="CR21">21</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
], emphasizing the vital role of metabolism in pancreatic cancer development. Furthermore, many studies clearly showed that pancreatic tumor metabolism is closely associated with chemoresistance [
<xref ref-type="bibr" rid="CR23">23</xref>
], radioresistance [
<xref ref-type="bibr" rid="CR24">24</xref>
] and immunosuppression [
<xref ref-type="bibr" rid="CR25">25</xref>
]. Recently, pancreatic cancer was also stratified into different metabolic subgroups (quiescent, glycolytic, cholesterogenic and mixed), which could predict different prognoses and responses to therapy [
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
]. Therefore, the metabolic features of pancreatic cancer provide attractive therapeutic opportunities for novel and personalized treatments [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
].</p>
</sec>
<sec id="Sec2">
<title>Metabolic features of pancreatic cancer</title>
<p id="Par72">Although reprogrammed metabolism is a general characteristic of cancer, different cancers show distinct metabolic addictions, which are mainly determined by their specific genetic mutations, tissue of origin or tumor microenvironment [
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
]. Even in the same pancreatic cancer patient, the primary tumor and metastatic lesions exhibit relatively different metabolic gene expression [
<xref ref-type="bibr" rid="CR31">31</xref>
]. Therefore, metabolic alteration of pancreatic cancer is a collective scenario mediated by multiple factors. In addition to the genomic characterization of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR32">32</xref>
], there is a complex and harsh microenvironment within the pancreatic tumor. The dense stroma results in elevated solid stress and interstitial fluid pressure that compress the vasculature, leading to hypoperfusion [
<xref ref-type="bibr" rid="CR33">33</xref>
]. However, cancer cells exhibit extraordinary growth advantages in relatively hypoxic and nutrient-poor niches. They survive and thrive mainly in three ways: (1) Reprogramming intracellular energy metabolism of nutrients, including glucose, amino acids, and lipids. (2) Improving nutrient acquisition by scavenging and recycling. (3) Conducting metabolic crosstalk with other components within the microenvironment [
<xref ref-type="bibr" rid="CR34">34</xref>
].</p>
<sec id="Sec3">
<title>Intracellular metabolism</title>
<p id="Par73">In the 1920s, Otto Warburg’s pioneering work demonstrated that tumor cells consume more glucose than normal cells. They subsequently turn most glucose-derived carbon into lactate even in the presence of sufficient oxygen. This process is named aerobic glycolysis or the Warburg effect [
<xref ref-type="bibr" rid="CR35">35</xref>
]. It indeed provides some tangible advantages to cancer cells. First, compared with oxidative phosphorylation (OXPHOS), ample glycolytic flux achieves a higher rate of ATP production [
<xref ref-type="bibr" rid="CR36">36</xref>
]. Second, it provides tumor cells with plenty of intermediates required for rapid and vast biosynthesis with a proper ATP/ADP ratio. Third, it plays an important role in maintaining redox balance and modulating chromatin state. Fourth, it creates a low immunity microenvironment and enhances cancer cell invasion [
<xref ref-type="bibr" rid="CR37">37</xref>
]. Since Warburg’s initial publications, many studies have been conducted to uncover the metabolism of tumors. Cancers with different tissue origins exhibit distinct metabolic changes, even driven by the same oncogenes [
<xref ref-type="bibr" rid="CR38">38</xref>
]. For pancreatic cancer cells, genetic mutations and stromal cues are thought to drive heterogeneous metabolic phenotypes [
<xref ref-type="bibr" rid="CR39">39</xref>
<xref ref-type="bibr" rid="CR43">43</xref>
], which mainly include the Warburg, reverse Warburg, lipid-dependence, and glutaminolysis phenotypes [
<xref ref-type="bibr" rid="CR44">44</xref>
]. Therefore, pancreatic cancer cells exhibit complex and heterogeneous reprogramming of glucose, amino acid and lipid metabolism (Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
).
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>The landscape of metabolic pathways in pancreatic cancer cells. The metabolism of glucose, amino acids and lipids is largely reprogrammed, which is mainly due to changes in key enzymes and transporters. Furthermore, some of them are closely regulated by oncogenic KRAS. Additionally, micropinocytosis and autophagy are also promoted by mutant KRAS, but they are controlled by other regulatory mechanisms within pancreatic cancer cells as well. Long solid arrows imply shifts or bioconversions. The dotted arrow means positive regulation, whereas the blunt end means negative regulation. Red arrowheads following the enzymes, transporters, and processes represent the effects induced by mutant KRAS: upward means upregulation; downward means downregulation. The black symbols represent the changes induced by other or unknown reasons. In addition, those following tildes indicate that they are dually regulated under different conditions. ACLY, ATP citrate lyase; ASNS, asparagine synthetase; CARM1, coactivator-associated arginine methyltransferase 1; CS, citrate synthetase; F-6P, fructose 6-phosphate; F-1,6BP, fructose 1,6-bisphosphate; F-2,6BP, fructose 2,6-bisphosphate; GFPT1, glutamine:fructose 6-phosphate amidotransferase 1; G-6P, glucose 6-phosphate; HK1/2, hexokinase 1/2; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; ME1, malic enzyme; MUFA, monounsaturated fatty acid; PFK1, phosphofructokinase 1; PRODH1, proline oxidase; PUFA, polyunsaturated fatty acid; RPE, ribulose-5-phosphate epimerase; SCD1, stearoyl-CoA desaturase; SFA, saturated fatty acid; TCA, tricarboxylic acid</p>
</caption>
<graphic xlink:href="12943_2020_1169_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<sec id="Sec4">
<title>Glucose</title>
<p id="Par74">Glucose metabolism is relatively well documented in the rewired metabolic network. In the process of elevated aerobic glycolysis in pancreatic cancer cells, the expression of glucose transporter 1 (GLUT1) and its translocation to the cancer cell membrane are promoted, increasing glucose uptake [
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
]. In addition to absorption, pancreatic cancer also shows upregulated expression of many genes encoding rate-limiting glycolytic enzymes, such as hexokinase 1/2, phosphofructokinase 1 and lactate dehydrogenase A (LDHA, the subunit of LDH), enhancing the Warburg effect and glycolytic flux to lactate [
<xref ref-type="bibr" rid="CR39">39</xref>
]. In contrast to glycolysis, phosphorylated pyruvate dehydrogenase kinase 1 (PDHK1) inhibits the pyruvate dehydrogenase (PDH) complex, suppressing mitochondrial OXPHOS in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR46">46</xref>
]. To address the excess of acid products, such as lactate, from aerobic glycolysis, pancreatic cancer cells robustly express monocarboxylate transporter 1 (MCT1), MCT4 and CD147 on the plasma membrane to accelerate lactate flux [
<xref ref-type="bibr" rid="CR47">47</xref>
<xref ref-type="bibr" rid="CR49">49</xref>
]. The nonoxidative pentose phosphate pathway (PPP) originating from glycolysis offers materials for anabolism, including DNA synthesis. In this enhanced metabolic pathway, pancreatic cancer cells display increased ribulose 5-phosphate isomerase (RPIA) and ribulose-5-phosphate-3-epimerase (RPE) expression [
<xref ref-type="bibr" rid="CR50">50</xref>
,
<xref ref-type="bibr" rid="CR51">51</xref>
]. The hexosamine biosynthesis pathway (HBP), another branch of glucose metabolism, provides the substrate for protein and lipid glycosylation, which is considered to be critical for tumor progression [
<xref ref-type="bibr" rid="CR52">52</xref>
]. In addition, the rate-limiting enzyme of HBP, glutamine:fructose-6-phosphate amidotransferase-1 (GFPT1), is upregulated in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR39">39</xref>
]. In addition to those enhanced glycolytic enzymes, pancreatic cancer cells also overexpress more Nampt than adjacent normal tissues. Nampt is an essential enzyme that recycles nicotinamide adenine dinucleotide (NAD), a vital cofactor in many redox reactions, to sustain the high level of glycolytic flux within cancer cells [
<xref ref-type="bibr" rid="CR53">53</xref>
]</p>
<p id="Par75">Such distinct metabolic features are regulated by various factors. KRAS, a kind of small GTPase, is persistently activated upon mutation in pancreatic cancer and continuously stimulates downstream effectors (e.g., PI3K and RAF) [
<xref ref-type="bibr" rid="CR54">54</xref>
]. As a result, the expression of
<italic>GLUT1</italic>
and the key enzymes in glucose metabolism mentioned before are promoted (Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
). Regarding the underlying mechanisms, the KRAS-driven MAPK pathway and transcription factor MYC might be prominent mediators, but the refined regulation of the respective enzymes remains to be further studied [
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
]. In addition to the regulation of glycolysis, mutant KRAS signaling stimulates mitochondrial translocation of phosphoglycerate kinase 1 (PGK1), leading to phosphorylated PDHK1 and restricted OXPHOS in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR46">46</xref>
]. Glucose deprivation also promotes
<italic>KRAS</italic>
mutations in turn, suggesting the complex interaction between metabolism and the oncogene [
<xref ref-type="bibr" rid="CR55">55</xref>
]. Furthermore, some KRAS-driven overexpressed enzymes, such as RPIA, are still preserved in some pancreatic cancer cell lines with KRAS ablation, sustaining nonoxidative PPP and cancer cell survival in a KRAS-independent manner [
<xref ref-type="bibr" rid="CR50">50</xref>
]. Therefore, the relationship between KRAS and reprogrammed metabolism needs further study. Additionally, mutant TP53 is a key player in enhancing the Warburg effect and reducing mitochondrial activity [
<xref ref-type="bibr" rid="CR45">45</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
]. In pancreatic cancer cells, TP53 can increase glucose uptake by increasing paraoxonase 2 expression and impairing the expression of TP53-induced glycolysis and apoptosis regulator (TIGAR), which degrades fructose-2,6-bisphosphate, an effective enhancer of glycolysis, to fructose-6-phosphate [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]. Moreover, mutant TP53 in pancreatic cancer cells also maintains the cytoplasmic stabilization of glyceraldehyde-3-phosphate dehydrogenase, a key enzyme in glycolysis, to support the Warburg effect and confer sensitivity to glycolysis inhibitors (2-deoxyglucose, also known as 2-DG) [
<xref ref-type="bibr" rid="CR59">59</xref>
]. However, pancreatic cancer cells with normal TP53 status are resistant to LDHA inhibition due to decreased dependence on glycolysis [
<xref ref-type="bibr" rid="CR57">57</xref>
].In addition to KRAS and TP53 signaling in pancreatic cancer cells, LDHA could also be comprehensively regulated by deacetylation modification and other oncogenic transcription factors, such as Forkhead box protein M1 (FOXM1) [
<xref ref-type="bibr" rid="CR60">60</xref>
,
<xref ref-type="bibr" rid="CR61">61</xref>
]. Additionally, there are many other mechanisms regulating glucose metabolism in pancreatic cancer cells. For example, hypoxia-inducible factor-1 (HIF-1) mainly induced by hypoxia contributes to strengthened glycolysis and the upregulated expression of HBP-related enzyme (GFPT2, the isoform of GFPT1) [
<xref ref-type="bibr" rid="CR62">62</xref>
]. HIF-1 also inhibits PDH, leading to compromised mitochondrial oxidation [
<xref ref-type="bibr" rid="CR63">63</xref>
]. Pyruvate kinase muscle isozyme 2 (PKM2) expression in pancreatic cancer cells is largely determined by nutrient conditions, and PKM2 is overexpressed under normal conditions. However, low glucose levels decrease PKM2 expression, which maintains cell survival by promoting autophagy and biomacromolecule accumulation and reducing oxidative stress [
<xref ref-type="bibr" rid="CR64">64</xref>
].</p>
</sec>
<sec id="Sec5">
<title>Amino acids</title>
<p id="Par76">Amino acid metabolism is also widely rewired in pancreatic cancer cells. Several amino acid transporters are highly expressed in pancreatic cancer cells to satisfy the increased need [
<xref ref-type="bibr" rid="CR65">65</xref>
,
<xref ref-type="bibr" rid="CR66">66</xref>
]. Among various amino acids, glutamine (Gln) metabolism is critical for cancer cell survival as the main source of nitrogen and carbon, contributing to macromolecular synthesis and redox balance [
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
]. Initially, Gln entering mitochondria is deaminated to glutamate (Glu) by glutaminase 1 (GLS1). In many cancer cell lines, aminotransferase or glutamate dehydrogenase (GDH) usually catalyzes the conversion from Gln-derived Glu to α-ketoglutarate (α-KG), which depends on different situations [
<xref ref-type="bibr" rid="CR67">67</xref>
]. However, in pancreatic cancer cells, GDH is repressed, but the expression of cytoplasmic aspartate transaminase (GOT1) is promoted [
<xref ref-type="bibr" rid="CR69">69</xref>
]. In this process, mitochondrial aspartate transaminase (GOT2) converts Gln-derived Glu and oxaloacetate (OAA) to aspartate (Asp) and α-KG in mitochondria. After that, Asp enters the cytoplasm and is turned into OAA by upregulated GOT1. Then, cytoplasmic OAA is converted to malate through malate dehydrogenase 1 (MDH1) and subsequently oxidized to pyruvate by malic enzyme. In addition, sufficient reducing power is generated to resist reactive oxygen species (ROS) and achieve redox control in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR69">69</xref>
]. Consistently, pancreatic cancer cells upregulate the expression of GOT1 in the acidic microenvironment to deal with increased ROS generation and support cancer cell survival [
<xref ref-type="bibr" rid="CR70">70</xref>
].</p>
<p id="Par77">This pathway in pancreatic cancer cells is primarily dominated by mutant KRAS, which results in GDH repression and GOT1 promotion. Therefore, it is named KRAS-driven noncanonical Gln metabolism [
<xref ref-type="bibr" rid="CR69">69</xref>
]. Additionally, the regulation of some other processes is also involved in this process. For example, arginine methylation of MDH1 induced by coactivator-associated arginine methyltransferase 1 (CARM1) suppresses tumor growth, but KRAS activation and oxidative stress relieve such inhibition [
<xref ref-type="bibr" rid="CR71">71</xref>
]. Furthermore, a recent report revealed that pancreatic cancer cells have compensatory metabolic networks of Gln, exhibiting recovered Gln-derived metabolic intermediates and tumor growth after long-term GLS1 inhibition [
<xref ref-type="bibr" rid="CR72">72</xref>
]. In particular, Gln metabolism is vital for the viability and proliferation of hypoxic pancreatic cancer cells, which is mainly mediated by upregulated GLS2, the isoform of GLS1 [
<xref ref-type="bibr" rid="CR62">62</xref>
]. Thus, the shift of Gln metabolism in pancreatic cancer is worth further study.</p>
<p id="Par78">In addition to Gln, other amino acids are also key players in pancreatic cancer progression. Pancreatic cancer cells show overexpressed proline (Pro) oxidase (PRODH1), which contributes to Pro-derived Glu and promotes the survival and proliferation of pancreatic cancer cells, especially under glucose- or Gln-limited conditions [
<xref ref-type="bibr" rid="CR19">19</xref>
]. Additionally, many pancreatic tumors from clinical cases display negative or low asparagine (Asn) synthetase expression, indicating the dependence of exogenous Asn. Therefore, plasma Asn depletion mediated by erythrocyte-entrapped L-asparaginase (ERY-ASP) might be a novel therapeutic strategy [
<xref ref-type="bibr" rid="CR73">73</xref>
]. Moreover, increased circulating and intracellular branched-chain amino acids are also related to pancreatic cancer progression, which might be the result of enhanced tissue protein breakdown and decreased tumor use mediated by mutant TP53 [
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR74">74</xref>
].</p>
<p id="Par79">Pancreatic cancer also has an extraordinary amino acid degradation ability, possessing urea cycle pathways comparable to those in the liver, which are critical for cancer as well. Obesity or constitutively active AKT, a kinase known to accelerate cancer growth, can induce high expression of arginase 2 that catabolizes arginine into urea and ornithine within the mitochondria of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR75">75</xref>
].</p>
</sec>
<sec id="Sec6">
<title>Lipids</title>
<p id="Par80">Lipid metabolism is also essential for cancer progression [
<xref ref-type="bibr" rid="CR76">76</xref>
]. It not only provides ample building blocks for rapid membrane formation but also produces signaling molecules and substrates for the posttranslational modification of proteins. Lipids can be acquired via biosynthesis and diet. In contrast to normal cells relying on dietary fat, approximately 93% of triacylglycerol fatty acids in tumor cells are de novo synthesized from mitochondrial citrate [
<xref ref-type="bibr" rid="CR77">77</xref>
], which is the intermediate between mitochondria and cytosolic acetyl coenzyme A (CoA) [
<xref ref-type="bibr" rid="CR78">78</xref>
]. In pancreatic cancer, many enzymes participating in de novo fatty acids and cholesterol synthesis are obviously upregulated, including citrate synthase (CS), ATP citrate lyase (ACLY), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD1) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) [
<xref ref-type="bibr" rid="CR78">78</xref>
,
<xref ref-type="bibr" rid="CR79">79</xref>
] (Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
). Additionally, hypoxia or oncogenic KRAS could also induce the uptake of monounsaturated fatty acids from extracellular lysophospholipids [
