Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009

Identifieur interne : 000E06 ( Main/Corpus ); précédent : 000E05; suivant : 000E07

On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009

Auteurs : Erik R. Ivins ; Michael M. Watkins ; Dah Ing Yuan ; Reinhard Dietrich ; Gino Casassa ; Axel Rülke

Source :

RBID : ISTEX:4A8D34D378535181D5176921FFA275C7CF925457

Abstract

Land glacier extent and volume at the northern and southern margins of the Drake Passage have been in a state of dramatic demise since the early 1990s. Here time‐varying space gravity observations from the Gravity Recovery and Climate Experiment (GRACE) are combined with Global Positioning System (GPS) bedrock uplift data to simultaneously solve for ice loss and for solid Earth glacial isostatic adjustment (GIA) to Little Ice Age (LIA) cryospheric loading. The present‐day ice loss rates are determined to be −26 ± 6 Gt/yr and −41.5 ± 9 Gt/yr in the Southern and Northern Patagonia Ice Fields (NPI+SPI) and Antarctic Peninsula (AP), respectively. These are consistent with estimates based upon thickness and flux changes. Bounds are recovered for elastic lithosphere thicknesses of 35 ≤ h ≤ 70 km and 20 ≤ h ≤ 45 km and for upper mantle viscosities of 4–8 × 1018 Pa s and 3–10 × 1019 Pa s (using a half‐space approximation) for NPI+SPI and AP, respectively, using an iterative forward model strategy. Antarctic Peninsula ice models with a prolonged LIA, extending to A.D. 1930, are favored in all χ2 fits to the GPS uplift data. This result is largely decoupled from Earth structure assumptions. The GIA corrections account for roughly 20–60% of the space‐determined secular gravity change. Collectively, the on‐land ice losses correspond to volume increases of the oceans equivalent to 0.19 ± 0.045 mm/yr of sea level rise for the last 15 years.

