Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crosstalk between autophagy and metabolic regulation of cancer stem cells

Identifieur interne : 000247 ( Pmc/Corpus ); précédent : 000246; suivant : 000248

Crosstalk between autophagy and metabolic regulation of cancer stem cells

Auteurs : Mouradi El Hout ; Emma Cosialls ; Maryam Mehrpour ; Ahmed Hamaï

Source :

RBID : PMC:7003352

Abstract

Cancer is now considered as a heterogeneous ecosystem in which tumor cells collaborate with each other and with host cells in their microenvironment. As circumstances change, the ecosystem evolves to ensure the survival and growth of the cancer cells. In this ecosystem, metabolism is not only a key player but also drives stemness. In this review, we first summarize our current understanding of how autophagy influences cancer stem cell phenotype. We emphasize metabolic pathways in cancer stem cells and discuss how autophagy-mediated regulation metabolism is involved in their maintenance and proliferation. We then provide an update on the role of metabolic reprogramming and plasticity in cancer stem cells. Finally, we discuss how metabolic pathways in cancer stem cells could be therapeutically targeted.


Url:
DOI: 10.1186/s12943-019-1126-8
PubMed: 32028963
PubMed Central: 7003352

Links to Exploration step

PMC:7003352

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crosstalk between autophagy and metabolic regulation of cancer stem cells</title>
<author>
<name sortKey="El Hout, Mouradi" sort="El Hout, Mouradi" uniqKey="El Hout M" first="Mouradi" last="El Hout">Mouradi El Hout</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cosialls, Emma" sort="Cosialls, Emma" uniqKey="Cosialls E" first="Emma" last="Cosialls">Emma Cosialls</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mehrpour, Maryam" sort="Mehrpour, Maryam" uniqKey="Mehrpour M" first="Maryam" last="Mehrpour">Maryam Mehrpour</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hamai, Ahmed" sort="Hamai, Ahmed" uniqKey="Hamai A" first="Ahmed" last="Hamaï">Ahmed Hamaï</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32028963</idno>
<idno type="pmc">7003352</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003352</idno>
<idno type="RBID">PMC:7003352</idno>
<idno type="doi">10.1186/s12943-019-1126-8</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000247</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000247</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Crosstalk between autophagy and metabolic regulation of cancer stem cells</title>
<author>
<name sortKey="El Hout, Mouradi" sort="El Hout, Mouradi" uniqKey="El Hout M" first="Mouradi" last="El Hout">Mouradi El Hout</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cosialls, Emma" sort="Cosialls, Emma" uniqKey="Cosialls E" first="Emma" last="Cosialls">Emma Cosialls</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mehrpour, Maryam" sort="Mehrpour, Maryam" uniqKey="Mehrpour M" first="Maryam" last="Mehrpour">Maryam Mehrpour</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hamai, Ahmed" sort="Hamai, Ahmed" uniqKey="Hamai A" first="Ahmed" last="Hamaï">Ahmed Hamaï</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular Cancer</title>
<idno type="eISSN">1476-4598</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Cancer is now considered as a heterogeneous ecosystem in which tumor cells collaborate with each other and with host cells in their microenvironment. As circumstances change, the ecosystem evolves to ensure the survival and growth of the cancer cells. In this ecosystem, metabolism is not only a key player but also drives stemness. In this review, we first summarize our current understanding of how autophagy influences cancer stem cell phenotype. We emphasize metabolic pathways in cancer stem cells and discuss how autophagy-mediated regulation metabolism is involved in their maintenance and proliferation. We then provide an update on the role of metabolic reprogramming and plasticity in cancer stem cells. Finally, we discuss how metabolic pathways in cancer stem cells could be therapeutically targeted.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Outschoorn, Ue" uniqKey="Martinez Outschoorn U">UE Martinez-Outschoorn</name>
</author>
<author>
<name sortKey="Peiris Pages, M" uniqKey="Peiris Pages M">M Peiris-Pages</name>
</author>
<author>
<name sortKey="Pestell, Rg" uniqKey="Pestell R">RG Pestell</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snyder, V" uniqKey="Snyder V">V Snyder</name>
</author>
<author>
<name sortKey="Reed Newman, Tc" uniqKey="Reed Newman T">TC Reed-Newman</name>
</author>
<author>
<name sortKey="Arnold, L" uniqKey="Arnold L">L Arnold</name>
</author>
<author>
<name sortKey="Thomas, Sm" uniqKey="Thomas S">SM Thomas</name>
</author>
<author>
<name sortKey="Anant, S" uniqKey="Anant S">S Anant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mowers, Ee" uniqKey="Mowers E">EE Mowers</name>
</author>
<author>
<name sortKey="Sharifi, Mn" uniqKey="Sharifi M">MN Sharifi</name>
</author>
<author>
<name sortKey="Macleod, Kf" uniqKey="Macleod K">KF Macleod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poillet Perez, L" uniqKey="Poillet Perez L">L Poillet-Perez</name>
</author>
<author>
<name sortKey="White, E" uniqKey="White E">E White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poillet Perez, L" uniqKey="Poillet Perez L">L Poillet-Perez</name>
</author>
<author>
<name sortKey="Xie, X" uniqKey="Xie X">X Xie</name>
</author>
<author>
<name sortKey="Zhan, L" uniqKey="Zhan L">L Zhan</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Sharp, Dw" uniqKey="Sharp D">DW Sharp</name>
</author>
<author>
<name sortKey="Hu, Zs" uniqKey="Hu Z">ZS Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palm, W" uniqKey="Palm W">W Palm</name>
</author>
<author>
<name sortKey="Thompson, Cb" uniqKey="Thompson C">CB Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lyssiotis, Ca" uniqKey="Lyssiotis C">CA Lyssiotis</name>
</author>
<author>
<name sortKey="Kimmelman, Ac" uniqKey="Kimmelman A">AC Kimmelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vander Heiden, Mg" uniqKey="Vander Heiden M">MG Vander Heiden</name>
</author>
<author>
<name sortKey="Cantley, Lc" uniqKey="Cantley L">LC Cantley</name>
</author>
<author>
<name sortKey="Thompson, Cb" uniqKey="Thompson C">CB Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordier Bussat, M" uniqKey="Cordier Bussat M">M Cordier-Bussat</name>
</author>
<author>
<name sortKey="Thibert, C" uniqKey="Thibert C">C Thibert</name>
</author>
<author>
<name sortKey="Sujobert, P" uniqKey="Sujobert P">P Sujobert</name>
</author>
<author>
<name sortKey="Genestier, L" uniqKey="Genestier L">L Genestier</name>
</author>
<author>
<name sortKey="Fontaine, E" uniqKey="Fontaine E">E Fontaine</name>
</author>
<author>
<name sortKey="Billaud, M" uniqKey="Billaud M">M Billaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Baehrecke, Eh" uniqKey="Baehrecke E">EH Baehrecke</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A Ballabio</name>
</author>
<author>
<name sortKey="Boya, P" uniqKey="Boya P">P Boya</name>
</author>
<author>
<name sortKey="Bravo San Pedro, Jm" uniqKey="Bravo San Pedro J">JM Bravo-San Pedro</name>
</author>
<author>
<name sortKey="Cecconi, F" uniqKey="Cecconi F">F Cecconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boya, Patricia" uniqKey="Boya P">Patricia Boya</name>
</author>
<author>
<name sortKey="Codogno, Patrice" uniqKey="Codogno P">Patrice Codogno</name>
</author>
<author>
<name sortKey="Rodriguez Muela, Natalia" uniqKey="Rodriguez Muela N">Natalia Rodriguez-Muela</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cufi, S" uniqKey="Cufi S">S Cufi</name>
</author>
<author>
<name sortKey="Vazquez Martin, A" uniqKey="Vazquez Martin A">A Vazquez-Martin</name>
</author>
<author>
<name sortKey="Oliveras Ferraros, C" uniqKey="Oliveras Ferraros C">C Oliveras-Ferraros</name>
</author>
<author>
<name sortKey="Martin Castillo, B" uniqKey="Martin Castillo B">B Martin-Castillo</name>
</author>
<author>
<name sortKey="Vellon, L" uniqKey="Vellon L">L Vellon</name>
</author>
<author>
<name sortKey="Menendez, Ja" uniqKey="Menendez J">JA Menendez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, C" uniqKey="Gong C">C Gong</name>
</author>
<author>
<name sortKey="Bauvy, C" uniqKey="Bauvy C">C Bauvy</name>
</author>
<author>
<name sortKey="Tonelli, G" uniqKey="Tonelli G">G Tonelli</name>
</author>
<author>
<name sortKey="Yue, W" uniqKey="Yue W">W Yue</name>
</author>
<author>
<name sortKey="Delomenie, C" uniqKey="Delomenie C">C Delomenie</name>
</author>
<author>
<name sortKey="Nicolas, V" uniqKey="Nicolas V">V Nicolas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vera Ramirez, L" uniqKey="Vera Ramirez L">L Vera-Ramirez</name>
</author>
<author>
<name sortKey="Vodnala, Sk" uniqKey="Vodnala S">SK Vodnala</name>
</author>
<author>
<name sortKey="Nini, R" uniqKey="Nini R">R Nini</name>
</author>
<author>
<name sortKey="Hunter, Kw" uniqKey="Hunter K">KW Hunter</name>
</author>
<author>
<name sortKey="Green, Je" uniqKey="Green J">JE Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharif, T" uniqKey="Sharif T">T Sharif</name>
</author>
<author>
<name sortKey="Martell, E" uniqKey="Martell E">E Martell</name>
</author>
<author>
<name sortKey="Dai, C" uniqKey="Dai C">C Dai</name>
</author>
<author>
<name sortKey="Kennedy, Be" uniqKey="Kennedy B">BE Kennedy</name>
</author>
<author>
<name sortKey="Murphy, P" uniqKey="Murphy P">P Murphy</name>
</author>
<author>
<name sortKey="Clements, Dr" uniqKey="Clements D">DR Clements</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nazio, F" uniqKey="Nazio F">F Nazio</name>
</author>
<author>
<name sortKey="Bordi, M" uniqKey="Bordi M">M Bordi</name>
</author>
<author>
<name sortKey="Cianfanelli, V" uniqKey="Cianfanelli V">V Cianfanelli</name>
</author>
<author>
<name sortKey="Locatelli, F" uniqKey="Locatelli F">F Locatelli</name>
</author>
<author>
<name sortKey="Cecconi, F" uniqKey="Cecconi F">F Cecconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Shingu, T" uniqKey="Shingu T">T Shingu</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L Feng</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Ogasawara, M" uniqKey="Ogasawara M">M Ogasawara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Pp" uniqKey="Liu P">PP Liu</name>
</author>
<author>
<name sortKey="Liao, J" uniqKey="Liao J">J Liao</name>
</author>
<author>
<name sortKey="Tang, Zj" uniqKey="Tang Z">ZJ Tang</name>
</author>
<author>
<name sortKey="Wu, Wj" uniqKey="Wu W">WJ Wu</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Zeng, Zl" uniqKey="Zeng Z">ZL Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvero, Ab" uniqKey="Alvero A">AB Alvero</name>
</author>
<author>
<name sortKey="Montagna, Mk" uniqKey="Montagna M">MK Montagna</name>
</author>
<author>
<name sortKey="Sumi, Nj" uniqKey="Sumi N">NJ Sumi</name>
</author>
<author>
<name sortKey="Joo, Wd" uniqKey="Joo W">WD Joo</name>
</author>
<author>
<name sortKey="Graham, E" uniqKey="Graham E">E Graham</name>
</author>
<author>
<name sortKey="Mor, G" uniqKey="Mor G">G Mor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciavardelli, D" uniqKey="Ciavardelli D">D Ciavardelli</name>
</author>
<author>
<name sortKey="Rossi, C" uniqKey="Rossi C">C Rossi</name>
</author>
<author>
<name sortKey="Barcaroli, D" uniqKey="Barcaroli D">D Barcaroli</name>
</author>
<author>
<name sortKey="Volpe, S" uniqKey="Volpe S">S Volpe</name>
</author>
<author>
<name sortKey="Consalvo, A" uniqKey="Consalvo A">A Consalvo</name>
</author>
<author>
<name sortKey="Zucchelli, M" uniqKey="Zucchelli M">M Zucchelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, C" uniqKey="Dong C">C Dong</name>
</author>
<author>
<name sortKey="Yuan, T" uniqKey="Yuan T">T Yuan</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y Wu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Fan, Tw" uniqKey="Fan T">TW Fan</name>
</author>
<author>
<name sortKey="Miriyala, S" uniqKey="Miriyala S">S Miriyala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viale, A" uniqKey="Viale A">A Viale</name>
</author>
<author>
<name sortKey="Pettazzoni, P" uniqKey="Pettazzoni P">P Pettazzoni</name>
</author>
<author>
<name sortKey="Lyssiotis, Ca" uniqKey="Lyssiotis C">CA Lyssiotis</name>
</author>
<author>
<name sortKey="Ying, H" uniqKey="Ying H">H Ying</name>
</author>
<author>
<name sortKey="Sanchez, N" uniqKey="Sanchez N">N Sanchez</name>
</author>
<author>
<name sortKey="Marchesini, M" uniqKey="Marchesini M">M Marchesini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, W" uniqKey="Feng W">W Feng</name>
</author>
<author>
<name sortKey="Gentles, A" uniqKey="Gentles A">A Gentles</name>
</author>
<author>
<name sortKey="Nair, Rv" uniqKey="Nair R">RV Nair</name>
</author>
<author>
<name sortKey="Huang, M" uniqKey="Huang M">M Huang</name>
</author>
<author>
<name sortKey="Lin, Y" uniqKey="Lin Y">Y Lin</name>
</author>
<author>
<name sortKey="Lee, Cy" uniqKey="Lee C">CY Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamada, M" uniqKey="Tamada M">M Tamada</name>
</author>
<author>
<name sortKey="Nagano, O" uniqKey="Nagano O">O Nagano</name>
</author>
<author>
<name sortKey="Tateyama, S" uniqKey="Tateyama S">S Tateyama</name>
</author>
<author>
<name sortKey="Ohmura, M" uniqKey="Ohmura M">M Ohmura</name>
</author>
<author>
<name sortKey="Yae, T" uniqKey="Yae T">T Yae</name>
</author>
<author>
<name sortKey="Ishimoto, T" uniqKey="Ishimoto T">T Ishimoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Ky" uniqKey="Chen K">KY Chen</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Bu, P" uniqKey="Bu P">P Bu</name>
</author>
<author>
<name sortKey="Lin, Cs" uniqKey="Lin C">CS Lin</name>
</author>
<author>
<name sortKey="Rakhilin, N" uniqKey="Rakhilin N">N Rakhilin</name>
</author>
<author>
<name sortKey="Locasale, Jw" uniqKey="Locasale J">JW Locasale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chae, Yc" uniqKey="Chae Y">YC Chae</name>
</author>
<author>
<name sortKey="Kim, Jh" uniqKey="Kim J">JH Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farnie, G" uniqKey="Farnie G">G Farnie</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasto, A" uniqKey="Pasto A">A Pasto</name>
</author>
<author>
<name sortKey="Bellio, C" uniqKey="Bellio C">C Bellio</name>
</author>
<author>
<name sortKey="Pilotto, G" uniqKey="Pilotto G">G Pilotto</name>
</author>
<author>
<name sortKey="Ciminale, V" uniqKey="Ciminale V">V Ciminale</name>
</author>
<author>
<name sortKey="Silic Benussi, M" uniqKey="Silic Benussi M">M Silic-Benussi</name>
</author>
<author>
<name sortKey="Guzzo, G" uniqKey="Guzzo G">G Guzzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diehn, M" uniqKey="Diehn M">M Diehn</name>
</author>
<author>
<name sortKey="Cho, Rw" uniqKey="Cho R">RW Cho</name>
</author>
<author>
<name sortKey="Lobo, Na" uniqKey="Lobo N">NA Lobo</name>
</author>
<author>
<name sortKey="Kalisky, T" uniqKey="Kalisky T">T Kalisky</name>
</author>
<author>
<name sortKey="Dorie, Mj" uniqKey="Dorie M">MJ Dorie</name>
</author>
<author>
<name sortKey="Kulp, An" uniqKey="Kulp A">AN Kulp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Luca, A" uniqKey="De Luca A">A De Luca</name>
</author>
<author>
<name sortKey="Fiorillo, M" uniqKey="Fiorillo M">M Fiorillo</name>
</author>
<author>
<name sortKey="Peiris Pages, M" uniqKey="Peiris Pages M">M Peiris-Pages</name>
</author>
<author>
<name sortKey="Ozsvari, B" uniqKey="Ozsvari B">B Ozsvari</name>
</author>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Sanchez Alvarez, R" uniqKey="Sanchez Alvarez R">R Sanchez-Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sancho, P" uniqKey="Sancho P">P Sancho</name>
</author>
<author>
<name sortKey="Burgos Ramos, E" uniqKey="Burgos Ramos E">E Burgos-Ramos</name>
</author>
<author>
<name sortKey="Tavera, A" uniqKey="Tavera A">A Tavera</name>
</author>
<author>
<name sortKey="Bou Kheir, T" uniqKey="Bou Kheir T">T Bou Kheir</name>
</author>
<author>
<name sortKey="Jagust, P" uniqKey="Jagust P">P Jagust</name>
</author>
<author>
<name sortKey="Schoenhals, M" uniqKey="Schoenhals M">M Schoenhals</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonuccelli, G" uniqKey="Bonuccelli G">G Bonuccelli</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ginestier, C" uniqKey="Ginestier C">C Ginestier</name>
</author>
<author>
<name sortKey="Monville, F" uniqKey="Monville F">F Monville</name>
</author>
<author>
<name sortKey="Wicinski, J" uniqKey="Wicinski J">J Wicinski</name>
</author>
<author>
<name sortKey="Cabaud, O" uniqKey="Cabaud O">O Cabaud</name>
</author>
<author>
<name sortKey="Cervera, N" uniqKey="Cervera N">N Cervera</name>
</author>
<author>
<name sortKey="Josselin, E" uniqKey="Josselin E">E Josselin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiang, L" uniqKey="Xiang L">L Xiang</name>
</author>
<author>
<name sortKey="Semenza, Gl" uniqKey="Semenza G">GL Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samanta, D" uniqKey="Samanta D">D Samanta</name>
</author>
<author>
<name sortKey="Park, Y" uniqKey="Park Y">Y Park</name>
</author>
<author>
<name sortKey="Andrabi, Sa" uniqKey="Andrabi S">SA Andrabi</name>
</author>
<author>
<name sortKey="Shelton, Lm" uniqKey="Shelton L">LM Shelton</name>
</author>
<author>
<name sortKey="Gilkes, Dm" uniqKey="Gilkes D">DM Gilkes</name>
</author>
<author>
<name sortKey="Semenza, Gl" uniqKey="Semenza G">GL Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucena Cacace, A" uniqKey="Lucena Cacace A">A Lucena-Cacace</name>
</author>
<author>
<name sortKey="Umeda, M" uniqKey="Umeda M">M Umeda</name>
</author>
<author>
<name sortKey="Navas, Le" uniqKey="Navas L">LE Navas</name>
</author>
<author>
<name sortKey="Carnero, A" uniqKey="Carnero A">A Carnero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garten, A" uniqKey="Garten A">A Garten</name>
</author>
<author>
<name sortKey="Schuster, S" uniqKey="Schuster S">S Schuster</name>
</author>
<author>
<name sortKey="Penke, M" uniqKey="Penke M">M Penke</name>
</author>
<author>
<name sortKey="Gorski, T" uniqKey="Gorski T">T Gorski</name>
</author>
<author>
<name sortKey="De Giorgis, T" uniqKey="De Giorgis T">T de Giorgis</name>
</author>
<author>
<name sortKey="Kiess, W" uniqKey="Kiess W">W Kiess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gujar, Ad" uniqKey="Gujar A">AD Gujar</name>
</author>
<author>
<name sortKey="Le, S" uniqKey="Le S">S Le</name>
</author>
<author>
<name sortKey="Mao, Dd" uniqKey="Mao D">DD Mao</name>
</author>
<author>
<name sortKey="Dadey, Dy" uniqKey="Dadey D">DY Dadey</name>
</author>
<author>
<name sortKey="Turski, A" uniqKey="Turski A">A Turski</name>
</author>
<author>
<name sortKey="Sasaki, Y" uniqKey="Sasaki Y">Y Sasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucena Cacace, A" uniqKey="Lucena Cacace A">A Lucena-Cacace</name>
</author>
<author>
<name sortKey="Otero Albiol, D" uniqKey="Otero Albiol D">D Otero-Albiol</name>
</author>
<author>
<name sortKey="Jimenez Garcia, Mp" uniqKey="Jimenez Garcia M">MP Jimenez-Garcia</name>
</author>
<author>
<name sortKey="Munoz Galvan, S" uniqKey="Munoz Galvan S">S Munoz-Galvan</name>
</author>
<author>
<name sortKey="Carnero, A" uniqKey="Carnero A">A Carnero</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Kwintkiewicz, J" uniqKey="Kwintkiewicz J">J Kwintkiewicz</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Tech, K" uniqKey="Tech K">K Tech</name>
</author>
<author>
<name sortKey="Frady, Ln" uniqKey="Frady L">LN Frady</name>
</author>
<author>
<name sortKey="Su, Yt" uniqKey="Su Y">YT Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Zt" uniqKey="Chen Z">ZT Chen</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Qu, S" uniqKey="Qu S">S Qu</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Lu, Xd" uniqKey="Lu X">XD Lu</name>
</author>
<author>
<name sortKey="Su, F" uniqKey="Su F">F Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Dx" uniqKey="Zhang D">DX Zhang</name>
</author>
<author>
<name sortKey="Zhang, Jp" uniqKey="Zhang J">JP Zhang</name>
</author>
<author>
<name sortKey="Hu, Jy" uniqKey="Hu J">JY Hu</name>
</author>
<author>
<name sortKey="Huang, Ys" uniqKey="Huang Y">YS Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguilar, E" uniqKey="Aguilar E">E Aguilar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Hout, M" uniqKey="El Hout M">M El Hout</name>
</author>
<author>
<name sortKey="Dos Santos, L" uniqKey="Dos Santos L">L Dos Santos</name>
</author>
<author>
<name sortKey="Hamai, A" uniqKey="Hamai A">A Hamai</name>
</author>
<author>
<name sortKey="Mehrpour, M" uniqKey="Mehrpour M">M Mehrpour</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mani, Sa" uniqKey="Mani S">SA Mani</name>
</author>
<author>
<name sortKey="Guo, W" uniqKey="Guo W">W Guo</name>
</author>
<author>
<name sortKey="Liao, Mj" uniqKey="Liao M">MJ Liao</name>
</author>
<author>
<name sortKey="Eaton, En" uniqKey="Eaton E">EN Eaton</name>
</author>
<author>
<name sortKey="Ayyanan, A" uniqKey="Ayyanan A">A Ayyanan</name>
</author>
<author>
<name sortKey="Zhou, Ay" uniqKey="Zhou A">AY Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Sy" uniqKey="Lee S">SY Lee</name>
</author>
<author>
<name sortKey="Jeon, Hm" uniqKey="Jeon H">HM Jeon</name>
</author>
<author>
<name sortKey="Ju, Mk" uniqKey="Ju M">MK Ju</name>
</author>
<author>
<name sortKey="Kim, Ch" uniqKey="Kim C">CH Kim</name>
</author>
<author>
<name sortKey="Yoon, G" uniqKey="Yoon G">G Yoon</name>
</author>
<author>
<name sortKey="Han, Si" uniqKey="Han S">SI Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aspuria, Pp" uniqKey="Aspuria P">PP Aspuria</name>
</author>
<author>
<name sortKey="Lunt, Sy" uniqKey="Lunt S">SY Lunt</name>
</author>
<author>
<name sortKey="Varemo, L" uniqKey="Varemo L">L Varemo</name>
</author>
<author>
<name sortKey="Vergnes, L" uniqKey="Vergnes L">L Vergnes</name>
</author>
<author>
<name sortKey="Gozo, M" uniqKey="Gozo M">M Gozo</name>
</author>
<author>
<name sortKey="Beach, Ja" uniqKey="Beach J">JA Beach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Brooks, M" uniqKey="Brooks M">M Brooks</name>
</author>
<author>
<name sortKey="Wicha, Ms" uniqKey="Wicha M">MS Wicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris Pages, M" uniqKey="Peiris Pages M">M Peiris-Pages</name>
</author>
<author>
<name sortKey="Martinez Outschoorn, Ue" uniqKey="Martinez Outschoorn U">UE Martinez-Outschoorn</name>
</author>
<author>
<name sortKey="Pestell, Rg" uniqKey="Pestell R">RG Pestell</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mao, P" uniqKey="Mao P">P Mao</name>
</author>
<author>
<name sortKey="Joshi, K" uniqKey="Joshi K">K Joshi</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P Li</name>
</author>
<author>
<name sortKey="Santana Santos, L" uniqKey="Santana Santos L">L Santana-Santos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Shang, L" uniqKey="Shang L">L Shang</name>
</author>
<author>
<name sortKey="Brooks, Md" uniqKey="Brooks M">MD Brooks</name>
</author>
<author>
<name sortKey="Jiagge, E" uniqKey="Jiagge E">E Jiagge</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Buschhaus, Jm" uniqKey="Buschhaus J">JM Buschhaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flavahan, Wa" uniqKey="Flavahan W">WA Flavahan</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Hitomi, M" uniqKey="Hitomi M">M Hitomi</name>
</author>
<author>
<name sortKey="Rahim, N" uniqKey="Rahim N">N Rahim</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
<author>
<name sortKey="Sloan, Ae" uniqKey="Sloan A">AE Sloan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isayev, O" uniqKey="Isayev O">O Isayev</name>
</author>
<author>
<name sortKey="Rausch, V" uniqKey="Rausch V">V Rausch</name>
</author>
<author>
<name sortKey="Bauer, N" uniqKey="Bauer N">N Bauer</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Fan, P" uniqKey="Fan P">P Fan</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michelakis, Ed" uniqKey="Michelakis E">ED Michelakis</name>
</author>
<author>
<name sortKey="Sutendra, G" uniqKey="Sutendra G">G Sutendra</name>
</author>
<author>
<name sortKey="Dromparis, P" uniqKey="Dromparis P">P Dromparis</name>
</author>
<author>
<name sortKey="Webster, L" uniqKey="Webster L">L Webster</name>
</author>
<author>
<name sortKey="Haromy, A" uniqKey="Haromy A">A Haromy</name>
</author>
<author>
<name sortKey="Niven, E" uniqKey="Niven E">E Niven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Jh" uniqKey="Kim J">JH Kim</name>
</author>
<author>
<name sortKey="Lee, Kj" uniqKey="Lee K">KJ Lee</name>
</author>
<author>
<name sortKey="Seo, Y" uniqKey="Seo Y">Y Seo</name>
</author>
<author>
<name sortKey="Kwon, Jh" uniqKey="Kwon J">JH Kwon</name>
</author>
<author>
<name sortKey="Yoon, Jp" uniqKey="Yoon J">JP Yoon</name>
</author>
<author>
<name sortKey="Kang, Jy" uniqKey="Kang J">JY Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jagust, P" uniqKey="Jagust P">P Jagust</name>
</author>
<author>
<name sortKey="De Luxan Delgado, B" uniqKey="De Luxan Delgado B">B de Luxan-Delgado</name>
</author>
<author>
<name sortKey="Parejo Alonso, B" uniqKey="Parejo Alonso B">B Parejo-Alonso</name>
</author>
<author>
<name sortKey="Sancho, P" uniqKey="Sancho P">P Sancho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeh, Ct" uniqKey="Yeh C">CT Yeh</name>
</author>
<author>
<name sortKey="Su, Cl" uniqKey="Su C">CL Su</name>
</author>
<author>
<name sortKey="Huang, Cy" uniqKey="Huang C">CY Huang</name>
</author>
<author>
<name sortKey="Lin, Jk" uniqKey="Lin J">JK Lin</name>
</author>
<author>
<name sortKey="Lee, Wh" uniqKey="Lee W">WH Lee</name>
</author>
<author>
<name sortKey="Chang, Pm" uniqKey="Chang P">PM Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiorillo, M" uniqKey="Fiorillo M">M Fiorillo</name>
</author>
<author>
<name sortKey="Lamb, R" uniqKey="Lamb R">R Lamb</name>
</author>
<author>
<name sortKey="Tanowitz, Hb" uniqKey="Tanowitz H">HB Tanowitz</name>