<xref ref-type="bibr" rid="CR80">80</xref>
]. In de novo cholesterol synthesis, in addition to the elevated canonical pathway, overexpressed aldo-keto reductase 1B10 (AKR1B10) could metabolize farnesal and geranylgeranyl in pancreatic cancer, providing intermediates for cholesterol synthesis [
<xref ref-type="bibr" rid="CR81">81</xref>
]. Additionally, those intermediates are also significant for protein prenylation, which activates KRAS and its downstream carcinogenic signaling pathways [
<xref ref-type="bibr" rid="CR81">81</xref>
,
<xref ref-type="bibr" rid="CR82">82</xref>
]. Cholesterol acquisition also highly relies on enhanced extracellular uptake in pancreatic cancer cells. Compared with the modestly increased cholesterol synthesis pathway, overactive low-density lipoprotein receptor (LDLR)-mediated uptake of cholesterol-rich lipoproteins is predominant in murine pancreatic cancer cells [
<xref ref-type="bibr" rid="CR79">79</xref>
]. After that, excessive free cholesterol is stored as cholesteryl ester within pancreatic cancer cells after esterification, which is mediated by highly expressed acyl-CoA cholesterol acyl-transferase-1 (ACAT-1) [
<xref ref-type="bibr" rid="CR83">83</xref>
].</p>
<p id="Par81">Among different fatty acids, saturated and monounsaturated fatty acids are considered to promote the growth of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR84">84</xref>
]. Polyunsaturated fatty acids, mainly containing the ω3 and ω6 families, dually affect pancreatic cancer. ω3 fatty acids inhibit cancer cell proliferation via reducing AKT phosphorylation, but ω6 fatty acids increase AKT phosphorylation [
<xref ref-type="bibr" rid="CR85">85</xref>
]. However, a transcriptomics and metabolomics study revealed that lipase and a panel of fatty acids are significantly decreased in pancreatic tumors, and two saturated fatty acids, palmitate, and stearate, showed an obvious ability to inhibit the proliferation of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR86">86</xref>
]. Therefore, the role of fatty acids in pancreatic cancer is complicated and still not very clear. Cholesterol also participates in pancreatic cancer progression. Statins, inhibitors of cholesterol de novo synthesis, contribute to improved survival in pancreatic cancer patients in some clinical studies, but the underlying mechanism is still under debate [
<xref ref-type="bibr" rid="CR87">87</xref>
]. However, a finished phase II clinical trial combining simvastatin with gemcitabine in advanced pancreatic cancer treatment failed to show clinical benefit (NCT00944463) [
<xref ref-type="bibr" rid="CR88">88</xref>
]. Nevertheless, several clinical trials combining statins with other agents in pancreatic cancer treatments are still ongoing (NCT03889795) (NCT03889795). In contrast to the positive role of cholesterol in pancreatic cancer progression, high-level free cholesterol with ACAT-1 inhibition results in severe endoplasmic reticulum (ER) stress and cancer cell apoptosis [
<xref ref-type="bibr" rid="CR83">83</xref>
].</p>
</sec>
</sec>
<sec id="Sec7">
<title>Improving nutrient acquisition by scavenging and recycling</title>
<p id="Par82">In addition to reprogramming the metabolism of glucose, amino acids and lipids within cells, pancreatic cancer cells have multiple other mechanisms by which they acquire enough fuels for survival and growth.</p>
<p id="Par83">Macropinocytosis is a process located in the cell membrane that represents bulk extracellular fluid uptake through large endocytic vacuoles, which is crucial for maintaining the amino acid supply of pancreatic cancer cells after subsequent intracellular digestion and degeneration [
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
]. Oncogenic KRAS plays a key role in promoting macropinocytosis with the help of αvβ3 and galectin-3 on the surface of tumor cells. Moreover, the mutant KRAS/galectin-3/αvβ3 complex also maintains the redox balance of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR91">91</xref>
,
<xref ref-type="bibr" rid="CR92">92</xref>
]. Autophagy is another critical cellular process that degrades cellular macromolecules and organelles, affording the recycling of intracellular bioenergetic components. Therefore, it plays a key role in maintaining energy homeostasis and metabolic fuel sources in the tumor [
<xref ref-type="bibr" rid="CR93">93</xref>
]. Furthermore, autophagy also enables pancreatic cancer progression via controlling ROS production and sustaining OXPHOS [
<xref ref-type="bibr" rid="CR94">94</xref>
]. In turn, elevated ROS promotes autophagy in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR94">94</xref>
]. This process is also under the regulation of KRAS. Surprisingly, recent significant studies suggested that the inhibition of KRAS and/or downstream RAF-MEK-ERK signaling pathway could obviously upregulate autophagic flux, which might be the metabolic adaption of compromised glycolysis and mitochondrial activity. Consistent with these findings, combining MEK and autophagy inhibition showed exciting results in both preclinical and clinical studies [
<xref ref-type="bibr" rid="CR95">95</xref>
,
<xref ref-type="bibr" rid="CR96">96</xref>
]. TP53 also participates in the regulation of autophagy in pancreatic cancer, but the mechanism is unclear and merits further study [
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR98">98</xref>
].</p>
<p id="Par84">Both macropinocytosis and autophagy undergo degradation in lysosomes to regenerate nutrients. In this process, SLC38A9, an arginine-regulated transporter, facilitates the release of amino acids from lysosomes and activates mechanistic target of rapamycin complex 1 (mTORC1), both of which support pancreatic tumor growth [
<xref ref-type="bibr" rid="CR99">99</xref>
]. mTORC1 is a homodimer composed of four mTOR units and a regulatory-associated protein. It is mainly activated by high levels of intracellular amino acids and growth factor signaling and phosphorylates multiple downstream targets and regulates metabolism and tumor progression [
<xref ref-type="bibr" rid="CR100">100</xref>
]. Under nutrient-sufficient conditions, activated mTORC1 suppresses autophagy and inhibits the utilization of extracellular proteins through macropinocytosis [
<xref ref-type="bibr" rid="CR101">101</xref>
<xref ref-type="bibr" rid="CR103">103</xref>
]. However, under nutrient-poor circumstances, inactive mTORC1 contributes to the increase in autophagy and macropinocytosis [
<xref ref-type="bibr" rid="CR102">102</xref>
<xref ref-type="bibr" rid="CR104">104</xref>
] to sustain pancreatic tumor growth.</p>
<p id="Par85">There are several other regulatory relationships involved. For example, MiT/TFE proteins promote the expression of autophagy-lysosome genes with the help of importin 8, regardless of the inhibition from active mTORC1 [
<xref ref-type="bibr" rid="CR105">105</xref>
]. Recently, a study suggested that deprivation of amino acids could also induce protein scavenging independently of mTORC1 and that mTOR inhibition could restrict protein synthesis and preserve the intracellular amino acid pool, sustaining the growth of murine pancreatic tumor cells under amino acid deprivation [
<xref ref-type="bibr" rid="CR106">106</xref>
].</p>
</sec>
<sec id="Sec8">
<title>Metabolic crosstalk within the microenvironment</title>
<p id="Par86">The pancreatic cancer microenvironment is highly heterogeneous. In addition to cancer cells, ECM and stromal cells are also present. The interest in their interactions in metabolism has been increasing recently [
<xref ref-type="bibr" rid="CR107">107</xref>
,
<xref ref-type="bibr" rid="CR108">108</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Metabolic crosstalk within the microenvironment. There is extensive and heterogeneous metabolic crosstalk within pancreatic tumors. Pancreatic cancer cells can adopt relatively distinct metabolic patterns under different oxygen and nutrition conditions. Black arrows imply shift, positive regulation or fueling, whereas blunt ends indicate inhibition. Ala, alanine; HGF, hepatocyte growth factor</p>
</caption>
<graphic xlink:href="12943_2020_1169_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p id="Par87">Pancreatic cancer cells are surrounded by tight desmoplasia composed of a collagen meshwork, resulting in hypoxic and nutrient-poor conditions, especially in the tumor core. This collagen provides Pro to fuel cancer cells [
<xref ref-type="bibr" rid="CR19">19</xref>
]. Additionally, irregular shear stress caused by dense desmoplasia leads to PI3K/AKT signaling upregulation and ROS production, both of which can enhance glycolysis in cancer cells [
<xref ref-type="bibr" rid="CR109">109</xref>
]. Furthermore, there are massive amounts of lactate in the tumor, which is distinctly treated by different pancreatic cancer cells under normoxia and hypoxia. Connexin-43 channels, a kind of gap junction, are important for transporting excess lactate from glycolytic pancreatic cancer cells in the tumor core to the periphery, supplying substrates for OXPHOS in better-perfused normoxic cancer cells and producing a suitable chemical milieu for pancreatic tumor growth [
<xref ref-type="bibr" rid="CR110">110</xref>
]. Additionally, lactate within the microenvironment can also be sensed by GPR81, a Gi-coupled receptor on the pancreatic cancer membrane, promoting the expression of
<italic>MCTs</italic>
and
<italic>CD147</italic>
. In addition, activated GPR81 upregulates peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and increases mitochondrial biogenesis and respiration. Therefore, both lactate absorption and use are improved, which is especially significant for the growth of pancreatic cancer cells in low glucose conditions [
<xref ref-type="bibr" rid="CR111">111</xref>
]. A recent study also revealed that circulating lactate contributes to the TCA cycle of pancreatic tumors as a primary substrate during the fasted state [
<xref ref-type="bibr" rid="CR112">112</xref>
]. Additionally, lactate produced by glycolytic cancer cells has some nonmetabolic roles in tumors, such as improving invasiveness, decreasing antitumor immunity and facilitating angiogenesis [
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
].</p>
<p id="Par88">Cancer-associated fibroblasts (CAFs), the major type of stromal cells, can be stimulated by neighboring cancer cells, to exhibit aerobic glycolysis and secrete high-energy metabolites, such as pyruvate and lactate. Adjacent cancer cells, particularly in normoxic regions, uptake and use the metabolites in OXPHOS. Such a pattern between CAFs and cancer cells is named the reverse Warburg effect or two-compartment metabolic coupling model, which has attracted considerable attention [
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR114">114</xref>
,
<xref ref-type="bibr" rid="CR115">115</xref>
]. Therefore, more recent studies have refocused the effects of OXPHOS in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR116">116</xref>
,
<xref ref-type="bibr" rid="CR117">117</xref>
]. CAFs also enrich the microenvironment by releasing exosomes, which contain TCA cycle intermediates, amino acids, and lipids. They are key to pancreatic tumor growth, especially under nutrient-deprived conditions. However, pancreatic cancer cells display suppressed mitochondrial OXPHOS and increased glycolysis upon absorbing these exosomes [
<xref ref-type="bibr" rid="CR118">118</xref>
]. The majority of CAFs are derived from pancreatic stellate cells (PSCs), which are activated during carcinogenesis. They can secrete autophagy-derived alanine to support pancreatic cancer cell metabolism, especially after being stimulated by cancer cells [
<xref ref-type="bibr" rid="CR119">119</xref>
]. In addition to direct metabolite supply, activated PSCs can be particularly stimulated by oncogenic KRAS in adjacent pancreatic cancer cells, reciprocally enhancing downstream pathways of oncogenic KRAS signaling in cancer cells, including metabolic regulation [
<xref ref-type="bibr" rid="CR120">120</xref>
]. Furthermore, enhanced glycolytic metabolism in pancreatic cancer cells can also be induced by paracrine hepatocyte growth factor (HGF) from PSCs [
<xref ref-type="bibr" rid="CR121">121</xref>
]. Another recent study indicated that PSCs promote pancreatic cancer progression in a particular manner depending on PKM2 in either cancer cells or PSCs, but the mechanism is unclear and remains to be further studied [
<xref ref-type="bibr" rid="CR122">122</xref>
]. In addition, saturated and monounsaturated fatty acids seem to be opposite players in fibrosis and activation of PSCs [
<xref ref-type="bibr" rid="CR123">123</xref>
], but their particular roles in activated PSCs of pancreatic cancer are still unknown. Nevertheless, Lipidem
<sup>TM</sup>
, an ω3 fatty acid-rich emulsion, shows the ability to decrease PSC proliferation and inhibit the invasive capacity of pancreatic cancer cells, especially in combination with gemcitabine [
<xref ref-type="bibr" rid="CR124">124</xref>
].</p>
<p id="Par89">Tumor-associated macrophages (TAMs), another essential type of stromal cell with immune functions, also participate in metabolic crosstalk within the microenvironment. Compared with steady-state macrophages in the normal pancreas, TAMs exhibit an elevated glycolytic signature, promoting pancreatic cancer vascularization and metastasis [
<xref ref-type="bibr" rid="CR125">125</xref>
]. Another study showed that TAMs promote aerobic glycolysis in neighboring pancreatic cancer cells via paracrine signaling. Subsequently, lactate in the microenvironment promotes the procancer M2-like polarization of TAMs, which leads to low immunity [
<xref ref-type="bibr" rid="CR126">126</xref>
]. Such a relationship was also revealed in preclinical experiments on novel molecules, providing hits for further research. Metavert, an inhibitor of glycogen synthase kinase 3β and histone deacetylases, could normalize the glucose metabolism of pancreatic cancer cells and transform M2-like TAMs to the anticancer M1 phenotype in mouse models [
<xref ref-type="bibr" rid="CR127">127</xref>
].</p>
<p id="Par90">Adipocytes also have extensive metabolic interactions with pancreatic cancer cells. After coculture with pancreatic cancer cells, adipocytes exhibited smaller size, mesenchymal phenotypes, decreased lipid content and multiple altered metabolic pathways. Such tumor-associated adipocytes could also promote the aggressiveness of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR128">128</xref>
]. In addition, a brief study in murine cell lines suggested that pancreatic cancer cells could inhibit Gln degeneration in cocultured adipocytes and then predispose them to Gln secretion. In turn, Gln derived from adipocytes facilitates cancer cell proliferation [
<xref ref-type="bibr" rid="CR129">129</xref>
]. In addition to the direct interaction between pancreatic cancer cells and adipocytes, adipocyte accumulation within the microenvironment could interact with PSCs and tumor-associated neutrophils as well, enhancing tumor progression, particularly in obese patients [
<xref ref-type="bibr" rid="CR130">130</xref>
]. There are many other stromal components besides the abovementioned components, and the metabolic crosstalk within the microenvironment of pancreatic cancer remains largely unclear.</p>
</sec>
</sec>
<sec id="Sec9">
<title>Chemoresistance and metabolism</title>
<p id="Par91">Chemotherapy is still the most fundamental systemic treatment against the majority of cancers. According to the NCCN guidelines, there are several distinct chemotherapy regimens against pancreatic cancer with different statuses. Among them, gemcitabine (also known as 2,2-difluorodeoxycytidin, dFdC), the nucleoside analog of deoxycytidine, currently remains the cornerstone of chemotherapy in pancreatic cancer treatments [
<xref ref-type="bibr" rid="CR131">131</xref>
]. As a type of prodrug, gemcitabine enters pancreatic cancer cells and undergoes a series of phosphorylation events with precise regulation. After that, its derivatives can interfere with DNA synthesis and block cancer cell cycle progression [
<xref ref-type="bibr" rid="CR132">132</xref>
,
<xref ref-type="bibr" rid="CR133">133</xref>
] (Fig.
<xref rid="Fig3" ref-type="fig">3</xref>
). Nano albumin-bound (nab) paclitaxel delivers a high concentration of paclitaxel within pancreatic tumors, resulting in the inhibition of microtubule depolymerization and cancer cell division [
<xref ref-type="bibr" rid="CR134">134</xref>
,
<xref ref-type="bibr" rid="CR135">135</xref>
]. Benefiting from the synergistic effects [
<xref ref-type="bibr" rid="CR136">136</xref>
,
<xref ref-type="bibr" rid="CR137">137</xref>
], the clinical application of nab paclitaxel often occurs in combination with gemcitabine. In addition to gemcitabine, 5-fluorouracil (5-FU), an analogue of uracil, also exerts anticancer effects by damaging DNA and RNA and inhibiting thymidylate synthase (TS) [
<xref ref-type="bibr" rid="CR138">138</xref>
]. Although the clinical benefits produced by 5-FU are lower than those of gemcitabine, 5-FU is still widely applied in treating pancreatic cancer partly due to its lower toxicity [
<xref ref-type="bibr" rid="CR139">139</xref>
]. In recent years, increasing evidence has shown that the FOLFIRINOX regimen (5-FU, leucovorin, irinotecan and oxaliplatin) can achieve longer overall survival than gemcitabine-based therapy, especially in patients with good status [
<xref ref-type="bibr" rid="CR140">140</xref>
<xref ref-type="bibr" rid="CR144">144</xref>
]. Compared with other chemotherapy regimens, the underlying mechanism of gemcitabine resistance is relatively well documented [
<xref ref-type="bibr" rid="CR131">131</xref>
]. At present, there is increasing evidence that gemcitabine resistance is related to the metabolism of glucose, amino acids, and lipids (Fig.
<xref rid="Fig4" ref-type="fig">4</xref>
). Moreover, metabolic profiling revealed that there is an obvious difference in the metabolome between gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cell lines [
<xref ref-type="bibr" rid="CR145">145</xref>
].