Url:
DOI: 10.1029/2010JB007607

Links to Exploration step

ISTEX:4A8D34D378535181D5176921FFA275C7CF925457

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
<author>
<name sortKey="Ivins, Erik R" sort="Ivins, Erik R" uniqKey="Ivins E" first="Erik R." last="Ivins">Erik R. Ivins</name>
<affiliation>
<mods:affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: erik.r.ivins@jpl.nasa.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Watkins, Michael M" sort="Watkins, Michael M" uniqKey="Watkins M" first="Michael M." last="Watkins">Michael M. Watkins</name>
<affiliation>
<mods:affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Dah Ing" sort="Yuan, Dah Ing" uniqKey="Yuan D" first="Dah Ing" last="Yuan">Dah Ing Yuan</name>
<affiliation>
<mods:affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dietrich, Reinhard" sort="Dietrich, Reinhard" uniqKey="Dietrich R" first="Reinhard" last="Dietrich">Reinhard Dietrich</name>
<affiliation>
<mods:affiliation>Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casassa, Gino" sort="Casassa, Gino" uniqKey="Casassa G" first="Gino" last="Casassa">Gino Casassa</name>
<affiliation>
<mods:affiliation>Centro de Estudios Científicos, Valdivia, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rulke, Axel" sort="Rulke, Axel" uniqKey="Rulke A" first="Axel" last="Rülke">Axel Rülke</name>
<affiliation>
<mods:affiliation>Bundesamt für Kartographie und Geodäsie, Leipzig, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4A8D34D378535181D5176921FFA275C7CF925457</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2010JB007607</idno>
<idno type="url">https://api.istex.fr/document/4A8D34D378535181D5176921FFA275C7CF925457/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000E06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
<author>
<name sortKey="Ivins, Erik R" sort="Ivins, Erik R" uniqKey="Ivins E" first="Erik R." last="Ivins">Erik R. Ivins</name>
<affiliation>
<mods:affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: erik.r.ivins@jpl.nasa.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Watkins, Michael M" sort="Watkins, Michael M" uniqKey="Watkins M" first="Michael M." last="Watkins">Michael M. Watkins</name>
<affiliation>
<mods:affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Dah Ing" sort="Yuan, Dah Ing" uniqKey="Yuan D" first="Dah Ing" last="Yuan">Dah Ing Yuan</name>
<affiliation>
<mods:affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dietrich, Reinhard" sort="Dietrich, Reinhard" uniqKey="Dietrich R" first="Reinhard" last="Dietrich">Reinhard Dietrich</name>
<affiliation>
<mods:affiliation>Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casassa, Gino" sort="Casassa, Gino" uniqKey="Casassa G" first="Gino" last="Casassa">Gino Casassa</name>
<affiliation>
<mods:affiliation>Centro de Estudios Científicos, Valdivia, Chile</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rulke, Axel" sort="Rulke, Axel" uniqKey="Rulke A" first="Axel" last="Rülke">Axel Rülke</name>
<affiliation>
<mods:affiliation>Bundesamt für Kartographie und Geodäsie, Leipzig, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2011-02">2011-02</date>
<biblScope unit="volume">116</biblScope>
<biblScope unit="issue">B2</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">4A8D34D378535181D5176921FFA275C7CF925457</idno>
<idno type="DOI">10.1029/2010JB007607</idno>
<idno type="ArticleID">2010JB007607</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Land glacier extent and volume at the northern and southern margins of the Drake Passage have been in a state of dramatic demise since the early 1990s. Here time‐varying space gravity observations from the Gravity Recovery and Climate Experiment (GRACE) are combined with Global Positioning System (GPS) bedrock uplift data to simultaneously solve for ice loss and for solid Earth glacial isostatic adjustment (GIA) to Little Ice Age (LIA) cryospheric loading. The present‐day ice loss rates are determined to be −26 ± 6 Gt/yr and −41.5 ± 9 Gt/yr in the Southern and Northern Patagonia Ice Fields (NPI+SPI) and Antarctic Peninsula (AP), respectively. These are consistent with estimates based upon thickness and flux changes. Bounds are recovered for elastic lithosphere thicknesses of 35 ≤ h ≤ 70 km and 20 ≤ h ≤ 45 km and for upper mantle viscosities of 4–8 × 1018 Pa s and 3–10 × 1019 Pa s (using a half‐space approximation) for NPI+SPI and AP, respectively, using an iterative forward model strategy. Antarctic Peninsula ice models with a prolonged LIA, extending to A.D. 1930, are favored in all χ2 fits to the GPS uplift data. This result is largely decoupled from Earth structure assumptions. The GIA corrections account for roughly 20–60% of the space‐determined secular gravity change. Collectively, the on‐land ice losses correspond to volume increases of the oceans equivalent to 0.19 ± 0.045 mm/yr of sea level rise for the last 15 years.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Erik R. Ivins</name>
<affiliations>
<json:string>E-mail: erik.r.ivins@jpl.nasa.gov</json:string>
<json:string>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael M. Watkins</name>
<affiliations>
<json:string>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dah‐Ning Yuan</name>
<affiliations>
<json:string>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Reinhard Dietrich</name>