</author>
<author>
<name sortKey="Cappello, Ar" uniqKey="Cappello A">AR Cappello</name>
</author>
<author>
<name sortKey="Martinez Outschoorn, Ue" uniqKey="Martinez Outschoorn U">UE Martinez-Outschoorn</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, Cr" uniqKey="Kennedy C">CR Kennedy</name>
</author>
<author>
<name sortKey="Tilkens, Sb" uniqKey="Tilkens S">SB Tilkens</name>
</author>
<author>
<name sortKey="Guan, H" uniqKey="Guan H">H Guan</name>
</author>
<author>
<name sortKey="Garner, Ja" uniqKey="Garner J">JA Garner</name>
</author>
<author>
<name sortKey="Or, Pm" uniqKey="Or P">PM Or</name>
</author>
<author>
<name sortKey="Chan, Am" uniqKey="Chan A">AM Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mai, Tt" uniqKey="Mai T">TT Mai</name>
</author>
<author>
<name sortKey="Hamai, A" uniqKey="Hamai A">A Hamai</name>
</author>
<author>
<name sortKey="Hienzsch, A" uniqKey="Hienzsch A">A Hienzsch</name>
</author>
<author>
<name sortKey="Caneque, T" uniqKey="Caneque T">T Caneque</name>
</author>
<author>
<name sortKey="Muller, S" uniqKey="Muller S">S Muller</name>
</author>
<author>
<name sortKey="Wicinski, J" uniqKey="Wicinski J">J Wicinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, W" uniqKey="Yue W">W Yue</name>
</author>
<author>
<name sortKey="Hamai, A" uniqKey="Hamai A">A Hamai</name>
</author>
<author>
<name sortKey="Tonelli, G" uniqKey="Tonelli G">G Tonelli</name>
</author>
<author>
<name sortKey="Bauvy, C" uniqKey="Bauvy C">C Bauvy</name>
</author>
<author>
<name sortKey="Nicolas, V" uniqKey="Nicolas V">V Nicolas</name>
</author>
<author>
<name sortKey="Tharinger, H" uniqKey="Tharinger H">H Tharinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naujokat, C" uniqKey="Naujokat C">C Naujokat</name>
</author>
<author>
<name sortKey="Steinhart, R" uniqKey="Steinhart R">R Steinhart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Ya" uniqKey="Shen Y">YA Shen</name>
</author>
<author>
<name sortKey="Lan, Kl" uniqKey="Lan K">KL Lan</name>
</author>
<author>
<name sortKey="Chang, Ch" uniqKey="Chang C">CH Chang</name>
</author>
<author>
<name sortKey="Lin, Lt" uniqKey="Lin L">LT Lin</name>
</author>
<author>
<name sortKey="He, Cl" uniqKey="He C">CL He</name>
</author>
<author>
<name sortKey="Chen, Ph" uniqKey="Chen P">PH Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scatena, C" uniqKey="Scatena C">C Scatena</name>
</author>
<author>
<name sortKey="Roncella, M" uniqKey="Roncella M">M Roncella</name>
</author>
<author>
<name sortKey="Di Paolo, A" uniqKey="Di Paolo A">A Di Paolo</name>
</author>
<author>
<name sortKey="Aretini, P" uniqKey="Aretini P">P Aretini</name>
</author>
<author>
<name sortKey="Menicagli, M" uniqKey="Menicagli M">M Menicagli</name>
</author>
<author>
<name sortKey="Fanelli, G" uniqKey="Fanelli G">G Fanelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B Yang</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Zhang, A" uniqKey="Zhang A">A Zhang</name>
</author>
<author>
<name sortKey="Zhou, A" uniqKey="Zhou A">A Zhou</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Q" uniqKey="Xie Q">Q Xie</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Horbinski, Cm" uniqKey="Horbinski C">CM Horbinski</name>
</author>
<author>
<name sortKey="Flavahan, Wa" uniqKey="Flavahan W">WA Flavahan</name>
</author>
<author>
<name sortKey="Yang, K" uniqKey="Yang K">K Yang</name>
</author>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris Pages, M" uniqKey="Peiris Pages M">M Peiris-Pages</name>
</author>
<author>
<name sortKey="Bonuccelli, G" uniqKey="Bonuccelli G">G Bonuccelli</name>
</author>
<author>
<name sortKey="Sotgia, F" uniqKey="Sotgia F">F Sotgia</name>
</author>
<author>
<name sortKey="Lisanti, Mp" uniqKey="Lisanti M">MP Lisanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elhammali, A" uniqKey="Elhammali A">A Elhammali</name>
</author>
<author>
<name sortKey="Ippolito, Je" uniqKey="Ippolito J">JE Ippolito</name>
</author>
<author>
<name sortKey="Collins, L" uniqKey="Collins L">L Collins</name>
</author>
<author>
<name sortKey="Crowley, J" uniqKey="Crowley J">J Crowley</name>
</author>
<author>
<name sortKey="Marasa, J" uniqKey="Marasa J">J Marasa</name>
</author>
<author>
<name sortKey="Piwnica Worms, D" uniqKey="Piwnica Worms D">D Piwnica-Worms</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D Kim</name>
</author>
<author>
<name sortKey="Choi, Bh" uniqKey="Choi B">BH Choi</name>
</author>
<author>
<name sortKey="Ryoo, Ig" uniqKey="Ryoo I">IG Ryoo</name>
</author>
<author>
<name sortKey="Kwak, Mk" uniqKey="Kwak M">MK Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Yj" uniqKey="Kim Y">YJ Kim</name>
</author>
<author>
<name sortKey="Kim, Jy" uniqKey="Kim J">JY Kim</name>
</author>
<author>
<name sortKey="Lee, N" uniqKey="Lee N">N Lee</name>
</author>
<author>
<name sortKey="Oh, E" uniqKey="Oh E">E Oh</name>
</author>
<author>
<name sortKey="Sung, D" uniqKey="Sung D">D Sung</name>
</author>
<author>
<name sortKey="Cho, Tm" uniqKey="Cho T">TM Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, B" uniqKey="Xu B">B Xu</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="He, L" uniqKey="He L">L He</name>
</author>
<author>
<name sortKey="Deng, M" uniqKey="Deng M">M Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erdogan, S" uniqKey="Erdogan S">S Erdogan</name>
</author>
<author>
<name sortKey="Turkekul, K" uniqKey="Turkekul K">K Turkekul</name>
</author>
<author>
<name sortKey="Serttas, R" uniqKey="Serttas R">R Serttas</name>
</author>
<author>
<name sortKey="Erdogan, Z" uniqKey="Erdogan Z">Z Erdogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roh, Jl" uniqKey="Roh J">JL Roh</name>
</author>
<author>
<name sortKey="Kim, Eh" uniqKey="Kim E">EH Kim</name>
</author>
<author>
<name sortKey="Jang, H" uniqKey="Jang H">H Jang</name>
</author>
<author>
<name sortKey="Shin, D" uniqKey="Shin D">D Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hale, Js" uniqKey="Hale J">JS Hale</name>
</author>
<author>
<name sortKey="Otvos, B" uniqKey="Otvos B">B Otvos</name>
</author>
<author>
<name sortKey="Sinyuk, M" uniqKey="Sinyuk M">M Sinyuk</name>
</author>
<author>
<name sortKey="Alvarado, Ag" uniqKey="Alvarado A">AG Alvarado</name>
</author>
<author>
<name sortKey="Hitomi, M" uniqKey="Hitomi M">M Hitomi</name>
</author>
<author>
<name sortKey="Stoltz, K" uniqKey="Stoltz K">K Stoltz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corominas Faja, B" uniqKey="Corominas Faja B">B Corominas-Faja</name>
</author>
<author>
<name sortKey="Cuyas, E" uniqKey="Cuyas E">E Cuyas</name>
</author>
<author>
<name sortKey="Gumuzio, J" uniqKey="Gumuzio J">J Gumuzio</name>
</author>
<author>
<name sortKey="Bosch Barrera, J" uniqKey="Bosch Barrera J">J Bosch-Barrera</name>
</author>
<author>
<name sortKey="Leis, O" uniqKey="Leis O">O Leis</name>
</author>
<author>
<name sortKey="Martin, Ag" uniqKey="Martin A">AG Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alwarawrah, Y" uniqKey="Alwarawrah Y">Y Alwarawrah</name>
</author>
<author>
<name sortKey="Hughes, P" uniqKey="Hughes P">P Hughes</name>
</author>
<author>
<name sortKey="Loiselle, D" uniqKey="Loiselle D">D Loiselle</name>
</author>
<author>
<name sortKey="Carlson, Da" uniqKey="Carlson D">DA Carlson</name>
</author>
<author>
<name sortKey="Darr, Db" uniqKey="Darr D">DB Darr</name>
</author>
<author>
<name sortKey="Jordan, Jl" uniqKey="Jordan J">JL Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yasumoto, Y" uniqKey="Yasumoto Y">Y Yasumoto</name>
</author>
<author>
<name sortKey="Miyazaki, H" uniqKey="Miyazaki H">H Miyazaki</name>
</author>
<author>
<name sortKey="Vaidyan, Lk" uniqKey="Vaidyan L">LK Vaidyan</name>
</author>
<author>
<name sortKey="Kagawa, Y" uniqKey="Kagawa Y">Y Kagawa</name>
</author>
<author>
<name sortKey="Ebrahimi, M" uniqKey="Ebrahimi M">M Ebrahimi</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Mkf" uniqKey="Ma M">MKF Ma</name>
</author>
<author>
<name sortKey="Lau, Eyt" uniqKey="Lau E">EYT Lau</name>
</author>
<author>
<name sortKey="Leung, Dhw" uniqKey="Leung D">DHW Leung</name>
</author>
<author>
<name sortKey="Lo, J" uniqKey="Lo J">J Lo</name>
</author>
<author>
<name sortKey="Ho, Npy" uniqKey="Ho N">NPY Ho</name>
</author>
<author>
<name sortKey="Cheng, Lkw" uniqKey="Cheng L">LKW Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pisanu, Me" uniqKey="Pisanu M">ME Pisanu</name>
</author>
<author>
<name sortKey="Noto, A" uniqKey="Noto A">A Noto</name>
</author>
<author>
<name sortKey="De Vitis, C" uniqKey="De Vitis C">C De Vitis</name>
</author>
<author>
<name sortKey="Morrone, S" uniqKey="Morrone S">S Morrone</name>
</author>
<author>
<name sortKey="Scognamiglio, G" uniqKey="Scognamiglio G">G Scognamiglio</name>
</author>
<author>
<name sortKey="Botti, G" uniqKey="Botti G">G Botti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ricciardi, Mr" uniqKey="Ricciardi M">MR Ricciardi</name>
</author>
<author>
<name sortKey="Mirabilii, S" uniqKey="Mirabilii S">S Mirabilii</name>
</author>
<author>
<name sortKey="Allegretti, M" uniqKey="Allegretti M">M Allegretti</name>
</author>
<author>
<name sortKey="Licchetta, R" uniqKey="Licchetta R">R Licchetta</name>
</author>
<author>
<name sortKey="Calarco, A" uniqKey="Calarco A">A Calarco</name>
</author>
<author>
<name sortKey="Torrisi, Mr" uniqKey="Torrisi M">MR Torrisi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Ea" uniqKey="Lee E">EA Lee</name>
</author>
<author>
<name sortKey="Angka, L" uniqKey="Angka L">L Angka</name>
</author>
<author>
<name sortKey="Rota, Sg" uniqKey="Rota S">SG Rota</name>
</author>
<author>
<name sortKey="Hanlon, T" uniqKey="Hanlon T">T Hanlon</name>
</author>
<author>
<name sortKey="Mitchell, A" uniqKey="Mitchell A">A Mitchell</name>
</author>
<author>
<name sortKey="Hurren, R" uniqKey="Hurren R">R Hurren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koerner, Sk" uniqKey="Koerner S">SK Koerner</name>
</author>
<author>
<name sortKey="Hanai, Ji" uniqKey="Hanai J">JI Hanai</name>
</author>
<author>
<name sortKey="Bai, S" uniqKey="Bai S">S Bai</name>
</author>
<author>
<name sortKey="Jernigan, Fe" uniqKey="Jernigan F">FE Jernigan</name>
</author>
<author>
<name sortKey="Oki, M" uniqKey="Oki M">M Oki</name>
</author>
<author>
<name sortKey="Komaba, C" uniqKey="Komaba C">C Komaba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P Li</name>
</author>
<author>
<name sortKey="Hu, W" uniqKey="Hu W">W Hu</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
<author>
<name sortKey="Hu, C" uniqKey="Hu C">C Hu</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peixoto, Joana" uniqKey="Peixoto J">Joana Peixoto</name>
</author>
<author>
<name sortKey="Lima, Jorge" uniqKey="Lima J">Jorge Lima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vitale, I" uniqKey="Vitale I">I Vitale</name>
</author>
<author>
<name sortKey="Manic, G" uniqKey="Manic G">G Manic</name>
</author>
<author>
<name sortKey="Dandrea, V" uniqKey="Dandrea V">V Dandrea</name>
</author>
<author>
<name sortKey="De Maria, R" uniqKey="De Maria R">R De Maria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denise, C" uniqKey="Denise C">C Denise</name>
</author>
<author>
<name sortKey="Paoli, P" uniqKey="Paoli P">P Paoli</name>
</author>
<author>
<name sortKey="Calvani, M" uniqKey="Calvani M">M Calvani</name>
</author>
<author>
<name sortKey="Taddei, Ml" uniqKey="Taddei M">ML Taddei</name>
</author>
<author>
<name sortKey="Giannoni, E" uniqKey="Giannoni E">E Giannoni</name>
</author>
<author>
<name sortKey="Kopetz, S" uniqKey="Kopetz S">S Kopetz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Mook, Ra" uniqKey="Mook R">RA Mook</name>
</author>
<author>
<name sortKey="Premont, Rt" uniqKey="Premont R">RT Premont</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Sy" uniqKey="Kim S">SY Kim</name>
</author>
<author>
<name sortKey="Kang, Jw" uniqKey="Kang J">JW Kang</name>
</author>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
<author>
<name sortKey="Kim, Bk" uniqKey="Kim B">BK Kim</name>
</author>
<author>
<name sortKey="Yoo, Yd" uniqKey="Yoo Y">YD Yoo</name>
</author>
<author>
<name sortKey="Kwon, Yt" uniqKey="Kwon Y">YT Kwon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitani, M" uniqKey="Mitani M">M Mitani</name>
</author>
<author>
<name sortKey="Yamanishi, T" uniqKey="Yamanishi T">T Yamanishi</name>
</author>
<author>
<name sortKey="Miyazaki, Y" uniqKey="Miyazaki Y">Y Miyazaki</name>
</author>
<author>
<name sortKey="Otake, N" uniqKey="Otake N">N Otake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jangamreddy, Jr" uniqKey="Jangamreddy J">JR Jangamreddy</name>
</author>
<author>
<name sortKey="Ghavami, S" uniqKey="Ghavami S">S Ghavami</name>
</author>
<author>
<name sortKey="Grabarek, J" uniqKey="Grabarek J">J Grabarek</name>
</author>
<author>
<name sortKey="Kratz, G" uniqKey="Kratz G">G Kratz</name>
</author>
<author>
<name sortKey="Wiechec, E" uniqKey="Wiechec E">E Wiechec</name>
</author>
<author>
<name sortKey="Fredriksson, Ba" uniqKey="Fredriksson B">BA Fredriksson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deblois, G" uniqKey="Deblois G">G Deblois</name>
</author>
<author>
<name sortKey="St Pierre, J" uniqKey="St Pierre J">J St-Pierre</name>
</author>
<author>
<name sortKey="Giguere, V" uniqKey="Giguere V">V Giguere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eskiocak, B" uniqKey="Eskiocak B">B Eskiocak</name>
</author>
<author>
<name sortKey="Ali, A" uniqKey="Ali A">A Ali</name>
</author>
<author>
<name sortKey="White, Ma" uniqKey="White M">MA White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamb, R" uniqKey="Lamb R">R Lamb</name>
</author>
<author>
<name sortKey="Ozsvari, B" uniqKey="Ozsvari B">B Ozsvari</name>
</author>
<author>
<name sortKey="Lisanti, Cl" uniqKey="Lisanti C">CL Lisanti</name>
</author>
<author>
<name sortKey="Tanowitz, Hb" uniqKey="Tanowitz H">HB Tanowitz</name>
</author>
<author>
<name sortKey="Howell, A" uniqKey="Howell A">A Howell</name>
</author>
<author>
<name sortKey="Martinez Outschoorn, Ue" uniqKey="Martinez Outschoorn U">UE Martinez-Outschoorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esner, M" uniqKey="Esner M">M Esner</name>
</author>
<author>
<name sortKey="Graifer, D" uniqKey="Graifer D">D Graifer</name>
</author>
<author>
<name sortKey="Lleonart, Me" uniqKey="Lleonart M">ME Lleonart</name>
</author>
<author>
<name sortKey="Lyakhovich, A" uniqKey="Lyakhovich A">A Lyakhovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="Chan, Dc" uniqKey="Chan D">DC Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bordi, M" uniqKey="Bordi M">M Bordi</name>
</author>
<author>
<name sortKey="Nazio, F" uniqKey="Nazio F">F Nazio</name>
</author>
<author>
<name sortKey="Campello, S" uniqKey="Campello S">S Campello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G Li</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y Zheng</name>
</author>
<author>
<name sortKey="Shen, Hm" uniqKey="Shen H">HM Shen</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
<author>
<name sortKey="Ming, Ql" uniqKey="Ming Q">QL Ming</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Chia Ming" uniqKey="Chang C">Chia-Ming Chang</name>
</author>
<author>
<name sortKey="Lan, Keng Li" uniqKey="Lan K">Keng-Li Lan</name>
</author>
<author>
<name sortKey="Huang, Wen Sheng" uniqKey="Huang W">Wen-Sheng Huang</name>
</author>
<author>
<name sortKey="Lee, Yi Jang" uniqKey="Lee Y">Yi-Jang Lee</name>
</author>
<author>
<name sortKey="Lee, Te Wei" uniqKey="Lee T">Te-Wei Lee</name>
</author>
<author>
<name sortKey="Chang, Chih Hsien" uniqKey="Chang C">Chih-Hsien Chang</name>
</author>
<author>
<name sortKey="Chuang, Chi Mu" uniqKey="Chuang C">Chi-Mu Chuang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S Yuan</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G Chen</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S Kim</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Cw" uniqKey="Chang C">CW Chang</name>
</author>
<author>
<name sortKey="Chen, Ys" uniqKey="Chen Y">YS Chen</name>
</author>
<author>
<name sortKey="Tsay, Yg" uniqKey="Tsay Y">YG Tsay</name>
</author>
<author>
<name sortKey="Han, Cl" uniqKey="Han C">CL Han</name>
</author>
<author>
<name sortKey="Chen, Yj" uniqKey="Chen Y">YJ Chen</name>
</author>
<author>
<name sortKey="Yang, Cc" uniqKey="Yang C">CC Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishimoto, T" uniqKey="Ishimoto T">T Ishimoto</name>
</author>
<author>
<name sortKey="Nagano, O" uniqKey="Nagano O">O Nagano</name>
</author>
<author>
<name sortKey="Yae, T" uniqKey="Yae T">T Yae</name>
</author>
<author>
<name sortKey="Tamada, M" uniqKey="Tamada M">M Tamada</name>
</author>
<author>
<name sortKey="Motohara, T" uniqKey="Motohara T">T Motohara</name>
</author>
<author>
<name sortKey="Oshima, H" uniqKey="Oshima H">H Oshima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onodera, T" uniqKey="Onodera T">T Onodera</name>
</author>
<author>
<name sortKey="Momose, I" uniqKey="Momose I">I Momose</name>
</author>
<author>
<name sortKey="Kawada, M" uniqKey="Kawada M">M Kawada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, W" uniqKey="Song W">W Song</name>
</author>
<author>
<name sortKey="Tang, Z" uniqKey="Tang Z">Z Tang</name>
</author>
<author>
<name sortKey="Lei, T" uniqKey="Lei T">T Lei</name>
</author>
<author>
<name sortKey="Wen, X" uniqKey="Wen X">X Wen</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milkovic, L" uniqKey="Milkovic L">L Milkovic</name>
</author>
<author>
<name sortKey="Zarkovic, N" uniqKey="Zarkovic N">N Zarkovic</name>
</author>
<author>
<name sortKey="Saso, L" uniqKey="Saso L">L Saso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanai, Ji" uniqKey="Hanai J">JI Hanai</name>
</author>
<author>
<name sortKey="Doro, N" uniqKey="Doro N">N Doro</name>
</author>
<author>
<name sortKey="Seth, P" uniqKey="Seth P">P Seth</name>
</author>
<author>
<name sortKey="Sukhatme, Vp" uniqKey="Sukhatme V">VP Sukhatme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Granchi, C" uniqKey="Granchi C">C Granchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knobloch, M" uniqKey="Knobloch M">M Knobloch</name>
</author>
<author>
<name sortKey="Braun, Sm" uniqKey="Braun S">SM Braun</name>
</author>
<author>
<name sortKey="Zurkirchen, L" uniqKey="Zurkirchen L">L Zurkirchen</name>
</author>
<author>
<name sortKey="Von Schoultz, C" uniqKey="Von Schoultz C">C von Schoultz</name>
</author>
<author>
<name sortKey="Zamboni, N" uniqKey="Zamboni N">N Zamboni</name>
</author>
<author>
<name sortKey="Arauzo Bravo, Mj" uniqKey="Arauzo Bravo M">MJ Arauzo-Bravo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, P" uniqKey="Sun P">P Sun</name>
</author>
<author>
<name sortKey="Xia, S" uniqKey="Xia S">S Xia</name>
</author>
<author>
<name sortKey="Lal, B" uniqKey="Lal B">B Lal</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Yang, Ks" uniqKey="Yang K">KS Yang</name>
</author>
<author>
<name sortKey="Watkins, Pa" uniqKey="Watkins P">PA Watkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tirinato, L" uniqKey="Tirinato L">L Tirinato</name>
</author>
<author>
<name sortKey="Liberale, C" uniqKey="Liberale C">C Liberale</name>
</author>
<author>
<name sortKey="Di Franco, S" uniqKey="Di Franco S">S Di Franco</name>
</author>
<author>
<name sortKey="Candeloro, P" uniqKey="Candeloro P">P Candeloro</name>
</author>
<author>
<name sortKey="Benfante, A" uniqKey="Benfante A">A Benfante</name>
</author>
<author>
<name sortKey="La Rocca, R" uniqKey="La Rocca R">R La Rocca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maan, M" uniqKey="Maan M">M Maan</name>
</author>
<author>
<name sortKey="Peters, Jm" uniqKey="Peters J">JM Peters</name>
</author>
<author>
<name sortKey="Dutta, M" uniqKey="Dutta M">M Dutta</name>
</author>
<author>
<name sortKey="Patterson, Ad" uniqKey="Patterson A">AD Patterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pascual, G" uniqKey="Pascual G">G Pascual</name>
</author>
<author>
<name sortKey="Avgustinova, A" uniqKey="Avgustinova A">A Avgustinova</name>
</author>
<author>
<name sortKey="Mejetta, S" uniqKey="Mejetta S">S Mejetta</name>
</author>
<author>
<name sortKey="Martin, M" uniqKey="Martin M">M Martin</name>
</author>
<author>
<name sortKey="Castellanos, A" uniqKey="Castellanos A">A Castellanos</name>
</author>
<author>
<name sortKey="Attolini, Cs" uniqKey="Attolini C">CS Attolini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, H" uniqKey="Ye H">H Ye</name>
</author>
<author>
<name sortKey="Adane, B" uniqKey="Adane B">B Adane</name>
</author>
<author>
<name sortKey="Khan, N" uniqKey="Khan N">N Khan</name>
</author>
<author>
<name sortKey="Sullivan, T" uniqKey="Sullivan T">T Sullivan</name>
</author>
<author>
<name sortKey="Minhajuddin, M" uniqKey="Minhajuddin M">M Minhajuddin</name>
</author>
<author>
<name sortKey="Gasparetto, M" uniqKey="Gasparetto M">M Gasparetto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, Pa" uniqKey="Young P">PA Young</name>
</author>
<author>
<name sortKey="Senkal, Ce" uniqKey="Senkal C">CE Senkal</name>
</author>
<author>
<name sortKey="Suchanek, Al" uniqKey="Suchanek A">AL Suchanek</name>
</author>
<author>
<name sortKey="Grevengoed, Tj" uniqKey="Grevengoed T">TJ Grevengoed</name>
</author>
<author>
<name sortKey="Lin, Dd" uniqKey="Lin D">DD Lin</name>
</author>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corominas Faja, B" uniqKey="Corominas Faja B">B Corominas-Faja</name>
</author>
<author>
<name sortKey="Vellon, L" uniqKey="Vellon L">L Vellon</name>
</author>
<author>
<name sortKey="Cuyas, E" uniqKey="Cuyas E">E Cuyas</name>
</author>
<author>
<name sortKey="Buxo, M" uniqKey="Buxo M">M Buxo</name>
</author>
<author>
<name sortKey="Martin Castillo, B" uniqKey="Martin Castillo B">B Martin-Castillo</name>
</author>
<author>
<name sortKey="Serra, D" uniqKey="Serra D">D Serra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Condello, S" uniqKey="Condello S">S Condello</name>
</author>
<author>
<name sortKey="Thomes Pepin, J" uniqKey="Thomes Pepin J">J Thomes-Pepin</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
<author>
<name sortKey="Hurley, Td" uniqKey="Hurley T">TD Hurley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Strable, Ms" uniqKey="Strable M">MS Strable</name>
</author>
<author>
<name sortKey="Ntambi, Jm" uniqKey="Ntambi J">JM Ntambi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galluzzi, L" uniqKey="Galluzzi L">L Galluzzi</name>
</author>
<author>
<name sortKey="Kepp, O" uniqKey="Kepp O">O Kepp</name>
</author>
<author>
<name sortKey="Vander Heiden, Mg" uniqKey="Vander Heiden M">MG Vander Heiden</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Cl" uniqKey="Chen C">CL Chen</name>
</author>
<author>
<name sortKey="Uthaya Kumar, Db" uniqKey="Uthaya Kumar D">DB Uthaya Kumar</name>
</author>
<author>
<name sortKey="Punj, V" uniqKey="Punj V">V Punj</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Sher, L" uniqKey="Sher L">L Sher</name>
</author>
<author>
<name sortKey="Tahara, Sm" uniqKey="Tahara S">SM Tahara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardwell, Cr" uniqKey="Cardwell C">CR Cardwell</name>
</author>
<author>
<name sortKey="Hicks, Bm" uniqKey="Hicks B">BM Hicks</name>
</author>
<author>
<name sortKey="Hughes, C" uniqKey="Hughes C">C Hughes</name>
</author>
<author>
<name sortKey="Murray, Lj" uniqKey="Murray L">LJ Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiorillo, M" uniqKey="Fiorillo M">M Fiorillo</name>
</author>
<author>
<name sortKey="Peiris Pages, M" uniqKey="Peiris Pages M">M Peiris-Pages</name>
</author>
<author>
<name sortKey="Sanchez Alvarez, R" uniqKey="Sanchez Alvarez R">R Sanchez-Alvarez</name>
</author>
<author>
<name sortKey="Bartella, L" uniqKey="Bartella L">L Bartella</name>
</author>
<author>
<name sortKey="Di Donna, L" uniqKey="Di Donna L">L Di Donna</name>
</author>
<author>
<name sortKey="Dolce, V" uniqKey="Dolce V">V Dolce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altman, Bj" uniqKey="Altman B">BJ Altman</name>
</author>
<author>
<name sortKey="Stine, Ze" uniqKey="Stine Z">ZE Stine</name>
</author>
<author>
<name sortKey="Dang, Cv" uniqKey="Dang C">CV Dang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krall, As" uniqKey="Krall A">AS Krall</name>
</author>
<author>
<name sortKey="Christofk, Hr" uniqKey="Christofk H">HR Christofk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pavlides, S" uniqKey="Pavlides S">S Pavlides</name>
</author>
<author>
<name sortKey="Whitaker Menezes, D" uniqKey="Whitaker Menezes D">D Whitaker-Menezes</name>
</author>
<author>
<name sortKey="Castello Cros, R" uniqKey="Castello Cros R">R Castello-Cros</name>
</author>
<author>
<name sortKey="Flomenberg, N" uniqKey="Flomenberg N">N Flomenberg</name>
</author>
<author>
<name sortKey="Witkiewicz, Ak" uniqKey="Witkiewicz A">AK Witkiewicz</name>
</author>
<author>
<name sortKey="Frank, Pg" uniqKey="Frank P">PG Frank</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mol Cancer</journal-id>
<journal-id journal-id-type="iso-abbrev">Mol. Cancer</journal-id>
<journal-title-group>
<journal-title>Molecular Cancer</journal-title>
</journal-title-group>
<issn pub-type="epub">1476-4598</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32028963</article-id>
<article-id pub-id-type="pmc">7003352</article-id>
<article-id pub-id-type="publisher-id">1126</article-id>
<article-id pub-id-type="doi">10.1186/s12943-019-1126-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Crosstalk between autophagy and metabolic regulation of cancer stem cells</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>El Hout</surname>
<given-names>Mouradi</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cosialls</surname>
<given-names>Emma</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Mehrpour</surname>
<given-names>Maryam</given-names>
</name>
<address>
<email>maryam.mehrpour@inserm.fr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Hamaï</surname>
<given-names>Ahmed</given-names>
</name>
<address>