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>The metabolism and mechanisms of gemcitabine action. Gemcitabine plays an anticancer role after a series of phosphorylations in pancreatic cancer cells. Asterisks indicate that dFdCTP is the most active metabolite of gemcitabine that produces anticancer effects. Intermediates in gray ovals have anticancer functions. Long solid arrows represent shifts or bioconversions. Dotted arrows mean positive regulations, while dotted blunt ends mean negative regulations. dFdC, 2’,2’-difluorodeoxycytidine (gemcitabine); dFdCMP, 2’,2’-difluorodeoxycytidine 5’-monophosphate; dFdCDP, 2’,2’-difluorodeoxycytidine 5’-diphosphate; dFdCTP, 2’,2’-difluorodeoxycytidine 5’-triphosphate; dFdU, 2’,2’-difluorodeoxyuridine; dFdUMP, 2’,2’-difluorodeoxyuridine 5’-monophosphate; dFdUDP, 2’,2’-difluorodeoxyuridine 5’-diphosphate; dFdUTP, 2’,2’-difluorodeoxyuridine 5’-triphosphate; dUMP, deoxyuridine monophosphate; dTMP, deoxythymidine monophosphate; dTTP, deoxythymidine triphosphate; CDP, cytidine diphosphate; dCDP, deoxycytidine diphosphate; dCTP, deoxycytidine triphosphate; CDA, cytidine deaminase; dCK, deoxycytidine kinase; DCTD, deoxycytidylate deaminase; hNTs, human nucleosides transporters; NDPK, nucleoside diphosphate kinase; NMPK, nucleoside monophosphate kinase; RR, ribonucleotide reductase; TS, thymidylate synthase; 5’-NT, 5’-nucleotidase</p>
</caption>
<graphic xlink:href="12943_2020_1169_Fig3_HTML" id="MO3"></graphic>
</fig>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Gemcitabine resistance and metabolism. Gemcitabine and some intrinsic characteristics of pancreatic cancer cells produce chemoresistance. Ovals are biological substances, rectangles are processes, and hexagons are statuses. Red names indicate corresponding inhibitors. Arrows represent positive regulations, and lines with blunt ends represent negative regulations. CR, chemoresistance; EMT, epithelial-mesenchymal transition; FBP1, fructose-1,6-bisphosphatase 1; IDH1, isocitrate dehydrogenase 1; LAT2, L-type amino acid transporter 2; noPPP, nonoxidative pentose phosphate pathway; RRM2, ribonucleotide reductase subunit-M2</p>
</caption>
<graphic xlink:href="12943_2020_1169_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p id="Par92">Chemoresistant pancreatic cancer cell lines induced by long-term moderate gemcitabine treatment exhibit increased aerobic glycolysis and lower ROS levels than their parental cells. The increased glycolysis maintains low ROS levels that induce cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) phenotypes, contributing to chemoresistance [
<xref ref-type="bibr" rid="CR146">146</xref>
]. Such enhanced glycolysis is partly mediated by increased HIF-1α. In addition to hypoxia, increased expression of MUC1, a transmembrane protein, also activates and stabilizes HIF-1α, enhancing glycolysis, nonoxidative PPP and pyrimidine biosynthesis [
<xref ref-type="bibr" rid="CR147">147</xref>
<xref ref-type="bibr" rid="CR149">149</xref>
]. All of these factors lead to gemcitabine resistance in pancreatic cancer cells. Owing to this mechanism, HIF-1α inhibitors (digoxin or YC1) and pyrimidine biosynthesis inhibitors (leflunomide) showed the ability to improve gemcitabine efficacy in animal studies [
<xref ref-type="bibr" rid="CR149">149</xref>
]. Furthermore, MUC1 inhibition also sensitizes pancreatic cancer cell lines to 5-FU [
<xref ref-type="bibr" rid="CR150">150</xref>
]. In addition, F-box and WD repeat domain-containing 7 (FBW7), a pancreatic tumor suppressor inhibited by oncogenic
<italic>KRAS</italic>
mutation, inhibited glycolysis in pancreatic cancer cells and enhanced the efficacy of gemcitabine in xenograft models as well [
<xref ref-type="bibr" rid="CR151">151</xref>
]. In our previous research, we found that L-type amino acid transporter 2 (LAT2), an oncogenic protein in pancreatic cancer cells, could Gln-dependently activate mTOR to inhibit apoptosis and promote glycolysis. Both of them give rise to the gemcitabine-resistant phenotype, whereas mTOR inhibitor (RAD001) could solve such gemcitabine resistance [
<xref ref-type="bibr" rid="CR152">152</xref>
]. Overexpressed Nampt provides massive NAD, sustaining enhanced glycolytic activity and contributing to gemcitabine resistance as well. Nampt inhibitor (FK866) reversed this resistance to sensitivity [
<xref ref-type="bibr" rid="CR53">53</xref>
]. Additionally, gemcitabine also promotes the expression of the ribonucleotide reductase M2 (RRM2) subunit in pancreatic cancer cells through the ERK/E2F1 pathway, promoting deoxyribonucleotide biosynthesis and inhibiting gemcitabine-induced DNA damage [
<xref ref-type="bibr" rid="CR153">153</xref>
,
<xref ref-type="bibr" rid="CR154">154</xref>
]. CG-5, a glucose transporter inhibitor, inhibits E2F1 expression and enhances gemcitabine efficacy in pancreatic cancer cells [
<xref ref-type="bibr" rid="CR153">153</xref>
]. Gambogic acid and fructose-1,6-bisphosphatase 1 inhibits the ERK signaling pathway and bypasses gemcitabine resistance in mouse models with xenograft tumors [
<xref ref-type="bibr" rid="CR154">154</xref>
,
<xref ref-type="bibr" rid="CR155">155</xref>
]. Increased thymidylate synthase expression in gemcitabine-treated pancreatic cancer cells might also adopt the same E2F1-dependent pathway, but this effect is not very clear yet [
<xref ref-type="bibr" rid="CR153">153</xref>
]. In addition to pyrimidine biosynthesis, enhanced HBP in pancreatic cancer cells also gives rise to gemcitabine resistance by increasing the glycosylation of many proteins in several chemoresistant signaling pathways [
<xref ref-type="bibr" rid="CR156">156</xref>
].</p>
<p id="Par93">Compared with the relatively well-documented role of glucose metabolism, the role of amino acid metabolism in chemoresistance remains unclear. Enhanced Gln metabolism fuels elevated HBP and glycosylation. Moreover, Gln addiction is also significant for controlling ROS generation and activating mTOR, both of which contribute to chemoresistance [
<xref ref-type="bibr" rid="CR152">152</xref>
,
<xref ref-type="bibr" rid="CR156">156</xref>
]. ROS production in pancreatic cancer cells triggered by gemcitabine treatment is presumed to be related to the dose. Low to moderately elevated ROS levels are considered to activate the nuclear factor-kappa B (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling cascade, maintaining the CSC phenotype and inducing chemoresistance [
<xref ref-type="bibr" rid="CR157">157</xref>
]. In addition to gemcitabine, low nutrient conditions also contribute to moderate ROS generation that activates HuR, an RNA binding protein. Activated HuR rapidly upregulates isocitrate dehydrogenase 1 (IDH1) to enhance NADPH recycling, which maintains redox balance and results in chemoresistance [
<xref ref-type="bibr" rid="CR158">158</xref>
]. Therefore, compared with pancreatic cancer patients with high serum glucose, patients with low or normal serum glucose exhibit more severe initial gemcitabine resistance [
<xref ref-type="bibr" rid="CR158">158</xref>
].</p>
<p id="Par94">In lipid metabolism, FASN expression is upregulated, which is also crucial for gemcitabine resistance. Overexpressed FASN in pancreatic cancer cells upregulates PKM2 expression, promoting glycolysis and gemcitabine resistance [
<xref ref-type="bibr" rid="CR159">159</xref>
]. PKM2 also plays a nonmetabolic role in chemoresistance by inhibiting gemcitabine-induced TP53 signaling and subsequent apoptosis [
<xref ref-type="bibr" rid="CR160">160</xref>
]. In addition to PKM2, high FASN levels relieve ER stress, maintain the CSC phenotype and inhibit gemcitabine-induced apoptosis. Orlistat, a FASN inhibitor, induces ER stress and increases gemcitabine sensitivity in mouse models with orthotopic pancreatic cancer implantation [
<xref ref-type="bibr" rid="CR161">161</xref>
]. ω3 fatty acids repress NF-kβ and STAT3 activation and improve the anticancer role of gemcitabine as well [
<xref ref-type="bibr" rid="CR162">162</xref>
]. Furthermore, in a completed phase II clinical trial, after treatment with gemcitabine and intravenous ω3 fatty acid-rich emulsion, patients with metastatic or locally advanced pancreatic cancer exhibited reduced proinflammatory circulating growth factors and cytokines, which might contribute to the improved outcome (NCT01019382) [
<xref ref-type="bibr" rid="CR163">163</xref>
]. In addition to fatty acids, cholesterol uptake disruption mediated by LDLR silencing also enhances gemcitabine-induced regression of murine pancreatic cancer cells [
<xref ref-type="bibr" rid="CR79">79</xref>
]. Cholesterol also supports the function of caveolin-1 (cav-1) [
<xref ref-type="bibr" rid="CR164">164</xref>
], which is the primary structural protein of caveolae, contributing to nab-paclitaxel uptake and chemosensitivity [
<xref ref-type="bibr" rid="CR165">165</xref>
]. However, another study suggested that both cholesterol and cav-1 could maintain ABC transporters in caveolae, leading to drug efflux and chemoresistance to nab-paclitaxel in pancreatic tumor initiating cells with high CD133 expression [
<xref ref-type="bibr" rid="CR166">166</xref>
]. In general, chemoresistance has intricate relations with the metabolism of pancreatic cancer cells, and further research is needed to achieve better chemotherapy responses.</p>
<p id="Par95">In addition to the metabolism of glucose, amino acids, and lipids, autophagy in pancreatic cancer cells also plays a role in chemoresistance. Both nutrient limitation and gemcitabine induce autophagy in pancreatic cancer cells, which inhibits apoptosis and contributes to chemoresistance [
<xref ref-type="bibr" rid="CR167">167</xref>
,
<xref ref-type="bibr" rid="CR168">168</xref>
]. Gemcitabine-induced autophagy might be mediated by a deubiquitinating protease, ubiquitin-specific peptidase 9X (USP9X). However, WP1130, a deubiquitinating enzyme inhibitor, inhibits USP9X and attenuates chemoresistance in mouse models bearing tumor xenografts [
<xref ref-type="bibr" rid="CR168">168</xref>
]. Additionally, chloroquine also increases gemcitabine and 5-FU sensitivity as an autophagy inhibitor [
<xref ref-type="bibr" rid="CR168">168</xref>
,
<xref ref-type="bibr" rid="CR169">169</xref>
]. In a completed phase I study, chloroquine showed promising effects in patients with unresectable or metastatic pancreatic cancer when combined with gemcitabine (NCT01777477) [
<xref ref-type="bibr" rid="CR170">170</xref>
].</p>
<p id="Par96">Although there is no evidence showing the direct relationship between metabolic crosstalk within the microenvironment and chemoresistance, the role of the microenvironment in chemoresistance has become more significant. For example, a recent study showed that CAFs in pancreatic cancer could scavenge gemcitabine and contribute to chemoresistance in murine pancreatic cancer [
<xref ref-type="bibr" rid="CR171">171</xref>
]. Another study suggested that vitamin D receptors highly expressed on PSCs restrict the tumor-supportive role of PSCs and improve the delivery and efficacy of gemcitabine upon binding ligands [
<xref ref-type="bibr" rid="CR172">172</xref>
]. Moreover, an OXPHOS inhibitor (metformin) could overcome CAF-induced chemotherapy resistance and enhance the efficacy of oxaliplatin in pancreatic cancer organoids [
<xref ref-type="bibr" rid="CR173">173</xref>
]. In addition to CAFs, nab-paclitaxel internalization of TAMs via macropinocytosis could drive macrophage M1 polarization, restoring immune recognition in pancreatic cancer [
<xref ref-type="bibr" rid="CR174">174</xref>
]. Given the extensive and vital metabolic crosstalk within the microenvironment, there might be many potential opportunities to promote the anticancer effects of current chemotherapy.</p>
</sec>
<sec id="Sec10">
<title>Radioresistance and metabolism</title>
<p id="Par97">In contrast to chemotherapy, there are several controversies regarding the survival benefits of radiotherapy in pancreatic cancer [
<xref ref-type="bibr" rid="CR175">175</xref>
<xref ref-type="bibr" rid="CR177">177</xref>
]. However, it is still an efficient player in controlling the local progression of pancreatic cancer and other solid tumors [
<xref ref-type="bibr" rid="CR178">178</xref>
]. According to the National Comprehensive Cancer Network guidelines on pancreatic cancer, radiotherapy is recommended as a neoadjuvant therapy for resectable or borderline disease, an adjuvant therapy for resected disease, a definitive treatment for locally advanced disease, and a palliative care strategy for terminal disease (relieving pain, bleeding and local obstructive symptoms). Additionally, radiotherapy is also recommended for local recurrent pancreatic cancer, but there are limited supporting data. Among many molecular and cellular pathways related to radiotherapy, some clues suggest that metabolic changes in pancreatic cancer are important factors that give rise to radioresistance [
<xref ref-type="bibr" rid="CR179">179</xref>
].</p>
<p id="Par98">Clinical investigations have shown that patients with high baseline metabolism in pancreatic cancer have a poor therapeutic response after receiving chemoradiotherapy [
<xref ref-type="bibr" rid="CR180">180</xref>
,
<xref ref-type="bibr" rid="CR181">181</xref>
]. Increased glycolysis-nucleotide metabolism mediated by overexpressed MUC1 in pancreatic cancer also plays a key role in facilitating radioresistance [
<xref ref-type="bibr" rid="CR24">24</xref>
]. 2-DG can increase metabolic oxidative stress and cause the radiosensitization of pancreatic cancer by inhibiting glucose metabolism [
<xref ref-type="bibr" rid="CR182">182</xref>
]. Ketogenic diets represented by high fat and low carbohydrate intake increased radiotherapy sensitivity in mouse models with xenograft pancreatic cancer. However, a relevant phase I clinical trial in pancreatic cancer patients was not successful, mainly due to poor compliance (NCT01419483) [
<xref ref-type="bibr" rid="CR183">183</xref>
]. In addition to glucose metabolism, upregulated FASN likely leads to radioresistance [
<xref ref-type="bibr" rid="CR184">184</xref>
,
<xref ref-type="bibr" rid="CR185">185</xref>
]. Several genes involved in the cholesterol synthesis pathway are also associated with radioresistance in pancreatic cancer. Among them, overexpressed farnesyl diphosphate synthase can be inhibited by zoledronic acid (ZOL), which partly attenuated the radioresistance of pancreatic cancer cells [
<xref ref-type="bibr" rid="CR185">185</xref>
]. A phase II clinical study combining ZOL with chemoradiotherapy followed by surgery in pancreatic cancer patients is ongoing (NCT03073785). The role of metabolism in pancreatic cancer radioresistance remains to be further researched.</p>
</sec>
<sec id="Sec11">
<title>Immunity and metabolism</title>
<p id="Par99">Pancreatic cancer is a kind of low immunogenicity tumor that has a highly immunosuppressive microenvironment dominated by three main leukocyte subtypes: TAMs (mainly predominated by M2-type macrophages), regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) [
<xref ref-type="bibr" rid="CR186">186</xref>
,
<xref ref-type="bibr" rid="CR187">187</xref>
]. Emerging evidence suggests that there are close relationships between metabolism and pancreatic cancer immunity, including immunosuppression and immunotherapy resistance.</p>
<sec id="Sec12">
<title>Immunosuppression and metabolism</title>
<p id="Par100">Glucose-dependent metabolism, especially aerobic glycolysis, is critical to fulfilling the immune functions of CD8+ effector T cells and IFN-γ production of CD4+ T cells [
<xref ref-type="bibr" rid="CR188">188</xref>
,
<xref ref-type="bibr" rid="CR189">189</xref>
]. In contrast to CD4+ effector T cells (Th1, Th2, and Th17) and M1-type macrophages, Tregs and M2-type macrophages are mainly fueled by lipid oxidation and rely less on glycolysis [
<xref ref-type="bibr" rid="CR190">190</xref>
,
<xref ref-type="bibr" rid="CR191">191</xref>
]. Tumor-associated MDSCs also undergo metabolic reprogramming, resulting in both enhanced fatty acid oxidation and increased glycolysis, which sustain their survival and contribute to their immunosuppressive functions [
<xref ref-type="bibr" rid="CR192">192</xref>
,
<xref ref-type="bibr" rid="CR193">193</xref>
]. A study in sarcoma revealed that enhancing the glycolysis of tumor cells restricts glucose supply to nearby T cells, thereby leading to dysfunctional T cells and an immunosuppressive tumor microenvironment [
<xref ref-type="bibr" rid="CR25">25</xref>
]. In addition to direct nutrition competition, tumor-derived lactate is key to remodeling immunity within the microenvironment, inducing the M2-like phenotype of TAMs and reducing CD8+ cytotoxic T cell functions [
<xref ref-type="bibr" rid="CR194">194</xref>
,
<xref ref-type="bibr" rid="CR195">195</xref>
]. More significantly, lactate also upregulates MDSCs and inhibits natural killer cell activity in pancreatic cancer, resulting in an immunosuppressive microenvironment [
<xref ref-type="bibr" rid="CR196">196</xref>
]. Additionally, tumor-induced interleukin 6 compromises host metabolism during caloric deficiency, giving rise to suppressed antitumor immunity [
<xref ref-type="bibr" rid="CR20">20</xref>
]. In conclusion, metabolism provides novel directions for addressing immunosuppression, which limits the effects of many immunotherapies.</p>
</sec>
<sec id="Sec13">
<title>Immunotherapies and metabolism</title>
<p id="Par101">Because of the low proportion of resectable cases and obvious resistance to chemotherapy and radiotherapy, immunotherapy has been rising as a novel strategy to treat pancreatic cancer. Many kinds of immunotherapies for pancreatic cancer have entered clinical trial stages, including immune checkpoint inhibitors [
<xref ref-type="bibr" rid="CR11">11</xref>
], therapeutic vaccines and adoptive T cell transfers [
<xref ref-type="bibr" rid="CR197">197</xref>
,
<xref ref-type="bibr" rid="CR198">198</xref>
]. However, most results are disappointing. Recently, accumulated studies have suggested that T cell-mediated immunotherapy could be optimized by modulating cell metabolism [
<xref ref-type="bibr" rid="CR199">199</xref>
]. Moreover, immune checkpoint inhibitors also show the ability to support the metabolism of lymphocytes in the tumor and improve their antitumor effects [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR200">200</xref>
]. Given the relationship between metabolism and immunotherapy, it is appropriate to improve conventional immunotherapies through metabolic regulation.</p>
<p id="Par102">In addition to immunotherapies focusing on improving the anticancer abilities of lymphocytes, the immunosuppressive microenvironment is emerging as a novel therapeutic target [
<xref ref-type="bibr" rid="CR201">201</xref>
]. In addition to leukocyte subtypes, some cytokines also participate in immunosuppression of pancreatic cancer. For example, indoleamine 2,3-dioxygenase (IDO), a metabolic enzyme expressed in many carcinomas, including pancreatic cancer cells, degrades tryptophan within the tumor microenvironment and inhibits immune cell responses [
<xref ref-type="bibr" rid="CR202">202</xref>
,
<xref ref-type="bibr" rid="CR203">203</xref>
]. Furthermore, combining IDO depletion and tumor desmoplasia inhibition showed successful antitumor effects in mouse models with pancreatic cancer [
<xref ref-type="bibr" rid="CR204">204</xref>
]. Recently, a phase I/II trial combining IDO inhibitor (indoximod) and chemotherapy in patients with metastatic pancreatic cancer was completed (NCT02077881), while another phase II clinical study employing another IDO inhibitor (epacadostat) and immunotherapy or cyclophosphamide in pancreatic cancer patients is recruiting (NCT03006302). In general, given the significant role of metabolism in immunity, metabolic regulation has the potential to improve the clinical results of immunotherapies.</p>
</sec>
</sec>
<sec id="Sec14">
<title>Clinical perspectives and conclusion</title>
<p id="Par103">Metabolism targeted therapy is not yet recommended as regular treatment in most guidelines for treating variety of cancers. In addition to the wide use of aromatase inhibitors in treating breast cancer [
<xref ref-type="bibr" rid="CR205">205</xref>
], most metabolism-targeted therapies against a variety of cancers remain in experimental and clinical trial phases. However, some of them have shown promising results. For instance, ivosidenib, an inhibitor of IDH1, improves the complete remission rate of IDH1-mutated acute myeloid leukemia with a low frequency of treatment-related adverse events in a phase I clinical trial that enrolled 258 patients [
<xref ref-type="bibr" rid="CR206">206</xref>
]. In a phase IV clinical trial that enrolled 28 patients, the mechanism of diclofenac in effectively relieving actinic keratosis (a premalignant skin lesion) was well demonstrated, and the effect was largely dependent on modulating the metabolism of local lesions [
<xref ref-type="bibr" rid="CR207">207</xref>
]. However, given the heterogeneity of different cancers, successful clinical applications in other cancers cannot be directly and simply applied to treating pancreatic tumors. In pancreatic cancer, many metabolic regulators have been employed in preclinical studies [
<xref ref-type="bibr" rid="CR208">208</xref>
] and even in clinical trials [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
]. Compared with some old drugs, such as metformin [
<xref ref-type="bibr" rid="CR209">209</xref>
], aspirin [
<xref ref-type="bibr" rid="CR210">210</xref>
,
<xref ref-type="bibr" rid="CR211">211</xref>
], and statins, which play complex roles in metabolic regulation and have been debated over a dozen years, there are higher expectations for some new properties of other drugs, novel drug combinations and new metabolic regulators. In addition to the clinical trials mentioned above, many other clinical studies have also focused on metabolism in pancreatic cancer treatments (Table
<xref rid="Tab1" ref-type="table">1</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Representative clinical trials concerning metabolic regulation in pancreatic cancer</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>NCT Number</th>
<th>Status</th>
<th>Phase</th>
<th>Tumor Types</th>
<th>Interventions</th>
<th>Monotherapy/Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="6">Targets: Glycolysis and Mitochondrial Metabolism</td>
</tr>
<tr>
<td> NCT00096707</td>
<td>Completed</td>
<td>I</td>
<td>
<p>Lung Cancer</p>
<p>Breast Cancer</p>
<p>Pancreatic Cancer</p>
<p>Head and Neck Cancer</p>
<p>Gastric Cancer</p>
</td>
<td>2-DG ± Docetaxel</td>
<td>Monotherapy/Combination</td>
</tr>
<tr>
<td> NCT01835041</td>
<td>Active, Not Recruiting</td>
<td>I</td>
<td>
<p>Acinar Cell Adenocarcinoma of the Pancreas,</p>
<p>Duct Cell Adenocarcinoma of the Pancreas,</p>
<p>Recurrent Pancreatic Cancer,</p>
<p>Stage IV Pancreatic Cancer</p>
</td>
<td>CPI-613 + mFOLFIRINOX</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT01419483</td>
<td>Terminated</td>
<td>N/A</td>
<td>Pancreatic Neoplasms</td>
<td>Ketogenic Diet</td>
<td>N/A</td>
</tr>
<tr>
<td colspan="6">Targets: Amino Acids Metabolism and Redox Balance</td>
</tr>
<tr>
<td> NCT02514031</td>
<td>Recruiting</td>
<td>I</td>
<td>Pancreatic Cancer</td>
<td>ARQ-761 + Gemcitabine + Nab-paclitaxel</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT01523808</td>
<td>Completed</td>
<td>I</td>
<td>Pancreatic Cancer</td>
<td>GRASPA</td>
<td>Monotherapy</td>
</tr>
<tr>
<td> NCT02195180</td>
<td>Completed</td>
<td>II</td>
<td>Metastatic Pancreatic Adenocarcinoma</td>
<td>ERY001 + Gemcitabine or FOLFOX</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT02077881</td>
<td>Completed</td>
<td>I/II</td>
<td>
<p>Metastatic Pancreatic Adenocarcinoma,</p>
<p>Metastatic Pancreatic Cancer</p>
</td>
<td>Indoximod + Gemcitabine + Nab-paclitaxel</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT03006302</td>
<td>Recruiting</td>
<td>II</td>
<td>Metastatic Pancreatic Adenocarcinoma</td>
<td>Epacadostat + Pembrolizumab + CRS-207 ± Cyclophosphamide/GVAX</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT01049880</td>
<td>Completed</td>
<td>I</td>
<td>Pancreatic Neoplasms</td>
<td>Gemcitabine + Ascorbic Acid</td>
<td>Combination</td>
</tr>
<tr>
<td colspan="6">Target: Lipids Metabolism</td>
</tr>
<tr>
<td> NCT00944463</td>
<td>Completed</td>
<td>II</td>
<td>Pancreatic Cancer</td>
<td>Gemcitabine + Simvastatin</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT01019382</td>
<td>Completed</td>
<td>II</td>
<td>Pancreatic Neoplasms</td>
<td>Gemcitabine + Lipidem Fish Oil Infusion</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT03073785</td>
<td>Recruiting</td>
<td>II</td>
<td>
<p>Pancreatic Adenocarcinoma</p>
<p>Recurrent Pancreatic Carcinoma</p>
<p>Stage I Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage IA Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage IB Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage II Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage IIA Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage IIB Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage III Pancreatic Cancer AJCC v6 and v7</p>
<p>Stage IV Pancreatic Cancer AJCC v6 and v7</p>
</td>
<td>Zoledronic Acid + Capecitabine + Fluorouracil + Radiation Therapy</td>
<td>Combination</td>
</tr>
<tr>
<td colspan="6">Targets: Autophagy and Macropinocytosis</td>
</tr>
<tr>
<td> NCT01777477</td>
<td>Completed</td>
<td>I</td>
<td>Pancreatic Cancer</td>
<td>Gemcitabine + Chloroquine</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT03825289</td>
<td>Recruiting</td>
<td>I</td>
<td>
<p>Metastatic Pancreatic Carcinoma</p>
<p>Stage II Pancreatic Cancer</p>
<p>Stage IIA Pancreatic Cancer</p>
<p>Stage IIB Pancreatic Cancer</p>
<p>Stage III Pancreatic Cancer</p>
<p>Stage IV Pancreatic Cancer</p>
<p>Unresectable Pancreatic Carcinoma</p>
</td>
<td>Hydroxychloroquine + Trametinib</td>
<td>Combination</td>
</tr>
<tr>
<td colspan="6">Target: mTOR</td>
</tr>
<tr>
<td> NCT00409292</td>
<td>Completed</td>
<td>II</td>
<td>Pancreatic Cancer</td>
<td>RAD001</td>
<td>Monotherapy</td>
</tr>
<tr>
<td> NCT00593008</td>
<td>Terminated</td>
<td>I</td>
<td>Pancreatic Adenocarcinoma</td>