<affiliations>
<json:string>Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gino Casassa</name>
<affiliations>
<json:string>Centro de Estudios Científicos, Valdivia, Chile</json:string>
</affiliations>
</json:item>
<json:item>
<name>Axel Rülke</name>
<affiliations>
<json:string>Bundesamt für Kartographie und Geodäsie, Leipzig, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GRACE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>isostatic uplift</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ice mass balance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>time‐variable gravity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>slab window</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ice shelves</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Land glacier extent and volume at the northern and southern margins of the Drake Passage have been in a state of dramatic demise since the early 1990s. Here time‐varying space gravity observations from the Gravity Recovery and Climate Experiment (GRACE) are combined with Global Positioning System (GPS) bedrock uplift data to simultaneously solve for ice loss and for solid Earth glacial isostatic adjustment (GIA) to Little Ice Age (LIA) cryospheric loading. The present‐day ice loss rates are determined to be −26 ± 6 Gt/yr and −41.5 ± 9 Gt/yr in the Southern and Northern Patagonia Ice Fields (NPI+SPI) and Antarctic Peninsula (AP), respectively. These are consistent with estimates based upon thickness and flux changes. Bounds are recovered for elastic lithosphere thicknesses of 35 ≤ h ≤ 70 km and 20 ≤ h ≤ 45 km and for upper mantle viscosities of 4–8 × 1018 Pa s and 3–10 × 1019 Pa s (using a half‐space approximation) for NPI+SPI and AP, respectively, using an iterative forward model strategy. Antarctic Peninsula ice models with a prolonged LIA, extending to A.D. 1930, are favored in all χ2 fits to the GPS uplift data. This result is largely decoupled from Earth structure assumptions. The GIA corrections account for roughly 20–60% of the space‐determined secular gravity change. Collectively, the on‐land ice losses correspond to volume increases of the oceans equivalent to 0.19 ± 0.045 mm/yr of sea level rise for the last 15 years.</abstract>
<qualityIndicators>
<score>8.368</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1450</abstractCharCount>
<pdfWordCount>13704</pdfWordCount>
<pdfCharCount>80945</pdfCharCount>
<pdfPageCount>24</pdfPageCount>
<abstractWordCount>239</abstractWordCount>
</qualityIndicators>
<title>On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>116</volume>
<pages>
<total>24</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>B2</issue>
<subject>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Mass balance</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Time variable gravity</value>
</json:item>
<json:item>
<value>Global change from geodesy</value>
</json:item>
<json:item>
<value>Mass balance</value>
</json:item>
<json:item>
<value>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</value>
</json:item>
<json:item>
<value>Ocean monitoring with geodetic techniques</value>
</json:item>
<json:item>
<value>Global change from geodesy</value>
</json:item>
<json:item>
<value>Ocean monitoring with geodetic techniques</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Sea level change</value>
</json:item>
<json:item>
<value>Earth system modeling</value>
</json:item>
<json:item>
<value>Impacts of global change</value>
</json:item>
<json:item>
<value>Sea level change</value>
</json:item>
<json:item>
<value>Solid Earth</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Oceanic</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Sea level: variations and mean</value>
</json:item>
<json:item>
<value>Sea level: variations and mean</value>
</json:item>
<json:item>
<value>SEISMOLOGY</value>
</json:item>
<json:item>
<value>Earthquake interaction, forecasting, and prediction</value>
</json:item>
<json:item>
<value>Seismicity and tectonics</value>
</json:item>
<json:item>
<value>STRUCTURAL GEOLOGY</value>
</json:item>
<json:item>
<value>Rheology: crust and lithosphere</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Rheology: crust and lithosphere</value>
</json:item>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
</subject>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Solid Earth</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2010JB007607</json:string>
</doi>
<id>4A8D34D378535181D5176921FFA275C7CF925457</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/4A8D34D378535181D5176921FFA275C7CF925457/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/4A8D34D378535181D5176921FFA275C7CF925457/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4A8D34D378535181D5176921FFA275C7CF925457/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3.Tab‐delimited Table 4.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
<author>
<persName>
<forename type="first">Erik R.</forename>
<surname>Ivins</surname>
</persName>
<email>erik.r.ivins@jpl.nasa.gov</email>
<affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Michael M.</forename>
<surname>Watkins</surname>
</persName>
<affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Dah‐Ning</forename>
<surname>Yuan</surname>
</persName>
<affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Reinhard</forename>
<surname>Dietrich</surname>
</persName>
<affiliation>Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">Gino</forename>
<surname>Casassa</surname>
</persName>
<affiliation>Centro de Estudios Científicos, Valdivia, Chile</affiliation>
</author>
<author>
<persName>
<forename type="first">Axel</forename>
<surname>Rülke</surname>
</persName>
<affiliation>Bundesamt für Kartographie und Geodäsie, Leipzig, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2011-02"></date>
<biblScope unit="volume">116</biblScope>
<biblScope unit="issue">B2</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">4A8D34D378535181D5176921FFA275C7CF925457</idno>
<idno type="DOI">10.1029/2010JB007607</idno>
<idno type="ArticleID">2010JB007607</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Land glacier extent and volume at the northern and southern margins of the Drake Passage have been in a state of dramatic demise since the early 1990s. Here time‐varying space gravity observations from the Gravity Recovery and Climate Experiment (GRACE) are combined with Global Positioning System (GPS) bedrock uplift data to simultaneously solve for ice loss and for solid Earth glacial isostatic adjustment (GIA) to Little Ice Age (LIA) cryospheric loading. The present‐day ice loss rates are determined to be −26 ± 6 Gt/yr and −41.5 ± 9 Gt/yr in the Southern and Northern Patagonia Ice Fields (NPI+SPI) and Antarctic Peninsula (AP), respectively. These are consistent with estimates based upon thickness and flux changes. Bounds are recovered for elastic lithosphere thicknesses of 35 ≤ h ≤ 70 km and 20 ≤ h ≤ 45 km and for upper mantle viscosities of 4–8 × 1018 Pa s and 3–10 × 1019 Pa s (using a half‐space approximation) for NPI+SPI and AP, respectively, using an iterative forward model strategy. Antarctic Peninsula ice models with a prolonged LIA, extending to A.D. 1930, are favored in all χ2 fits to the GPS uplift data. This result is largely decoupled from Earth structure assumptions. The GIA corrections account for roughly 20–60% of the space‐determined secular gravity change. Collectively, the on‐land ice losses correspond to volume increases of the oceans equivalent to 0.19 ± 0.045 mm/yr of sea level rise for the last 15 years.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>GRACE</term>
</item>
<item>
<term>isostatic uplift</term>
</item>
<item>
<term>ice mass balance</term>
</item>
<item>
<term>time‐variable gravity</term>
</item>
<item>
<term>slab window</term>
</item>
<item>
<term>ice shelves</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>Geodesy and Gravity/Tectonophysics</term>
</item>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Mass balance</term>
</item>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Time variable gravity</term>
</item>
<item>
<term>Global change from geodesy</term>
</item>
<item>
<term>Mass balance</term>
</item>
<item>
<term>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</term>
</item>
<item>
<term>Ocean monitoring with geodetic techniques</term>
</item>
<item>
<term>Global change from geodesy</term>
</item>
<item>
<term>Ocean monitoring with geodetic techniques</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Sea level change</term>
</item>
<item>
<term>Earth system modeling</term>
</item>
<item>
<term>Impacts of global change</term>
</item>
<item>
<term>Sea level change</term>
</item>
<item>
<term>Solid Earth</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Oceanic</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Sea level: variations and mean</term>
</item>
<item>
<term>Sea level: variations and mean</term>
</item>
<item>
<term>SEISMOLOGY</term>
</item>
<item>
<term>Earthquake interaction, forecasting, and prediction</term>
</item>
<item>
<term>Seismicity and tectonics</term>
</item>
<item>
<term>STRUCTURAL GEOLOGY</term>
</item>
<item>
<term>Rheology: crust and lithosphere</term>
</item>
<item>
<term>TECTONOPHYSICS</term>
</item>
<item>
<term>Rheology: crust and lithosphere</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Geodesy and Gravity/Tectonophysics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-03-29">Received</change>
<change when="2010-11-04">Registration</change>
<change when="2011-02">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/4A8D34D378535181D5176921FFA275C7CF925457/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb16580">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi>10.1002/jgrb.v116.B2</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="116">116</numbering>
<numbering type="journalIssue">B2</numbering>
</numberingGroup>
<coverDate startDate="2011-02">February 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="190" type="article" status="forIssue">
<doi>10.1029/2010JB007607</doi>
<idGroup>
<id type="editorialOffice" value="2010JB007607"></id>
<id type="society" value="B02403"></id>
<id type="unit" value="JGRB16580"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="24"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Geodesy and Gravity/Tectonophysics</title>
<title type="tocHeading1">Geodesy and Gravity/Tectonophysics</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-03-29"></event>
<event type="manuscriptRevised" date="2010-09-16"></event>