<email>ahmed.hamai@inserm.fr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.465541.7</institution-id>
<institution>Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253,</institution>
</institution-wrap>
F-75993 Paris, France</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10992.33</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2188 0914</institution-id>
<institution>Université Paris Descartes-Sorbonne Paris Cité,</institution>
</institution-wrap>
F-75993 Paris, France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>6</day>
<month>2</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>6</day>
<month>2</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<volume>19</volume>
<elocation-id>27</elocation-id>
<history>
<date date-type="received">
<day>20</day>
<month>8</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>12</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s). 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Cancer is now considered as a heterogeneous ecosystem in which tumor cells collaborate with each other and with host cells in their microenvironment. As circumstances change, the ecosystem evolves to ensure the survival and growth of the cancer cells. In this ecosystem, metabolism is not only a key player but also drives stemness. In this review, we first summarize our current understanding of how autophagy influences cancer stem cell phenotype. We emphasize metabolic pathways in cancer stem cells and discuss how autophagy-mediated regulation metabolism is involved in their maintenance and proliferation. We then provide an update on the role of metabolic reprogramming and plasticity in cancer stem cells. Finally, we discuss how metabolic pathways in cancer stem cells could be therapeutically targeted.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Cancer stem cells</kwd>
<kwd>Autophagy</kwd>
<kwd>Metabolic heterogeneity</kwd>
<kwd>Lipid metabolism</kwd>
<kwd>Therapeutic target</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution>LASER association </institution>
</funding-source>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p id="Par97">Cancer is a heterogeneous disease, and metabolic flexibility of tumors contributes to this heterogeneity. As circumstances change, the tumor ecosystem evolves to ensure the survival and growth of the cancer cells [
<xref ref-type="bibr" rid="CR1">1</xref>
]. In this ecosystem, metabolism is a driver of stemness [
<xref ref-type="bibr" rid="CR2">2</xref>
]. Cancer stem cells (CSCs) are a subset of cells within tumors that have the capacity to generate tumors and that exhibit self-renewal and differentiation properties. CSCs are resistant to cancer therapies and are a distinct population associated with metastasis and relapse.</p>
<p id="Par98">Only a few studies have directly examined the metabolism of CSCs in large part due to difficulties in isolating this population. Currently, there are more than 40 established CSC markers; however, most are also present in human embryonic stem cells and/or adult stem cells from normal tissues and a consensus marker for the identification of CSCs still a matter of debate. We begin this review with a brief discussion of autophagy and CSCs, and we review recent data on CSC metabolism. Finally, we discuss how CSC metabolism could be a therapeutic target for treatment of cancer.</p>
</sec>
<sec id="Sec2">
<title>Autophagy in CSCs</title>
<p id="Par99">Autophagy is a process necessary for normal cellular function involved in the tumor initiation, tumor interactions with neighboring cells in the tumor microenvironment, and cancer therapy. The role of autophagy in cancer is multifaceted: Autophagy promotes tumor cell survival by supplying recycled metabolites for growth, modulates mitochondrial function via mitophagy (the selective degradation of mitochondria), and functions in tumor cell migration and invasion via control of secretion of pro-migratory cytokines and focal adhesion turnover [
<xref ref-type="bibr" rid="CR3">3</xref>
]. Also, several studies have demonstrated that autophagy plays a central role in the tumor microenvironment [
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR4">4</xref>
]. For example, autophagy is induced in cancer-associated fibroblasts (CAFs) by their association with tumor cells, and this results in increased fibroblast production of amino acids, which are provided in a paracrine manner to tumor cells to sustain their growth [
<xref ref-type="bibr" rid="CR5">5</xref>
]. Two important elements that influence metabolic reprogramming of tumors are their microenvironment and the distance to the vasculature [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR4">4</xref>
]. First, emerging evidence indicates the unexpected ability of malignant cells (both CSCs and non-CSCs) to supplement their metabolism with nutrients provided by neighboring cells with complementary metabolic activities, enhancing tumor cell survival and proliferative capacity [
<xref ref-type="bibr" rid="CR6">6</xref>
<xref ref-type="bibr" rid="CR8">8</xref>
]. Second, cancer cells located closer to the blood supply generate ATP via oxidative stress, and this induces glycolysis and autophagy in the surrounding catabolic stromal/cancer cells (again, in both CSCs and non-CSCs), which generate catabolites such as fatty acids, lactates, and ketones that in turn are taken up by anabolic cancer cells (both CSCs and non-CSCs) and used to fuel mitochondrial metabolism and ATP production. This is known as the reverse Warburg effect (Table
<xref rid="Tab1" ref-type="table">1</xref>
). Parallel autophagic responses activated in distal and poorly oxygenated tumor areas provide catabolic intermediates to sustain anabolic demands and support cancer growth (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Warburg and Reverse Warburg effects</p>
</caption>
<table frame="hsides" rules="groups">
<tbody>
<tr>
<td colspan="2">Aerobic glycolysis, or the Warburg effect, is a phenomenon in cancer cells that results in reorientation of metabolism to the glycolytic pathway and to conversion of pyruvate resulting from glycolysis into lactate even in the presence of oxygen. This metabolic reprogramming is a step in the process of tumorigenesis in many cancers. It is one of the best-described metabolic adaptations arising in cancer cells. It is now established, however, that malignant transformation is not based solely on the Warburg effect. Indeed, tumor cells produce a significant fraction of their ATP via oxidative phosphorylation (OXPHOS). Malignant cells adapt their energetic metabolism to the conditions of the microenvironment, in particular to the oxygenation conditions of the tumor, which has the consequence of creating intra-tumor metabolic heterogeneity (for additional information see [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
]). The reverse Warburg effect is observed when anabolic epithelial cancer cells induce aerobic glycolysis in neighboring stromal fibroblasts or neighboring catabolic cancer cells. These catabolic cells (epithelial cancer cells or cancer-associated fibroblasts) secrete catabolites such as lactate, pyruvate (energy metabolites resulting from aerobic glycolysis), free fatty acids, and ketone bodies. Anabolic epithelial cancer cells take up these energy-rich metabolites and use them to fuel OXPHOS. This results in a higher proliferative capacity (see Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
and [
<xref ref-type="bibr" rid="CR1">1</xref>
]). An absence of stromal Cav-1 may be a biomarker for the reverse Warburg effect.</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par100">Recent reviews have focused on the role of autophagy in tumor metabolism [
<xref ref-type="bibr" rid="CR4">4</xref>
], anti-tumor immunity [
<xref ref-type="bibr" rid="CR3">3</xref>
], and cancer metastasis and cancer therapy [
<xref ref-type="bibr" rid="CR11">11</xref>
]. Here, we briefly discuss more recently reported roles for autophagy in CSCs. Autophagy appears to be necessary for the maintenance of stemness in both normal tissue stem cells [
<xref ref-type="bibr" rid="CR12">12</xref>
] and CSCs [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
] in diverse cancer types including breast, pancreatic, bladder, and colorectal cancers, chronic myeloid leukemia, and glioblastoma (for review see [
<xref ref-type="bibr" rid="CR8">8</xref>
]). The survival and quiescence of normal tissue stem cells is dependent on autophagy, and autophagy has also been reported to promote pluripotency. In CSCs, autophagy promotes expression of stem cell markers such as CD44 as well as expression of mesenchymal markers such as vimentin [
<xref ref-type="bibr" rid="CR13">13</xref>
]. Autophagy also promotes spheroid formation in vivo tumorigenesis consistent with a critical role in maintaining CSCs [
<xref ref-type="bibr" rid="CR14">14</xref>
]. Further, the inhibition of autophagy limits tumor dormancy and promotes outgrowth of metastases [
<xref ref-type="bibr" rid="CR15">15</xref>
]. Key transcription factors have been linked to the induction of autophagy and the stem cell state including Forkhead box 3A (FOXO3A), which induces expression of autophagy genes in stem cells and is itself turned over by autophagy. Other transcription factors, including the core stemness factors sex determining region Y-box (SOX2) and Nanog Homeobox (NANOG), have also been linked to autophagy induction [
<xref ref-type="bibr" rid="CR16">16</xref>
]. Also, SOX2 and STAT3 have been shown to modulate autophagy genes and to determine the stemness of CSCs.</p>
<p id="Par101">Mitophagy is emerging as a key in the control of normal tissue stem cell homeostasis. Mitophagy functions to control mitochondria quality and also regulates cellular metabolism. For example, removing damaged mitochondria, the main source of ROS, by mitophagy prevents senescence and limits ROS-induced genome damage. Limiting ROS damage is essential for maintenance of stemness. An essential role for mitophagy has reported during the glycolytic switch necessary for mouse developmental neurogenesis [
<xref ref-type="bibr" rid="CR12">12</xref>
]. The turnover of mitochondria through mitophagy helps to maintain the stem cell state by limiting the capacity of the stem cells for oxidative phosphorylation (OXPHOS) and making the stem cells more dependent on glycolysis for energy demands. Inhibition of mitophagy suppresses CD44 expression and also promotes translocation of p53 to the nucleus, where it antagonizes expression of stem cell genes.</p>
<p id="Par102">The high levels of autophagy observed in CSCs are associated with the maintenance of pluripotency, with resistance to chemotherapy, and with migration and invasion [
<xref ref-type="bibr" rid="CR3">3</xref>
]. Autophagy allows CSCs to survive despite hypoxia and low levels of nutrients in the tumor microenvironment [
<xref ref-type="bibr" rid="CR17">17</xref>
]. Missing is a comprehensive view of how these processes drive CSC fate, and few of the regulatory molecules involved have been identified. Readers interested in detailed discussion of autophagy processes in CSCs should see a recent review [
<xref ref-type="bibr" rid="CR8">8</xref>
].</p>
</sec>
<sec id="Sec3">
<title>CSCs are more glycolytic than other differentiated cancer cells</title>
<p id="Par103">A growing body of evidence suggests that the metabolism of CSC also differs from that of the bulk tumors. The importance of glucose for the maintenance and propagation of CSCs was first established in glioblastoma (GBM) [
<xref ref-type="bibr" rid="CR18">18</xref>
] and then in other types of cancer including breast cancer, colon cancer, lung cancer, ovarian cancer, and osteosarcoma [
<xref ref-type="bibr" rid="CR2">2</xref>
]. The side population cells with CSC characteristics avidly consume glucose and generate a significant amount of ATP and lactate [
<xref ref-type="bibr" rid="CR19">19</xref>
]. In addition, in these cells the AKT Kinase pathway is activated by glucose and inhibition of glycolysis decreases the ability of these cells to form tumors in vivo. In ovarian cancer, the CD44
<sup>+</sup>
/MyD88
<sup>+</sup>
CSCs depend only on glycolysis for their survival and are incapable of producing ATP by OXPHOS, resulting in autophagic death in the absence of glucose [
<xref ref-type="bibr" rid="CR20">20</xref>
].</p>
<p id="Par104">The metabolism of breast CSCs (BCSCs) grown as spheres is strongly associated with increased activities of key enzymes of anaerobic glucose fate such as pyruvate kinase isozyme M2 (PKM2), lactate dehydrogenase (LDH), and glucose-6-phosphate dehydrogenase (G6PDH). Consistent with this, BCSCs are highly sensitive to 2-deoxyglucose, a well-known inhibitor of glycolysis [
<xref ref-type="bibr" rid="CR21">21</xref>
]. The overexpression of fructose-1,6- biphosphatase (FBP1) and the increase of ROS are accompanied by a significant reduction in the number of CD44
<sup>high</sup>
/CD24
<sup>low</sup>
/EpCAM
<sup>+</sup>
CSCs and the formation of spheres [
<xref ref-type="bibr" rid="CR22">22</xref>
]. The increase of glucose uptake, glycolytic enzyme expression, lactate production, and ATP content in CSCs compared with their differentiated counterparts seems to be linked to a concomitant reduction in mitochondrial activity [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
] and also to maintenance of OXPHOS and beta-oxidation [
<xref ref-type="bibr" rid="CR23">23</xref>
]. Mechanistic analysis demonstrated that decreased expression and activity of pyruvate dehydrogenase (PDH), a key regulator of oxidative phosphorylation, plays a critical role in promoting the pro-glycolytic phenotype of CSCs. Metabolic reprogramming via forced activation of PDH preferentially eliminates CSCs [
<xref ref-type="bibr" rid="CR24">24</xref>
]. Tamada et al. showed that CD44, a marker of CSCs, acts as a metabolic modulator, activating glycolysis under hypoxic conditions and reducing glycolysis and antioxidant responses and enhancing mitochondrial production with associated increases in ROS. CD44 interacts with PKM2 in different cancer cell lines and inhibits its activity, correlating with the glycolytic phenotypes of p53-deficient cells [
<xref ref-type="bibr" rid="CR25">25</xref>
]. A metabolic signature characteristic of colon cancer initiating cells has been associated with increased expression of genes and metabolites of the glycolytic pathway and the tricarboxylic acid cycle (TCA) [
<xref ref-type="bibr" rid="CR26">26</xref>
].</p>
</sec>
<sec id="Sec4">
<title>CSCs rely on mitochondrial oxidative metabolism</title>
<p id="Par105">In contrast to data linking the stem phenotype of cancer cells to glycolytic metabolism, emerging evidence indicates that CSCs have a preference for OXPHOS metabolism (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). In both cases, mitochondrial function is essential for stemness, migration, and drug resistance of CSCs [
<xref ref-type="bibr" rid="CR27">27</xref>
]. Compared to differentiated progeny, BCSCs consume more glucose, produce less lactate, and have higher ATP content. BCSCs are heterogeneous in their metabolic phenotypes and have metabolic states distinct from their differentiated progeny.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>The metabolic heterogeneity of cancer stem cells. Tumors are complex and dynamic structures encompassing populations of host cells (e.g., fibroblasts and immune cells) and cancer cells with different metabolic activities. These cells are affected in different ways by microenvironmental conditions and biological activities of other tumor cells. For example, cancer cells close to the vasculature show oxidative metabolism, whereas a shift toward a glycolytic metabolism is observed when glucose is present in cells residing in hypoxic areas. Despite metabolic heterogeneity, cancer cells cooperate to allow adaption to changes in conditions to ensure that metabolic requirements are met. Indeed, oxidative cancer cells, like proliferating cells, increase the consumption of glucose to produce ATP and generate biomass to support cell proliferation. The oxidative stress caused by rapidly proliferation of cancer cells induces glycolysis and autophagy/mitophagy in stromal cells and/or in glycolytic cancer cells leading to the release of high amounts of lactate, which fuels the metabolism of oxidative cancer cells. Key elements of lactate shuttles are the plasma membrane monocarboxylate transporters. MCT4 is involved in the export of lactate, and MCT1 and MCT2 are involved in the uptake of this catabolite. High levels of several factors including HIF-1α, NF-κB, TGF-β, and JNK/AP1 are associated with glycolytic phenotype. The metabolic status of a CSC depends on location. In actively growing regions of the tumor and in the presence of adequate levels of oxygen (normoxic conditions), CSCs rely on glycolytic and/or oxidative metabolism. Overexpression of HIF-1α in the hypoxic environment promotes upregulation of GLUT1, GLUT3, and glycolytic enzymes. In the metastatic niche, CSCs have increased utilization of extracellular catabolites. In nutrient-poor states, autophagy is activated to provide an alternative energy source. OXPHOS and the anabolic gluconeogenesis pathways control glucose homeostasis. Abbreviations: ATP, adenosine triphosphate; CSC, cancer stem cell; GLUT1/GLUT3, glucose transporter 1/3; HIF-1α, hypoxia-inducible factor 1α; HK2, hexokinase 2; JNK/AP1, c-Jun N-terminal kinases/activator protein 1; LDH, Lactate dehydrogenase; XMCT2/4, monocarboxylate transporter 2/4; NF-κB, nuclear factor-κB; OXPHOS, oxidative phosphorylation; PFKFB, phosphofructokinase/fructose bisphosphate; PKM2, pyruvate kinase isozyme M2; TGF-β, transforming growth factor β</p>
</caption>
<graphic xlink:href="12943_2019_1126_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p id="Par106">The increased mitochondrial mass in a distinct population of breast cancer cells is attributed to a stem-like phenotype and is associated with metastatic potential and chemotherapy resistance [
<xref ref-type="bibr" rid="CR28">28</xref>
]. Despite a high rate of pentose phosphate pathway activity, which is not typical of cells that prefer OXPHOS over glycolysis, the CSCs isolated from patients with epithelial cancer overexpress genes associated with glucose uptake, OXPHOS, and fatty acid beta oxidation, indicating that in these cells pyruvate is preferentially directed toward the TCA cycle. Consistent with a metabolic OXPHOS profile, CSCs have higher mitochondrial ROS production and elevated membrane potential than normal cells and undergo apoptosis upon inhibition of the mitochondrial respiratory chain [
<xref ref-type="bibr" rid="CR29">29</xref>
]. Consistent with previously reported data [
<xref ref-type="bibr" rid="CR30">30</xref>
], CSCs display enhanced antioxidant defenses compared to their non-tumorigenic counterparts, and this may contribute to tumor resistance to therapy.</p>
<p id="Par107">De Luca et al. recently reported that mitochondrial biogenesis is required for maintenance of stem-like properties [
<xref ref-type="bibr" rid="CR31">31</xref>
]. The inhibition of mitochondrial biogenesis mediator PGC1α decreases the stem-like properties of BCSCs [
<xref ref-type="bibr" rid="CR31">31</xref>
]. In pancreatic ductal adenocarcinoma (PDAC), the deadliest cancer in western countries, it has been shown that CSCs are OXPHOS-dependent, unlike non-CSCs that are glycolytic. In addition, suppression of MYC expression and increased expression of PGC1α are key determinants for the OXPHOS dependency of CSCs and their limited ability to switch to glycolysis during mitochondrial inhibition [
<xref ref-type="bibr" rid="CR32">32</xref>
].</p>
<p id="Par108">A recent study showed that Matcha green tea inhibits the propagation of BCSCs. Interestingly, metabolic phenotyping revealed that treatment with this compound suppresses both OXPHOS and glycolytic flux, shifting cancer cells toward a more quiescent metabolic state [
<xref ref-type="bibr" rid="CR33">33</xref>
].</p>
</sec>
<sec id="Sec5">
<title>Other metabolic pathways involved in CSC maintenance and proliferation</title>
<sec id="Sec6">
<title>Mevalonate metabolic pathway</title>
<p id="Par109">A prominent role of the mevalonate metabolic pathway in regulating the self-renewal of basal/mesenchymal BCSCs has been demonstrated. Inhibition of this pathway with hydroxy-3-methylglutaryl CoA reductase blockers results in a reduction of BCSC proliferation independent of inhibition of cholesterol biosynthesis and of protein farnesylation. Notably, geranylgeranyl transferase I is crucial for BCSC maintenance. The effect of geranylgeranyl transferase I on the CSC subpopulation is mediated by inactivation of Ras homolog family member RHOA and increased accumulation of P27
<sup>kip1</sup>
in the nucleus [
<xref ref-type="bibr" rid="CR34">34</xref>
]. Mesenchymal stem cells have been reported to shuttle mitochondria and/or mitochondrial DNA in leukemia, lung, and breast tumors and to consume the cysteine dimer cystine to provide leukemic cells with chemoprotective cysteine [
<xref ref-type="bibr" rid="CR7">7</xref>
].</p>
</sec>
<sec id="Sec7">
<title>Hypoxia and redox homeostasis</title>
<p id="Par110">Clinical data indicate that reduced oxygen availability, or hypoxia, observed in intratumoral regions activates hypoxia-inducible factors (HIFs). These master regulators of oxygen homeostasis also play key roles in the maintenance of BCSCs [
<xref ref-type="bibr" rid="CR35">35</xref>
]. In response to intratumoral hypoxia or chemotherapy such as carboplatin or paclitaxel, the increased expression of HIF-1α and HIF-2α in BCSCs leads to increased expression of pluripotency factors such as Kruppel-like Factor 4 (KLF4), NANOG, octamer-binding transcription factor 4 (OCT4), and SOX2 [
<xref ref-type="bibr" rid="CR35">35</xref>
]. HIF-1 coordinately regulates expression of genes encoding pyruvate dehydrogenase (PHGDH) and five downstream enzymes in the serine synthesis pathway and mitochondrial one-carbon (folate) cycle. Silencing of
<italic>PHGDH</italic>
expression leads to decreased NADPH levels, disturbed mitochondrial redox homeostasis, and increased apoptosis, which abrogate BCSC enrichment under hypoxic conditions. PHGDH-deficient cells are relatively weakly tumorigenic, and tumors that do form are deficient in BCSCs and thus have no metastatic capacity [
<xref ref-type="bibr" rid="CR36">36</xref>
]. Human non-small cell lung cancer cells cultured in low folate conditions have enhanced CSC-like properties associated with elevated lactate release and medium acidification, suppressed expression of PDH, and elevated redox status as shown by NADH/NAD
<sup>+</sup>
and NADPH/NADP
<sup>+</sup>
ratios. These data are indicative of the metabolic reprogramming to aerobic glycolysis. Genetic and pharmacological inhibition of mechanistic target of rapamycin (mTOR) abrogates low folate-activated AKT-mTOR-HIF1-FOXO3a signaling and stemness-associated sonic hedgehog pathway activity, reverses the Warburg metabolic switch, and diminishes invasiveness of non-small cell lung cancer cells. These data suggest that lung CSCs may arise from a microenvironment low in folate through the activation of an AKT-mTOR-HIF1-FOXO3a signaling network, which promotes bioenergetic reprogramming to enhance CSC-like signatures and invasion and metastasis of lung cancers [
<xref ref-type="bibr" rid="CR37">37</xref>
].</p>
</sec>
<sec id="Sec8">
<title>NAD and nicotinamide phosphoribosyl transferase pathways are associated with tumorigenesis</title>
<p id="Par111">NAD is a cofactor essential for metabolism, energy production, DNA repair, maintenance of mitochondrial fitness, and signaling in many types of cancer cells. The biosynthesis of NAD occurs through both de novo and salvage pathways. NAD is primarily synthesized from nicotinamide, a process known as the NAD salvage pathway. Nicotinamide phosphoribosyl transferase (NAMPT) catalyzes the conversion of nicotinamide to nicotinamide mononucleotide (NMN), which is the rate-limiting step in the NAD salvage pathway. Thus, NAMPT is critical for NAD biosynthesis. Inhibition of NAMPT leads to depletion of NAD
<sup>+</sup>
, which in turn inhibits ATP synthesis [
<xref ref-type="bibr" rid="CR38">38</xref>
]. NAMPT is overexpressed in high-grade glioma and GBM tumors, and its levels correlate with tumor grade and prognosis. Ectopic overexpression of NAMPT in glioma cell lines is associated with the enrichment of glioblastoma CSC population and inhibition of NAMPT blocks in vivo tumorigenicity of glioblastoma CSCs. The self-renewal properties of the glioblastoma CSC population and radiation resistance in GBM are orchestrated by a NAD-dependent transcriptional network [
<xref ref-type="bibr" rid="CR39">39</xref>
]. Along the same lines, Lucena-Cacace et al. also recently reported that NAMPT plays an important role in regulation of the CSC survival and proliferation in colon cancer tumors [
<xref ref-type="bibr" rid="CR40">40</xref>
]. This phenotype is mediated by poly (ADP-ribose) polymerases (PARPs) and sirtuins (SIRTs).</p>
<p id="Par112">Recently, Lucena-Cacace et al. raised the idea that NAMPT contributes to tumor dedifferentiation and, driven by NAD supply, is responsible for the epigenetic reprogramming observed in tumors [
<xref ref-type="bibr" rid="CR37">37</xref>
]. This idea is supported by data reported by Jung et al. [
<xref ref-type="bibr" rid="CR41">41</xref>
] who showed that mesenchymal glioblastoma stem cells (GSCs) contain higher levels of NAD and lower levels of nicotinamide, methionine, and S-adenosyl methionine (SAM), a methyl donor generated from methionine, compared to differentiated tumor cells. Nicotinamide N-methyltransferase (NNMT), an enzyme that catalyzes the transfer of a methyl group from the cofactor SAM onto its various substrates such as nicotinamide and other pyridines, is also overexpressed in GSCs. Increases in NNMT lead to a decrease in SAM. GSCs are hypomethylated in GBM, and this causes tumors to shift toward a mesenchymal phenotype with accelerated growth, a phenotype also associated with overexpression of NAMPT.