<td>Gemcitabine + Temsirolimus</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT01079702</td>
<td>Unknown</td>
<td>I/II</td>
<td>Advanced Malignancies (Including Pancreatic Cancer)</td>
<td>Capecitabine + Everolimus</td>
<td>Combination</td>
</tr>
<tr>
<td colspan="6">Comprehensive Metabolic Regulation</td>
</tr>
<tr>
<td> NCT03889795</td>
<td>Recruiting</td>
<td>I</td>
<td>
<p>Advanced Pancreatic Cancer</p>
<p>Advanced Solid Tumor</p>
</td>
<td>Metformin + Simvastatin + Digoxin</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT02201381</td>
<td>Recruiting</td>
<td>III</td>
<td>Cancer (Including Pancreatic Cancer)</td>
<td>Metabolic Treatment (Metformin + Atorvastatin + Doxycycline + Mebendazole)</td>
<td>Combination</td>
</tr>
<tr>
<td> NCT02048384</td>
<td>Active, Not Recruiting</td>
<td>I/II</td>
<td>Metastatic Pancreatic Adenocarcinoma</td>
<td>Metformin ± Rapamycin</td>
<td>Monotherapy/Combination</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par104">Therapies targeting altered glycolysis pathways are gaining momentum. In a phase I clinical trial in patients with solid tumors, including advanced pancreatic cancer, 2-DG produced tolerable adverse effects but tangible clinical benefits in combination with docetaxel (NCT00096707) [
<xref ref-type="bibr" rid="CR212">212</xref>
]. Although PDH is inhibited by mutant KRAS [
<xref ref-type="bibr" rid="CR46">46</xref>
], cancer cell survival still requires the persistence of PDH activity and mitochondrial metabolism. CPI-613, a lipoate analog, selectively inhibits tumor PDH activity and could disrupt pancreatic cancer growth in xenograft models [
<xref ref-type="bibr" rid="CR213">213</xref>
]. An ongoing phase I study combining CPI-613 with modified FOLFIRINOX for treating metastatic pancreatic cancer showed a small increase in side effects and toxicity compared to that with FOLFIRINOX alone but an encouraging response rate (NCT01835041) [
<xref ref-type="bibr" rid="CR214">214</xref>
].</p>
<p id="Par105">For the noncanonical Gln metabolism of pancreatic cancer, GLS1 inhibition decreases antioxidant pools, whereas β-lapachone induces excess ROS generation specifically in pancreatic cancer cells as an NAD(P)H: quinone oxidoreductase 1-bioactivatable drug. Combining β-lapachone (ARQ761) with GLS1 inhibitors selectively leads to pancreatic cancer cell death in preclinical mouse models [
<xref ref-type="bibr" rid="CR215">215</xref>
]. At present, a phase I clinical study that combined ARQ761 with gemcitabine/nab-paclitaxel in patients with advanced pancreatic cancer is ongoing (NCT02514031). For asparagine metabolism, ERY-ASP showed good tolerance in patients with metastatic pancreatic cancer in a phase I clinical study (NCT01523808) [
<xref ref-type="bibr" rid="CR216">216</xref>
], and a further phase II clinical trial combining ERY-ASP with chemotherapy was completed recently (NCT02195180).</p>
<p id="Par106">Given the comprehensive role of mTOR in metabolism, some clinical trials have employed mTOR inhibitors to address gemcitabine resistance in pancreatic cancer. However, RAD001 (everolimus) showed minimal clinical activity as a single agent in patients with metastatic and gemcitabine-resistant pancreatic cancer (NCT00409292) [
<xref ref-type="bibr" rid="CR217">217</xref>
], whereas another phase II study combining everolimus with capecitabine showed moderately positive results and an acceptable toxicity profile (NCT01079702) [
<xref ref-type="bibr" rid="CR218">218</xref>
]. Therefore, further clinical trials are anticipated.</p>
<p id="Par107">The rewired glucose, amino acid, and lipid metabolism in pancreatic tumors from the cell to the microenvironment or even at the whole-body level deeply affects cancer progression. Furthermore, pancreatic cancer metabolism is also associated with anticancer treatments. Currently, more clinical trials in pancreatic cancer patients are beginning to involve metabolic regulation. Some of the completed trials even showed promising and exciting results. Given the side effects of some metabolic regulators [
<xref ref-type="bibr" rid="CR219">219</xref>
], the role of metabolism targeted therapy in nonmalignant tissues should also be emphasized in future research, which largely restricts the transformation from basic study to successful clinical application. Moreover, pancreatic cancer displayed highly plastic metabolism, suggesting that cancer cells can adapt to use other metabolic pathways to bypass a certain metabolic inhibition [
<xref ref-type="bibr" rid="CR220">220</xref>
]. In addition, pancreatic cancer cell lines also showed heterogeneous metabolic addictions [
<xref ref-type="bibr" rid="CR43">43</xref>
]. Therefore, identification of the real metabolic hub of pancreatic cancer or combining distinct metabolism-targeted therapies in clinical trials is in high demand. In conclusion, a better understanding of pancreatic cancer metabolism and its role in treatments will benefit novel strategies, improving the prognosis of patients with pancreatic cancer.</p>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>2-DG</term>
<def>
<p id="Par2">2-deoxyglucose</p>
</def>
</def-item>
<def-item>
<term>5-FU</term>
<def>
<p id="Par3">5-fluorouracil</p>
</def>
</def-item>
<def-item>
<term>ACAT-1</term>
<def>
<p id="Par4">Acyl-CoA cholesterol acyl-transferase-1</p>
</def>
</def-item>
<def-item>
<term>ACLY</term>
<def>
<p id="Par5">ATP citrate lyase</p>
</def>
</def-item>
<def-item>
<term>AKR1B10</term>
<def>
<p id="Par6">Aldo-keto reductase 1B10</p>
</def>
</def-item>
<def-item>
<term>Asn</term>
<def>
<p id="Par7">Asparagine</p>
</def>
</def-item>
<def-item>
<term>Asp</term>
<def>
<p id="Par8">Aspartate</p>
</def>
</def-item>
<def-item>
<term>CAFs</term>
<def>
<p id="Par9">Cancer-associated fibroblasts</p>
</def>
</def-item>
<def-item>
<term>CARM1</term>
<def>
<p id="Par10">Coactivator-associated arginine methyltransferase 1</p>
</def>
</def-item>
<def-item>
<term>cav-1</term>
<def>
<p id="Par11">caveolin-1</p>
</def>
</def-item>
<def-item>
<term>CS</term>
<def>
<p id="Par12">citrate synthase</p>
</def>
</def-item>
<def-item>
<term>CSC</term>
<def>
<p id="Par13">Cancer stem cell</p>
</def>
</def-item>
<def-item>
<term>ECM</term>
<def>
<p id="Par14">Extracellular matrix</p>
</def>
</def-item>
<def-item>
<term>EMT</term>
<def>
<p id="Par15">Epithelial-mesenchymal transition</p>
</def>
</def-item>
<def-item>
<term>ER</term>
<def>
<p id="Par16">Endoplasmic reticulum</p>
</def>
</def-item>
<def-item>
<term>ERY-ASP</term>
<def>
<p id="Par17">Erythrocyte-entrapped L-asparaginase</p>
</def>
</def-item>
<def-item>
<term>FASN</term>
<def>
<p id="Par18">Fatty acid synthase</p>
</def>
</def-item>
<def-item>
<term>FBW7</term>
<def>
<p id="Par19">F-box and WD repeat domain-containing 7</p>
</def>
</def-item>
<def-item>
<term>FOXM1</term>
<def>
<p id="Par20">Forkhead box protein M1</p>
</def>
</def-item>
<def-item>
<term>GDH</term>
<def>
<p id="Par21">Glutamate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>GFPT1</term>
<def>
<p id="Par22">Glutamine:fructose-6-phosphate amidotransferase-1</p>
</def>
</def-item>
<def-item>
<term>Gln</term>
<def>
<p id="Par23">Glutamine</p>
</def>
</def-item>
<def-item>
<term>GLS1</term>
<def>
<p id="Par24">Glutaminase 1</p>
</def>
</def-item>
<def-item>
<term>Glu</term>
<def>
<p id="Par25">Glutamate</p>
</def>
</def-item>
<def-item>
<term>GLUT1</term>
<def>
<p id="Par26">Glucose transporter 1</p>
</def>
</def-item>
<def-item>
<term>GOT1</term>
<def>
<p id="Par27">Cytoplasmic aspartate transaminase</p>
</def>
</def-item>
<def-item>
<term>GOT2</term>
<def>
<p id="Par28">Mitochondrial aspartate transaminase</p>
</def>
</def-item>
<def-item>
<term>HBP</term>
<def>
<p id="Par29">Hexosamine biosynthesis pathway</p>
</def>
</def-item>
<def-item>
<term>HGF</term>
<def>
<p id="Par30">Hepatocyte growth factor</p>
</def>
</def-item>
<def-item>
<term>HIF-1</term>
<def>
<p id="Par31">Hypoxia-inducible factor-1</p>
</def>
</def-item>
<def-item>
<term>HMGCR</term>
<def>
<p id="Par32">3-hydroxy-3-methylglutaryl coenzyme A reductase</p>
</def>
</def-item>
<def-item>
<term>IDH1</term>
<def>
<p id="Par33">Isocitrate dehydrogenase 1</p>
</def>
</def-item>
<def-item>
<term>IDO</term>
<def>
<p id="Par34">Indoleamine 2,3-dioxygenase</p>
</def>
</def-item>
<def-item>
<term>LAT2</term>
<def>
<p id="Par35">L-type amino acid transporter 2</p>
</def>
</def-item>
<def-item>
<term>LDH</term>
<def>
<p id="Par36">Lactate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>LDLR</term>
<def>
<p id="Par37">Low-density lipoprotein receptor</p>
</def>
</def-item>
<def-item>
<term>MCT1</term>
<def>
<p id="Par38">Monocarboxylate transporter 1</p>
</def>
</def-item>
<def-item>
<term>MDH1</term>
<def>
<p id="Par39">Malate dehydrogenase 1</p>
</def>
</def-item>
<def-item>
<term>MDSCs</term>
<def>
<p id="Par40">Myeloid-derived suppressor cells</p>
</def>
</def-item>
<def-item>
<term>mTORC1</term>
<def>
<p id="Par41">mechanistic target of rapamycin complex 1</p>
</def>
</def-item>
<def-item>
<term>MUC1</term>
<def>
<p id="Par42">Mucin1</p>
</def>
</def-item>
<def-item>
<term>NAD</term>
<def>
<p id="Par43">Nicotinamide adenine dinucleotide</p>
</def>
</def-item>
<def-item>
<term>NF-κB</term>
<def>
<p id="Par44">Nuclear factor-kappa B</p>
</def>
</def-item>
<def-item>
<term>OAA</term>
<def>
<p id="Par45">Oxaloacetate</p>
</def>
</def-item>
<def-item>
<term>OXPHOS</term>
<def>
<p id="Par46">Oxidative phosphorylation</p>
</def>
</def-item>
<def-item>
<term>PDH</term>
<def>
<p id="Par47">Pyruvate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>PDHK1</term>
<def>
<p id="Par48">Pyruvate dehydrogenase kinase 1</p>
</def>
</def-item>
<def-item>
<term>PGC-1α</term>
<def>
<p id="Par49">Peroxisome proliferator-activated receptor gamma coactivator-1α</p>
</def>
</def-item>
<def-item>
<term>PGK1</term>
<def>
<p id="Par50">Phosphoglycerate kinase 1</p>
</def>
</def-item>
<def-item>
<term>PKM2</term>
<def>
<p id="Par51">Pyruvate kinase muscle isozyme 2</p>
</def>
</def-item>
<def-item>
<term>PPP</term>
<def>
<p id="Par52">Pentose phosphate pathway</p>
</def>
</def-item>
<def-item>
<term>Pro</term>
<def>
<p id="Par53">Proline</p>
</def>
</def-item>
<def-item>
<term>PRODH1</term>
<def>
<p id="Par54">Proline oxidase</p>
</def>
</def-item>
<def-item>
<term>PSCs</term>
<def>
<p id="Par55">Pancreatic stellate cells</p>
</def>
</def-item>
<def-item>
<term>ROS</term>
<def>
<p id="Par56">Reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term>RPE</term>
<def>
<p id="Par57">Ribulose-5-phosphate-3-epimerase</p>
</def>
</def-item>
<def-item>
<term>RPIA</term>
<def>
<p id="Par58">Ribulose 5-phosphate isomerase</p>
</def>
</def-item>
<def-item>
<term>RRM2</term>
<def>
<p id="Par59">Ribonucleotide reductase M2</p>
</def>
</def-item>
<def-item>
<term>SCD1</term>
<def>
<p id="Par60">Stearoyl-CoA desaturase</p>
</def>
</def-item>
<def-item>
<term>STAT3</term>
<def>
<p id="Par61">Signal transducer and activator of transcription 3</p>
</def>
</def-item>
<def-item>
<term>TAMs</term>
<def>
<p id="Par62">Tumor-associated macrophages</p>
</def>
</def-item>
<def-item>
<term>TIGAR</term>
<def>
<p id="Par63">TP53-induced glycolysis and apoptosis regulator</p>
</def>
</def-item>
<def-item>
<term>Tregs</term>
<def>
<p id="Par64">Regulatory T cells</p>
</def>
</def-item>
<def-item>
<term>TS</term>
<def>
<p id="Par65">Thymidylate synthase</p>
</def>
</def-item>
<def-item>
<term>USP9X</term>
<def>
<p id="Par66">Ubiquitin-specific peptidase 9X</p>
</def>
</def-item>
<def-item>
<term>ZOL</term>
<def>
<p id="Par67">Zoledronic acid</p>
</def>
</def-item>
<def-item>
<term>α-KG</term>
<def>
<p id="Par68">α-ketoglutarate</p>
</def>
</def-item>
</def-list>
</glossary>
<fn-group>
<fn>
<p>
<bold>Publisher’s Note</bold>
</p>
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>Not applicable.</p>
</ack>
<notes notes-type="author-contribution">
<title>Authors’ contributions</title>
<p>YZ, WW and LY directed and guided this study. CQ collected related literature and drafted this manuscript. GY, JY, BR, HW, GC, FZ, LY, YZ made critical revisions to this manuscript. All authors read and approved the final manuscript.</p>
</notes>
<notes notes-type="funding-information">
<title>Funding</title>
<p>This work was supported by the National Natural Science Foundation of China Grants (81974376 to Mr. Yupei Zhao; 81972321 to Ms. Lei You; 81773215 to Mr. Weibin Wang), and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT32014).</p>
</notes>
<notes notes-type="data-availability">
<title>Availability of data and materials</title>
<p>Not applicable.</p>
</notes>
<notes>
<title>Ethics approval and consent to participate</title>
<p id="Par108">Not applicable.</p>
</notes>
<notes>
<title>Consent for publication</title>
<p id="Par109">Not applicable.</p>
</notes>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par110">The authors declare that they have no competing interests.</p>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cancer statistics, 2019</article-title>
<source>CA Cancer J Clin</source>
<year>2019</year>
<volume>69</volume>
<fpage>7</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.3322/caac.21551</pub-id>
<pub-id pub-id-type="pmid">30620402</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Baade</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer statistics in China, 2015</article-title>
<source>CA Cancer J Clin</source>
<year>2016</year>
<volume>66</volume>
<fpage>115</fpage>
<lpage>132</lpage>
<pub-id pub-id-type="doi">10.3322/caac.21338</pub-id>
<pub-id pub-id-type="pmid">26808342</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rahib</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Aizenberg</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rosenzweig</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Fleshman</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Matrisian</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States</article-title>
<source>Cancer Res</source>
<year>2014</year>
<volume>74</volume>
<fpage>2913</fpage>
<lpage>2921</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-14-0155</pub-id>
<pub-id pub-id-type="pmid">24840647</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Balavarca</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Molina-Montes</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Babaei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van der Geest</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Resection of pancreatic cancer in Europe and USA: an international large-scale study highlighting large variations</article-title>
<source>Gut</source>
<year>2019</year>
<volume>68</volume>
<fpage>130</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1136/gutjnl-2017-314828</pub-id>
<pub-id pub-id-type="pmid">29158237</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleeff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reiser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hinz</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Bachmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Debus</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jaeger</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Surgery for recurrent pancreatic ductal adenocarcinoma</article-title>
<source>Ann Surg</source>
<year>2007</year>
<volume>245</volume>
<fpage>566</fpage>
<lpage>572</lpage>
<pub-id pub-id-type="doi">10.1097/01.sla.0000245845.06772.7d</pub-id>
<pub-id pub-id-type="pmid">17414605</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Gallick</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>Gemcitabine resistance in pancreatic cancer: picking the key players</article-title>
<source>Clin Cancer Res</source>
<year>2008</year>
<volume>14</volume>
<fpage>1284</fpage>
<lpage>1285</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-07-2247</pub-id>
<pub-id pub-id-type="pmid">18316544</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buwenge</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Macchia</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Arcelli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Frakulli</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fuccio</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Guerri</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stereotactic radiotherapy of pancreatic cancer: a systematic review on pain relief</article-title>
<source>J Pain Res</source>
<year>2018</year>
<volume>11</volume>
<fpage>2169</fpage>
<lpage>2178</lpage>
<pub-id pub-id-type="doi">10.2147/JPR.S167994</pub-id>
<pub-id pub-id-type="pmid">30323651</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanmamed</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>A paradigm shift in cancer immunotherapy: from enhancement to normalization</article-title>
<source>Cell</source>
<year>2018</year>
<volume>175</volume>
<fpage>313</fpage>
<lpage>326</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2018.09.035</pub-id>
<pub-id pub-id-type="pmid">30290139</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Oon</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Molecular targeted therapy: treating cancer with specificity</article-title>
<source>Eur J Pharmacol</source>
<year>2018</year>
<volume>834</volume>
<fpage>188</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2018.07.034</pub-id>
<pub-id pub-id-type="pmid">30031797</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colli</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Machiela</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Jessop</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Delattre</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Landscape of combination immunotherapy and targeted therapy to improve cancer management</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<fpage>3666</fpage>
<lpage>3671</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-3338</pub-id>
<pub-id pub-id-type="pmid">28446466</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PD-1/PD-L1 and immunotherapy for pancreatic cancer</article-title>
<source>Cancer Lett</source>
<year>2017</year>
<volume>407</volume>
<fpage>57</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.08.006</pub-id>
<pub-id pub-id-type="pmid">28826722</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akce</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zaidi</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Waller</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>El-Rayes</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Lesinski</surname>
<given-names>GB</given-names>
</name>
</person-group>
<article-title>The potential of CAR T cell therapy in pancreatic cancer</article-title>
<source>Front Immunol</source>
<year>2018</year>
<volume>9</volume>
<fpage>2166</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.02166</pub-id>
<pub-id pub-id-type="pmid">30319627</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mosquera</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maglic</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zervos</surname>
<given-names>EE</given-names>
</name>
</person-group>
<article-title>Molecular targeted therapy for pancreatic adenocarcinoma: a review of completed and ongoing late phase clinical trials</article-title>
<source>Cancer Gene Ther</source>
<year>2016</year>
<volume>209</volume>
<fpage>567</fpage>
<lpage>581</lpage>
<pub-id pub-id-type="doi">10.1016/j.cancergen.2016.07.003</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Leary</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Angenendt</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Core signaling pathways in human pancreatic cancers revealed by global genomic analyses</article-title>
<source>Science</source>
<year>2008</year>
<volume>321</volume>
<fpage>1801</fpage>
<lpage>1806</lpage>
<pub-id pub-id-type="doi">10.1126/science.1164368</pub-id>
<pub-id pub-id-type="pmid">18772397</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neesse</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Algul</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tuveson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Gress</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>Stromal biology and therapy in pancreatic cancer: a changing paradigm</article-title>
<source>Gut</source>
<year>2015</year>
<volume>64</volume>
<fpage>1476</fpage>
<lpage>1484</lpage>
<pub-id pub-id-type="doi">10.1136/gutjnl-2015-309304</pub-id>
<pub-id pub-id-type="pmid">25994217</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Hallmarks of cancer: the next generation</article-title>
<source>Cell</source>
<year>2011</year>
<volume>144</volume>
<fpage>646</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.02.013</pub-id>
<pub-id pub-id-type="pmid">21376230</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cairns</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>TW</given-names>
</name>
</person-group>
<article-title>Regulation of cancer cell metabolism</article-title>
<source>Nat Rev Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>85</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="doi">10.1038/nrc2981</pub-id>
<pub-id pub-id-type="pmid">21258394</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyssiotis</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Metabolic interactions in the tumor microenvironment</article-title>
<source>Trends Cell Biol</source>
<year>2017</year>
<volume>27</volume>
<fpage>863</fpage>
<lpage>875</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2017.06.003</pub-id>
<pub-id pub-id-type="pmid">28734735</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olivares</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Mayers</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Gouirand</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Torrence</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Gicquel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Borge</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions</article-title>
<source>Nat Commun</source>
<year>2017</year>
<volume>8</volume>
<fpage>16031</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms16031</pub-id>
<pub-id pub-id-type="pmid">28685754</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flint</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Janowitz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Connell</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Denton</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Coll</surname>
<given-names>AP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity</article-title>
<source>Cell Metab</source>
<year>2016</year>
<volume>24</volume>
<fpage>672</fpage>
<lpage>684</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2016.10.010</pub-id>
<pub-id pub-id-type="pmid">27829137</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDonald</surname>
<given-names>OG</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tryggvadottir</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mentch</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Warmoes</surname>
<given-names>MO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis</article-title>
<source>Nat Genet</source>
<year>2017</year>
<volume>49</volume>
<fpage>367</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="doi">10.1038/ng.3753</pub-id>
<pub-id pub-id-type="pmid">28092686</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Trefely</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Norgard</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>KC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis</article-title>
<source>Cancer Discov</source>
<year>2019</year>
<volume>9</volume>
<fpage>416</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-18-0567</pub-id>
<pub-id pub-id-type="pmid">30626590</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grasso</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Giovannetti</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Drug resistance in pancreatic cancer: impact of altered energy metabolism</article-title>
<source>Crit Rev Oncol Hematol</source>
<year>2017</year>
<volume>114</volume>
<fpage>139</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1016/j.critrevonc.2017.03.026</pub-id>
<pub-id pub-id-type="pmid">28477742</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gunda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Souchek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Abrego</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Goode</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Vernucci</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MUC1-mediated metabolic alterations regulate response to radiotherapy in pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2017</year>
<volume>23</volume>
<fpage>5881</fpage>
<lpage>5891</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-17-1151</pub-id>
<pub-id pub-id-type="pmid">28720669</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>O'Sullivan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Buck</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Noguchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Curtis</surname>
<given-names>JD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic competition in the tumor microenvironment is a driver of cancer progression</article-title>
<source>Cell</source>
<year>2015</year>
<volume>162</volume>
<fpage>1229</fpage>
<lpage>1241</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2015.08.016</pub-id>
<pub-id pub-id-type="pmid">26321679</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karasinska</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Topham</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Kalloger</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Denroche</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Culibrk</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Altered gene expression along the glycolysis-cholesterol synthesis Axis is associated with outcome in pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2020</year>
<volume>26</volume>
<fpage>135</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-19-1543</pub-id>
