Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles

Identifieur interne : 000310 ( Main/Exploration ); précédent : 000309; suivant : 000311

Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles

Auteurs : Qiang Feng ; Jonathan Wilhelm ; Jinming Gao

Source :

RBID : PMC:6609156

Abstract

CONSPECTUS:

Electronic transistors have revolutionized the fields of micro-electronics, computers, and mobile devices. Their ability to digitize electronic signals allows high fidelity data transfer as well as formation of logic gates. Inspired by electronic transistors, transistor-like organic materials have been under intensive investigation to amplify biological signals in a broad range of applications such as biosensing, diagnostic imaging, and therapeutic delivery.

This Account highlights the inception and implementation of a “proton transistor” nanoparticle that can digitize acidotic pH signals in biological systems. Similar to electronic transistors, the ultra-pH-sensitive (UPS) nanoparticles derive their binary threshold response from phase separation phenomena. Hydrophobic micellization drives nanophase separation from unimers to aggregated polymeric micelles, which is responsible for the all-or-nothing proton distribution between the micelle and unimer states. Depending on the assembly status, conjugated fluorophores are quenched (micelle state) or freely fluoresce (solution unimer state) allowing robust detection of the phase transition behavior across a narrow pH range.

Based on this mechanistic insight, we created a UPS nanoparticle library encompassing a broad physiological pH range from 4.0 to 7.4. For biological applications, we engineered a barcode-like nanosensor capable of digitizing multiple pH signals at a single organelle resolution in live cells. The barcode system allowed easy identification of mutant Kirsten rat sarcoma viral oncogene (KRAS), a common mutation involved in tumorigenesis, which leads to rapid cellular proliferation, as the protein driver for accelerated organelle acidification and lysosome catabolism in a broad set of isogenic as well as heterogeneous cancer cell lines. Adoption of the technology to an ON–OFF/Always-ON design allowed the quantification of proton flux across the membranes of endocytic organelles. For medical applications, we demonstrate the ability to achieve binary detection of solid cancers with clear tumor margin delineation by near-infrared fluorescence imaging. Image-guided resection of head/neck and breast tumors resulted in significantly improved long-term survival over white light or tumor debulking surgeries in tumor-bearing mice, catapulting the clinical evaluation of the UPS nanosensor in cancer patients.

This Account serves as the first comprehensive summary of the molecular mechanism and biological applications of the digital pH threshold sensors. Building on the concept of cooperative phase transition behavior, we hope this Account will promote the rational design and development of additional transistor-like chemical sensors to digitize analog biological signals.


