Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tailored carbon nanotubes for tissue engineering applications

Identifieur interne : 001807 ( Main/Exploration ); précédent : 001806; suivant : 001808

Tailored carbon nanotubes for tissue engineering applications

Auteurs : Jithesh V. Veetil [États-Unis] ; Kaiming Ye [États-Unis]

Source :

RBID : ISTEX:A167B1BD1D2DA65707410425024985C158E830E4

English descriptors

Abstract

A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT‐based tissue engineering applications. This review focuses on the recent developments of CNT‐based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT's biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009

Url:
DOI: 10.1002/btpr.165


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tailored carbon nanotubes for tissue engineering applications</title>
<author>
<name sortKey="Veetil, Jithesh V" sort="Veetil, Jithesh V" uniqKey="Veetil J" first="Jithesh V." last="Veetil">Jithesh V. Veetil</name>
</author>
<author>
<name sortKey="Ye, Kaiming" sort="Ye, Kaiming" uniqKey="Ye K" first="Kaiming" last="Ye">Kaiming Ye</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A167B1BD1D2DA65707410425024985C158E830E4</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/btpr.165</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-B04CH3S5-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002C85</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002C85</idno>
<idno type="wicri:Area/Istex/Curation">002C85</idno>
<idno type="wicri:Area/Istex/Checkpoint">000732</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000732</idno>
<idno type="wicri:doubleKey">8756-7938:2009:Veetil J:tailored:carbon:nanotubes</idno>
<idno type="wicri:Area/Main/Merge">001811</idno>
<idno type="wicri:Area/Main/Curation">001807</idno>
<idno type="wicri:Area/Main/Exploration">001807</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Tailored carbon nanotubes for tissue engineering applications</title>
<author>
<name sortKey="Veetil, Jithesh V" sort="Veetil, Jithesh V" uniqKey="Veetil J" first="Jithesh V." last="Veetil">Jithesh V. Veetil</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Biomedical Engineering Program, College of Engineering, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ye, Kaiming" sort="Ye, Kaiming" uniqKey="Ye K" first="Kaiming" last="Ye">Kaiming Ye</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Biomedical Engineering Program, College of Engineering, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Correspondence address: Biomedical Engineering Program, College of Engineering, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biotechnology Progress</title>
<title level="j" type="alt">BIOTECHNOLOGY PROGRESS</title>
<idno type="ISSN">8756-7938</idno>
<idno type="eISSN">1520-6033</idno>
<imprint>
<biblScope unit="vol">25</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="709">709</biblScope>
<biblScope unit="page" to="721">721</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-05">2009-05</date>
</imprint>
<idno type="ISSN">8756-7938</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">8756-7938</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Adhesion</term>
<term>Aspect ratio</term>
<term>Biocompatibility</term>
<term>Biological systems</term>
<term>Biomaterials</term>
<term>Biomed mater</term>
<term>Biomedical applications</term>
<term>Biotechnol</term>
<term>Bone cement</term>
<term>Bone formation</term>
<term>Bone regeneration</term>
<term>Bone scaffolds</term>
<term>Bone tissue</term>
<term>Cancer cells</term>
<term>Carbon nanotubes</term>
<term>Carboxyl</term>
<term>Carboxyl groups</term>
<term>Cell culture medium</term>
<term>Cell growth</term>
<term>Cell viability</term>
<term>Chem</term>
<term>Cnts</term>
<term>Covalently</term>
<term>Cytotoxicity</term>
<term>Drug delivery</term>
<term>Experimental results</term>
<term>Functionalization</term>
<term>Functionalized</term>
<term>Functionalized carbon nanotubes</term>
<term>Gene delivery</term>
<term>Graft</term>
<term>Hela</term>
<term>Hela cells</term>
<term>Hippocampal</term>
<term>Hippocampal neurons</term>
<term>Individual carbon nanotubes</term>
<term>Kostarelos</term>
<term>Lett</term>
<term>Mater</term>
<term>Matrix</term>
<term>Mechanical properties</term>
<term>Micro catheter</term>
<term>Muscle cells</term>
<term>Mwcnt</term>
<term>Mwcnts</term>
<term>Nano</term>
<term>Nano lett</term>
<term>Nanoparticles</term>
<term>Nanosci nanotechnol</term>
<term>Nanotechnol</term>
<term>Nanotube</term>
<term>Neurite</term>
<term>Neurite outgrowth</term>
<term>Neuron</term>
<term>Neuron cells</term>
<term>Neuronal</term>
<term>Nucleic acids</term>
<term>Organ regeneration</term>
<term>Other hand</term>
<term>Outgrowth</term>
<term>Pantarotto</term>
<term>Peptide</term>
<term>Phys</term>
<term>Polymer</term>
<term>Prato</term>
<term>Prog</term>
<term>Regeneration</term>
<term>Sidewall</term>
<term>Singlewalled carbon nanotubes</term>
<term>Solid substrates</term>
<term>Surface chemistry</term>
<term>Surface roughness</term>
<term>Swcnt</term>
<term>Swcnts</term>
<term>Tissue engineering</term>
<term>Toxicity</term>
<term>Transfection</term>
<term>Uorescence</term>
<term>Uorescent</term>
<term>Visualization</term>
<term>Vivo</term>
<term>Wang</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT‐based tissue engineering applications. This review focuses on the recent developments of CNT‐based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT's biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arkansas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arkansas">
<name sortKey="Veetil, Jithesh V" sort="Veetil, Jithesh V" uniqKey="Veetil J" first="Jithesh V." last="Veetil">Jithesh V. Veetil</name>
</region>
<name sortKey="Ye, Kaiming" sort="Ye, Kaiming" uniqKey="Ye K" first="Kaiming" last="Ye">Kaiming Ye</name>
<name sortKey="Ye, Kaiming" sort="Ye, Kaiming" uniqKey="Ye K" first="Kaiming" last="Ye">Kaiming Ye</name>
<name sortKey="Ye, Kaiming" sort="Ye, Kaiming" uniqKey="Ye K" first="Kaiming" last="Ye">Kaiming Ye</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001807 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001807 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A167B1BD1D2DA65707410425024985C158E830E4
   |texte=   Tailored carbon nanotubes for tissue engineering applications
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021