<pub-id pub-id-type="pmid">31481506</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehla</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>Metabolic subtyping for novel personalized therapies against pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2020</year>
<volume>26</volume>
<fpage>6</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-19-2926</pub-id>
<pub-id pub-id-type="pmid">31628144</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez-Outschoorn</surname>
<given-names>UE</given-names>
</name>
<name>
<surname>Peiris-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pestell</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Cancer metabolism: a therapeutic perspective</article-title>
<source>Nat Rev Clin Oncol</source>
<year>2017</year>
<volume>14</volume>
<fpage>11</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1038/nrclinonc.2016.60</pub-id>
<pub-id pub-id-type="pmid">27141887</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuneva</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Higashi</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Ferraris</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Tsukamoto</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type</article-title>
<source>Cell Metab</source>
<year>2012</year>
<volume>15</volume>
<fpage>157</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2011.12.015</pub-id>
<pub-id pub-id-type="pmid">22326218</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayers</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Vander Heiden</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Nature and nurture: what determines tumor metabolic phenotypes?</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<fpage>3131</fpage>
<lpage>3134</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-17-0165</pub-id>
<pub-id pub-id-type="pmid">28584183</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaika</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Purohit</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Mehla</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lazenby</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>DiMaio</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e32996</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0032996</pub-id>
<pub-id pub-id-type="pmid">22412968</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>Cancer Genome Atlas Research Network</collab>
</person-group>
<article-title>Electronic address aadhe, cancer genome atlas research N: integrated genomic characterization of pancreatic ductal adenocarcinoma</article-title>
<source>Cancer Cell</source>
<year>2017</year>
<volume>32</volume>
<fpage>185</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2017.07.007</pub-id>
<pub-id pub-id-type="pmid">28810144</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stylianopoulos</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Diop-Frimpong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bardeesy</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>15101</fpage>
<lpage>15108</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1213353109</pub-id>
<pub-id pub-id-type="pmid">22932871</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halbrook</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Lyssiotis</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Employing metabolism to improve the diagnosis and treatment of pancreatic cancer</article-title>
<source>Cancer Cell</source>
<year>2017</year>
<volume>31</volume>
<fpage>5</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2016.12.006</pub-id>
<pub-id pub-id-type="pmid">28073003</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koppenol</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Bounds</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>CV</given-names>
</name>
</person-group>
<article-title>Otto Warburg's contributions to current concepts of cancer metabolism</article-title>
<source>Nat Rev Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>325</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3038</pub-id>
<pub-id pub-id-type="pmid">21508971</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pfeiffer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schuster</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bonhoeffer</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Cooperation and competition in the evolution of ATP-producing pathways</article-title>
<source>Science</source>
<year>2001</year>
<volume>292</volume>
<fpage>504</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="doi">10.1126/science.1058079</pub-id>
<pub-id pub-id-type="pmid">11283355</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liberti</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Locasale</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>The Warburg effect: how does it benefit cancer cells?</article-title>
<source>Trends Biochem Sci</source>
<year>2016</year>
<volume>41</volume>
<fpage>211</fpage>
<lpage>218</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibs.2015.12.001</pub-id>
<pub-id pub-id-type="pmid">26778478</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayers</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Torrence</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Danai</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Papagiannakopoulos</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers</article-title>
<source>Science</source>
<year>2016</year>
<volume>353</volume>
<fpage>1161</fpage>
<lpage>1165</lpage>
<pub-id pub-id-type="doi">10.1126/science.aaf5171</pub-id>
<pub-id pub-id-type="pmid">27609895</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Lyssiotis</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Fletcher-Sananikone</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism</article-title>
<source>Cell</source>
<year>2012</year>
<volume>149</volume>
<fpage>656</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2012.01.058</pub-id>
<pub-id pub-id-type="pmid">22541435</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagarajan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dogra</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gandotra</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Paraoxonase 2 facilitates pancreatic cancer growth and metastasis by stimulating GLUT1-mediated glucose transport</article-title>
<source>Mol Cell</source>
<year>2017</year>
<volume>67</volume>
<fpage>685</fpage>
<lpage>701</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2017.07.014</pub-id>
<pub-id pub-id-type="pmid">28803777</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sherman</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Sousa</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Truitt</surname>
<given-names>ML</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stromal cues regulate the pancreatic cancer epigenome and metabolome</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2017</year>
<volume>114</volume>
<fpage>1129</fpage>
<lpage>1134</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1620164114</pub-id>
<pub-id pub-id-type="pmid">28096419</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sancho</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Burgos-Ramos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tavera</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bou Kheir</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jagust</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Schoenhals</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells</article-title>
<source>Cell Metab</source>
<year>2015</year>
<volume>22</volume>
<fpage>590</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2015.08.015</pub-id>
<pub-id pub-id-type="pmid">26365176</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daemen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sahu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>McCord</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2015</year>
<volume>112</volume>
<fpage>E4410</fpage>
<lpage>E4417</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1501605112</pub-id>
<pub-id pub-id-type="pmid">26216984</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Energy sources identify metabolic phenotypes in pancreatic cancer</article-title>
<source>Acta Biochim Biophys Sin Shanghai</source>
<year>2016</year>
<volume>48</volume>
<fpage>969</fpage>
<lpage>979</lpage>
<pub-id pub-id-type="doi">10.1093/abbs/gmw097</pub-id>
<pub-id pub-id-type="pmid">27649892</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumour-associated mutant p53 drives the Warburg effect</article-title>
<source>Nat Commun</source>
<year>2013</year>
<volume>4</volume>
<fpage>2935</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms3935</pub-id>
<pub-id pub-id-type="pmid">24343302</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Meisenhelder</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hawke</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis</article-title>
<source>Mol Cell</source>
<year>2016</year>
<volume>61</volume>
<fpage>705</fpage>
<lpage>719</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2016.02.009</pub-id>
<pub-id pub-id-type="pmid">26942675</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>ZL</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Yu S: miR-124 suppresses pancreatic ductal adenocarcinoma growth by regulating Monocarboxylate transporter 1-mediated cancer lactate metabolism</article-title>
<source>Cell Physiol Biochem</source>
<year>2018</year>
<volume>50</volume>
<fpage>924</fpage>
<lpage>935</lpage>
<pub-id pub-id-type="doi">10.1159/000494477</pub-id>
<pub-id pub-id-type="pmid">30355947</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Nohr-Nielsen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zeeberg</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Reshkin</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Novak</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells</article-title>
<source>Pancreas</source>
<year>2016</year>
<volume>45</volume>
<fpage>1036</fpage>
<lpage>1047</lpage>
<pub-id pub-id-type="doi">10.1097/MPA.0000000000000571</pub-id>
<pub-id pub-id-type="pmid">26765963</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneiderhan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Scheler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Holzmann</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Marx</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gschwend</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Bucholz</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models</article-title>
<source>Gut</source>
<year>2009</year>
<volume>58</volume>
<fpage>1391</fpage>
<lpage>1398</lpage>
<pub-id pub-id-type="doi">10.1136/gut.2009.181412</pub-id>
<pub-id pub-id-type="pmid">19505879</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santana-Codina</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Roeth</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mashadova</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Asara</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis</article-title>
<source>Nat Commun</source>
<year>2018</year>
<volume>9</volume>
<fpage>4945</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-018-07472-8</pub-id>
<pub-id pub-id-type="pmid">30470748</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Toda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Targeting metabolic reprogramming in KRAS-driven cancers</article-title>
<source>Int J Clin Oncol</source>
<year>2017</year>
<volume>22</volume>
<fpage>651</fpage>
<lpage>659</lpage>
<pub-id pub-id-type="doi">10.1007/s10147-017-1156-4</pub-id>
<pub-id pub-id-type="pmid">28647837</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slawson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>O-GlcNAc signalling: implications for cancer cell biology</article-title>
<source>Nat Rev Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>678</fpage>
<lpage>684</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3114</pub-id>
<pub-id pub-id-type="pmid">21850036</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ju</surname>
<given-names>HQ</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>ZN</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>XQ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer</article-title>
<source>Cancer Lett</source>
<year>2016</year>
<volume>379</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2016.05.024</pub-id>
<pub-id pub-id-type="pmid">27233476</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bryant</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Mancias</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Der</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>KRAS: feeding pancreatic cancer proliferation</article-title>
<source>Trends Biochem Sci</source>
<year>2014</year>
<volume>39</volume>
<fpage>91</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibs.2013.12.004</pub-id>
<pub-id pub-id-type="pmid">24388967</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rago</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cheong</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Pagliarini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Angenendt</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rajagopalan</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells</article-title>
<source>Science</source>
<year>2009</year>
<volume>325</volume>
<fpage>1555</fpage>
<lpage>1559</lpage>
<pub-id pub-id-type="doi">10.1126/science.1174229</pub-id>
<pub-id pub-id-type="pmid">19661383</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schofield</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Espinoza</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Halbrook</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Del Vecchio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Magnuson</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma</article-title>
<source>JCI Insight</source>
<year>2018</year>
<volume>3</volume>
<fpage>97422</fpage>
<pub-id pub-id-type="doi">10.1172/jci.insight.97422</pub-id>
<pub-id pub-id-type="pmid">29367463</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajeshkumar</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Dutta</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Yabuuchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>de Wilde</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>GV</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function</article-title>
<source>Cancer Res</source>
<year>2015</year>
<volume>75</volume>
<fpage>3355</fpage>
<lpage>3364</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-15-0108</pub-id>
<pub-id pub-id-type="pmid">26113084</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bensaad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tsuruta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Selak</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Vidal</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bartrons</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>TIGAR, a p53-inducible regulator of glycolysis and apoptosis</article-title>
<source>Cell</source>
<year>2006</year>
<volume>126</volume>
<fpage>107</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2006.05.036</pub-id>
<pub-id pub-id-type="pmid">16839880</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Butera</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pacchiana</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mullappilly</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Margiotta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bruno</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Conti</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity</article-title>
<source>Biochim Biophys Acta, Mol Cell Res</source>
<year>1865</year>
<volume>2018</volume>
<fpage>1914</fpage>
<lpage>1923</lpage>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression</article-title>
<source>Clin Cancer Res</source>
<year>2014</year>
<volume>20</volume>
<fpage>2595</fpage>
<lpage>2606</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-13-2407</pub-id>
<pub-id pub-id-type="pmid">24634381</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lysine-5 acetylation negatively regulates lactate dehydrogenase a and is decreased in pancreatic cancer</article-title>
<source>Cancer Cell</source>
<year>2013</year>
<volume>23</volume>
<fpage>464</fpage>
<lpage>476</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2013.02.005</pub-id>
<pub-id pub-id-type="pmid">23523103</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guillaumond</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Leca</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Olivares</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lavaut</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Vidal</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Berthezene</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<fpage>3919</fpage>
<lpage>3924</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1219555110</pub-id>
<pub-id pub-id-type="pmid">23407165</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Golias</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Papandreou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Swanson</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours</article-title>
<source>Sci Rep</source>
<year>2016</year>
<volume>6</volume>
<fpage>31146</fpage>
<pub-id pub-id-type="doi">10.1038/srep31146</pub-id>
<pub-id pub-id-type="pmid">27498883</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The responsively decreased PKM2 facilitates the survival of pancreatic cancer cells in hypoglucose</article-title>
<source>Cell Death Dis</source>
<year>2018</year>
<volume>9</volume>
<fpage>133</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-017-0158-5</pub-id>
<pub-id pub-id-type="pmid">29374159</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaira</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sunose</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sunaga</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prognostic significance of L-type amino-acid transporter 1 expression in surgically resected pancreatic cancer</article-title>
<source>Br J Cancer</source>
<year>2012</year>
<volume>107</volume>
<fpage>632</fpage>
<lpage>638</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2012.310</pub-id>
<pub-id pub-id-type="pmid">22805328</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coothankandaswamy</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>CP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Amino acid transporter SLC6A14 is a novel and effective drug target for pancreatic cancer</article-title>
<source>Br J Pharmacol</source>
<year>2016</year>
<volume>173</volume>
<fpage>3292</fpage>
<lpage>3306</lpage>
<pub-id pub-id-type="doi">10.1111/bph.13616</pub-id>
<pub-id pub-id-type="pmid">27747870</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shanware</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Mullen</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>DeBerardinis</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>RT</given-names>
</name>
</person-group>
<article-title>Glutamine: pleiotropic roles in tumor growth and stress resistance</article-title>
<source>J Mol Med (Berl)</source>
<year>2011</year>
<volume>89</volume>
<fpage>229</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="doi">10.1007/s00109-011-0731-9</pub-id>
<pub-id pub-id-type="pmid">21301794</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wise</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Glutamine addiction: a new therapeutic target in cancer</article-title>
<source>Trends Biochem Sci</source>
<year>2010</year>
<volume>35</volume>
<fpage>427</fpage>
<lpage>433</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibs.2010.05.003</pub-id>
<pub-id pub-id-type="pmid">20570523</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Son</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lyssiotis</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ligorio</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway</article-title>
<source>Nature</source>
<year>2013</year>
<volume>496</volume>
<fpage>101</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="doi">10.1038/nature12040</pub-id>
<pub-id pub-id-type="pmid">23535601</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrego</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gunda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vernucci</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>King</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Dasgupta</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells</article-title>
<source>Cancer Lett</source>
<year>2017</year>
<volume>400</volume>
<fpage>37</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.04.029</pub-id>
<pub-id pub-id-type="pmid">28455244</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>YP</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>TS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer</article-title>
<source>Mol Cell</source>
<year>2016</year>
<volume>64</volume>
<fpage>673</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2016.09.028</pub-id>
<pub-id pub-id-type="pmid">27840030</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biancur</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Paulo</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Malachowska</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Quiles Del Rey</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sousa</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism</article-title>
<source>Nat Commun</source>
<year>2017</year>
<volume>8</volume>
<fpage>15965</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms15965</pub-id>
<pub-id pub-id-type="pmid">28671190</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dufour</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gay</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Aguera</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Scoazec</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Horand</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lorenzi</surname>
<given-names>PL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pancreatic tumor sensitivity to plasma L-asparagine starvation</article-title>
<source>Pancreas</source>
<year>2012</year>
<volume>41</volume>
<fpage>940</fpage>
<lpage>948</lpage>
<pub-id pub-id-type="doi">10.1097/MPA.0b013e318247d903</pub-id>
<pub-id pub-id-type="pmid">22513289</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayers</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Clish</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Kraft</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Torrence</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Fiske</surname>
<given-names>BP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development</article-title>
<source>Nat Med</source>
<year>2014</year>
<volume>20</volume>
<fpage>1193</fpage>
<lpage>1198</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3686</pub-id>
<pub-id pub-id-type="pmid">25261994</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaytouni</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Hitchcock</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>DuBois</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Freinkman</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Critical role for arginase 2 in obesity-associated pancreatic cancer</article-title>
<source>Nat Commun</source>
<year>2017</year>
<volume>8</volume>
<fpage>242</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-017-00331-y</pub-id>
<pub-id pub-id-type="pmid">28808255</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sunami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rebelo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kleeff</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Lipid metabolism and lipid droplets in pancreatic cancer and stellate cells</article-title>
<source>Cancers (Basel)</source>
<year>2017</year>
<volume>10</volume>
<fpage>E3</fpage>
<pub-id pub-id-type="doi">10.3390/cancers10010003</pub-id>
<pub-id pub-id-type="pmid">29295482</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menendez</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Lupu</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis</article-title>
<source>Nat Rev Cancer</source>
<year>2007</year>
<volume>7</volume>
<fpage>763</fpage>
<lpage>777</lpage>
<pub-id pub-id-type="doi">10.1038/nrc2222</pub-id>
<pub-id pub-id-type="pmid">17882277</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swierczynski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hebanowska</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sledzinski</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer</article-title>
<source>World J Gastroenterol</source>
<year>2014</year>
<volume>20</volume>
<fpage>2279</fpage>
<lpage>2303</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.v20.i9.2279</pub-id>
<pub-id pub-id-type="pmid">24605027</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guillaumond</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bidaut</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ouaissi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Servais</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gouirand</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Olivares</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2015</year>
<volume>112</volume>
<fpage>2473</fpage>
<lpage>2478</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1421601112</pub-id>
<pub-id pub-id-type="pmid">25675507</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamphorst</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Cross</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>de Stanchina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>R</given-names>
</name>
<name>
<surname>White</surname>
<given-names>EP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<fpage>8882</fpage>