<event type="manuscriptAccepted" date="2010-11-04"></event>
<event type="firstOnline" date="2011-02-08"></event>
<event type="publishedOnlineFinalForm" date="2011-02-08"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</subject>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0762">Mass balance</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1217">Time variable gravity</subject>
<subject href="http://psi.agu.org/taxonomy5/1225">Global change from geodesy</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1218">Mass balance</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1223">Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1222">Ocean monitoring with geodetic techniques</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1225">Global change from geodesy</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1222">Ocean monitoring with geodetic techniques</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1641">Sea level change</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1622">Earth system modeling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1630">Impacts of global change</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1641">Sea level change</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1645">Solid Earth</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4304">Oceanic</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4556">Sea level: variations and mean</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4556">Sea level: variations and mean</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7223">Earthquake interaction, forecasting, and prediction</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7230">Seismicity and tectonics</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8031">Rheology: crust and lithosphere</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8159">Rheology: crust and lithosphere</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb16580-cit-0000" type="self">
<author>
<familyName>Ivins</familyName>
,
<givenNames>E. R.</givenNames>
</author>
,
<author>
<givenNames>M. M.</givenNames>
<familyName>Watkins</familyName>
</author>
,
<author>
<givenNames>D.‐N.</givenNames>
<familyName>Yuan</familyName>
</author>
,
<author>
<givenNames>R.</givenNames>
<familyName>Dietrich</familyName>
</author>
,
<author>
<givenNames>G.</givenNames>
<familyName>Casassa</familyName>
</author>
, and
<author>
<givenNames>A.</givenNames>
<familyName>Rülke</familyName>
</author>
(
<pubYear year="2011">2011</pubYear>
),
<articleTitle>On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>116</vol>
, B02403, doi:
<accessionId ref="info:doi/10.1029/2010JB007607">10.1029/2010JB007607</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB16580.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="15900"></count>
<count type="figureTotal" number="15"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
<title type="short">DRAKE PASSAGE ICE LOSS AND GIA</title>
<title type="shortAuthors">Ivins
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrb16580-cr-0001" affiliationRef="#jgrb16580-aff-0001">
<personName>
<givenNames>Erik R.</givenNames>
<familyName>Ivins</familyName>
</personName>
<contactDetails>
<email normalForm="erik.r.ivins@jpl.nasa.gov">erik.r.ivins@jpl.nasa.gov</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrb16580-cr-0002" affiliationRef="#jgrb16580-aff-0001">
<personName>
<givenNames>Michael M.</givenNames>
<familyName>Watkins</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16580-cr-0003" affiliationRef="#jgrb16580-aff-0001">
<personName>
<givenNames>Dah‐Ning</givenNames>
<familyName>Yuan</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16580-cr-0004" affiliationRef="#jgrb16580-aff-0002">
<personName>
<givenNames>Reinhard</givenNames>
<familyName>Dietrich</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16580-cr-0005" affiliationRef="#jgrb16580-aff-0003">
<personName>
<givenNames>Gino</givenNames>
<familyName>Casassa</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16580-cr-0006" affiliationRef="#jgrb16580-aff-0004">
<personName>
<givenNames>Axel</givenNames>
<familyName>Rülke</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrb16580-aff-0001">
<orgDiv>Jet Propulsion Laboratory</orgDiv>
<orgName>California Institute of Technology</orgName>
<address>
<city>Pasadena</city>
<countryPart>California</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="jgrb16580-aff-0002">
<orgDiv>Institut für Planetare Geodäsie</orgDiv>
<orgName>Technische Universität Dresden</orgName>
<address>
<city>Dresden</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="CL" type="organization" xml:id="jgrb16580-aff-0003">
<orgName>Centro de Estudios Científicos</orgName>
<address>
<city>Valdivia</city>
<country>Chile</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="jgrb16580-aff-0004">
<orgName>Bundesamt für Kartographie und Geodäsie</orgName>
<address>
<city>Leipzig</city>
<country>Germany</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb16580-kwd-0001">GRACE</keyword>
<keyword xml:id="jgrb16580-kwd-0002">isostatic uplift</keyword>
<keyword xml:id="jgrb16580-kwd-0003">ice mass balance</keyword>
<keyword xml:id="jgrb16580-kwd-0004">time‐variable gravity</keyword>
<keyword xml:id="jgrb16580-kwd-0005">slab window</keyword>