<italic>NNMT</italic>
silencing decreases self-renewal and in vivo tumor growth of GSCs. Inhibition of NNMT expression or activity also diminishes methyl donor availability, thus decreasing methionine and unmethylated cytosine levels. Available data suggest that NNMT has a dual mechanism: It promotes DNA hypomethylation through reduction of methyl donor availability and through downregulation of activities of DNA methyltransferases such as DNMT1 and DNMT3A [
<xref ref-type="bibr" rid="CR41">41</xref>
].</p>
</sec>
<sec id="Sec9">
<title>NAD
<sup>+</sup>
and autophagy</title>
<p id="Par113">Decreased NAD
<sup>+</sup>
availability compromises the PARP1-associated base excision DNA repair pathway. Chemical inhibition of PARP1 using the drug olaparib impairs base excision DNA repair thereby enhancing temozolomide-induced damage; this mechanism is responsible for synergistic anti-tumor effects of the two drugs in GSC lines [
<xref ref-type="bibr" rid="CR42">42</xref>
]. Mechanistic studies suggest that the activation of PARP1 upregulates the AMP-activated protein kinase (AMPK) signal pathway and downregulates the mTOR signaling pathway, thereby promoting autophagy following ionizing radiation or starvation [
<xref ref-type="bibr" rid="CR43">43</xref>
].</p>
<p id="Par114">NAD
<sup>+</sup>
consumption by PARP1 generates a Ca
<sup>2+</sup>
mobilizing messenger and upregulates intracellular Ca
<sup>2+</sup>
signaling through transient receptor potential melastatin 2 channels, which can also enhance autophagy. However, further studies are required to confirm that NAD
<sup>+</sup>
metabolism induced by PARP1 contributes to autophagy initiation in CSCs. Pharmacological or genetic manipulation of NAD levels appears to modulate autophagy by altering SIRT1 activity. Inhibition of SIRT1 abolishes this autophagy modulation, suggesting that SIRT1 is critical for this process. The mechanisms underlying the NAD
<sup>+</sup>
-dependent deacetylation by SIRT1 in the regulation of autophagy involve the activation or inhibition of multiple transcription factors, including FOXO3 and P53, and of ATG proteins such as ATG5, ATG12, ATG14, Beclin-1, Bcl-2/adenovirus E1B interacting protein 3 (Bnip3), and Microtubule-associated Protein 1 Light Chain 3 (LC3) [
<xref ref-type="bibr" rid="CR44">44</xref>
]. However, further studies are required to confirm that NAD
<sup>+</sup>
metabolism regulated by SIRT1 contributes to autophagy initiation in CSCs.</p>
</sec>
<sec id="Sec10">
<title>Glutaminolysis</title>
<p id="Par115">Glutaminolysis is also essential for the proliferation and survival of epithelial CSCs largely because the ammonia molecules released from glutamine metabolism neutralize the excessive levels of protons (lactic acid) that result from the marked Warburg effect observed in these cells [
<xref ref-type="bibr" rid="CR45">45</xref>
]. Epithelial CSCs preferentially rely on aerobic glycolysis for bioenergetics, display an active serine-one-carbon-glycine metabolism, and show an increased metabolic flexibility to utilize different carbon sources (such as fatty acids and glutamine) that offsets the decreased diversion of glucose-derived carbons into the TCA cycle.</p>
<p id="Par116">Recent studies have shed light on the role of iron metabolism in CSCs and suggest that specific targeting of iron metabolism in CSCs may improve the efficacy of cancer therapy. Readers interested in detailed discussion of iron metabolism in CSCs should see a recent review [
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
].</p>
</sec>
</sec>
<sec id="Sec11">
<title>Metabolic reprogramming and plasticity</title>
<p id="Par117">It has been shown that the epithelial-mesenchymal transition (EMT) can endow cancer cells with stem cell-like properties and can cause a switch from an epithelial program to a motile mesenchymal phenotype [
<xref ref-type="bibr" rid="CR48">48</xref>
]. However, in solid tumors, CSCs can arise independently of EMT. A comparative analysis using metabolomic and fluxomic approaches identified metabolic profiles that differentiate metastatic prostate epithelial CSCs from non-CSCs expressing a stable EMT signature. The epithelial CSCs (ECSCs) are distinguished by an enhanced Warburg effect and a greater carbon and energy source flexibility resulting from amino acid and fatty acid metabolism. ECSCs are also characterized by a critical dependence on the proton buffering capacity bestowed by glutamine metabolism. A metabolic gene signature for ECSCs has been correlated with tumor progression and metastasis in several cancer types [
<xref ref-type="bibr" rid="CR45">45</xref>
].</p>
<p id="Par118">The induction of EMT is associated with enhanced glycolysis and reduced mitochondrial activity. Mechanistic analysis demonstrated that this process is the result of the activation of cytochrome c oxidase [
<xref ref-type="bibr" rid="CR49">49</xref>
] or from the suppression of fructose-1,6-bisphosphatase [
<xref ref-type="bibr" rid="CR22">22</xref>
]. Furthermore, bioenergetic disorders resulting from the inhibition of citrate synthase or succinate dehydrogenase subunit B can contribute to the acquisition of an EMT phenotype [
<xref ref-type="bibr" rid="CR50">50</xref>
]. Luo et al. reported that EMT-driven CSCs can metabolize alternative high-energy metabolites, the phenomenon known as reverse Warburg effect (Table
<xref rid="Tab1" ref-type="table">1</xref>
) [
<xref ref-type="bibr" rid="CR51">51</xref>
].</p>
<p id="Par119">The comparison between mesenchymal-like CSCs (MCSC) and ECSCs revealed distinct metabolic pathways. MCSCs display enhanced glycolysis as well as reduced O
<sub>2</sub>
consumption, reduced ROS production, more antioxidant capacity, and reduced mitochondrial mass and membrane potential compared to ECSCs [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
]. Recent work has divided GSCs into two subtypes with a mesenchymal GSC population as the more malignant subtype. Glycolytic and Aldehyde dehydrogenase 1A3 (ALDH1A3) activities are remarkably elevated in mesenchymal GSCs but not in proneural GSCs. Moreover, irradiation of proneural GSCs results in an up-regulation of mesenchymal-associated markers and a down-regulation of proneural-associated markers, and this effect is attenuated by inhibition of ALDH1A3 activity. For the high-grade glioma patients with the mesenchymal signature, inhibition of ALDH1A3-mediated pathways is thus a promising therapeutic approach [
<xref ref-type="bibr" rid="CR53">53</xref>
].</p>
<p id="Par120">Along the same line, Luo et al. also recently reported that proliferative ECSCs and quiescent MCSCs in breast cancer display different sensitivities to inhibitors of glycolysis and redox metabolism. Metabolic or oxidative stress promotes the transition of MCSCs with low levels of ROS to ECSCs with high levels of ROS. This transition depends on the AMPK-HIF1α pathway and is reversed by N-acetylcysteine. Moreover, silencing of expression of the gene encoding nuclear factor erythroid 2-like 2 (NRF2) or suppression of downstream thioredoxin and glutathione antioxidant pathways result in ECSCs sensitive to ROS-induced differentiation and cytotoxicity. However, both MCSCs and ECSCs are eliminated by co-inhibition of glycolysis and thioredoxin and glutathione pathways. This co-inhibition abolishes tumor-initiating potential, tumor growth, and metastasis [
<xref ref-type="bibr" rid="CR54">54</xref>
]. The CSC phenotype is glycolytic in in vitro experiments, given the non-physiological concentrations of oxygen and glucose, whereas directly after cells are isolated from patients or after the first passage in culture CSCs depend on OXPHOS [
<xref ref-type="bibr" rid="CR52">52</xref>
]. The upregulation of the glucose transporter Glut3 results in increased production of GSCs indicating how the high-grade glioblastomas, which are endowed with a high metabolic plasticity, survive in glucose-poor environments [
<xref ref-type="bibr" rid="CR55">55</xref>
].</p>
</sec>
<sec id="Sec12">
<title>Metabolism as a therapeutic target for CSC</title>
<p id="Par121">Several pathways which regulate metabolism and autophagy of CSCs, are targeted for the treatment of cancer (Table 
<xref rid="Tab2" ref-type="table">2</xref>
and Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). Anti-CSC therapies causing a deficiencies in energy and materials impairing CSC survival and propagation establish the basis of the future therapies. The following paragraphs provide a brief preview of these therapeutic target and the compounds that influence metabolism and autophagy of CSCs.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Drugs targeting CSC metabolism</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Metabolism-based strategies</th>
<th>Compound</th>
<th>Mechanism of action</th>
<th>CSC or tumor type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">Glycolysis inhibition</td>
<td>2-Deoxy-D-glucose</td>
<td>Glycolysis inhibitor</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR21">21</xref>
]</td>
</tr>
<tr>
<td>3-BP</td>
<td>Glycolysis inhibitor</td>
<td>Glioblastoma CSCs, PDACs</td>
<td>[
<xref ref-type="bibr" rid="CR56">56</xref>
]</td>
</tr>
<tr>
<td>DCA</td>
<td>Metabolic shift from glycolysis to OXPHOS</td>
<td>GBM cells</td>
<td>[
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td rowspan="14">Inhibition of mitochondrial respiration</td>
<td>Metformin</td>
<td rowspan="3">Complex I inhibitor</td>
<td rowspan="3">Pancreatic CSCs, CSCs of HT29 cell line derived from colorectal cancer</td>
<td rowspan="3">[
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]</td>
</tr>
<tr>
<td>Phenformin</td>
</tr>
<tr>
<td>Rotenone</td>
</tr>
<tr>
<td>Antimycin-A</td>
<td>Complex III inhibitor</td>
<td>Lung CSCs</td>
<td rowspan="3">[
<xref ref-type="bibr" rid="CR59">59</xref>
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Bedaquiline</td>
<td>Complex V inhibitor</td>
<td>Breast CSCs</td>
</tr>
<tr>
<td>Oligomycin</td>
<td>Complex V inhibitor</td>
<td>Glioblastomas</td>
</tr>
<tr>
<td rowspan="4">Salinomycin analogs</td>
<td>Lysosomal iron sequestration</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR63">63</xref>
]</td>
</tr>
<tr>
<td>Impairs autophagic flux</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR64">64</xref>
]</td>
</tr>
<tr>
<td>Interference with ABC transporters</td>
<td rowspan="2">Breast, AML, lung, gastric, osteosarcoma, colorectal, pancreatic and prostate CSCs</td>
<td rowspan="2">[
<xref ref-type="bibr" rid="CR65">65</xref>
]</td>
</tr>
<tr>
<td>Activation of the Wnt/β-catenin signaling pathway</td>
</tr>
<tr>
<td>188Re-Liposome</td>
<td>Mitophagy inhibitor</td>
<td>Ovarian CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR66">66</xref>
]</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Mitochondrial biogenesis inhibitor and inducer of apoptosis</td>
<td>Breast and cervical CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
]</td>
</tr>
<tr>
<td>XCT-790</td>
<td>ETC uncoupler, mitochondrial biogenesis inhibitor, inhibitor of ERRα-PGC-1 signaling pathway</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR31">31</xref>
]</td>
</tr>
<tr>
<td>Mdivi-1</td>
<td>Fission inhibitor, inhibitor of assembly of Drp1 and its GTPase activity</td>
<td>Breast CSC, brain tumor initiating cells</td>
<td>[
<xref ref-type="bibr" rid="CR69">69</xref>
,
<xref ref-type="bibr" rid="CR70">70</xref>
]</td>
</tr>
<tr>
<td rowspan="9">Redox homeostasis and antioxidant signaling</td>
<td>Zaprinast</td>
<td rowspan="4">Inhibition of glutathione biosynthesis, glutaminase inhibitor</td>
<td rowspan="4">Non-small lung and glutamine-addicted pancreatic cancer cell lines</td>
<td rowspan="4">[
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR71">71</xref>
]</td>
</tr>
<tr>
<td>BPTES</td>
</tr>
<tr>
<td>968</td>
</tr>
<tr>
<td>BSO</td>
</tr>
<tr>
<td>Apigenin</td>
<td rowspan="5">Neutralizer of ROS-induced NRF2 activity, STAT3 signaling pathway inhibitor, inhibitor of the NRF2 and NF-ƙB pathways</td>
<td rowspan="5">Ovarian and prostate CSCs, triple-negative breast cancers, leukemia stem-like cells</td>
<td rowspan="5">[
<xref ref-type="bibr" rid="CR72">72</xref>
<xref ref-type="bibr" rid="CR76">76</xref>
]</td>
</tr>
<tr>
<td>ATRA</td>
</tr>
<tr>
<td>Brusatol</td>
</tr>
<tr>
<td>Disulfiram</td>
</tr>
<tr>
<td>Trigonelline</td>
</tr>
<tr>
<td rowspan="12">Lipid metabolism</td>
<td>2M14NQ</td>
<td>Blocks CD36 activity and fatty acid uptake</td>
<td>Glioblastoma CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR77">77</xref>
]</td>
</tr>
<tr>
<td>Soraphen A</td>
<td>Inhibitor of ACC</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR78">78</xref>
<xref ref-type="bibr" rid="CR80">80</xref>
]</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Inhibition of autophagy</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
]</td>
</tr>
<tr>
<td>TVB-2640</td>
<td>FASN inhibitor</td>
<td>Breast CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR78">78</xref>
]</td>
</tr>
<tr>
<td>MF-438</td>
<td rowspan="4">SCD-1 inhibitor, inhibitor of FAO</td>
<td rowspan="4">Lung CSCs, liver cancer, glioblastoma and AML cells</td>
<td rowspan="4">[
<xref ref-type="bibr" rid="CR81">81</xref>
,
<xref ref-type="bibr" rid="CR82">82</xref>
]</td>
</tr>
<tr>
<td>SSI-4</td>
</tr>
<tr>
<td>A939572</td>
</tr>
<tr>
<td>Etomoxir</td>
</tr>
<tr>
<td>ST1326</td>
<td rowspan="2">Inhibition of FAO</td>
<td rowspan="2">AML cells</td>
<td rowspan="2">[
<xref ref-type="bibr" rid="CR83">83</xref>
,
<xref ref-type="bibr" rid="CR84">84</xref>
]</td>
</tr>
<tr>
<td>Avocatin B</td>
</tr>
<tr>
<td>Emodin</td>
<td>ACLY inhibitor</td>
<td>Lung CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR85">85</xref>
]</td>
</tr>
<tr>
<td>TVB-2640</td>
<td>Inhibitor of HMG-COAR, inhibitor of cholesterol synthesis through the mevalonate pathway</td>
<td>Breast and brain CSCs</td>
<td>[
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR86">86</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Metabolic modulators with anti-CSC effects. Metabolic pathways such those involving glutamine, glycolysis, redox balance, lipids, and autophagy are potentially targetable in CSCs. Some of the metabolic enzymes that are currently being considered as therapeutic targets for CSC are indicated by blue rectangles in the figure. Transcription factor NRF2 plays a pivotal role in both intrinsic resistance and cellular adaptation to ROS and is shown in a yellow rectangle. The carnitine-dependent transporter, which inhibits the mitochondrial import of fatty acids is shown in a yellow ball. Inhibitors are indicated by red rectangles. Abbreviations: ACC, acetyl-CoA carboxylase; Ac-CoA, acetyl-coenzyme A; ACLY, ATP citrate lyase; ACSL, long-chain acyl-CoA synthetases; ATRA, all-trans retinoic acid; 3-BP, 3- bromopyruvate; BSO, L-buthionine-S,R-sulfoximine; CPT1, carnitine palmitoyltransferase; I/Q/II/III/IV/V, complexes of the electron transport chain; DCA, dichloroacetate; 2-DG, 2-deoxy-D-glucose; Doc, doxycycline; FASN, fatty acid synthetase; FAT/CD36, Fatty acid translocase; GCS, gamma glutamyl cysteine synthetase; GLS, glutaminase; GLUT1/4, glucose transporter 1/4; GSH, glutathione; HK2, hexokinase 2; HMG-CoAR, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; 2M14NQ, 2-methylthio-1,4-naphthoquinone; Mito, mitochondrial; NRF2, nuclear factor erythroid 2-related factor 2; OAA, oxaloacetate; PDH, pyruvate dehydrogenase; ROS, reactive oxygen species; TC, tetracyclines; TCA, tricarboxylic acid cycle; SCD1, stearoyl-CoA desaturase-1; SLC1A5, solute carrier family 1 member 5;</p>
</caption>
<graphic xlink:href="12943_2019_1126_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
</sec>
<sec id="Sec13">
<title>Mitochondrial metabolism</title>
<p id="Par122">As mentioned above, mitochondria play a key role in the responses to oxidative stress, energy status changes, and apoptotic stimuli and are also involved in the regulation of stemness and differentiation of CSCs [
<xref ref-type="bibr" rid="CR59">59</xref>
]. Several pathways that promote anaerobic and aerobic energy metabolism of CSCs have been evaluated as targets for the treatment of cancer (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
).</p>
<sec id="Sec14">
<title>OXPHOS inhibitors</title>
<p id="Par123">Various compounds that inhibit oxidative metabolism result in sensitization of CSCs to chemotherapies, leading to their eradication. This has been demonstrated in a model of PDAC. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Using a KRAS-inducible mouse model, Viale et al. demonstrated that a subpopulation of cells with CSC features survives KRAS-ablation therapy and induces tumor relapse [
<xref ref-type="bibr" rid="CR87">87</xref>
]. Transcriptomic and metabolic analyses of surviving cells demonstrated a strong expression of genes driving mitochondrial function and lysosomal and autophagic activity as well as a robust dependence on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Importantly, these cells depend on OXPHOS for survival.</p>
<p id="Par124">These CSC have high sensitivity to OXPHOS inhibitors and when OXPHOS inhibitors are combined with a targeted inhibitor of the KRAS pathway tumor recurrence is blocked [
<xref ref-type="bibr" rid="CR88">88</xref>
]. However, metformin, which acts directly on the respiratory chain complex I in the mitochondria to inhibit OXPHOS and reduce mitochondrial ATP production (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
), was not enough to eliminate the CSC subpopulation [
<xref ref-type="bibr" rid="CR32">32</xref>
]. This is possibly due to their intermediate glycolytic/respiratory phenotype and also to the heterogeneity and plasticity of PDAC cells. A previous study demonstrated that metformin increases ROS production in CSCs from PDAC cells and reduces their mitochondrial transmembrane potential. The AMPK/mTOR axis is not involved in the subsequent induction of lethal energy crisis in CSCs.</p>
<p id="Par125">Interestingly, Kim et al. recently demonstrated that glutamine metabolism also plays an important role in regulation of the sensitivity of colorectal CSCs to metformin through a mechanism that depends on the AMPK/mTOR pathway. In the absence of glutamine, but not in low-glucose medium, CSCs from SW620 cells were sensitive to the CSC-suppressing effect of metformin with activation of AMPK and suppression of mTOR. A combination of metformin and glutaminase C inhibitor compound 968, an inhibitor of glutamine metabolism, suppressed proliferation of CSCs in SW620 cells and enhanced the effect of metformin alone in HT29 cells (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). Thus, the sensitivity to metformin in this cell line is possibly due to activation of AMPK pathway.</p>
<p id="Par126">Depletion of alanine serine cysteine transporter 2 (ASCT2), glutaminase 1, and c-MYC induced significant CSC suppression. The compounds 968 and metformin also induced CSC elimination, and the activities were enhanced by silencing of
<italic>ASCT2</italic>
and
<italic>c-MYC</italic>
. Thus, the effect of metformin on CSCs varies depending on the extent of activation of the AMPK/mTOR pathway and glutamine metabolism [
<xref ref-type="bibr" rid="CR58">58</xref>
]. Consistent with a metabolic profile dominated by OXPHOS, ovarian CSCs undergo apoptosis upon inhibition of the mitochondrial respiratory chain by oligomycin, antimycin, rotenone, and metformin (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
).</p>
<p id="Par127">CSCs have higher mitochondrial ROS production and elevated membrane potential as well as enhanced pentose phosphate pathway activity compared to normal counterparts. This metabolic characteristic is not representative of cells that privilege OXPHOS over glycolysis and may instead reflect the role of the pentose phosphate pathway in reloading scavenging enzymes [
<xref ref-type="bibr" rid="CR29">29</xref>
]. In agreement with this, combined treatment with 5-fluorouracil, an inhibitor of thymidine synthesis, and a pharmacological inhibitor of OXPHOS abolishes drug resistance of colon cancer cells in culture and diminishes the expression of stem-like markers [
<xref ref-type="bibr" rid="CR89">89</xref>
].</p>
<p id="Par128">The efficacy of metformin has prompted efforts to repurpose available drugs to target CSCs (for review see [
<xref ref-type="bibr" rid="CR59">59</xref>
]). Various FDA-approved antibiotics known to target the mitochondrial respiratory chain have been shown to selectively decrease CSC survival or proliferation (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
). Examples are antimycin A, a powerful complex III inhibitor that decreases lung spheroids; the anti-tuberculosis agent bedaquiline (a complex V inhibitor) that inhibits mammosphere formation; oligomycin (another complex V inhibitor) that synergistically suppresses growth and motility of glioblastoma cell lines when combined with 2-deoxy-D-glucose (2-DG); and niclosamide, an anti-helminthic with OXPHOS uncoupling properties [
<xref ref-type="bibr" rid="CR90">90</xref>
], that inhibits proliferation of CSCs from ovarian and breast cancers. Niclosamide also prevents the conversion of breast non-CSCs into CSCs induced by IL-6 [
<xref ref-type="bibr" rid="CR91">91</xref>
]. Salinomycin also inhibits CSC formation in diverse cancer types [
<xref ref-type="bibr" rid="CR65">65</xref>
]; OXPHOS is known to be inhibited by salinomycin [
<xref ref-type="bibr" rid="CR92">92</xref>
]. Depletion of ATP levels and induction of mitophagy and mitoptosis are observed in cancer cells treated with salinomycin [
<xref ref-type="bibr" rid="CR93">93</xref>
]. As a pleotropic compound that also interferes with Wnt signaling and ABC transporters, the antitumoral effect of salinomycin likely results from a combination of factors [
<xref ref-type="bibr" rid="CR65">65</xref>
]. We recently demonstrated that salinomycin impairs autophagic flux [
<xref ref-type="bibr" rid="CR64">64</xref>
] and kills CSCs by sequestering iron in lysosomes by ferroptosis [
<xref ref-type="bibr" rid="CR63">63</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
).</p>
<p id="Par129">The compound known as XCT-790 also prevents breast CSC survival and propagation. The rescue of the effect of XCT-790 by acetyl-l-carnitine (a mitochondrial fuel) indicates that mitochondria are the target of XCT-790 in CSCs [
<xref ref-type="bibr" rid="CR31">31</xref>
]. XCT-790 is a strong and selective inverse agonist ligand of the estrogen-related receptor alpha (ERRα), which is a cofactor of peroxisome proliferator-activated receptor gamma co-activator (PGC-1α). PGC-1α is the master regulator of mitochondrial biogenesis and is essential for the activation of numerous nuclear transcription factors that control the transcription of many mitochondrial genes [
<xref ref-type="bibr" rid="CR94">94</xref>
]. Independent of its inhibition of ERRα and mitochondrial biogenesis, XCT-790 is a potent mitochondrial electron transport chain uncoupler [
<xref ref-type="bibr" rid="CR95">95</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
).</p>
<p id="Par130">Numerous classes of FDA-approved antibiotics also inhibit mitochondrial biogenesis to eliminate CSCs [
<xref ref-type="bibr" rid="CR96">96</xref>
]. These include the erythromycins, the tetracyclines, the glycylcyclines, an anti-parasitic drug, and chloramphenicol. Efficacy was observed across eight different tumor types (breast, ductal carcinoma in situ, ovarian, prostate, lung, pancreatic, melanoma, and glioblastoma), suggesting that cancer can be treated as an infectious disease. Indeed, simultaneous inhibition of autophagy and treatment with antibiotics significantly reduces tumorigenic properties of cancer cells suggesting that this should be tested as a potential strategy for anticancer therapy [
<xref ref-type="bibr" rid="CR97">97</xref>
]. However, continuous treatment with antibiotics for cancer therapy may not succeed due to induction of autophagy or a glycolytic shift.</p>
</sec>
<sec id="Sec15">
<title>Mitochondrial dynamics inhibitors</title>
<p id="Par131">Mitochondria are dynamic organelles that often undergo fusion and fission events to sustain mitochondrial integrity and appropriate bioenergetics and spatial distribution. High levels of mitochondrial fission activity are associated with high proliferation and invasiveness in some cancer cells and with self-renewal and resistance to differentiation in some stem cells [
<xref ref-type="bibr" rid="CR98">98</xref>
]. A specific inhibitor of the fission events, mDIVI1, induced apoptosis in brain tumor initiating cells and inhibited tumor growth. mDIVI1 is an inhibitor of dynamin-related protein 1 (DRP1), a mitochondrial fission protein, induces mitochondrial oxidative stress and reduces mitochondrial metabolism. CDK5-dependent DRP1 activation in brain tumor initiating cells stimulates mitochondrial fission preventing cell death and sustaining self-renewal and growth. DRP1 activation in brain tumor initiating cells correlates with poor glioblastoma patient survival [
<xref ref-type="bibr" rid="CR69">69</xref>
]. Recently, Peiris-Pages et al. showed that mDIVI1 prevents breast CSC survival and propagation [
<xref ref-type="bibr" rid="CR70">70</xref>
].</p>
<p id="Par132">Mitochondrial fission can produce an impaired daughter unit that is targeted by the autophagic machinery. Mitochondrial fusion, on the other hand, may serve to dilute impaired respiratory components and thereby prevent their removal. The inverse dependency of fusion and mitophagy on membrane potential allows these two processes to act in a complementary rather than competitive fashion on the daughter mitochondrion after a fission event [