<lpage>8887</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1307237110</pub-id>
<pub-id pub-id-type="pmid">23671091</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chung</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Matkowskyj</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tsao</surname>
<given-names>MS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma</article-title>
<source>Mod Pathol</source>
<year>2012</year>
<volume>25</volume>
<fpage>758</fpage>
<lpage>766</lpage>
<pub-id pub-id-type="doi">10.1038/modpathol.2011.191</pub-id>
<pub-id pub-id-type="pmid">22222635</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>GY</given-names>
</name>
</person-group>
<article-title>Knockdown or inhibition of aldo-keto reductase 1B10 inhibits pancreatic carcinoma growth via modulating Kras-E-cadherin pathway</article-title>
<source>Cancer Lett</source>
<year>2014</year>
<volume>355</volume>
<fpage>273</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2014.09.031</pub-id>
<pub-id pub-id-type="pmid">25304374</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer</article-title>
<source>Oncogene</source>
<year>2016</year>
<volume>35</volume>
<fpage>6378</fpage>
<lpage>6388</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2016.168</pub-id>
<pub-id pub-id-type="pmid">27132508</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Four types of fatty acids exert differential impact on pancreatic cancer growth</article-title>
<source>Cancer Lett</source>
<year>2015</year>
<volume>360</volume>
<fpage>187</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.02.002</pub-id>
<pub-id pub-id-type="pmid">25676690</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mullapudi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mascarinas</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mancinelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Omega-3 fatty acids prevent early pancreatic carcinogenesis via repression of the AKT pathway</article-title>
<source>Nutrients</source>
<year>2018</year>
<volume>10</volume>
<fpage>1289</fpage>
<pub-id pub-id-type="doi">10.3390/nu10091289</pub-id>
<pub-id pub-id-type="pmid">6163264</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>He</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Budhu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gaedcke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ghadimi</surname>
<given-names>BM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2013</year>
<volume>19</volume>
<fpage>4983</fpage>
<lpage>4993</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-13-0209</pub-id>
<pub-id pub-id-type="pmid">23918603</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>BZ</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>BU</given-names>
</name>
</person-group>
<article-title>Influence of statins and cholesterol on mortality among patients with pancreatic cancer</article-title>
<source>J Natl Cancer Inst</source>
<year>2017</year>
<volume>109</volume>
<fpage>2</fpage>
<pub-id pub-id-type="doi">10.1093/jnci/djw275</pub-id>
<pub-id pub-id-type="pmid">28104782</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>SY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Randomized double-blinded, placebo-controlled phase II trial of simvastatin and gemcitabine in advanced pancreatic cancer patients</article-title>
<source>Cancer Chemother Pharmacol</source>
<year>2014</year>
<volume>73</volume>
<fpage>125</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-013-2328-1</pub-id>
<pub-id pub-id-type="pmid">24162380</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamphorst</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Nofal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Commisso</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Grabocka</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein</article-title>
<source>Cancer Res</source>
<year>2015</year>
<volume>75</volume>
<fpage>544</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-14-2211</pub-id>
<pub-id pub-id-type="pmid">25644265</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davidson</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Jonas</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Keibler</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Luengo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mayers</surname>
<given-names>JR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors</article-title>
<source>Nat Med</source>
<year>2017</year>
<volume>23</volume>
<fpage>235</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="doi">10.1038/nm.4256</pub-id>
<pub-id pub-id-type="pmid">28024083</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Commisso</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Soydaner-Azeloglu</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kamphorst</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells</article-title>
<source>Nature</source>
<year>2013</year>
<volume>497</volume>
<fpage>633</fpage>
<lpage>637</lpage>
<pub-id pub-id-type="doi">10.1038/nature12138</pub-id>
<pub-id pub-id-type="pmid">23665962</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seguin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Camargo</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Wettersten</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Desgrosellier</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>von Schalscha</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Galectin-3, a Druggable vulnerability for KRAS-addicted cancers</article-title>
<source>Cancer Discov</source>
<year>2017</year>
<volume>7</volume>
<fpage>1464</fpage>
<lpage>1479</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-17-0539</pub-id>
<pub-id pub-id-type="pmid">28893801</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>White</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Autophagy and tumor metabolism</article-title>
<source>Cell Metab</source>
<year>2017</year>
<volume>25</volume>
<fpage>1037</fpage>
<lpage>1043</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2017.04.004</pub-id>
<pub-id pub-id-type="pmid">28467923</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Contino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Liesa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sahin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pancreatic cancers require autophagy for tumor growth</article-title>
<source>Genes Dev</source>
<year>2011</year>
<volume>25</volume>
<fpage>717</fpage>
<lpage>729</lpage>
<pub-id pub-id-type="doi">10.1101/gad.2016111</pub-id>
<pub-id pub-id-type="pmid">21406549</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kinsey</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Camolotto</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Boespflug</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Guillen</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Foth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Truong</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protective autophagy elicited by RAF-->MEK-->ERK inhibition suggests a treatment strategy for RAS-driven cancers</article-title>
<source>Nat Med</source>
<year>2019</year>
<volume>25</volume>
<fpage>620</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="doi">10.1038/s41591-019-0367-9</pub-id>
<pub-id pub-id-type="pmid">30833748</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bryant</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Stalnecker</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Zeitouni</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Klomp</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tikunov</surname>
<given-names>AP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer</article-title>
<source>Nat Med</source>
<year>2019</year>
<volume>25</volume>
<fpage>628</fpage>
<lpage>640</lpage>
<pub-id pub-id-type="doi">10.1038/s41591-019-0368-8</pub-id>
<pub-id pub-id-type="pmid">30833752</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenfeldt</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>O'Prey</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Morton</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Nixon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>MacKay</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mrowinska</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>p53 status determines the role of autophagy in pancreatic tumour development</article-title>
<source>Nature</source>
<year>2013</year>
<volume>504</volume>
<fpage>296</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="doi">10.1038/nature12865</pub-id>
<pub-id pub-id-type="pmid">24305049</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rajeshkumar</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yabuuchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>GC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations</article-title>
<source>Cancer Discov</source>
<year>2014</year>
<volume>4</volume>
<fpage>905</fpage>
<lpage>913</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-14-0362</pub-id>
<pub-id pub-id-type="pmid">24875860</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wyant</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Abu-Remaileh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wolfson</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Freinkman</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Danai</surname>
<given-names>LV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient</article-title>
<source>Cell</source>
<year>2017</year>
<volume>171</volume>
<fpage>642</fpage>
<lpage>654</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.09.046</pub-id>
<pub-id pub-id-type="pmid">29053970</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sengupta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Sabatini</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress</article-title>
<source>Mol Cell</source>
<year>2010</year>
<volume>40</volume>
<fpage>310</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2010.09.026</pub-id>
<pub-id pub-id-type="pmid">20965424</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Regulation mechanisms and signaling pathways of autophagy</article-title>
<source>Annu Rev Genet</source>
<year>2009</year>
<volume>43</volume>
<fpage>67</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-genet-102808-114910</pub-id>
<pub-id pub-id-type="pmid">19653858</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizushima</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>The role of the Atg1/ULK1 complex in autophagy regulation</article-title>
<source>Curr Opin Cell Biol</source>
<year>2010</year>
<volume>22</volume>
<fpage>132</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceb.2009.12.004</pub-id>
<pub-id pub-id-type="pmid">20056399</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palm</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pavlova</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>Tuveson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>The utilization of extracellular proteins as nutrients is suppressed by mTORC1</article-title>
<source>Cell</source>
<year>2015</year>
<volume>162</volume>
<fpage>259</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2015.06.017</pub-id>
<pub-id pub-id-type="pmid">26144316</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pylayeva-Gupta</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Grabocka</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bar-Sagi</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>RAS oncogenes: weaving a tumorigenic web</article-title>
<source>Nat Rev Cancer</source>
<year>2011</year>
<volume>11</volume>
<fpage>761</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="doi">10.1038/nrc3106</pub-id>
<pub-id pub-id-type="pmid">21993244</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perera</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Stoykova</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nicolay</surname>
<given-names>BN</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>KN</given-names>
</name>
<name>
<surname>Fitamant</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Boukhali</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism</article-title>
<source>Nature</source>
<year>2015</year>
<volume>524</volume>
<fpage>361</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="doi">10.1038/nature14587</pub-id>
<pub-id pub-id-type="pmid">26168401</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nofal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rabinowitz</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>mTOR inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein</article-title>
<source>Mol Cell</source>
<year>2017</year>
<volume>67</volume>
<fpage>936</fpage>
<lpage>946</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2017.08.011</pub-id>
<pub-id pub-id-type="pmid">28918901</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dougan</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>The pancreatic cancer microenvironment</article-title>
<source>Cancer J</source>
<year>2017</year>
<volume>23</volume>
<fpage>321</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="doi">10.1097/PPO.0000000000000288</pub-id>
<pub-id pub-id-type="pmid">29189327</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>You</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor microenvironment participates in metastasis of pancreatic cancer</article-title>
<source>Mol Cancer</source>
<year>2018</year>
<volume>17</volume>
<fpage>108</fpage>
<pub-id pub-id-type="doi">10.1186/s12943-018-0858-1</pub-id>
<pub-id pub-id-type="pmid">30060755</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tung</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Sistrunk</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Conklin</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Schedin</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor mechanics and metabolic dysfunction</article-title>
<source>Free Radic Biol Med</source>
<year>2015</year>
<volume>79</volume>
<fpage>269</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2014.11.020</pub-id>
<pub-id pub-id-type="pmid">25532934</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dovmark</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Saccomano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hulikova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alves</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Swietach</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells</article-title>
<source>Oncogene</source>
<year>2017</year>
<volume>36</volume>
<fpage>4538</fpage>
<lpage>4550</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2017.71</pub-id>
<pub-id pub-id-type="pmid">28368405</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roland</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Arumugam</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Philip</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cell surface lactate receptor GPR81 is crucial for cancer cell survival</article-title>
<source>Cancer Res</source>
<year>2014</year>
<volume>74</volume>
<fpage>5301</fpage>
<lpage>5310</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-14-0319</pub-id>
<pub-id pub-id-type="pmid">24928781</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hui</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ghergurovich</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Morscher</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glucose feeds the TCA cycle via circulating lactate</article-title>
<source>Nature</source>
<year>2017</year>
<volume>551</volume>
<fpage>115</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="doi">10.1038/nature24057</pub-id>
<pub-id pub-id-type="pmid">29045397</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>San-Millan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect</article-title>
<source>Carcinogenesis</source>
<year>2017</year>
<volume>38</volume>
<fpage>119</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="pmid">27993896</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pavlides</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Whitaker-Menezes</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Castello-Cros</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Flomenberg</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Witkiewicz</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>PG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma</article-title>
<source>Cell Cycle</source>
<year>2009</year>
<volume>8</volume>
<fpage>3984</fpage>
<lpage>4001</lpage>
<pub-id pub-id-type="doi">10.4161/cc.8.23.10238</pub-id>
<pub-id pub-id-type="pmid">19923890</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MiR-21-mediated metabolic alteration of cancer-associated fibroblasts and its effect on pancreatic cancer cell behavior</article-title>
<source>Int J Biol Sci</source>
<year>2018</year>
<volume>14</volume>
<fpage>100</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.7150/ijbs.22555</pub-id>
<pub-id pub-id-type="pmid">29483829</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maertin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Elperin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lotshaw</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sendler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Speakman</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Takakura</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges</article-title>
<source>Am J Physiol Gastrointest Liver Physiol</source>
<year>2017</year>
<volume>313</volume>
<fpage>G524</fpage>
<lpage>G536</lpage>
<pub-id pub-id-type="doi">10.1152/ajpgi.00138.2017</pub-id>
<pub-id pub-id-type="pmid">28705806</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashton</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>McKenna</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Kunz-Schughart</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>GS</given-names>
</name>
</person-group>
<article-title>Oxidative phosphorylation as an emerging target in cancer therapy</article-title>
<source>Clin Cancer Res</source>
<year>2018</year>
<volume>24</volume>
<fpage>2482</fpage>
<lpage>2490</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-17-3070</pub-id>
<pub-id pub-id-type="pmid">29420223</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Baddour</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Achreja</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism</article-title>
<source>Elife</source>
<year>2016</year>
<volume>5</volume>
<fpage>e10250</fpage>
<pub-id pub-id-type="doi">10.7554/eLife.10250</pub-id>
<pub-id pub-id-type="pmid">26920219</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sousa</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Biancur</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Halbrook</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion</article-title>
<source>Nature</source>
<year>2016</year>
<volume>536</volume>
<fpage>479</fpage>
<lpage>483</lpage>
<pub-id pub-id-type="doi">10.1038/nature19084</pub-id>
<pub-id pub-id-type="pmid">27509858</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tape</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dimitriadi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McMahon</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Worboys</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Leong</surname>
<given-names>HS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation</article-title>
<source>Cell</source>
<year>2016</year>
<volume>165</volume>
<fpage>1818</fpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2016.05.079</pub-id>
<pub-id pub-id-type="pmid">27315484</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1alpha</article-title>
<source>Exp Cell Res</source>
<year>2018</year>
<volume>371</volume>
<fpage>63</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1016/j.yexcr.2018.07.041</pub-id>
<pub-id pub-id-type="pmid">30056064</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masamune</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hamada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nabeshima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shimosegawa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Pyruvate kinase isozyme M2 plays a critical role in the interactions between pancreatic stellate cells and cancer cells</article-title>
<source>Dig Dis Sci</source>
<year>2018</year>
<volume>63</volume>
<fpage>1868</fpage>
<lpage>1877</lpage>
<pub-id pub-id-type="doi">10.1007/s10620-018-5051-2</pub-id>
<pub-id pub-id-type="pmid">29619774</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ben-Harosh</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Anosov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Salem</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yatchenko</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Birk</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Pancreatic stellate cell activation is regulated by fatty acids and ER stress</article-title>
<source>Exp Cell Res</source>
<year>2017</year>
<volume>359</volume>
<fpage>76</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1016/j.yexcr.2017.08.007</pub-id>
<pub-id pub-id-type="pmid">28827060</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haqq</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Howells</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Garcea</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dennison</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Targeting pancreatic cancer using a combination of gemcitabine with the omega-3 polyunsaturated fatty acid emulsion, Lipidem</article-title>
<source>Mol Nutr Food Res</source>
<year>2016</year>
<volume>60</volume>
<fpage>1437</fpage>
<lpage>1447</lpage>
<pub-id pub-id-type="doi">10.1002/mnfr.201500755</pub-id>
<pub-id pub-id-type="pmid">26603273</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Penny</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Sieow</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Adriani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yeap</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>See Chi Ee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>San Luis</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma</article-title>
<source>Oncoimmunology</source>
<year>2016</year>
<volume>5</volume>
<fpage>e1191731</fpage>
<pub-id pub-id-type="doi">10.1080/2162402X.2016.1191731</pub-id>
<pub-id pub-id-type="pmid">27622062</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma</article-title>
<source>Cell Death Dis</source>
<year>2018</year>
<volume>9</volume>
<fpage>453</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-018-0486-0</pub-id>
<pub-id pub-id-type="pmid">29670110</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edderkaoui</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chheda</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Soufi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zayou</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Ramanujan</surname>
<given-names>VK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An inhibitor of GSK3B and HDACs kills pancreatic cancer cells and slows pancreatic tumor growth and metastasis in mice</article-title>
<source>Gastroenterology</source>
<year>2018</year>
<volume>155</volume>
<fpage>1985</fpage>
<lpage>1998</lpage>
<pub-id pub-id-type="doi">10.1053/j.gastro.2018.08.028</pub-id>
<pub-id pub-id-type="pmid">30144430</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancerassociated adipocytes exhibit distinct phenotypes and facilitate tumor progression in pancreatic cancer</article-title>
<source>Oncol Rep</source>
<year>2019</year>
<volume>42</volume>
<fpage>2537</fpage>
<lpage>2549</lpage>
<pub-id pub-id-type="pmid">31638193</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Neeley</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Washabaugh</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Flesher</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>BS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer</article-title>
<source>Biochem Biophys Rep</source>
<year>2016</year>
<volume>7</volume>
<fpage>144</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="pmid">27617308</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Incio</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Suboj</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>IX</given-names>
</name>
<name>
<surname>Pinter</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Obesity-induced inflammation and Desmoplasia promote pancreatic cancer progression and resistance to chemotherapy</article-title>
<source>Cancer Discov</source>
<year>2016</year>
<volume>6</volume>
<fpage>852</fpage>
<lpage>869</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-15-1177</pub-id>
<pub-id pub-id-type="pmid">27246539</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amrutkar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gladhaug</surname>
<given-names>IP</given-names>
</name>
</person-group>
<article-title>Pancreatic cancer Chemoresistance to gemcitabine</article-title>
<source>Cancers (Basel)</source>
<year>2017</year>
<volume>9</volume>
<fpage>157</fpage>
<pub-id pub-id-type="doi">10.3390/cancers9110157</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chubb</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hertel</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Grindey</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Plunkett</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Action of 2’, 2’-difluorodeoxycytidine on DNA synthesis</article-title>
<source>Cancer Res</source>
<year>1991</year>
<volume>51</volume>
<fpage>6110</fpage>
<lpage>6117</lpage>
<pub-id pub-id-type="pmid">1718594</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saif</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Harnessing gemcitabine metabolism: a step towards personalized medicine for pancreatic cancer</article-title>