Url:
DOI: 10.1021/acs.accounts.9b00080
PubMed: 31067025
PubMed Central: 6609156


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles</title>
<author>
<name sortKey="Feng, Qiang" sort="Feng, Qiang" uniqKey="Feng Q" first="Qiang" last="Feng">Qiang Feng</name>
</author>
<author>
<name sortKey="Wilhelm, Jonathan" sort="Wilhelm, Jonathan" uniqKey="Wilhelm J" first="Jonathan" last="Wilhelm">Jonathan Wilhelm</name>
</author>
<author>
<name sortKey="Gao, Jinming" sort="Gao, Jinming" uniqKey="Gao J" first="Jinming" last="Gao">Jinming Gao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31067025</idno>
<idno type="pmc">6609156</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609156</idno>
<idno type="RBID">PMC:6609156</idno>
<idno type="doi">10.1021/acs.accounts.9b00080</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000376</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000376</idno>
<idno type="wicri:Area/Pmc/Curation">000376</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000376</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000274</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000274</idno>
<idno type="wicri:Area/Ncbi/Merge">000604</idno>
<idno type="wicri:Area/Ncbi/Curation">000604</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000604</idno>
<idno type="wicri:doubleKey">0001-4842:2019:Feng Q:transistor:like:ultra</idno>
<idno type="wicri:Area/Main/Merge">000310</idno>
<idno type="wicri:Area/Main/Curation">000310</idno>
<idno type="wicri:Area/Main/Exploration">000310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles</title>
<author>
<name sortKey="Feng, Qiang" sort="Feng, Qiang" uniqKey="Feng Q" first="Qiang" last="Feng">Qiang Feng</name>
</author>
<author>
<name sortKey="Wilhelm, Jonathan" sort="Wilhelm, Jonathan" uniqKey="Wilhelm J" first="Jonathan" last="Wilhelm">Jonathan Wilhelm</name>
</author>
<author>
<name sortKey="Gao, Jinming" sort="Gao, Jinming" uniqKey="Gao J" first="Jinming" last="Gao">Jinming Gao</name>
</author>
</analytic>
<series>
<title level="j">Accounts of chemical research</title>
<idno type="ISSN">0001-4842</idno>
<idno type="eISSN">1520-4898</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>CONSPECTUS:</title>
<p id="P3">Electronic transistors have revolutionized the fields of micro-electronics, computers, and mobile devices. Their ability to digitize electronic signals allows high fidelity data transfer as well as formation of logic gates. Inspired by electronic transistors, transistor-like organic materials have been under intensive investigation to amplify biological signals in a broad range of applications such as biosensing, diagnostic imaging, and therapeutic delivery.</p>
<p id="P4">This Account highlights the inception and implementation of a “proton transistor” nanoparticle that can digitize acidotic pH signals in biological systems. Similar to electronic transistors, the ultra-pH-sensitive (UPS) nanoparticles derive their binary threshold response from phase separation phenomena. Hydrophobic micellization drives nanophase separation from unimers to aggregated polymeric micelles, which is responsible for the all-or-nothing proton distribution between the micelle and unimer states. Depending on the assembly status, conjugated fluorophores are quenched (micelle state) or freely fluoresce (solution unimer state) allowing robust detection of the phase transition behavior across a narrow pH range.</p>
<p id="P5">Based on this mechanistic insight, we created a UPS nanoparticle library encompassing a broad physiological pH range from 4.0 to 7.4. For biological applications, we engineered a barcode-like nanosensor capable of digitizing multiple pH signals at a single organelle resolution in live cells. The barcode system allowed easy identification of mutant Kirsten rat sarcoma viral oncogene (KRAS), a common mutation involved in tumorigenesis, which leads to rapid cellular proliferation, as the protein driver for accelerated organelle acidification and lysosome catabolism in a broad set of isogenic as well as heterogeneous cancer cell lines. Adoption of the technology to an ON–OFF/Always-ON design allowed the quantification of proton flux across the membranes of endocytic organelles. For medical applications, we demonstrate the ability to achieve binary detection of solid cancers with clear tumor margin delineation by near-infrared fluorescence imaging. Image-guided resection of head/neck and breast tumors resulted in significantly improved long-term survival over white light or tumor debulking surgeries in tumor-bearing mice, catapulting the clinical evaluation of the UPS nanosensor in cancer patients.</p>
<p id="P6">This Account serves as the first comprehensive summary of the molecular mechanism and biological applications of the digital pH threshold sensors. Building on the concept of cooperative phase transition behavior, we hope this Account will promote the rational design and development of additional transistor-like chemical sensors to digitize analog biological signals.</p>
</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Feng, Qiang" sort="Feng, Qiang" uniqKey="Feng Q" first="Qiang" last="Feng">Qiang Feng</name>
<name sortKey="Gao, Jinming" sort="Gao, Jinming" uniqKey="Gao J" first="Jinming" last="Gao">Jinming Gao</name>
<name sortKey="Wilhelm, Jonathan" sort="Wilhelm, Jonathan" uniqKey="Wilhelm J" first="Jonathan" last="Wilhelm">Jonathan Wilhelm</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000310 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000310 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:6609156
   |texte=   Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31067025" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021