<xref ref-type="bibr" rid="CR99">99</xref>
]. Intraperitoneal delivery of the nanomedicine 188Re-Liposome killed the CSCs-like cells in tumors with a degree of selectivity and switched metabolism from glycolysis to OXPHOS in an animal model of ovarian cancer [
<xref ref-type="bibr" rid="CR66">66</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). A study showed that dynamin 1-like -mediated mitochondrial fission induced by liensinine, a novel mitophagy inhibitor, sensitizes breast cancer cells to chemotherapy [
<xref ref-type="bibr" rid="CR100">100</xref>
]. Recently, Chang et al. showed that mitophagy inhibitors such as liensinine and 188Re-Liposome abolish drug resistance in ovarian CSC-like cells [
<xref ref-type="bibr" rid="CR101">101</xref>
].</p>
</sec>
<sec id="Sec16">
<title>Glycolysis inhibitors</title>
<p id="Par133">Previous findings suggest that CSCs may be specifically dependent on a high glucose turnover; therefore, targeting the glycolytic pathway is a promising therapeutic approach. Zhou et al. demonstrated that the combination of a glycolysis inhibitor such as 3-bromopyruvate (3-BP) with standard therapeutic agents such as doxorubicin killed glioblastoma CSCs and inhibited tumor formation. This study suggests that stem-like cancer cells prefer a low oxygen microenvironment and actively utilize the glycolytic pathway [
<xref ref-type="bibr" rid="CR18">18</xref>
]. Recently, Isayev et al. showed that treatment with 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance of CSCs from PDAC [
<xref ref-type="bibr" rid="CR56">56</xref>
].</p>
<p id="Par134">The switch from mitochondrial OXPHOS to cytoplasmic glycolysis is accompanied by development of the resistance to cell death in glioblastoma multiforme. This metabolic switch is accompanied by mitochondrial hyperpolarization. Michelakis et al. demonstrated that dichloroacetate (DCA), a small-molecule drug, induced a metabolic shift from glycolysis to OXPHOS, resulting in increased ROS, and induced apoptosis in CSC glioblastoma [
<xref ref-type="bibr" rid="CR57">57</xref>
]. By inhibiting pyruvate dehydrogenase kinase (PDK), DCA activates PDH, increasing the ratio of glucose oxidation to glycolysis. On activation of PDH, however, pyruvate can be decarboxylated to acetyl-coenzyme A, enter the TCA cycle, and complete glucose oxidation in the mitochondrial matrix, generating up to 36 mol of ATP per glucose molecule in the presence of oxygen.</p>
</sec>
</sec>
<sec id="Sec17">
<title>Targeting redox homeostasis and antioxidant signaling</title>
<p id="Par135">Growing evidence supports a model for redox homeostasis in which the ROS-antioxidant interaction acts as a metabolic interface for signals derived from metabolism and from the environment. This interface regulates processes that allow cells to acclimate or, alternatively, to die. The efficacy of clinically used classical chemo and radiotherapy is due to high levels of intracellular ROS-induced cancer cell death. However, Yuan et al. recently reported that ROS generated from OXPHOS is essential in CSC activation [
<xref ref-type="bibr" rid="CR102">102</xref>
], which promotes tumor development. This suggests that high levels of ROS may not eradicate CSCs.</p>
<p id="Par136">CSCs are characterized by a finely regulated redox metabolism [
<xref ref-type="bibr" rid="CR103">103</xref>
]. Glutathione plays an essential role in maintenance of stemness characteristics [
<xref ref-type="bibr" rid="CR104">104</xref>
]. Glutathione synthesis may be inhibited either directly or indirectly by blocking glutamine synthetase (GS) or glutaminase enzymes (GLS). Several glutaminase inhibitors have been evaluated preclinically [
<xref ref-type="bibr" rid="CR30">30</xref>
], including buthionine sulfoximine (BSO), 968, and bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) [
<xref ref-type="bibr" rid="CR59">59</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). Recently, zaprinast, an asthma medication was identified as a glutaminase inhibitor [
<xref ref-type="bibr" rid="CR71">71</xref>
]. Depletion of glutathione and inhibition of thioredoxin reductase activity could also enhance radiation responses in human breast and pancreatic CSCs by a mechanism involving thiol-dependent oxidative stress. The following pharmacologically agents inhibit glutathione and thioredoxin metabolism: BSO; sulfasalazine (SSZ), an inhibitor of xc (−) cysteine/glutamate antiporter; auranofin, a thioredoxin reductase inhibitor; and 2-AAPA, a GSH-reductase inhibitor. Combined inhibition of glutathione- and thioredoxin-dependent thiol metabolism can enhance responses of CSC to conventional therapies [
<xref ref-type="bibr" rid="CR105">105</xref>
].</p>
<p id="Par137">As mentioned above, NRF2 is a transcription factor that mediates the cytoprotective response to oxidative and electrophilic stress. Under the oxidative stress, NRF2 dissociates from its molecular inhibitor Kelch-like ECH-associating protein 1 (KEAP1) and translocates into the nucleus. There NRF2 binds to the antioxidant response element (ARE) of its target genes to induce their expression. NRF2 target genes include
<italic>NADPH quinone oxidoreductase-1</italic>
(
<italic>NQO-1</italic>
) and
<italic>aldo-keto reductase 1C1</italic>
and genes encoding glutathione generating enzymes and drug efflux transporters such as breast cancer resistance protein (BCRP). Recently, Kim et al. reported that all-trans retinoic acid (ATRA) inhibits NRF2 activation, suppresses ALDH1 expression, and leads to the attenuation of ovarian CSC-like properties [
<xref ref-type="bibr" rid="CR72">72</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
).</p>
<p id="Par138">In the presence of copper, administration of disulfiram, an approved anti-alcoholism drug, significantly downregulates ALDH1A1, CD44, and phospho-STAT3 levels. Disulfiram suppresses stem-like properties in triple-negative breast cancer by targeting the STAT3 signaling pathway [
<xref ref-type="bibr" rid="CR73">73</xref>
]. Moreover, in leukemia stem-like cells, disulfiram and copper selectively activate the stress-related ROS-JNK pathway and simultaneously inactivate the NRF2 and NF-κB pathways [
<xref ref-type="bibr" rid="CR74">74</xref>
]. Although disulfiram is now begin tested in phase III clinical trials, it is extremely unstable in blood. To increase disulfiram blood levels, a nanocarrier system of mPEG-PLGA/PCL has been used for the delivery [
<xref ref-type="bibr" rid="CR106">106</xref>
].</p>
<p id="Par139">Many other NRF2 inhibitors, including brusatol, apigenin, and trigonelline, have been identified (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). Brusatol treatment suppresses NRF2 at the protein level, which results in enhanced intracellular ROS, sensitization of mammospheres to taxol, and reduced anchorage-independent growth. However, further studies are needed to establish its in vivo action. Apigenin [
<xref ref-type="bibr" rid="CR75">75</xref>
] and trigonelline [
<xref ref-type="bibr" rid="CR76">76</xref>
] are transcriptional and translational NRF2 inhibitors, respectively, that were developed as adjuvants to chemotherapeutic drugs. Mechanistic analyses demonstrated that
<italic>NRF2</italic>
silencing or treatment with trigonelline abolishes the ferroptosis resistance of KEAP1-deficient and cisplatin-resistant cancer cells to artesunate [
<xref ref-type="bibr" rid="CR76">76</xref>
]. Paradoxically, some natural antioxidants, including sulforaphane, curcumin, resveratrol, oleanane triterpenoid, and carnosol, which all increase NRF2 expression levels, also have therapeutic potential. Readers interested in detailed discussion of this paradox should see recent reviews [
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR107">107</xref>
].</p>
</sec>
<sec id="Sec18">
<title>Lipid metabolism</title>
<p id="Par140">The role of lipid metabolism as a major source of energy and metabolic intermediates was recently demonstrated for processes implicated in transformation of normal cells into malignant cells and tumor progression [
<xref ref-type="bibr" rid="CR59">59</xref>
]. Lipid metabolism is necessary for synthesis of membrane components. Fatty acids are broken down through mitochondria beta oxidation, which produces acetyl-coenzyme A (Ac-CoA) for anaplerosis. Citrate, a TCA cycle intermediate, can be used as a precursor for fatty acid synthesis and for NADPH production through the ATP citrate lyase (ACLY) (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). Citrate is subsequently converted to acetyl-CoA and oxaloacetate in the cytoplasm. ACLY links glycolytic and lipidic metabolism. ACLY is overexpressed in cancer cells, and siRNA-mediated silencing of
<italic>ACLY</italic>
limits cancer cell proliferation and reduces the capacity of A549 lung cancer cells to form spheres [
<xref ref-type="bibr" rid="CR108">108</xref>
]. ACLY inhibitors, previously developed for metabolic disorders, have recently attracted interest as promising anti-cancer agents [
<xref ref-type="bibr" rid="CR109">109</xref>
]. Koerner et al. recently synthesized an emodin derivative and demonstrated that this novel ACLY inhibitor prevents proliferation of lung CSCs in vitro [
<xref ref-type="bibr" rid="CR85">85</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
).</p>
<p id="Par141">The committed step of fatty acid synthesis is the activation of acetyl-CoA to malonyl-CoA. This is an energy-consuming process catalyzed by acetyl-CoA carboxylase (ACC). The acetyl and malonyl groups are then coupled to the acyl-carrier protein domain of the multifunctional fatty acid synthase (FASN). Repeated condensations of acetyl groups generate the basic 16-carbon saturated palmitic acid. FASN activity is higher in adult murine neuronal stem and progenitor cells than in differentiated progeny [
<xref ref-type="bibr" rid="CR110">110</xref>
]. Fatty acids are required for the production of phosphoglycerides, which, together with cholesterol, can be used for building cell membranes. Lipid droplets store triacyl glycerides and cholesteryl esters. Emerging data indicate that stored cholesteryl ester and accumulation of lipid droplets are correlated with tumorigenicity of CSCs derived from neurospheres and from ALDH
<sup>+</sup>
/CD133
<sup>+</sup>
ovarian cancer cells [
<xref ref-type="bibr" rid="CR111">111</xref>
] and colorectal cancer cells [
<xref ref-type="bibr" rid="CR112">112</xref>
]. Thus, increased lipid storage in lipid droplets appears as a CSCs marker [
<xref ref-type="bibr" rid="CR112">112</xref>
]. Lipids from extracellular sources can also be stored in lipid droplets. Thus, lipid metabolism is controlled by fatty acid synthesis and fatty acid oxidation (FAO) as well as by NADH, which is necessary for the production of ATP [
<xref ref-type="bibr" rid="CR113">113</xref>
]. Lipolysis of lipids stored in lipid droplets was earlier considered to be solely carried out by cytosolic lipases. However, recent studies demonstrate that lipophagy (autophagic degradation of lipids by acidic lipases) serves as an alternate pathway for the degradation of lipid droplets [
<xref ref-type="bibr" rid="CR113">113</xref>
]. Among target tested for CSC elimination, lipid metabolism is promising [
<xref ref-type="bibr" rid="CR59">59</xref>
]. Several compounds that influence lipid metabolism have been tested preclinically (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
).</p>
<sec id="Sec19">
<title>Lipid uptake inhibition</title>
<p id="Par142">Lipid uptake can be inhibited by pharmacological inhibition or by antibody-mediated inhibition of the transporter fatty acid translocase CD36. Dietary lipid dependence of metastasis-initiating cells has recently been reported in melanoma and breast cancer. Inhibition of CD36, by specific antibodies, impairs metastasis [
<xref ref-type="bibr" rid="CR114">114</xref>
]. Conversely, over-expression of CD36 significantly increases lymph node metastasis of oral squamous cell carcinoma cell lines with low metastatic potential [
<xref ref-type="bibr" rid="CR114">114</xref>
]. Metastatic-initiating cells are also characterized by a distinct lipid metabolic signature related to fatty acid degradation, de novo lipogenesis, and lipid storage. CD36 is enriched in CSCs from glioblastoma and functionally distinguishes self-renewing cells. CD36 is co-expressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction results in concomitant loss of integrin alpha 6 expression, self-renewal, and tumor initiation capacity. 2-Methylthio-1,4-naphtoquinone (2M14NQ), a unique sulfur-containing quinone, which inhibits CD36 activity, decreases self-renewal ability and induces apoptosis in glioblastoma CD133
<sup>+</sup>
CSCs [
<xref ref-type="bibr" rid="CR77">77</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
). CD36
<sup>+</sup>
leukemia CSCs are enriched in gonadal adipose tissue and have elevated fatty acid uptake and beta oxidation [
<xref ref-type="bibr" rid="CR115">115</xref>
]. Sulfosuccinimidyl oleate, another CD36 inhibitory compound, decreases proliferation of chemoresistant leukemic CD36
<sup>+</sup>
/CD34
<sup>+</sup>
stem cells [
<xref ref-type="bibr" rid="CR115">115</xref>
]. The conversion of long chain fatty acids to fatty acyl-CoAs is catalyzed by the long-chain acyl-CoA synthetases (ACSL), which have been linked to carcinogenesis [
<xref ref-type="bibr" rid="CR116">116</xref>
]. The ACSL inhibitor triacsin C is under investigation for the treatment of acyl-CoA synthetase-dependent tumors. However, there is no data available on the ACSL as a therapeutic target for CSC.</p>
</sec>
<sec id="Sec20">
<title>Inhibition of lipogenesis and acyl-CoA synthetase lipid desaturation: FASN and stearoyl-CoA desaturase-1</title>
<p id="Par143">Results of a recent study support the theory of re-activation of de novo lipogenesis in solid tumors as part of cancer metabolic reprogramming [
<xref ref-type="bibr" rid="CR113">113</xref>
]. In invasive ductal carcinoma, acetyl CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl CoA, is overexpressed under hypoxic and lipid-depleted conditions. ACSS2 increases acetate consumption and thereby fatty acid biosynthesis in the harsh tumor microenvironment where there is a scarcity of alternate carbon sources for lipogenesis. Thus, targeting de novo lipogenesis and lipid desaturation could provide a selective mechanism to interfere with tumor growth.</p>
<p id="Par144">A specific inhibitor of the first committed step of lipid biosynthesis catalyzed by ACC, the antifungal polyketide soraphen A, suppresses growth of breast CSCs [
<xref ref-type="bibr" rid="CR78">78</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
). Numerous classes of ACC inhibitors have been evaluated in clinical trials for metabolic diseases (i.e., obesity and metabolic syndrome). Mechanistic analysis suggests that the biotin carboxylase domain of the ACC, which is the soraphen A binding subunit dimerization site, may be an ideal target for ACC inhibitors with potential for use in cancer therapy.</p>
<sec id="Sec21">
<title>FASN inhibitors</title>
<p id="Par145">Given the involvement of the enzyme FASN in numerous tumor types, FASN inhibitors including C75, C93, epigallocatechin gallate, G28UCM, orlistat, Fasnall, GSK2194069, and GSK837149A have been evaluated in a mouse model of breast cancer [
<xref ref-type="bibr" rid="CR79">79</xref>
]. Inhibition of FASN by cerulenin and of mevalonate pathways by atorvastatin prevents proliferation of CSCs in vitro [
<xref ref-type="bibr" rid="CR80">80</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
). C75 at non-cytotoxic concentrations significantly reduces the capacity of MCF-7/HER2 cells to form mammospheres, an in vitro indicator of cancer stem-like cells [
<xref ref-type="bibr" rid="CR117">117</xref>
]. Despite these efforts, however, the majority of FASN inhibitors have failed to advance into clinical trials due to unexpected toxicities. Currently, TVB-2640 is the only selective FASN inhibitor in clinical trials for the treatment of advanced solid tumors, including HER2
<sup>+</sup>
advanced breast cancer, high-grade astrocytoma, colon cancer, and non-small cell lung carcinoma with mutations in KRAS.</p>
</sec>
<sec id="Sec22">
<title>SCD1 inhibitors</title>
<p id="Par146">A recent report using hyperspectral-stimulated Raman spectroscopic imaging and mass spectrometry analysis of extracted lipids showed that ovarian CSCs contain unusually high levels of unsaturated fatty acids (UFAs) and that UFAs are essential for the cells to retain stemness. These data suggest that increases in lipid unsaturation might be a general marker for CSCs in ovarian cancer and a new target for CSC-specific therapy [
<xref ref-type="bibr" rid="CR118">118</xref>
]. Stearoyl-CoA desaturase-1 (SCD1), the most abundant desaturase, is expressed in lipogenic tissues and catalyzes the formation of double bonds at the ninth carbon atom of saturated fatty acids, leading to mono-unsaturated fatty acids. Using molecular approaches and chemical inhibitors such as CAY 10566 and SC26196, SCD1 was identified as the enzyme responsible for the increased desaturation in stem cells. Mechanistically, UFAs increase NF-κB activity, which upregulates expression of
<italic>ALDHA1</italic>
and
<italic>SCD-1</italic>
mRNAs. Increased SCD1 in turn promotes UFA synthesis from saturated fatty acids, forming a positive feedback loop [
<xref ref-type="bibr" rid="CR118">118</xref>
].</p>
<p id="Par147">Two studies support the use of combination therapy with SCD1 inhibitors to achieve better control of cancer [
<xref ref-type="bibr" rid="CR81">81</xref>
]. The first study reported that SCD1-mediated endoplasmic reticulum stress regulates liver tumor-initiating cells and sorafenib sensitivity. SCD1 inhibitors A939572 or SSI-4 alone or in combination with sorafenib thus have potential for treatment liver cancer [
<xref ref-type="bibr" rid="CR81">81</xref>
]. In parallel, Pisnau et al. reported that co-treatment with cisplatin and the SCD1 inhibitor MF-438 decreases expression of lung CSCs markers, strongly synergizes in the inhibition of sphere formation, and induces apoptosis of lung CSCs [
<xref ref-type="bibr" rid="CR82">82</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
). However, clinical utilization of SCD1 inhibitors for anti-cancer therapy should proceed with extreme caution. SCD1 is also involved in the regulation of inflammation and stress in various cell types, including β-cells, adipocytes, macrophages, endothelial cells, and myocytes.</p>
<p id="Par148">Considering the established link between obesity and risk for many types of cancer, the observation that SCD1 deficiency protects mice against high-fat diet-induced obesity and hepatic steatosis [
<xref ref-type="bibr" rid="CR119">119</xref>
] suggests that SCD1 inhibitors could serve the dual purpose of blunting tumor growth and preventing obesity and associated metabolic conditions. On the other hand, loss of SCD1 function is associated with the development of inflammatory diseases such as dermatitis, atherosclerosis, intestinal colitis, pancreatic β-cell dysfunction, and liver dysfunction [
<xref ref-type="bibr" rid="CR119">119</xref>
]. Furthermore, SCD1 is highly expressed in the brain. Small-molecule inhibitors of SCD1 could cross the blood-brain barrier and interfere with the axon myelination process. Therefore, therapeutic strategies that target the re-activation of de novo lipogenesis of tumor tissues should take into consideration the risks of interference with active de novo lipogenesis in normal tissues.</p>
</sec>
</sec>
<sec id="Sec23">
<title>Inhibition of fatty acid oxidation</title>
<p id="Par149">FAO is a promising target for elimination of CSCs. Etomoxir, an inhibitor of the carnitine-dependent transporter CPT1 (also known as CPT1A), which inhibits the mitochondrial import of fatty acids mediated by the carnitine shuttle, decreases intracellular ATP levels as well as the viability and resistance to chemotherapy of glioblastoma and acute myeloid leukemia cells [
<xref ref-type="bibr" rid="CR120">120</xref>
]. Silencing of
<italic>Nanog</italic>
or overexpression of cytochrome c oxidase subunit 6A and/or inhibition of FAO by etomoxir, sensitizes CSCs to sorafenib treatment. These data suggest that FAO inhibition or OXPHOS reestablishment to induce metabolic reprogramming of CSCs should be a powerful therapy in hepatocellular carcinoma [
<xref ref-type="bibr" rid="CR121">121</xref>
]. Unfortunately, the clinical development of etomoxir was terminated because of severe hepatotoxicity and hematopoietic stem cell exhaustion associated with treatment [
<xref ref-type="bibr" rid="CR120">120</xref>
]. However, alternative FAO inhibitors are under investigation. For instance, the compound ST1326 strongly inhibits chemoresistance of leukemia cells with no effect on normal stem cells [
<xref ref-type="bibr" rid="CR83">83</xref>
]. Additionally, another FAO inhibitor, avocatin B, which acts as a lipid that accumulates in mitochondria, eliminates CSCs from acute myeloid leukemia with no effect on normal blood stem cells [
<xref ref-type="bibr" rid="CR84">84</xref>
] (Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
).</p>
</sec>
<sec id="Sec24">
<title>Cholesterol synthesis through the mevalonate pathway</title>
<p id="Par150">Cholesterol synthesis from acetyl-CoA proceeds through the mevalonate pathway. Analysis of a large cohort of breast cancer patients provided evidence of reduced mortality in statin users. Statins are inhibitors of 3-hydroxy-3 methylglutaryl-CoA reductase (HMG-COAR), the limiting step of the mevalonate pathway. However, these associations are weak in magnitude and attenuated in some sensitivity analyses [
<xref ref-type="bibr" rid="CR122">122</xref>
]. As mentioned above, treatment with various statins targeting CSC self-renewal resulted in elimination of CSCs in breast [
<xref ref-type="bibr" rid="CR34">34</xref>
] and brain [
<xref ref-type="bibr" rid="CR86">86</xref>
] cancers. Moreover, a mixture of brutieridin and melitidin, which has statin-like properties, eradicates CSCs by targeting mevalonate, Rho-GDI-signaling, and mitochondrial metabolism [
<xref ref-type="bibr" rid="CR123">123</xref>
]. In addition, bergamot metabolically inhibits OXPHOS and FAO [
<xref ref-type="bibr" rid="CR123">123</xref>
].</p>
</sec>
</sec>
<sec id="Sec25">
<title>Concluding remarks</title>
<p id="Par151">It is now clear that the cancer is a heterogeneous disease and that metabolic heterogeneity and flexibility of tumor cells contributes to this heterogeneity. Location influences CSC metabolic status. In actively growing regions of the tumor and in the presence of adequate levels of oxygen, CSCs rely on glycolytic and/or oxidative metabolism. In nutrient-poor states, autophagy is activated as an alternative energy source. The catabolic glycolysis/oxidative phosphorylation and the anabolic gluconeogenesis pathway control glucose homeostasis. The metabolic adaptation of CSCs to the tumor microenvironment may provide an explanation for the metabolic differences observed in CSCs. However, further investigation are necessary to demonstrate the role of autophagy in plasticity and metabolic reprogramming. Current studies have revealed details of CSC metabolism in terms of redox state, lipid metabolism, and use of alternative fuels, such as amino acids or ketone bodies, identifying important vulnerabilities that could provide new therapeutic opportunities. However, to interrogate the metabolic traits of CSCs, metabolism must be analyzed directly after isolation from patients or after very few passages in culture to avoid artifactual switches in metabolic characteristics.</p>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>2-DG</term>
<def>
<p id="Par3">2-deoxy-D-glucose</p>
</def>
</def-item>
<def-item>
<term>2M14NQ</term>
<def>
<p id="Par4">2-methylthio-1,4-naphtoquinone</p>
</def>
</def-item>
<def-item>
<term>3-BP</term>
<def>
<p id="Par5">3- bromopyruvate</p>
</def>
</def-item>
<def-item>
<term>ACC</term>
<def>
<p id="Par6">Acetyl-CoA carboxylase</p>
</def>
</def-item>
<def-item>
<term>Ac-CoA</term>
<def>
<p id="Par7">Acetyl-coenzyme A</p>
</def>
</def-item>
<def-item>
<term>ACLY</term>
<def>
<p id="Par8">ATP citrate lyase</p>
</def>
</def-item>
<def-item>
<term>ACSL</term>
<def>
<p id="Par9">Long-chain acyl-CoA synthetases</p>
</def>
</def-item>
<def-item>
<term>ACSS2</term>
<def>
<p id="Par10">Acetyl CoA synthetase 2</p>
</def>
</def-item>
<def-item>
<term>ALDH1A3</term>
<def>
<p id="Par11">Aldehyde dehydrogenase 1A3</p>
</def>
</def-item>
<def-item>
<term>AMPK</term>
<def>
<p id="Par12">AMP-activated protein kinase</p>
</def>
</def-item>
<def-item>
<term>ARE</term>
<def>
<p id="Par13">Antioxidant response element</p>
</def>
</def-item>
<def-item>
<term>ASCT2</term>
<def>
<p id="Par14">Alanine serine cysteine transporter 2</p>
</def>
</def-item>
<def-item>
<term>ATP</term>
<def>
<p id="Par15">Adenosine triphosphate</p>
</def>
</def-item>
<def-item>
<term>ATRA</term>
<def>
<p id="Par16">All-trans retinoic acid</p>
</def>
</def-item>
<def-item>
<term>BCRP</term>
<def>
<p id="Par17">Breast cancer resistance protein</p>
</def>
</def-item>
<def-item>
<term>BCSCs</term>
<def>
<p id="Par18">Breast cancer stem cells</p>
</def>
</def-item>
<def-item>
<term>Bnip3</term>
<def>
<p id="Par19">Bcl-2/adenovirus E1B interacting protein 3</p>
</def>
</def-item>
<def-item>
<term>BPTES</term>
<def>
<p id="Par20">Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide</p>
</def>
</def-item>
<def-item>
<term>BSO</term>
<def>
<p id="Par21">L-buthionine-S,R-sulfoximine</p>
</def>
</def-item>
<def-item>
<term>CAFs</term>
<def>
<p id="Par22">Cancer-associated fibroblasts</p>
</def>
</def-item>
<def-item>
<term>CPT1</term>
<def>
<p id="Par23">Carnitine palmitoyltransferase</p>
</def>
</def-item>
<def-item>
<term>CS</term>
<def>
<p id="Par24">Citrate synthase</p>