<source>Ther Adv Med Oncol</source>
<year>2012</year>
<volume>4</volume>
<fpage>341</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="doi">10.1177/1758834012453755</pub-id>
<pub-id pub-id-type="pmid">23118809</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yardley</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Nab-paclitaxel mechanisms of action and delivery</article-title>
<source>J Control Release</source>
<year>2013</year>
<volume>170</volume>
<fpage>365</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2013.05.041</pub-id>
<pub-id pub-id-type="pmid">23770008</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giordano</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pancione</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Olivieri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Parcesepe</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Velocci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Di Raimo</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nano albumin bound-paclitaxel in pancreatic cancer: current evidences and future directions</article-title>
<source>World J Gastroenterol</source>
<year>2017</year>
<volume>23</volume>
<fpage>5875</fpage>
<lpage>5886</lpage>
<pub-id pub-id-type="doi">10.3748/wjg.v23.i32.5875</pub-id>
<pub-id pub-id-type="pmid">28932079</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frese</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Neesse</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bapiro</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Lolkema</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Jodrell</surname>
<given-names>DI</given-names>
</name>
</person-group>
<article-title>Tuveson DA: nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer</article-title>
<source>Cancer Discov</source>
<year>2012</year>
<volume>2</volume>
<fpage>260</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-11-0242</pub-id>
<pub-id pub-id-type="pmid">22585996</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borsoi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Leonard</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zaid</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Elganainy</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma</article-title>
<source>Cancer Lett</source>
<year>2017</year>
<volume>403</volume>
<fpage>296</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.06.026</pub-id>
<pub-id pub-id-type="pmid">28687352</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Longley</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Harkin</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>PG</given-names>
</name>
</person-group>
<article-title>5-fluorouracil: mechanisms of action and clinical strategies</article-title>
<source>Nat Rev Cancer</source>
<year>2003</year>
<volume>3</volume>
<fpage>330</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="doi">10.1038/nrc1074</pub-id>
<pub-id pub-id-type="pmid">12724731</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burris</surname>
<given-names>HA</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Moore</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Rothenberg</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Modiano</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial</article-title>
<source>J Clin Oncol</source>
<year>1997</year>
<volume>15</volume>
<fpage>2403</fpage>
<lpage>2413</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.1997.15.6.2403</pub-id>
<pub-id pub-id-type="pmid">9196156</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conroy</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hammel</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hebbar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ben Abdelghani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Raoul</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer</article-title>
<source>N Engl J Med</source>
<year>2018</year>
<volume>379</volume>
<fpage>2395</fpage>
<lpage>2406</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1809775</pub-id>
<pub-id pub-id-type="pmid">30575490</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conroy</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Desseigne</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ychou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bouche</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Guimbaud</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Becouarn</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer</article-title>
<source>N Engl J Med</source>
<year>2011</year>
<volume>364</volume>
<fpage>1817</fpage>
<lpage>1825</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1011923</pub-id>
<pub-id pub-id-type="pmid">21561347</pub-id>
</element-citation>
</ref>
<ref id="CR142">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beumer</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Sadot</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Marthey</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Faris</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Mellon</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis</article-title>
<source>Lancet Oncol</source>
<year>2016</year>
<volume>17</volume>
<fpage>801</fpage>
<lpage>810</lpage>
<pub-id pub-id-type="doi">10.1016/S1470-2045(16)00172-8</pub-id>
<pub-id pub-id-type="pmid">27160474</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dhir</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zenati</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Hamad</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Singhi</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Bahary</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hogg</surname>
<given-names>ME</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FOLFIRINOX versus gemcitabine/nab-paclitaxel for neoadjuvant treatment of Resectable and borderline Resectable pancreatic head adenocarcinoma</article-title>
<source>Ann Surg Oncol</source>
<year>2018</year>
<volume>25</volume>
<fpage>1896</fpage>
<lpage>1903</lpage>
<pub-id pub-id-type="doi">10.1245/s10434-018-6512-8</pub-id>
<pub-id pub-id-type="pmid">29761331</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>KKW</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Beca</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Redmond-Misner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Isaranuwatchai</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Real-world outcomes of FOLFIRINOX vs gemcitabine and nab-paclitaxel in advanced pancreatic cancer: a population-based propensity score-weighted analysis</article-title>
<source>Cancer Med</source>
<year>2020</year>
<volume>9</volume>
<fpage>160</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1002/cam4.2705</pub-id>
<pub-id pub-id-type="pmid">31724340</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujimura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ikenaga</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ohuchida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Setoyama</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Irie</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Miura</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells</article-title>
<source>Pancreas</source>
<year>2014</year>
<volume>43</volume>
<fpage>311</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="doi">10.1097/MPA.0000000000000092</pub-id>
<pub-id pub-id-type="pmid">24518513</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells</article-title>
<source>J Cell Mol Med</source>
<year>2017</year>
<volume>21</volume>
<fpage>2055</fpage>
<lpage>2067</lpage>
<pub-id pub-id-type="doi">10.1111/jcmm.13126</pub-id>
<pub-id pub-id-type="pmid">28244691</pub-id>
</element-citation>
</ref>
<ref id="CR147">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaika</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Gebregiworgis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lewallen</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Purohit</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Radhakrishnan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>13787</fpage>
<lpage>13792</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1203339109</pub-id>
<pub-id pub-id-type="pmid">22869720</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehla</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>MUC1: a novel metabolic master regulator</article-title>
<source>Biochim Biophys Acta</source>
<year>1845</year>
<volume>2014</volume>
<fpage>126</fpage>
<lpage>135</lpage>
</element-citation>
</ref>
<ref id="CR149">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shukla</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Purohit</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Mehla</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Gunda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chaika</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Vernucci</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer</article-title>
<source>Cancer Cell</source>
<year>2017</year>
<volume>32</volume>
<fpage>71</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccell.2017.06.004</pub-id>
<pub-id pub-id-type="pmid">28697344</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trehoux</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Duchene</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jonckheere</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Van Seuningen</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42-44 MAPK, Akt, Bcl-2 and MMP13 pathways</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2015</year>
<volume>456</volume>
<fpage>757</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2014.12.025</pub-id>
<pub-id pub-id-type="pmid">25511698</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FBW7 (F-box and WD repeat domain-containing 7) negatively regulates glucose metabolism by targeting the c-Myc/TXNIP (Thioredoxin-binding protein) Axis in pancreatic cancer</article-title>
<source>Clin Cancer Res</source>
<year>2016</year>
<volume>22</volume>
<fpage>3950</fpage>
<lpage>3960</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-15-2380</pub-id>
<pub-id pub-id-type="pmid">26983463</pub-id>
</element-citation>
</ref>
<ref id="CR152">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer</article-title>
<source>J Exp Clin Cancer Res</source>
<year>2018</year>
<volume>37</volume>
<fpage>274</fpage>
<pub-id pub-id-type="doi">10.1186/s13046-018-0947-4</pub-id>
<pub-id pub-id-type="pmid">30419950</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>IL</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Shirley</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting the Warburg effect with a novel glucose transporter inhibitor to overcome gemcitabine resistance in pancreatic cancer cells</article-title>
<source>Carcinogenesis</source>
<year>2014</year>
<volume>35</volume>
<fpage>2203</fpage>
<lpage>2213</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/bgu124</pub-id>
<pub-id pub-id-type="pmid">24879635</pub-id>
</element-citation>
</ref>
<ref id="CR154">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2)</article-title>
<source>J Exp Clin Cancer Res</source>
<year>2017</year>
<volume>36</volume>
<fpage>107</fpage>
<pub-id pub-id-type="doi">10.1186/s13046-017-0579-0</pub-id>
<pub-id pub-id-type="pmid">28797284</pub-id>
</element-citation>
</ref>
<ref id="CR155">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>AH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<fpage>4328</fpage>
<lpage>4341</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-3143</pub-id>
<pub-id pub-id-type="pmid">28720574</pub-id>
</element-citation>
</ref>
<ref id="CR156">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Riddell</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer</article-title>
<source>Sci Rep</source>
<year>2017</year>
<volume>7</volume>
<fpage>7950</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-08436-6</pub-id>
<pub-id pub-id-type="pmid">28801576</pub-id>
</element-citation>
</ref>
<ref id="CR157">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-kappaB/STAT3 signaling cascade</article-title>
<source>Cancer Lett</source>
<year>2016</year>
<volume>382</volume>
<fpage>53</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2016.08.023</pub-id>
<pub-id pub-id-type="pmid">27576197</pub-id>
</element-citation>
</ref>
<ref id="CR158">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zarei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Nevler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vaziri-Gohar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dukleska</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Posttranscriptional upregulation of IDH1 by HuR establishes a powerful survival phenotype in pancreatic cancer cells</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<fpage>4460</fpage>
<lpage>4471</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-17-0015</pub-id>
<pub-id pub-id-type="pmid">28652247</pub-id>
</element-citation>
</ref>
<ref id="CR159">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer</article-title>
<source>Oncol Lett</source>
<year>2018</year>
<volume>15</volume>
<fpage>2211</fpage>
<lpage>2217</lpage>
<pub-id pub-id-type="pmid">29434927</pub-id>
</element-citation>
</ref>
<ref id="CR160">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>You</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Koo</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells</article-title>
<source>Exp Cell Res</source>
<year>2015</year>
<volume>336</volume>
<fpage>119</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="doi">10.1016/j.yexcr.2015.05.017</pub-id>
<pub-id pub-id-type="pmid">26112218</pub-id>
</element-citation>
</ref>
<ref id="CR161">
<label>161.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tadros</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>King</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Gunda</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vernucci</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Abrego</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<fpage>5503</fpage>
<lpage>5517</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-3062</pub-id>
<pub-id pub-id-type="pmid">28811332</pub-id>
</element-citation>
</ref>
<ref id="CR162">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hering</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Garrean</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dekoj</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Razzak</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Saied</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Trevino</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of proliferation by omega-3 fatty acids in chemoresistant pancreatic cancer cells</article-title>
<source>Ann Surg Oncol</source>
<year>2007</year>
<volume>14</volume>
<fpage>3620</fpage>
<lpage>3628</lpage>
<pub-id pub-id-type="doi">10.1245/s10434-007-9556-8</pub-id>
<pub-id pub-id-type="pmid">17896154</pub-id>
</element-citation>
</ref>
<ref id="CR163">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arshad</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>WY</given-names>
</name>
<name>
<surname>Steward</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Metcalfe</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Dennison</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Reduction in circulating pro-angiogenic and pro-inflammatory factors is related to improved outcomes in patients with advanced pancreatic cancer treated with gemcitabine and intravenous omega-3 fish oil</article-title>
<source>HPB (Oxford)</source>
<year>2013</year>
<volume>15</volume>
<fpage>428</fpage>
<lpage>432</lpage>
<pub-id pub-id-type="doi">10.1111/hpb.12002</pub-id>
<pub-id pub-id-type="pmid">23458624</pub-id>
</element-citation>
</ref>
<ref id="CR164">
<label>164.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cordes</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Frick</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brunner</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Pilarsky</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grutzmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sipos</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1</article-title>
<source>Oncogene</source>
<year>2007</year>
<volume>26</volume>
<fpage>6851</fpage>
<lpage>6862</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1210498</pub-id>
<pub-id pub-id-type="pmid">17471232</pub-id>
</element-citation>
</ref>
<ref id="CR165">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatterjee</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ben-Josef</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Robb</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Vedaie</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Seum</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thirumoorthy</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<fpage>5925</fpage>
<lpage>5937</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-17-0604</pub-id>
<pub-id pub-id-type="pmid">28923854</pub-id>
</element-citation>
</ref>
<ref id="CR166">
<label>166.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Kesh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dauer</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nomura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Giri</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metastasis and chemoresistance in CD133 expressing pancreatic cancer cells are dependent on their lipid raft integrity</article-title>
<source>Cancer Lett</source>
<year>2018</year>
<volume>439</volume>
<fpage>101</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.09.028</pub-id>
<pub-id pub-id-type="pmid">30290209</pub-id>
</element-citation>
</ref>
<ref id="CR167">
<label>167.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pietrocola</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Metabolic control of autophagy</article-title>
<source>Cell</source>
<year>2014</year>
<volume>159</volume>
<fpage>1263</fpage>
<lpage>1276</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2014.11.006</pub-id>
<pub-id pub-id-type="pmid">25480292</pub-id>
</element-citation>
</ref>
<ref id="CR168">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>BW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>USP9X inhibition improves gemcitabine sensitivity in pancreatic cancer by inhibiting autophagy</article-title>
<source>Cancer Lett</source>
<year>2018</year>
<volume>436</volume>
<fpage>129</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2018.08.010</pub-id>
<pub-id pub-id-type="pmid">30118840</pub-id>
</element-citation>
</ref>
<ref id="CR169">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hashimoto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Blauer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hirota</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ikonen</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Sand</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Laukkarinen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs</article-title>
<source>Eur J Cancer</source>
<year>2014</year>
<volume>50</volume>
<fpage>1382</fpage>
<lpage>1390</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejca.2014.01.011</pub-id>
<pub-id pub-id-type="pmid">24503026</pub-id>
</element-citation>
</ref>
<ref id="CR170">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samaras</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tusup</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nguyen-Kim</surname>
<given-names>TDL</given-names>
</name>
<name>
<surname>Seifert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bachmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>von Moos</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer</article-title>
<source>Cancer Chemother Pharmacol</source>
<year>2017</year>
<volume>80</volume>
<fpage>1005</fpage>
<lpage>1012</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-017-3446-y</pub-id>
<pub-id pub-id-type="pmid">28980060</pub-id>
</element-citation>
</ref>
<ref id="CR171">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hessmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Patzak</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kari</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ramu</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer</article-title>
<source>Gut</source>
<year>2018</year>
<volume>67</volume>
<fpage>497</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="doi">10.1136/gutjnl-2016-311954</pub-id>
<pub-id pub-id-type="pmid">28077438</pub-id>
</element-citation>
</ref>
<ref id="CR172">
<label>172.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sherman</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Engle</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Tiriac</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy</article-title>
<source>Cell</source>
<year>2014</year>
<volume>159</volume>
<fpage>80</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2014.08.007</pub-id>
<pub-id pub-id-type="pmid">25259922</pub-id>
</element-citation>
</ref>
<ref id="CR173">
<label>173.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broekgaarden</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Anbil</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bulin</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Obaid</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mai</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Baglo</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer</article-title>
<source>Biomaterials</source>
<year>2019</year>
<volume>222</volume>
<fpage>119421</fpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2019.119421</pub-id>
<pub-id pub-id-type="pmid">31494503</pub-id>
</element-citation>
</ref>
<ref id="CR174">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cullis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Siolas</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Avanzi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Barui</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maitra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bar-Sagi</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer</article-title>
<source>Cancer Immunol Res</source>
<year>2017</year>
<volume>5</volume>
<fpage>182</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="doi">10.1158/2326-6066.CIR-16-0125</pub-id>
<pub-id pub-id-type="pmid">28108630</pub-id>
</element-citation>
</ref>
<ref id="CR175">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neoptolemos</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Stocken</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Friess</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bassi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Hickey</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer</article-title>
<source>N Engl J Med</source>
<year>2004</year>
<volume>350</volume>
<fpage>1200</fpage>
<lpage>1210</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa032295</pub-id>
<pub-id pub-id-type="pmid">15028824</pub-id>
</element-citation>
</ref>
<ref id="CR176">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loehrer</surname>
<given-names>PJ</given-names>
<suffix>Sr</suffix>
</name>
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Cardenes</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Brell</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Cella</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an eastern cooperative oncology group trial</article-title>
<source>J Clin Oncol</source>
<year>2011</year>
<volume>29</volume>
<fpage>4105</fpage>
<lpage>4112</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2011.34.8904</pub-id>
<pub-id pub-id-type="pmid">21969502</pub-id>
</element-citation>
</ref>
<ref id="CR177">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rutter</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Corso</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Lester-Coll</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Mancini</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Yeboa</surname>
<given-names>DN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Addition of radiotherapy to adjuvant chemotherapy is associated with improved overall survival in resected pancreatic adenocarcinoma: an analysis of the National Cancer Data Base</article-title>
<source>Cancer</source>
<year>2015</year>
<volume>121</volume>
<fpage>4141</fpage>
<lpage>4149</lpage>
<pub-id pub-id-type="doi">10.1002/cncr.29652</pub-id>
<pub-id pub-id-type="pmid">26280559</pub-id>
</element-citation>
</ref>
<ref id="CR178">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badiyan</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Molitoris</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Chuong</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Regine</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The role of radiation therapy for pancreatic cancer in the adjuvant and neoadjuvant settings</article-title>
<source>Surg Oncol Clin N Am</source>
<year>2017</year>
<volume>26</volume>
<fpage>431</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1016/j.soc.2017.01.012</pub-id>
<pub-id pub-id-type="pmid">28576181</pub-id>
</element-citation>
</ref>
<ref id="CR179">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seshacharyulu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Baine</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Souchek</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Menning</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biological determinants of radioresistance and their remediation in pancreatic cancer</article-title>
<source>Biochim Biophys Acta Rev Cancer</source>
<year>1868</year>
<volume>2017</volume>
<fpage>69</fpage>
<lpage>92</lpage>
</element-citation>
</ref>
<ref id="CR180">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dholakia</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Chaudhry</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leal</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Raman</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Hacker-Prietz</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Baseline metabolic tumor volume and total lesion glycolysis are associated with survival outcomes in patients with locally advanced pancreatic cancer receiving stereotactic body radiation therapy</article-title>
<source>Int J Radiat Oncol Biol Phys</source>
<year>2014</year>
<volume>89</volume>
<fpage>539</fpage>
<lpage>546</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijrobp.2014.02.031</pub-id>
<pub-id pub-id-type="pmid">24751410</pub-id>
</element-citation>
</ref>
<ref id="CR181">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurahara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Maemura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mataki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sakoda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Iino</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kawasaki</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Significance of (18) F-Fluorodeoxyglucose (FDG) uptake in response to Chemoradiotherapy for pancreatic cancer</article-title>
<source>Ann Surg Oncol</source>
<year>2019</year>
<volume>26</volume>
<fpage>644</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1245/s10434-018-07098-6</pub-id>
<pub-id pub-id-type="pmid">30523468</pub-id>
</element-citation>
</ref>
<ref id="CR182">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Asbury</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Daniels</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Aykin-Burns</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer</article-title>
<source>Free Radic Biol Med</source>
<year>2008</year>
<volume>44</volume>
<fpage>322</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.freeradbiomed.2007.08.032</pub-id>
<pub-id pub-id-type="pmid">18215740</pub-id>
</element-citation>
</ref>
<ref id="CR183">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zahra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fath</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Opat</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mapuskar</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Bhatia</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>DC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Consuming a ketogenic diet while receiving radiation and chemotherapy for locally advanced lung cancer and pancreatic cancer: the University of Iowa experience of two phase 1 clinical trials</article-title>
<source>Radiat Res</source>
<year>2017</year>
<volume>187</volume>
<fpage>743</fpage>
<lpage>754</lpage>
<pub-id pub-id-type="doi">10.1667/RR14668.1</pub-id>
<pub-id pub-id-type="pmid">28437190</pub-id>
</element-citation>
</ref>
<ref id="CR184">
<label>184.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yip-Schneider</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of fatty acid synthase in gemcitabine and radiation resistance of pancreatic cancers</article-title>
<source>Int J Biochem Mol Biol</source>
<year>2011</year>
<volume>2</volume>
<fpage>89</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">21331354</pub-id>
</element-citation>
</ref>
<ref id="CR185">
<label>185.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Souchek</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Baine</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rachagani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation</article-title>
<source>Br J Cancer</source>
<year>2014</year>
<volume>111</volume>
<fpage>1139</fpage>
<lpage>1149</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2014.385</pub-id>
<pub-id pub-id-type="pmid">25025965</pub-id>
</element-citation>
</ref>
<ref id="CR186">
<label>186.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Beatty</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Vonderheide</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer</article-title>
<source>Cancer Lett</source>
<year>2009</year>
<volume>279</volume>
<fpage>1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2008.09.037</pub-id>
<pub-id pub-id-type="pmid">19013709</pub-id>
</element-citation>
</ref>
<ref id="CR187">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ino</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamazaki-Itoh</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shimada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kosuge</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kanai</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer</article-title>
<source>Br J Cancer</source>
<year>2013</year>
<volume>108</volume>
<fpage>914</fpage>
<lpage>923</lpage>
<pub-id pub-id-type="doi">10.1038/bjc.2013.32</pub-id>
<pub-id pub-id-type="pmid">23385730</pub-id>
</element-citation>
</ref>
<ref id="CR188">
<label>188.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cham</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Driessens</surname>
<given-names>G</given-names>
</name>
<name>
<surname>O'Keefe</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Gajewski</surname>
<given-names>TF</given-names>
</name>
</person-group>
<article-title>Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells</article-title>
<source>Eur J Immunol</source>
<year>2008</year>
<volume>38</volume>
<fpage>2438</fpage>
<lpage>2450</lpage>
<pub-id pub-id-type="doi">10.1002/eji.200838289</pub-id>
<pub-id pub-id-type="pmid">18792400</pub-id>
</element-citation>
</ref>
<ref id="CR189">
<label>189.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Curtis</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Maggi</surname>
<given-names>LB</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Faubert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Villarino</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>O'Sullivan</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Posttranscriptional control of T cell effector function by aerobic glycolysis</article-title>
<source>Cell</source>
<year>2013</year>
<volume>153</volume>
<fpage>1239</fpage>
<lpage>1251</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2013.05.016</pub-id>
<pub-id pub-id-type="pmid">23746840</pub-id>
</element-citation>
</ref>
<ref id="CR190">
<label>190.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michalek</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Gerriets</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Macintyre</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>MacIver</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>EF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets</article-title>
<source>J Immunol</source>
<year>2011</year>
<volume>186</volume>
<fpage>3299</fpage>
<lpage>3303</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1003613</pub-id>
<pub-id pub-id-type="pmid">21317389</pub-id>
</element-citation>
</ref>
<ref id="CR191">
<label>191.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Everts</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ivanova</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>O'Sullivan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nascimento</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages</article-title>
<source>Nat Immunol</source>
<year>2014</year>
<volume>15</volume>
<fpage>846</fpage>
<lpage>855</lpage>
<pub-id pub-id-type="doi">10.1038/ni.2956</pub-id>
<pub-id pub-id-type="pmid">25086775</pub-id>
</element-citation>
</ref>
<ref id="CR192">
<label>192.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hossain</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Al-Khami</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Wyczechowska</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hernandez</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Reiss</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies</article-title>
<source>Cancer Immunol Res</source>
<year>2015</year>
<volume>3</volume>
<fpage>1236</fpage>
<lpage>1247</lpage>
<pub-id pub-id-type="doi">10.1158/2326-6066.CIR-15-0036</pub-id>
<pub-id pub-id-type="pmid">26025381</pub-id>
</element-citation>
</ref>
<ref id="CR193">
<label>193.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jian</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>SC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis</article-title>
<source>Cell Death Dis</source>
<year>2017</year>
<volume>8</volume>
<fpage>e2779</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2017.192</pub-id>
<pub-id pub-id-type="pmid">28492541</pub-id>
</element-citation>
</ref>
<ref id="CR194">
<label>194.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colegio</surname>
<given-names>OR</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>NQ</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rhebergen</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Jairam</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Functional polarization of tumour-associated macrophages by tumour-derived lactic acid</article-title>
<source>Nature</source>
<year>2014</year>
<volume>513</volume>
<fpage>559</fpage>
<lpage>563</lpage>
<pub-id pub-id-type="doi">10.1038/nature13490</pub-id>
<pub-id pub-id-type="pmid">25043024</pub-id>
</element-citation>
</ref>
<ref id="CR195">
<label>195.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Voelkl</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meidenbauer</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ammer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Edinger</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibitory effect of tumor cell-derived lactic acid on human T cells</article-title>
<source>Blood</source>
<year>2007</year>
<volume>109</volume>
<fpage>3812</fpage>
<lpage>3819</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2006-07-035972</pub-id>
<pub-id pub-id-type="pmid">17255361</pub-id>
</element-citation>
</ref>
<ref id="CR196">
<label>196.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Husain</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Seth</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sukhatme</surname>
<given-names>VP</given-names>
</name>
</person-group>
<article-title>Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells</article-title>
<source>J Immunol</source>
<year>2013</year>
<volume>191</volume>
<fpage>1486</fpage>
<lpage>1495</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1202702</pub-id>
<pub-id pub-id-type="pmid">23817426</pub-id>
</element-citation>
</ref>
<ref id="CR197">
<label>197.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducreux</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Seufferlein</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Van Laethem</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Laurent-Puig</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Smolenschi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Malka</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Systemic treatment of pancreatic cancer revisited</article-title>
<source>Semin Oncol</source>
<year>2019</year>
<volume>46</volume>
<fpage>28</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1053/j.seminoncol.2018.12.003</pub-id>
<pub-id pub-id-type="pmid">30638624</pub-id>
</element-citation>
</ref>
<ref id="CR198">
<label>198.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foley</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Jaffee</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Current progress in immunotherapy for pancreatic cancer</article-title>
<source>Cancer Lett</source>
<year>2016</year>
<volume>381</volume>
<fpage>244</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2015.12.020</pub-id>
<pub-id pub-id-type="pmid">26723878</pub-id>
</element-citation>
</ref>
<ref id="CR199">
<label>199.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kishton</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Sukumar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Restifo</surname>
<given-names>NP</given-names>
</name>
</person-group>
<article-title>Metabolic regulation of T cell longevity and function in tumor immunotherapy</article-title>
<source>Cell Metab</source>
<year>2017</year>
<volume>26</volume>
<fpage>94</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2017.06.016</pub-id>
<pub-id pub-id-type="pmid">28683298</pub-id>
</element-citation>
</ref>
<ref id="CR200">
<label>200.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franchina</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>He</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Survival of the fittest: cancer challenges T cell metabolism</article-title>
<source>Cancer Lett</source>
<year>2018</year>
<volume>412</volume>
<fpage>216</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.10.014</pub-id>
<pub-id pub-id-type="pmid">29074426</pub-id>
</element-citation>
</ref>
<ref id="CR201">
<label>201.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nywening</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Wang-Gillam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sanford</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Belt</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Panni</surname>
<given-names>RZ</given-names>
</name>
<name>
<surname>Cusworth</surname>
<given-names>BM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-Centre, open-label, dose-finding, non-randomised, phase 1b trial</article-title>
<source>Lancet Oncol</source>
<year>2016</year>
<volume>17</volume>
<fpage>651</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="doi">10.1016/S1470-2045(16)00078-4</pub-id>
<pub-id pub-id-type="pmid">27055731</pub-id>
</element-citation>
</ref>
<ref id="CR202">
<label>202.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uyttenhove</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pilotte</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Theate</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Stroobant</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Colau</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Parmentier</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase</article-title>
<source>Nat Med</source>
<year>2003</year>
<volume>9</volume>
<fpage>1269</fpage>
<lpage>1274</lpage>
<pub-id pub-id-type="doi">10.1038/nm934</pub-id>
<pub-id pub-id-type="pmid">14502282</pub-id>
</element-citation>
</ref>
<ref id="CR203">
<label>203.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Saga</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mizukami</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nonaka</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy</article-title>
<source>Int J Oncol</source>
<year>2012</year>
<volume>40</volume>
<fpage>929</fpage>
<lpage>934</lpage>
<pub-id pub-id-type="doi">10.3892/ijo.2011.1295</pub-id>
<pub-id pub-id-type="pmid">22179492</pub-id>
</element-citation>
</ref>
<ref id="CR204">
<label>204.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manuel</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>D'Apuzzo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lampa</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Kaltcheva</surname>
<given-names>TI</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Salmonella-based therapy targeting Indoleamine 2,3-dioxygenase coupled with enzymatic depletion of tumor Hyaluronan induces complete regression of aggressive pancreatic tumors</article-title>
<source>Cancer Immunol Res</source>
<year>2015</year>
<volume>3</volume>
<fpage>1096</fpage>
<lpage>1107</lpage>
<pub-id pub-id-type="doi">10.1158/2326-6066.CIR-14-0214</pub-id>
<pub-id pub-id-type="pmid">26134178</pub-id>
</element-citation>
</ref>
<ref id="CR205">
<label>205.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>Early Breast Cancer Trialists’ Collaborative G</collab>
</person-group>
<article-title>Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials</article-title>
<source>Lancet</source>
<year>2015</year>
<volume>386</volume>
<fpage>1341</fpage>
<lpage>1352</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(15)61074-1</pub-id>
<pub-id pub-id-type="pmid">26211827</pub-id>
</element-citation>
</ref>
<ref id="CR206">
<label>206.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DiNardo</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>de Botton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roboz</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Altman</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Mims</surname>
<given-names>AS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML</article-title>
<source>N Engl J Med</source>
<year>2018</year>
<volume>378</volume>
<fpage>2386</fpage>
<lpage>2398</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1716984</pub-id>
<pub-id pub-id-type="pmid">29860938</pub-id>
</element-citation>
</ref>
<ref id="CR207">
<label>207.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dettmer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Unger</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Schonhammer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Renner</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Peter</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Topical diclofenac reprograms metabolism and immune cell infiltration in actinic keratosis</article-title>
<source>Front Oncol</source>
<year>2019</year>
<volume>9</volume>
<fpage>605</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2019.00605</pub-id>
<pub-id pub-id-type="pmid">31334125</pub-id>
</element-citation>
</ref>
<ref id="CR208">
<label>208.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajeshkumar</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Yabuuchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pai</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>De Oliveira</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kamphorst</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Rabinowitz</surname>
<given-names>JD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment of pancreatic cancer patient-derived xenograft panel with metabolic inhibitors reveals efficacy of Phenformin</article-title>
<source>Clin Cancer Res</source>
<year>2017</year>
<volume>23</volume>
<fpage>5639</fpage>
<lpage>5647</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-17-1115</pub-id>
<pub-id pub-id-type="pmid">28611197</pub-id>
</element-citation>
</ref>
<ref id="CR209">
<label>209.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhaw-Luximon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jhurry</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Metformin in pancreatic cancer treatment: from clinical trials through basic research to biomarker quantification</article-title>
<source>J Cancer Res Clin Oncol</source>
<year>2016</year>
<volume>142</volume>
<fpage>2159</fpage>
<lpage>2171</lpage>
<pub-id pub-id-type="doi">10.1007/s00432-016-2178-4</pub-id>
<pub-id pub-id-type="pmid">27160287</pub-id>
</element-citation>
</ref>
<ref id="CR210">
<label>210.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>DiPaola</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>XL</given-names>
</name>
</person-group>
<article-title>Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment</article-title>
<source>Cancer Prev Res (Phila)</source>
<year>2014</year>
<volume>7</volume>
<fpage>388</fpage>
<lpage>397</lpage>
<pub-id pub-id-type="doi">10.1158/1940-6207.CAPR-13-0337</pub-id>
<pub-id pub-id-type="pmid">24520038</pub-id>
</element-citation>
</ref>
<ref id="CR211">
<label>211.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mormile</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Aspirin and pancreatic cancer-letter</article-title>
<source>Cancer Epidemiol Biomark Prev</source>
<year>2017</year>
<volume>26</volume>
<fpage>978</fpage>
<pub-id pub-id-type="doi">10.1158/1055-9965.EPI-17-0059</pub-id>
</element-citation>
</ref>
<ref id="CR212">
<label>212.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raez</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Papadopoulos</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ricart</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Chiorean</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Dipaola</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>MN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors</article-title>
<source>Cancer Chemother Pharmacol</source>
<year>2013</year>
<volume>71</volume>
<fpage>523</fpage>
<lpage>530</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-012-2045-1</pub-id>
<pub-id pub-id-type="pmid">23228990</pub-id>
</element-citation>
</ref>
<ref id="CR213">
<label>213.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zachar</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Marecek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maturo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stuart</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Howell</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo</article-title>
<source>J Mol Med (Berl)</source>
<year>2011</year>
<volume>89</volume>
<fpage>1137</fpage>
<lpage>1148</lpage>
<pub-id pub-id-type="doi">10.1007/s00109-011-0785-8</pub-id>
<pub-id pub-id-type="pmid">21769686</pub-id>
</element-citation>
</ref>
<ref id="CR214">
<label>214.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alistar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Desnoyer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Klepin</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Hosseinzadeh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-Centre, open-label, dose-escalation, phase 1 trial</article-title>
<source>Lancet Oncol</source>
<year>2017</year>
<volume>18</volume>
<fpage>770</fpage>
<lpage>778</lpage>
<pub-id pub-id-type="doi">10.1016/S1470-2045(17)30314-5</pub-id>
<pub-id pub-id-type="pmid">28495639</pub-id>
</element-citation>
</ref>
<ref id="CR215">
<label>215.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakrabarti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>ZR</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ilcheva</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Padanad</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ss-lapachone</article-title>
<source>Cancer Metab</source>
<year>2015</year>
<volume>3</volume>
<fpage>12</fpage>
<pub-id pub-id-type="doi">10.1186/s40170-015-0137-1</pub-id>
<pub-id pub-id-type="pmid">26462257</pub-id>
</element-citation>
</ref>
<ref id="CR216">
<label>216.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bachet</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Gay</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Marechal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Galais</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Adenis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ms</surname>
<given-names>CD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Asparagine Synthetase expression and phase I study with L-Asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma</article-title>
<source>Pancreas</source>
<year>2015</year>
<volume>44</volume>
<fpage>1141</fpage>
<lpage>1147</lpage>
<pub-id pub-id-type="doi">10.1097/MPA.0000000000000394</pub-id>
<pub-id pub-id-type="pmid">26355551</pub-id>
</element-citation>
</ref>
<ref id="CR217">
<label>217.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolpin</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Hezel</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Abrams</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Blaszkowsky</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Meyerhardt</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer</article-title>
<source>J Clin Oncol</source>
<year>2009</year>
<volume>27</volume>
<fpage>193</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2008.18.9514</pub-id>
<pub-id pub-id-type="pmid">19047305</pub-id>
</element-citation>
</ref>
<ref id="CR218">
<label>218.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kordes</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Klumpen</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Weterman</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Schellens</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Richel</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Wilmink</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Phase II study of capecitabine and the oral mTOR inhibitor everolimus in patients with advanced pancreatic cancer</article-title>
<source>Cancer Chemother Pharmacol</source>
<year>2015</year>
<volume>75</volume>
<fpage>1135</fpage>
<lpage>1141</lpage>
<pub-id pub-id-type="doi">10.1007/s00280-015-2730-y</pub-id>
<pub-id pub-id-type="pmid">25822310</pub-id>
</element-citation>
</ref>
<ref id="CR219">
<label>219.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voss</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lorenz</surname>
<given-names>NI</given-names>
</name>
<name>
<surname>Luger</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Steinbach</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Rieger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ronellenfitsch</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>Rescue of 2-Deoxyglucose side effects by ketogenic diet</article-title>
<source>Int J Mol Sci</source>
<year>2018</year>
<volume>19</volume>
<fpage>2462</fpage>
<pub-id pub-id-type="doi">10.3390/ijms19082462</pub-id>
<pub-id pub-id-type="pmid">6121440</pub-id>
</element-citation>
</ref>
<ref id="CR220">
<label>220.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biancur</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance</article-title>
<source>Biochim Biophys Acta Rev Cancer</source>
<year>1870</year>
<volume>2018</volume>
<fpage>67</fpage>
<lpage>75</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000248 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000248 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7053123
   |texte=   Metabolism of pancreatic cancer: paving the way to better anticancer strategies
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32122374" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021