</def>
</def-item>
<def-item>
<term>CSC</term>
<def>
<p id="Par25">Cancer stem cell</p>
</def>
</def-item>
<def-item>
<term>DCA</term>
<def>
<p id="Par26">Dichloroacetate</p>
</def>
</def-item>
<def-item>
<term>DNMT</term>
<def>
<p id="Par27">DNA methyltransferases</p>
</def>
</def-item>
<def-item>
<term>Doc</term>
<def>
<p id="Par28">Doxycycline</p>
</def>
</def-item>
<def-item>
<term>DRP1</term>
<def>
<p id="Par29">Dynamin-related protein 1</p>
</def>
</def-item>
<def-item>
<term>ECSCs</term>
<def>
<p id="Par30">Epithelial CSCs</p>
</def>
</def-item>
<def-item>
<term>EMT</term>
<def>
<p id="Par31">Epithelial-mesenchymal transition</p>
</def>
</def-item>
<def-item>
<term>ERRα</term>
<def>
<p id="Par32">Estrogen-related receptor alpha</p>
</def>
</def-item>
<def-item>
<term>F6P</term>
<def>
<p id="Par33">Fructose-6-phosphate</p>
</def>
</def-item>
<def-item>
<term>FAO</term>
<def>
<p id="Par34">Fatty acid oxidation</p>
</def>
</def-item>
<def-item>
<term>FASN</term>
<def>
<p id="Par35">Fatty acid synthetase</p>
</def>
</def-item>
<def-item>
<term>FAT/CD36</term>
<def>
<p id="Par36">Fatty acid translocase</p>
</def>
</def-item>
<def-item>
<term>FBP1</term>
<def>
<p id="Par37">Fructose-1,6-biphosphatase</p>
</def>
</def-item>
<def-item>
<term>FOXO3A</term>
<def>
<p id="Par38">Forkhead box 3A</p>
</def>
</def-item>
<def-item>
<term>G6PDH</term>
<def>
<p id="Par39">Glucose-6-phosphate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>GBM</term>
<def>
<p id="Par40">Glioblastoma</p>
</def>
</def-item>
<def-item>
<term>GCS</term>
<def>
<p id="Par41">Gamma-glutamylcysteine synthetase</p>
</def>
</def-item>
<def-item>
<term>GDH</term>
<def>
<p id="Par42">Glutamate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>GFAT</term>
<def>
<p id="Par43">Glutamine-fructose-6-phosphate transaminase 1</p>
</def>
</def-item>
<def-item>
<term>GLS</term>
<def>
<p id="Par44">Glutaminase</p>
</def>
</def-item>
<def-item>
<term>GLS1</term>
<def>
<p id="Par45">Mitochondrial glutaminase</p>
</def>
</def-item>
<def-item>
<term>GLS2</term>
<def>
<p id="Par46">Cytosolic isoform glutaminase</p>
</def>
</def-item>
<def-item>
<term>GLUT1, 2, 3, 4</term>
<def>
<p id="Par47">Glucose transporter 1,2, 3,4</p>
</def>
</def-item>
<def-item>
<term>GS</term>
<def>
<p id="Par48">Glutamine synthetase</p>
</def>
</def-item>
<def-item>
<term>GSC</term>
<def>
<p id="Par49">Glioblastoma stem cells</p>
</def>
</def-item>
<def-item>
<term>GSH</term>
<def>
<p id="Par50">Glutathione</p>
</def>
</def-item>
<def-item>
<term>HIF-1α</term>
<def>
<p id="Par51">Hypoxia-inducible factor 1α</p>
</def>
</def-item>
<def-item>
<term>HK2</term>
<def>
<p id="Par52">Hexokinase 2</p>
</def>
</def-item>
<def-item>
<term>HMG-CoAR</term>
<def>
<p id="Par53">3-hydroxy-3-methyl-glutaryl-coenzyme A reductase</p>
</def>
</def-item>
<def-item>
<term>I/Q/II/III/IV/V</term>
<def>
<p id="Par54">Complexes of the electron transport chain</p>
</def>
</def-item>
<def-item>
<term>JNK/AP1</term>
<def>
<p id="Par55">c-Jun N-terminal kinases/activator protein 1</p>
</def>
</def-item>
<def-item>
<term>KEAP1</term>
<def>
<p id="Par56">Kelch-like ECH-associating protein 1</p>
</def>
</def-item>
<def-item>
<term>KLF4</term>
<def>
<p id="Par57">Kruppel-like Factor 4</p>
</def>
</def-item>
<def-item>
<term>LC3</term>
<def>
<p id="Par58">Microtubule-associated Protein 1 Light Chain 3</p>
</def>
</def-item>
<def-item>
<term>LDH</term>
<def>
<p id="Par59">Lactate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>MCSC</term>
<def>
<p id="Par60">Mesenchymal-like CSCs</p>
</def>
</def-item>
<def-item>
<term>MCT2/4</term>
<def>
<p id="Par61">Monocarboxylate transporter 2/4</p>
</def>
</def-item>
<def-item>
<term>Mito</term>
<def>
<p id="Par62">Mitochontrial</p>
</def>
</def-item>
<def-item>
<term>NADH</term>
<def>
<p id="Par63">Nicotinamide adenine dinucleotide (reduced)</p>
</def>
</def-item>
<def-item>
<term>NADPH</term>
<def>
<p id="Par64">Nicotinamide adenine dinucleotide phosphate (reduced)</p>
</def>
</def-item>
<def-item>
<term>NAMPT</term>
<def>
<p id="Par65">Nicotinamide phosphoribosyl transferase</p>
</def>
</def-item>
<def-item>
<term>NANOG</term>
<def>
<p id="Par66">Nanog Homeobox</p>
</def>
</def-item>
<def-item>
<term>NF-κB</term>
<def>
<p id="Par67">Nuclear factor-κB</p>
</def>
</def-item>
<def-item>
<term>NMN</term>
<def>
<p id="Par68">Nicotinamide mononucleotide</p>
</def>
</def-item>
<def-item>
<term>NNMT</term>
<def>
<p id="Par69">Nicotinamide N-methyltransferase</p>
</def>
</def-item>
<def-item>
<term>NQO-1</term>
<def>
<p id="Par70">NADPH quinone oxidoreductase-1</p>
</def>
</def-item>
<def-item>
<term>NRF2</term>
<def>
<p id="Par71">Nuclear factor erythroid 2–related factor 2</p>
</def>
</def-item>
<def-item>
<term>OAA</term>
<def>
<p id="Par72">Oxaloacetate</p>
</def>
</def-item>
<def-item>
<term>OCT4</term>
<def>
<p id="Par73">Octamer-binding transcription factor 4</p>
</def>
</def-item>
<def-item>
<term>OXPHOS</term>
<def>
<p id="Par74">Oxidative phosphorylation</p>
</def>
</def-item>
<def-item>
<term>P</term>
<def>
<p id="Par75">Phosphate (or phospho)</p>
</def>
</def-item>
<def-item>
<term>PARPs</term>
<def>
<p id="Par76">Poly (ADP-ribose) polymerases</p>
</def>
</def-item>
<def-item>
<term>PDAC</term>
<def>
<p id="Par77">Pancreatic ductal adenocarcinoma</p>
</def>
</def-item>
<def-item>
<term>PDH</term>
<def>
<p id="Par78">Pyruvate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>PDK1</term>
<def>
<p id="Par79">Pyruvate dehydrogenase kinase 1</p>
</def>
</def-item>
<def-item>
<term>PFKFB</term>
<def>
<p id="Par80">Phosphofructokinase/fructose bisphosphate</p>
</def>
</def-item>
<def-item>
<term>PGC-1α</term>
<def>
<p id="Par81">Peroxisome proliferator-activated receptor gamma co-activator</p>
</def>
</def-item>
<def-item>
<term>PHGDH</term>
<def>
<p id="Par82">Phosphoglycerate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>PKM2</term>
<def>
<p id="Par83">Pyruvate kinase isozyme M2</p>
</def>
</def-item>
<def-item>
<term>RHOA</term>
<def>
<p id="Par84">Homolog family member</p>
</def>
</def-item>
<def-item>
<term>ROS</term>
<def>
<p id="Par85">Reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term>SAM</term>
<def>
<p id="Par86">S-adenosyl methionine</p>
</def>
</def-item>
<def-item>
<term>SCD1</term>
<def>
<p id="Par87">Stearoyl-CoA desaturase-1</p>
</def>
</def-item>
<def-item>
<term>SFA</term>
<def>
<p id="Par88">Saturated fatty acids</p>
</def>
</def-item>
<def-item>
<term>SIRTs</term>
<def>
<p id="Par89">Sirtuins</p>
</def>
</def-item>
<def-item>
<term>SLC1A5</term>
<def>
<p id="Par90">Solute carrier family 1 member 5</p>
</def>
</def-item>
<def-item>
<term>SOX2</term>
<def>
<p id="Par91">Sex determining region Y-box 2 S</p>
</def>
</def-item>
<def-item>
<term>SZ</term>
<def>
<p id="Par92">Sulfasalazine</p>
</def>
</def-item>
<def-item>
<term>TC</term>
<def>
<p id="Par93">Tetracyclines</p>
</def>
</def-item>
<def-item>
<term>TCA</term>
<def>
<p id="Par94">Tricarboxylic acid cycle</p>
</def>
</def-item>
<def-item>
<term>TGF-β</term>
<def>
<p id="Par95">Transforming growth factor β</p>
</def>
</def-item>
<def-item>
<term>UFA</term>
<def>
<p id="Par96">Unsaturated fatty acids.</p>
</def>
</def-item>
</def-list>
</glossary>
<fn-group>
<fn>
<p>
<bold>Publisher’s Note</bold>
</p>
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<p>We apologize for the omission of any primary citations.</p>
</ack>
<notes notes-type="author-contribution">
<title>Authors’ contributions</title>
<p>AH and MM have contributed equally to the writing process of this manuscript. MEH, AH, and MM drafted the manuscript. MEH and EC discussed, helped to design all figures and contributed to writing the review. All authors read and approved the final manuscript.</p>
</notes>
<notes notes-type="funding-information">
<title>Funding</title>
<p>Supported in part by grants from INSERM, Université Paris Descartes-Sorbonne Paris Cité, and Comité de Paris de la ligue contre le cancer. Mouradi EL Hout thanks LASER association for funding.</p>
</notes>
<notes notes-type="data-availability">
<title>Availability of data and materials</title>
<p>Not applicable.</p>
</notes>
<notes>
<title>Ethics approval and consent to participate</title>
<p id="Par160">Not applicable.</p>
</notes>
<notes>
<title>Consent for publication</title>
<p id="Par161">The authors declare that they consent for publication.</p>
</notes>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par162">The authors declare that they have no competing interests.</p>
</notes>
<glossary>
<title>Glossary</title>
<def-list>
<def-item id="Glos1">
<term>Electron transport chain</term>
<def>
<p>A series of transmembrane protein complexes, present on the inner membrane of mitochondria, that transfer electrons via redox reactions to the terminal electron acceptor oxygen, which is reduced by binding of protons to a water molecule. This generates a proton gradient that powers ATP synthase to produce ATP. Premature leakage of electrons to oxygen can lead to production of reactive oxygen species.</p>
</def>
</def-item>
<def-item id="Glos2">
<term>Anaplerosis</term>
<def>
<p>The act of replenishing TCA cycle intermediates used for macromolecule biosynthesis.</p>
</def>
</def-item>
<def-item id="Glos3">
<term>Cataplerosis</term>
<def>
<p>The removal of intermediate metabolites, especially those resulting from the TCA cycle, to prevent their accumulation in the mitochondrial matrix.</p>
</def>
</def-item>
<def-item id="Glos4">
<term>Glutathione</term>
<def>
<p>A tripeptide (glutamate-cysteine-glycine) that acts as an important antioxidant. The reduced form of glutathione can react with H
<sub>2</sub>
O
<sub>2</sub>
to form the oxidized form (GSSG).</p>
</def>
</def-item>
<def-item id="Glos5">
<term>Glutaminolysis</term>
<def>
<p>A series of biochemical reactions by which the glutamine is lysed to generate molecules such as CO
<sub>2</sub>
, alanine, aspartate, citrate, glutamate, lactate, and pyruvate. When glycolytic energy production is low, glutamine, the most common amino acid in the plasma, serves as an additional energy source for tumor cells. Glutamine is also a nitrogen source for amino acids, hexosamines (amino sugars involved in the synthesis of glycosylated molecules), and nucleotides. In cancer cells, glutamine metabolism fuels the TCA cycle, fatty acid and nucleotide biosynthesis, and redox balance. Most cancer cells consume glutamine, and many tumors are thought to be addicted to glutamine [
<xref ref-type="bibr" rid="CR124">124</xref>
]. This addiction results largely from the contribution of glutamine to anaplerosis [
<xref ref-type="bibr" rid="CR125">125</xref>
].</p>
</def>
</def-item>
<def-item id="Glos6">
<term>Macroautophagy</term>
<def>
<p>Referred to here as autophagy, allows the orderly degradation of cellular components and recycling of amino acids, lipids, nucleic acids, and saccharides from intracellular nutrient stores. In this catabolic process, double-membraned vesicles called autophagosomes form around cellular cargo, including organelles, protein aggregates, and intracellular pathogens. After fusion of autophagosome with a lysosome, the cargo is degraded.</p>
</def>
</def-item>
<def-item id="Glos7">
<term>Nicotinamide adenine dinucleotide (NAD) metabolism</term>
<def>
<p>NAD acts as an electron and hydrogen acceptor during glycolysis, fatty acid oxidation, and the TCA cycle. NAD also serves as a coenzyme for oxidoreductases and dehydrogenases that generate ATP during nutrient degradation, playing a key role in cellular respiration. NAD and its phosphorylated and reduced forms, including NADP, NADH, and NADPH, are essential for cell metabolism activities. NAD most often functions in catabolic energy-generating reactions where it is reduced to NADH. The phosphorylated form, NADPH, participates in anabolic reactions, such as the synthesis of fatty acids and cholesterol. In addition to its function in oxidative phosphorylation and redox reactions, NAD is a substrate for evolutionarily conserved NAD cleavage enzymes such as poly (ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and cADP-ribose synthases such as CD38 and CD157.</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez-Outschoorn</surname>
<given-names>UE</given-names>
</name>
<name>
<surname>Peiris-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pestell</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Cancer metabolism: a therapeutic perspective</article-title>
<source>Nat Rev Clin Oncol</source>
<year>2017</year>
<volume>14</volume>
<issue>2</issue>
<fpage>113</fpage>
<pub-id pub-id-type="doi">10.1038/nrclinonc.2017.1</pub-id>
<pub-id pub-id-type="pmid">28094266</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Snyder</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Reed-Newman</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Anant</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Cancer stem cell metabolism and potential therapeutic targets</article-title>
<source>Front Oncol</source>
<year>2018</year>
<volume>8</volume>
<fpage>203</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2018.00203</pub-id>
<pub-id pub-id-type="pmid">29922594</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mowers</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Sharifi</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Macleod</surname>
<given-names>KF</given-names>
</name>
</person-group>
<article-title>Functions of autophagy in the tumor microenvironment and cancer metastasis</article-title>
<source>FEBS J</source>
<year>2018</year>
<volume>285</volume>
<issue>10</issue>
<fpage>1751</fpage>
<lpage>1766</lpage>
<pub-id pub-id-type="doi">10.1111/febs.14388</pub-id>
<pub-id pub-id-type="pmid">29356327</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poillet-Perez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>White</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Role of tumor and host autophagy in cancer metabolism</article-title>
<source>Genes Dev</source>
<year>2019</year>
<volume>33</volume>
<issue>11–12</issue>
<fpage>610</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="doi">10.1101/gad.325514.119</pub-id>
<pub-id pub-id-type="pmid">31160394</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poillet-Perez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sharp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>ZS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy maintains tumour growth through circulating arginine</article-title>
<source>Nature.</source>
<year>2018</year>
<volume>563</volume>
<issue>7732</issue>
<fpage>569</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.1038/s41586-018-0697-7</pub-id>
<pub-id pub-id-type="pmid">30429607</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palm</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Nutrient acquisition strategies of mammalian cells</article-title>
<source>Nature</source>
<year>2017</year>
<volume>546</volume>
<issue>7657</issue>
<fpage>234</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1038/nature22379</pub-id>
<pub-id pub-id-type="pmid">28593971</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyssiotis</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kimmelman</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Metabolic interactions in the tumor microenvironment</article-title>
<source>Trends Cell Biol</source>
<year>2017</year>
<volume>27</volume>
<issue>11</issue>
<fpage>863</fpage>
<lpage>875</lpage>
<pub-id pub-id-type="doi">10.1016/j.tcb.2017.06.003</pub-id>
<pub-id pub-id-type="pmid">28734735</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<mixed-citation publication-type="other">Smith AG, Macleod KF. Autophagy, cancer stem cells and drug resistance. J Pathol. 2018.</mixed-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vander Heiden</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Cantley</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Understanding the Warburg effect: the metabolic requirements of cell proliferation</article-title>
<source>Science</source>
<year>2009</year>
<volume>324</volume>
<issue>5930</issue>
<fpage>1029</fpage>
<lpage>1033</lpage>
<pub-id pub-id-type="doi">10.1126/science.1160809</pub-id>
<pub-id pub-id-type="pmid">19460998</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cordier-Bussat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thibert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sujobert</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Genestier</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fontaine</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Billaud</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Even the Warburg effect can be oxidized: metabolic cooperation and tumor development</article-title>
<source>Med Sci (Paris)</source>
<year>2018</year>
<volume>34</volume>
<issue>8–9</issue>
<fpage>701</fpage>
<lpage>708</lpage>
<pub-id pub-id-type="doi">10.1051/medsci/20183408017</pub-id>
<pub-id pub-id-type="pmid">30230466</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Baehrecke</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boya</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bravo-San Pedro</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Cecconi</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular definitions of autophagy and related processes</article-title>
<source>EMBO J</source>
<year>2017</year>
<volume>36</volume>
<issue>13</issue>
<fpage>1811</fpage>
<lpage>1836</lpage>
<pub-id pub-id-type="doi">10.15252/embj.201796697</pub-id>
<pub-id pub-id-type="pmid">28596378</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boya</surname>
<given-names>Patricia</given-names>
</name>
<name>
<surname>Codogno</surname>
<given-names>Patrice</given-names>
</name>
<name>
<surname>Rodriguez-Muela</surname>
<given-names>Natalia</given-names>
</name>
</person-group>
<article-title>Autophagy in stem cells: repair, remodelling and metabolic reprogramming</article-title>
<source>Development</source>
<year>2018</year>
<volume>145</volume>
<issue>4</issue>
<fpage>dev146506</fpage>
<pub-id pub-id-type="doi">10.1242/dev.146506</pub-id>
<pub-id pub-id-type="pmid">29483129</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cufi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vazquez-Martin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Oliveras-Ferraros</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Martin-Castillo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vellon</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Menendez</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype</article-title>
<source>Cell Cycle</source>
<year>2011</year>
<volume>10</volume>
<issue>22</issue>
<fpage>3871</fpage>
<lpage>3885</lpage>
<pub-id pub-id-type="doi">10.4161/cc.10.22.17976</pub-id>
<pub-id pub-id-type="pmid">22127234</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bauvy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tonelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Delomenie</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nicolas</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells</article-title>
<source>Oncogene</source>
<year>2013</year>
<volume>32</volume>
<issue>18</issue>
<fpage>2261</fpage>
<lpage>2272</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2012.252</pub-id>
<pub-id pub-id-type="pmid">22733132</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vera-Ramirez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vodnala</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Nini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence</article-title>
<source>Nat Commun</source>
<year>2018</year>
<volume>9</volume>
<issue>1</issue>
<fpage>1944</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-018-04070-6</pub-id>
<pub-id pub-id-type="pmid">29789598</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharif</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Martell</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Clements</surname>
<given-names>DR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagic homeostasis is required for the pluripotency of cancer stem cells</article-title>
<source>Autophagy</source>
<year>2017</year>
<volume>13</volume>
<issue>2</issue>
<fpage>264</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2016.1260808</pub-id>
<pub-id pub-id-type="pmid">27929731</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nazio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bordi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cianfanelli</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Locatelli</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cecconi</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications</article-title>
<source>Cell Death Differ</source>
<year>2019</year>
<volume>26</volume>
<issue>4</issue>
<fpage>690</fpage>
<lpage>702</lpage>
<pub-id pub-id-type="doi">10.1038/s41418-019-0292-y</pub-id>
<pub-id pub-id-type="pmid">30728463</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shingu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ogasawara</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis</article-title>
<source>J Biol Chem</source>
<year>2011</year>
<volume>286</volume>
<issue>37</issue>
<fpage>32843</fpage>
<lpage>32853</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M111.260935</pub-id>
<pub-id pub-id-type="pmid">21795717</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>ZJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>ZL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway</article-title>
<source>Cell Death Differ</source>
<year>2014</year>
<volume>21</volume>
<issue>1</issue>
<fpage>124</fpage>
<lpage>135</lpage>
<pub-id pub-id-type="doi">10.1038/cdd.2013.131</pub-id>
<pub-id pub-id-type="pmid">24096870</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvero</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Montagna</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Sumi</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Joo</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mor</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Multiple blocks in the engagement of oxidative phosphorylation in putative ovarian cancer stem cells: implication for maintenance therapy with glycolysis inhibitors</article-title>
<source>Oncotarget</source>
<year>2014</year>
<volume>5</volume>
<issue>18</issue>
<fpage>8703</fpage>
<lpage>8715</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2367</pub-id>
<pub-id pub-id-type="pmid">25237928</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ciavardelli</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Barcaroli</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Consalvo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zucchelli</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment</article-title>
<source>Cell Death Dis</source>
<year>2014</year>
<volume>5</volume>
<fpage>e1336</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2014.285</pub-id>
<pub-id pub-id-type="pmid">25032859</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Miriyala</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer</article-title>
<source>Cancer Cell</source>
<year>2013</year>
<volume>23</volume>
<issue>3</issue>
<fpage>316</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2013.01.022</pub-id>
<pub-id pub-id-type="pmid">23453623</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viale</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pettazzoni</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lyssiotis</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Marchesini</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function</article-title>
<source>Nature</source>
<year>2014</year>
<volume>514</volume>
<issue>7524</issue>
<fpage>628</fpage>
<lpage>632</lpage>
<pub-id pub-id-type="doi">10.1038/nature13611</pub-id>
<pub-id pub-id-type="pmid">25119024</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gentles</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nair</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>CY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting unique metabolic properties of breast tumor initiating cells</article-title>
<source>Stem Cells</source>
<year>2014</year>
<volume>32</volume>
<issue>7</issue>
<fpage>1734</fpage>
<lpage>1745</lpage>
<pub-id pub-id-type="doi">10.1002/stem.1662</pub-id>
<pub-id pub-id-type="pmid">24497069</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nagano</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Tateyama</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ohmura</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yae</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ishimoto</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells</article-title>
<source>Cancer Res</source>
<year>2012</year>
<volume>72</volume>
<issue>6</issue>
<fpage>1438</fpage>
<lpage>1448</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-11-3024</pub-id>
<pub-id pub-id-type="pmid">22293754</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Bu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Rakhilin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Locasale</surname>
<given-names>JW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A metabolic signature of colon cancer initiating cells</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2014</year>
<volume>2014</volume>
<fpage>4759</fpage>
<lpage>4762</lpage>
<pub-id pub-id-type="pmid">25571056</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chae</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Cancer stem cell metabolism: target for cancer therapy</article-title>
<source>BMB Rep</source>
<year>2018</year>
<volume>51</volume>
<issue>7</issue>
<fpage>319</fpage>
<lpage>326</lpage>
<pub-id pub-id-type="doi">10.5483/BMBRep.2018.51.7.112</pub-id>
<pub-id pub-id-type="pmid">29764565</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farnie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<issue>31</issue>
<fpage>30472</fpage>
<lpage>30486</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.5401</pub-id>
<pub-id pub-id-type="pmid">26421710</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bellio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pilotto</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ciminale</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Silic-Benussi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Guzzo</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation</article-title>
<source>Oncotarget</source>
<year>2014</year>
<volume>5</volume>
<issue>12</issue>
<fpage>4305</fpage>
<lpage>4319</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2010</pub-id>
<pub-id pub-id-type="pmid">24946808</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diehn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Lobo</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Kalisky</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dorie</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Kulp</surname>
<given-names>AN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Association of reactive oxygen species levels and radioresistance in cancer stem cells</article-title>
<source>Nature</source>
<year>2009</year>
<volume>458</volume>
<issue>7239</issue>
<fpage>780</fpage>
<lpage>783</lpage>
<pub-id pub-id-type="doi">10.1038/nature07733</pub-id>
<pub-id pub-id-type="pmid">19194462</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Luca</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fiorillo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peiris-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ozsvari</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Sanchez-Alvarez</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<issue>17</issue>
<fpage>14777</fpage>
<lpage>14795</lpage>
<pub-id pub-id-type="pmid">26087310</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sancho</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Burgos-Ramos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tavera</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bou Kheir</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jagust</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Schoenhals</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic Cancer stem cells</article-title>
<source>Cell Metab</source>
<year>2015</year>
<volume>22</volume>
<issue>4</issue>
<fpage>590</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2015.08.015</pub-id>
<pub-id pub-id-type="pmid">26365176</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonuccelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways</article-title>
<source>Aging (Albany NY)</source>
<year>2018</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1867</fpage>
<lpage>1883</lpage>
<pub-id pub-id-type="doi">10.18632/aging.101483</pub-id>
<pub-id pub-id-type="pmid">30153655</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ginestier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Monville</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wicinski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cabaud</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Cervera</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Josselin</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target</article-title>
<source>Stem Cells</source>
<year>2012</year>
<volume>30</volume>
<issue>7</issue>
<fpage>1327</fpage>
<lpage>1337</lpage>
<pub-id pub-id-type="doi">10.1002/stem.1122</pub-id>
<pub-id pub-id-type="pmid">22605458</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>GL</given-names>
</name>
</person-group>
<article-title>Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy</article-title>
<source>Adv Cancer Res</source>
<year>2019</year>
<volume>141</volume>
<fpage>175</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1016/bs.acr.2018.11.001</pub-id>
<pub-id pub-id-type="pmid">30691683</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samanta</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Andrabi</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Shelton</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Gilkes</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>GL</given-names>
</name>
</person-group>
<article-title>PHGDH expression is required for mitochondrial redox homeostasis, breast Cancer stem cell maintenance, and lung metastasis</article-title>
<source>Cancer Res</source>
<year>2016</year>
<volume>76</volume>
<issue>15</issue>
<fpage>4430</fpage>
<lpage>4442</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-0530</pub-id>
<pub-id pub-id-type="pmid">27280394</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lucena-Cacace</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Umeda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Navas</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Carnero</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>NAMPT as a dedifferentiation-inducer gene: NAD(+) as Core Axis for Glioma Cancer stem-like cells maintenance</article-title>
<source>Front Oncol</source>
<year>2019</year>
<volume>9</volume>
<fpage>292</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2019.00292</pub-id>
<pub-id pub-id-type="pmid">31119097</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garten</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schuster</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Penke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gorski</surname>
<given-names>T</given-names>
</name>
<name>
<surname>de Giorgis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kiess</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Physiological and pathophysiological roles of NAMPT and NAD metabolism</article-title>
<source>Nat Rev Endocrinol</source>
<year>2015</year>
<volume>11</volume>
<issue>9</issue>
<fpage>535</fpage>
<lpage>546</lpage>
<pub-id pub-id-type="doi">10.1038/nrendo.2015.117</pub-id>
<pub-id pub-id-type="pmid">26215259</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gujar</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Dadey</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Turski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2016</year>
<volume>113</volume>
<issue>51</issue>
<fpage>E8247</fpage>
<lpage>E8E56</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1610921114</pub-id>
<pub-id pub-id-type="pmid">27930300</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lucena-Cacace</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Otero-Albiol</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jimenez-Garcia</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Munoz-Galvan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Carnero</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>NAMPT is a potent oncogene in Colon Cancer progression that modulates Cancer stem cell properties and resistance to therapy through Sirt1 and PARP</article-title>
<source>Clin Cancer Res</source>
<year>2018</year>
<volume>24</volume>
<issue>5</issue>
<fpage>1202</fpage>
<lpage>1215</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-17-2575</pub-id>
<pub-id pub-id-type="pmid">29203587</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<mixed-citation publication-type="other">Jung J, Kim LJ, Wang X, Wu Q, Sanvoranart T, Hubert CG, et al. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight. 2017;2(10).</mixed-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kwintkiewicz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tech</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Frady</surname>
<given-names>LN</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>YT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemosensitivity of IDH1-mutated Gliomas due to an impairment in PARP1-mediated DNA repair</article-title>
<source>Cancer Res</source>
<year>2017</year>
<volume>77</volume>
<issue>7</issue>
<fpage>1709</fpage>
<lpage>1718</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-16-2773</pub-id>
<pub-id pub-id-type="pmid">28202508</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>ZT</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>XD</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells</article-title>
<source>Mol Med Rep</source>
<year>2015</year>
<volume>12</volume>
<issue>2</issue>
<fpage>1868</fpage>
<lpage>1876</lpage>
<pub-id pub-id-type="doi">10.3892/mmr.2015.3604</pub-id>
<pub-id pub-id-type="pmid">25872765</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>DX</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YS</given-names>
</name>
</person-group>
<article-title>The potential regulatory roles of NAD(+) and its metabolism in autophagy</article-title>
<source>Metabolism</source>
<year>2016</year>
<volume>65</volume>
<issue>4</issue>
<fpage>454</fpage>
<lpage>462</lpage>
<pub-id pub-id-type="doi">10.1016/j.metabol.2015.11.010</pub-id>
<pub-id pub-id-type="pmid">26975537</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguilar</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Marin de mas I, Zodda E, Marin S, Morrish F, Selivanov V, et al. metabolic reprogramming and dependencies associated with epithelial Cancer stem cells independent of the epithelial-Mesenchymal transition program</article-title>
<source>Stem Cells</source>
<year>2016</year>
<volume>34</volume>
<issue>5</issue>
<fpage>1163</fpage>
<lpage>1176</lpage>
<pub-id pub-id-type="doi">10.1002/stem.2286</pub-id>
<pub-id pub-id-type="pmid">27146024</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Hout</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dos Santos</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hamai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mehrpour</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells</article-title>
<source>Semin Cancer Biol</source>
<year>2018</year>
<volume>53</volume>
<fpage>125</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1016/j.semcancer.2018.07.009</pub-id>
<pub-id pub-id-type="pmid">30071257</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<mixed-citation publication-type="other">Recalcati S, Gammella E, Cairo G. Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med. 2018.</mixed-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mani</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Eaton</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Ayyanan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>AY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The epithelial-mesenchymal transition generates cells with properties of stem cells</article-title>
<source>Cell</source>
<year>2008</year>
<volume>133</volume>
<issue>4</issue>
<fpage>704</fpage>
<lpage>715</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2008.03.027</pub-id>
<pub-id pub-id-type="pmid">18485877</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Jeon</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>SI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wnt/snail signaling regulates cytochrome C oxidase and glucose metabolism</article-title>
<source>Cancer Res</source>
<year>2012</year>
<volume>72</volume>
<issue>14</issue>
<fpage>3607</fpage>
<lpage>3617</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-12-0006</pub-id>
<pub-id pub-id-type="pmid">22637725</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aspuria</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Lunt</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Varemo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vergnes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gozo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beach</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism</article-title>
<source>Cancer Metab</source>
<year>2014</year>
<volume>2</volume>
<fpage>21</fpage>
<pub-id pub-id-type="doi">10.1186/2049-3002-2-21</pub-id>
<pub-id pub-id-type="pmid">25671108</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wicha</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance</article-title>
<source>Curr Pharm Des</source>
<year>2015</year>
<volume>21</volume>
<issue>10</issue>
<fpage>1301</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.2174/1381612821666141211120604</pub-id>
<pub-id pub-id-type="pmid">25506895</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Martinez-Outschoorn</surname>
<given-names>UE</given-names>
</name>
<name>
<surname>Pestell</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Cancer stem cell metabolism</article-title>
<source>Breast Cancer Res</source>
<year>2016</year>
<volume>18</volume>
<issue>1</issue>
<fpage>55</fpage>
<pub-id pub-id-type="doi">10.1186/s13058-016-0712-6</pub-id>
<pub-id pub-id-type="pmid">27220421</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Joshi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Santana-Santos</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<issue>21</issue>
<fpage>8644</fpage>
<lpage>8649</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1221478110</pub-id>
<pub-id pub-id-type="pmid">23650391</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Jiagge</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Buschhaus</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting breast Cancer stem cell state equilibrium through modulation of redox signaling</article-title>
<source>Cell Metab</source>
<year>2018</year>
<volume>28</volume>
<issue>1</issue>
<fpage>69</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2018.06.006</pub-id>
<pub-id pub-id-type="pmid">29972798</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flavahan</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Hitomi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rahim</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sloan</surname>
<given-names>AE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake</article-title>
<source>Nat Neurosci</source>
<year>2013</year>
<volume>16</volume>
<issue>10</issue>
<fpage>1373</fpage>
<lpage>1382</lpage>
<pub-id pub-id-type="doi">10.1038/nn.3510</pub-id>
<pub-id pub-id-type="pmid">23995067</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isayev</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Rausch</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine</article-title>
<source>Oncotarget</source>
<year>2014</year>
<volume>5</volume>
<issue>13</issue>
<fpage>5177</fpage>
<lpage>5189</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2120</pub-id>
<pub-id pub-id-type="pmid">25015789</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michelakis</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Sutendra</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dromparis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Haromy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Niven</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic modulation of glioblastoma with dichloroacetate</article-title>
<source>Sci Transl Med</source>
<year>2010</year>
<volume>2</volume>
<issue>31</issue>
<fpage>31ra4</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.3000677</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>JY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism</article-title>
<source>Sci Rep</source>
<year>2018</year>
<volume>8</volume>
<issue>1</issue>
<fpage>409</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-18762-4</pub-id>
<pub-id pub-id-type="pmid">29323154</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jagust</surname>
<given-names>P</given-names>
</name>
<name>
<surname>de Luxan-Delgado</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Parejo-Alonso</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sancho</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Metabolism-based therapeutic strategies targeting Cancer stem cells</article-title>
<source>Front Pharmacol</source>
<year>2019</year>
<volume>10</volume>
<fpage>203</fpage>
<pub-id pub-id-type="doi">10.3389/fphar.2019.00203</pub-id>
<pub-id pub-id-type="pmid">30967773</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeh</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A preclinical evaluation of antimycin a as a potential antilung cancer stem cell agent</article-title>
<source>Evid Based Complement Alternat Med</source>
<year>2013</year>
<volume>2013</volume>
<fpage>910451</fpage>
<pub-id pub-id-type="pmid">23840269</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiorillo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tanowitz</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Cappello</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Martinez-Outschoorn</surname>
<given-names>UE</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs)</article-title>
<source>Aging (Albany NY)</source>
<year>2016</year>
<volume>8</volume>
<issue>8</issue>
<fpage>1593</fpage>
<lpage>1607</lpage>
<pub-id pub-id-type="doi">10.18632/aging.100983</pub-id>
<pub-id pub-id-type="pmid">27344270</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kennedy</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Tilkens</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Garner</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Or</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Differential sensitivities of glioblastoma cell lines towards metabolic and signaling pathway inhibitions</article-title>
<source>Cancer Lett</source>
<year>2013</year>
<volume>336</volume>
<issue>2</issue>
<fpage>299</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2013.03.020</pub-id>
<pub-id pub-id-type="pmid">23523615</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mai</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Hamai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hienzsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Caneque</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wicinski</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Salinomycin kills cancer stem cells by sequestering iron in lysosomes</article-title>
<source>Nat Chem</source>
<year>2017</year>
<volume>9</volume>
<issue>10</issue>
<fpage>1025</fpage>
<lpage>1033</lpage>
<pub-id pub-id-type="doi">10.1038/nchem.2778</pub-id>
<pub-id pub-id-type="pmid">28937680</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hamai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tonelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bauvy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nicolas</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Tharinger</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance</article-title>
<source>Autophagy</source>
<year>2013</year>
<volume>9</volume>
<issue>5</issue>
<fpage>714</fpage>
<lpage>729</lpage>
<pub-id pub-id-type="doi">10.4161/auto.23997</pub-id>
<pub-id pub-id-type="pmid">23519090</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naujokat</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Steinhart</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Salinomycin as a drug for targeting human cancer stem cells</article-title>
<source>J Biomed Biotechnol</source>
<year>2012</year>
<volume>2012</volume>
<fpage>950658</fpage>
<pub-id pub-id-type="doi">10.1155/2012/950658</pub-id>
<pub-id pub-id-type="pmid">23251084</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>YA</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>He</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>PH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intraperitoneal (188)re-liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice</article-title>
<source>Radiother Oncol</source>
<year>2016</year>
<volume>119</volume>
<issue>2</issue>
<fpage>282</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.1016/j.radonc.2016.02.007</pub-id>
<pub-id pub-id-type="pmid">26915312</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scatena</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Roncella</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Di Paolo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aretini</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Menicagli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fanelli</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Doxycycline, an inhibitor of mitochondrial biogenesis, effectively reduces Cancer stem cells (CSCs) in early breast Cancer patients: a clinical pilot study</article-title>
<source>Front Oncol</source>
<year>2018</year>
<volume>8</volume>
<fpage>452</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2018.00452</pub-id>
<pub-id pub-id-type="pmid">30364293</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Doxycycline induces apoptosis and inhibits proliferation and invasion of human cervical carcinoma stem cells</article-title>
<source>PLoS One</source>
<year>2015</year>
<volume>10</volume>
<issue>6</issue>
<fpage>e0129138</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0129138</pub-id>
<pub-id pub-id-type="pmid">26111245</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Horbinski</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Flavahan</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mitochondrial control by DRP1 in brain tumor initiating cells</article-title>
<source>Nat Neurosci</source>
<year>2015</year>
<volume>18</volume>
<issue>4</issue>
<fpage>501</fpage>
<lpage>510</lpage>
<pub-id pub-id-type="doi">10.1038/nn.3960</pub-id>
<pub-id pub-id-type="pmid">25730670</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bonuccelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sotgia</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Mitochondrial fission as a driver of stemness in tumor cells: mDIVI1 inhibits mitochondrial function, cell migration and cancer stem cell (CSC) signalling</article-title>
<source>Oncotarget.</source>
<year>2018</year>
<volume>9</volume>
<issue>17</issue>
<fpage>13254</fpage>
<lpage>13275</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.24285</pub-id>
<pub-id pub-id-type="pmid">29568355</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elhammali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ippolito</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Crowley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Marasa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Piwnica-Worms</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor</article-title>
<source>Cancer Discov</source>
<year>2014</year>
<volume>4</volume>
<issue>7</issue>
<fpage>828</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="doi">10.1158/2159-8290.CD-13-0572</pub-id>
<pub-id pub-id-type="pmid">24740997</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Ryoo</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Kwak</surname>
<given-names>MK</given-names>
</name>
</person-group>
<article-title>High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling</article-title>
<source>Cell Death Dis</source>
<year>2018</year>
<volume>9</volume>
<issue>9</issue>
<fpage>896</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-018-0903-4</pub-id>
<pub-id pub-id-type="pmid">30166520</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>TM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2017</year>
<volume>486</volume>
<issue>4</issue>
<fpage>1069</fpage>
<lpage>1076</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2017.03.164</pub-id>
<pub-id pub-id-type="pmid">28373070</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>He</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-kappaB and Nrf2</article-title>
<source>Cell Death Dis</source>
<year>2017</year>
<volume>8</volume>
<issue>5</issue>
<fpage>e2797</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2017.176</pub-id>
<pub-id pub-id-type="pmid">28518151</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erdogan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Turkekul</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Serttas</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Erdogan</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy</article-title>
<source>Biomed Pharmacother</source>
<year>2017</year>
<volume>88</volume>
<fpage>210</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="doi">10.1016/j.biopha.2017.01.056</pub-id>
<pub-id pub-id-type="pmid">28107698</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roh</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis</article-title>
<source>Redox Biol</source>
<year>2017</year>
<volume>11</volume>
<fpage>254</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2016.12.010</pub-id>
<pub-id pub-id-type="pmid">28012440</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hale</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Otvos</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sinyuk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Alvarado</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Hitomi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stoltz</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression</article-title>
<source>Stem Cells</source>
<year>2014</year>
<volume>32</volume>
<issue>7</issue>
<fpage>1746</fpage>
<lpage>1758</lpage>
<pub-id pub-id-type="doi">10.1002/stem.1716</pub-id>
<pub-id pub-id-type="pmid">24737733</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corominas-Faja</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cuyas</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gumuzio</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bosch-Barrera</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leis</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>AG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells</article-title>
<source>Oncotarget.</source>
<year>2014</year>
<volume>5</volume>
<issue>18</issue>
<fpage>8306</fpage>
<lpage>8316</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.2059</pub-id>
<pub-id pub-id-type="pmid">25246709</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alwarawrah</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Loiselle</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Darr</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast Cancer</article-title>
<source>Cell Chem Biol</source>
<year>2016</year>
<volume>23</volume>
<issue>6</issue>
<fpage>678</fpage>
<lpage>688</lpage>
<pub-id pub-id-type="doi">10.1016/j.chembiol.2016.04.011</pub-id>
<pub-id pub-id-type="pmid">27265747</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yasumoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vaidyan</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Kagawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ebrahimi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of fatty acid synthase decreases expression of Stemness markers in Glioma stem cells</article-title>
<source>PLoS One</source>
<year>2016</year>
<volume>11</volume>
<issue>1</issue>
<fpage>e0147717</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0147717</pub-id>
<pub-id pub-id-type="pmid">26808816</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>MKF</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>EYT</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>DHW</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>NPY</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>LKW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation</article-title>
<source>J Hepatol</source>
<year>2017</year>
<volume>67</volume>
<issue>5</issue>
<fpage>979</fpage>
<lpage>990</lpage>
<pub-id pub-id-type="doi">10.1016/j.jhep.2017.06.015</pub-id>
<pub-id pub-id-type="pmid">28647567</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pisanu</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Noto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>De Vitis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Morrone</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Scognamiglio</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Botti</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells</article-title>
<source>Cancer Lett</source>
<year>2017</year>
<volume>406</volume>
<fpage>93</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2017.07.027</pub-id>
<pub-id pub-id-type="pmid">28797843</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ricciardi</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Mirabilii</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Allegretti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Licchetta</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Calarco</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Torrisi</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias</article-title>
<source>Blood</source>
<year>2015</year>
<volume>126</volume>
<issue>16</issue>
<fpage>1925</fpage>
<lpage>1929</lpage>
<pub-id pub-id-type="doi">10.1182/blood-2014-12-617498</pub-id>
<pub-id pub-id-type="pmid">26276667</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Angka</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rota</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Hanlon</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hurren</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting mitochondria with Avocatin B induces selective leukemia cell death</article-title>
<source>Cancer Res</source>
<year>2015</year>
<volume>75</volume>
<issue>12</issue>
<fpage>2478</fpage>
<lpage>2488</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-14-2676</pub-id>
<pub-id pub-id-type="pmid">26077472</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koerner</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Hanai</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jernigan</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Oki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Komaba</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase</article-title>
<source>Eur J Med Chem</source>
<year>2017</year>
<volume>126</volume>
<fpage>920</fpage>
<lpage>928</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2016.12.018</pub-id>
<pub-id pub-id-type="pmid">27997879</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD44(+)CD24(+) subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species</article-title>
<source>Oncol Lett</source>
<year>2017</year>
<volume>14</volume>
<issue>2</issue>
<fpage>1341</fpage>
<lpage>1346</lpage>
<pub-id pub-id-type="doi">10.3892/ol.2017.6301</pub-id>
<pub-id pub-id-type="pmid">28789349</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peixoto</surname>
<given-names>Joana</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>Jorge</given-names>
</name>
</person-group>
<article-title>Metabolic traits of cancer stem cells</article-title>
<source>Disease Models & Mechanisms</source>
<year>2018</year>
<volume>11</volume>
<issue>8</issue>
<fpage>dmm033464</fpage>
<pub-id pub-id-type="doi">10.1242/dmm.033464</pub-id>
<pub-id pub-id-type="pmid">29991569</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vitale</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Manic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dandrea</surname>
<given-names>V</given-names>
</name>
<name>
<surname>De Maria</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Role of autophagy in the maintenance and function of cancer stem cells</article-title>
<source>Int J Dev Biol</source>
<year>2015</year>
<volume>59</volume>
<issue>1–3</issue>
<fpage>95</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1387/ijdb.150082iv</pub-id>
<pub-id pub-id-type="pmid">26374531</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denise</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Paoli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Calvani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taddei</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Giannoni</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kopetz</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<issue>39</issue>
<fpage>41706</fpage>
<lpage>41721</lpage>
<pub-id pub-id-type="doi">10.18632/oncotarget.5991</pub-id>
<pub-id pub-id-type="pmid">26527315</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Mook</surname>
<given-names>RA</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Premont</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Niclosamide: beyond an antihelminthic drug</article-title>
<source>Cell Signal</source>
<year>2018</year>
<volume>41</volume>
<fpage>89</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/j.cellsig.2017.04.001</pub-id>
<pub-id pub-id-type="pmid">28389414</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Yoo</surname>
<given-names>YD</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>YT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells</article-title>
<source>Cell Signal</source>
<year>2013</year>
<volume>25</volume>
<issue>4</issue>
<fpage>961</fpage>
<lpage>969</lpage>
<pub-id pub-id-type="doi">10.1016/j.cellsig.2013.01.007</pub-id>
<pub-id pub-id-type="pmid">23333246</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamanishi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Otake</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Salinomycin effects on mitochondrial ion translocation and respiration</article-title>
<source>Antimicrob Agents Chemother</source>
<year>1976</year>
<volume>9</volume>
<issue>4</issue>
<fpage>655</fpage>
<lpage>660</lpage>
<pub-id pub-id-type="doi">10.1128/AAC.9.4.655</pub-id>
<pub-id pub-id-type="pmid">131509</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jangamreddy</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Ghavami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Grabarek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kratz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wiechec</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fredriksson</surname>
<given-names>BA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells</article-title>
<source>Biochim Biophys Acta</source>
<year>2013</year>
<volume>1833</volume>
<issue>9</issue>
<fpage>2057</fpage>
<lpage>2069</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2013.04.011</pub-id>
<pub-id pub-id-type="pmid">23639289</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deblois</surname>
<given-names>G</given-names>
</name>
<name>
<surname>St-Pierre</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Giguere</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The PGC-1/ERR signaling axis in cancer</article-title>
<source>Oncogene</source>
<year>2013</year>
<volume>32</volume>
<issue>30</issue>
<fpage>3483</fpage>
<lpage>3490</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2012.529</pub-id>
<pub-id pub-id-type="pmid">23208510</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eskiocak</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>White</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>The estrogen-related receptor alpha inverse agonist XCT 790 is a nanomolar mitochondrial uncoupler</article-title>
<source>Biochemistry.</source>
<year>2014</year>
<volume>53</volume>
<issue>29</issue>
<fpage>4839</fpage>
<lpage>4846</lpage>
<pub-id pub-id-type="doi">10.1021/bi500737n</pub-id>
<pub-id pub-id-type="pmid">24999922</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamb</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ozsvari</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lisanti</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Tanowitz</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Howell</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Martinez-Outschoorn</surname>
<given-names>UE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease</article-title>
<source>Oncotarget</source>
<year>2015</year>
<volume>6</volume>
<issue>7</issue>
<fpage>4569</fpage>
<lpage>4584</lpage>
<pub-id pub-id-type="pmid">25625193</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lleonart</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Lyakhovich</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Targeting cancer cells through antibiotics-induced mitochondrial dysfunction requires autophagy inhibition</article-title>
<source>Cancer Lett</source>
<year>2017</year>
<volume>384</volume>
<fpage>60</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2016.09.023</pub-id>
<pub-id pub-id-type="pmid">27693455</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Mitochondrial dynamics in regulating the unique phenotypes of Cancer and stem cells</article-title>
<source>Cell Metab</source>
<year>2017</year>
<volume>26</volume>
<issue>1</issue>
<fpage>39</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2017.05.016</pub-id>
<pub-id pub-id-type="pmid">28648983</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bordi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nazio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Campello</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The close interconnection between mitochondrial dynamics and Mitophagy in Cancer</article-title>
<source>Front Oncol</source>
<year>2017</year>
<volume>7</volume>
<fpage>81</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2017.00081</pub-id>
<pub-id pub-id-type="pmid">28512624</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ming</surname>
<given-names>QL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission</article-title>
<source>Autophagy</source>
<year>2015</year>
<volume>11</volume>
<issue>8</issue>
<fpage>1259</fpage>
<lpage>1279</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2015.1056970</pub-id>
<pub-id pub-id-type="pmid">26114658</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>Chia-Ming</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>Keng-Li</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Wen-Sheng</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Yi-Jang</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Te-Wei</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Chih-Hsien</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>Chi-Mu</given-names>
</name>
</person-group>
<article-title>188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept</article-title>
<source>International Journal of Molecular Sciences</source>
<year>2017</year>
<volume>18</volume>
<issue>5</issue>
<fpage>903</fpage>
<pub-id pub-id-type="doi">10.3390/ijms18050903</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism</article-title>
<source>Stem Cell Res Ther</source>
<year>2015</year>
<volume>6</volume>
<fpage>198</fpage>
<pub-id pub-id-type="doi">10.1186/s13287-015-0174-2</pub-id>
<pub-id pub-id-type="pmid">26472041</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Tsay</surname>
<given-names>YG</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ROS-independent ER stress-mediated NRF2 activation promotes Warburg effect to maintain stemness-associated properties of cancer-initiating cells</article-title>
<source>Cell Death Dis</source>
<year>2018</year>
<volume>9</volume>
<issue>2</issue>
<fpage>194</fpage>
<pub-id pub-id-type="doi">10.1038/s41419-017-0250-x</pub-id>
<pub-id pub-id-type="pmid">29416012</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishimoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagano</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Yae</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tamada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Motohara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Oshima</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth</article-title>
<source>Cancer Cell</source>
<year>2011</year>
<volume>19</volume>
<issue>3</issue>
<fpage>387</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2011.01.038</pub-id>
<pub-id pub-id-type="pmid">21397861</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onodera</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Momose</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kawada</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Potential anticancer activity of Auranofin</article-title>
<source>Chem Pharm Bull (Tokyo)</source>
<year>2019</year>
<volume>67</volume>
<issue>3</issue>
<fpage>186</fpage>
<lpage>191</lpage>
<pub-id pub-id-type="doi">10.1248/cpb.c18-00767</pub-id>
<pub-id pub-id-type="pmid">30827998</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy</article-title>
<source>Nanomedicine</source>
<year>2016</year>
<volume>12</volume>
<issue>2</issue>
<fpage>377</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="doi">10.1016/j.nano.2015.10.022</pub-id>
<pub-id pub-id-type="pmid">26711966</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milkovic</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zarkovic</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Saso</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Controversy about pharmacological modulation of Nrf2 for cancer therapy</article-title>
<source>Redox Biol</source>
<year>2017</year>
<volume>12</volume>
<fpage>727</fpage>
<lpage>732</lpage>
<pub-id pub-id-type="doi">10.1016/j.redox.2017.04.013</pub-id>
<pub-id pub-id-type="pmid">28411557</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanai</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Doro</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Seth</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sukhatme</surname>
<given-names>VP</given-names>
</name>
</person-group>
<article-title>ATP citrate lyase knockdown impacts cancer stem cells in vitro</article-title>
<source>Cell Death Dis</source>
<year>2013</year>
<volume>4</volume>
<fpage>e696</fpage>
<pub-id pub-id-type="doi">10.1038/cddis.2013.215</pub-id>
<pub-id pub-id-type="pmid">23807225</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Granchi</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism</article-title>
<source>Eur J Med Chem</source>
<year>2018</year>
<volume>157</volume>
<fpage>1276</fpage>
<lpage>1291</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2018.09.001</pub-id>
<pub-id pub-id-type="pmid">30195238</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knobloch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Braun</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Zurkirchen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>von Schoultz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zamboni</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Arauzo-Bravo</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis</article-title>
<source>Nature</source>
<year>2013</year>
<volume>493</volume>
<issue>7431</issue>
<fpage>226</fpage>
<lpage>230</lpage>
<pub-id pub-id-type="doi">10.1038/nature11689</pub-id>
<pub-id pub-id-type="pmid">23201681</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Watkins</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity</article-title>
<source>BMC Cancer</source>
<year>2014</year>
<volume>14</volume>
<fpage>401</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2407-14-401</pub-id>
<pub-id pub-id-type="pmid">24893952</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tirinato</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liberale</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Di Franco</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Candeloro</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Benfante</surname>
<given-names>A</given-names>
</name>
<name>
<surname>La Rocca</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging</article-title>
<source>Stem Cells</source>
<year>2015</year>
<volume>33</volume>
<issue>1</issue>
<fpage>35</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1002/stem.1837</pub-id>
<pub-id pub-id-type="pmid">25186497</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Dutta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Lipid metabolism and lipophagy in cancer</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2018</year>
<volume>504</volume>
<issue>3</issue>
<fpage>582</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2018.02.097</pub-id>
<pub-id pub-id-type="pmid">29438712</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pascual</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Avgustinova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mejetta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Castellanos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Attolini</surname>
<given-names>CS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting metastasis-initiating cells through the fatty acid receptor CD36</article-title>
<source>Nature</source>
<year>2017</year>
<volume>541</volume>
<issue>7635</issue>
<fpage>41</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1038/nature20791</pub-id>
<pub-id pub-id-type="pmid">27974793</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Adane</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Minhajuddin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gasparetto</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche</article-title>
<source>Cell Stem Cell</source>
<year>2016</year>
<volume>19</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2016.06.001</pub-id>
<pub-id pub-id-type="pmid">27374788</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Senkal</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Suchanek</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Grevengoed</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways</article-title>
<source>J Biol Chem</source>
<year>2018</year>
<volume>293</volume>
<issue>43</issue>
<fpage>16724</fpage>
<lpage>16740</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.RA118.004049</pub-id>
<pub-id pub-id-type="pmid">30190326</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corominas-Faja</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vellon</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cuyas</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Buxo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Martin-Castillo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Serra</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer</article-title>
<source>Histol Histopathol</source>
<year>2017</year>
<volume>32</volume>
<issue>7</issue>
<fpage>687</fpage>
<lpage>698</lpage>
<pub-id pub-id-type="pmid">27714708</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Condello</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thomes-Pepin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hurley</surname>
<given-names>TD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lipid desaturation is a metabolic marker and therapeutic target of ovarian Cancer stem cells</article-title>
<source>Cell Stem Cell</source>
<year>2017</year>
<volume>20</volume>
<issue>3</issue>
<fpage>303</fpage>
<lpage>314</lpage>
<pub-id pub-id-type="doi">10.1016/j.stem.2016.11.004</pub-id>
<pub-id pub-id-type="pmid">28041894</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Strable</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Ntambi</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Stearoyl CoA desaturase 1: role in cellular inflammation and stress</article-title>
<source>Adv Nutr</source>
<year>2011</year>
<volume>2</volume>
<issue>1</issue>
<fpage>15</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.3945/an.110.000125</pub-id>
<pub-id pub-id-type="pmid">22211186</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galluzzi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kepp</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Vander Heiden</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Metabolic targets for cancer therapy</article-title>
<source>Nat Rev Drug Discov</source>
<year>2013</year>
<volume>12</volume>
<issue>11</issue>
<fpage>829</fpage>
<lpage>846</lpage>
<pub-id pub-id-type="doi">10.1038/nrd4145</pub-id>
<pub-id pub-id-type="pmid">24113830</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Uthaya Kumar</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Punj</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sher</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tahara</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism</article-title>
<source>Cell Metab</source>
<year>2016</year>
<volume>23</volume>
<issue>1</issue>
<fpage>206</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="doi">10.1016/j.cmet.2015.12.004</pub-id>
<pub-id pub-id-type="pmid">26724859</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardwell</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>LJ</given-names>
</name>
</person-group>
<article-title>Statin use after diagnosis of breast cancer and survival: a population-based cohort study</article-title>
<source>Epidemiology</source>
<year>2015</year>
<volume>26</volume>
<issue>1</issue>
<fpage>68</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1097/EDE.0000000000000189</pub-id>
<pub-id pub-id-type="pmid">25304447</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiorillo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peiris-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sanchez-Alvarez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bartella</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Di Donna</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dolce</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, rho-GDI-signalling and mitochondrial metabolism</article-title>
<source>Biochim Biophys Acta Bioenerg</source>
<year>2018</year>
<volume>1859</volume>
<issue>9</issue>
<fpage>984</fpage>
<lpage>996</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbabio.2018.03.018</pub-id>
<pub-id pub-id-type="pmid">29626418</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altman</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Stine</surname>
<given-names>ZE</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>CV</given-names>
</name>
</person-group>
<article-title>From Krebs to clinic: glutamine metabolism to cancer therapy</article-title>
<source>Nat Rev Cancer</source>
<year>2016</year>
<volume>16</volume>
<issue>12</issue>
<fpage>773</fpage>
<pub-id pub-id-type="doi">10.1038/nrc.2016.131</pub-id>
<pub-id pub-id-type="pmid">28704359</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krall</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Christofk</surname>
<given-names>HR</given-names>
</name>
</person-group>
<article-title>Rethinking glutamine addiction</article-title>
<source>Nat Cell Biol</source>
<year>2015</year>
<volume>17</volume>
<issue>12</issue>
<fpage>1515</fpage>
<lpage>1517</lpage>
<pub-id pub-id-type="doi">10.1038/ncb3278</pub-id>
<pub-id pub-id-type="pmid">26612572</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pavlides</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Whitaker-Menezes</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Castello-Cros</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Flomenberg</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Witkiewicz</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>PG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma</article-title>
<source>Cell Cycle</source>
<year>2009</year>
<volume>8</volume>
<issue>23</issue>
<fpage>3984</fpage>
<lpage>4001</lpage>
<pub-id pub-id-type="doi">10.4161/cc.8.23.10238</pub-id>
<pub-id pub-id-type="pmid">19923890</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000247 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000247 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7003352
   |texte=   Crosstalk between autophagy and metabolic regulation of cancer stem cells
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32028963" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021