<keyword xml:id="jgrb16580-kwd-0006">ice shelves</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16580:jgrb16580-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16580:jgrb16580-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16580:jgrb16580-sup-0003-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16580:jgrb16580-sup-0004-t04"></mediaResource>
<caption>Tab‐delimited Table 4.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb16580-para-0001" label="1">Land glacier extent and volume at the northern and southern margins of the Drake Passage have been in a state of dramatic demise since the early 1990s. Here time‐varying space gravity observations from the Gravity Recovery and Climate Experiment (GRACE) are combined with Global Positioning System (GPS) bedrock uplift data to simultaneously solve for ice loss and for solid Earth glacial isostatic adjustment (GIA) to Little Ice Age (LIA) cryospheric loading. The present‐day ice loss rates are determined to be −26 ± 6 Gt/yr and −41.5 ± 9 Gt/yr in the Southern and Northern Patagonia Ice Fields (NPI+SPI) and Antarctic Peninsula (AP), respectively. These are consistent with estimates based upon thickness and flux changes. Bounds are recovered for elastic lithosphere thicknesses of 35 ≤
<i>h</i>
≤ 70 km and 20 ≤
<i>h</i>
≤ 45 km and for upper mantle viscosities of 4–8 × 10
<sup>18</sup>
Pa s and 3–10 × 10
<sup>19</sup>
Pa s (using a half‐space approximation) for NPI+SPI and AP, respectively, using an iterative forward model strategy. Antarctic Peninsula ice models with a prolonged LIA, extending to A.D. 1930, are favored in all
<i>χ</i>
<sup>2</sup>
fits to the GPS uplift data. This result is largely decoupled from Earth structure assumptions. The GIA corrections account for roughly 20–60% of the space‐determined secular gravity change. Collectively, the on‐land ice losses correspond to volume increases of the oceans equivalent to 0.19 ± 0.045 mm/yr of sea level rise for the last 15 years.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>DRAKE PASSAGE ICE LOSS AND GIA</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erik R.</namePart>
<namePart type="family">Ivins</namePart>
<affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</affiliation>
<affiliation>E-mail: erik.r.ivins@jpl.nasa.gov</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael M.</namePart>
<namePart type="family">Watkins</namePart>
<affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dah‐Ning</namePart>
<namePart type="family">Yuan</namePart>
<affiliation>Jet Propulsion Laboratory, California Institute of Technology, California, Pasadena, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reinhard</namePart>
<namePart type="family">Dietrich</namePart>
<affiliation>Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gino</namePart>
<namePart type="family">Casassa</namePart>
<affiliation>Centro de Estudios Científicos, Valdivia, Chile</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Axel</namePart>
<namePart type="family">Rülke</namePart>
<affiliation>Bundesamt für Kartographie und Geodäsie, Leipzig, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-02</dateIssued>
<dateCaptured encoding="w3cdtf">2010-03-29</dateCaptured>
<dateValid encoding="w3cdtf">2010-11-04</dateValid>
<edition>Ivins, E. R., M. M. Watkins, D.‐N. Yuan, R. Dietrich, G. Casassa, and A. Rülke (2011), On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009, J. Geophys. Res., 116, B02403, doi:10.1029/2010JB007607.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">15</extent>
<extent unit="tables">4</extent>
<extent unit="words">15900</extent>
</physicalDescription>
<abstract>Land glacier extent and volume at the northern and southern margins of the Drake Passage have been in a state of dramatic demise since the early 1990s. Here time‐varying space gravity observations from the Gravity Recovery and Climate Experiment (GRACE) are combined with Global Positioning System (GPS) bedrock uplift data to simultaneously solve for ice loss and for solid Earth glacial isostatic adjustment (GIA) to Little Ice Age (LIA) cryospheric loading. The present‐day ice loss rates are determined to be −26 ± 6 Gt/yr and −41.5 ± 9 Gt/yr in the Southern and Northern Patagonia Ice Fields (NPI+SPI) and Antarctic Peninsula (AP), respectively. These are consistent with estimates based upon thickness and flux changes. Bounds are recovered for elastic lithosphere thicknesses of 35 ≤ h ≤ 70 km and 20 ≤ h ≤ 45 km and for upper mantle viscosities of 4–8 × 1018 Pa s and 3–10 × 1019 Pa s (using a half‐space approximation) for NPI+SPI and AP, respectively, using an iterative forward model strategy. Antarctic Peninsula ice models with a prolonged LIA, extending to A.D. 1930, are favored in all χ2 fits to the GPS uplift data. This result is largely decoupled from Earth structure assumptions. The GIA corrections account for roughly 20–60% of the space‐determined secular gravity change. Collectively, the on‐land ice losses correspond to volume increases of the oceans equivalent to 0.19 ± 0.045 mm/yr of sea level rise for the last 15 years.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3.Tab‐delimited Table 4.</note>
<subject>
<genre>Keywords</genre>
<topic>GRACE</topic>
<topic>isostatic uplift</topic>
<topic>ice mass balance</topic>
<topic>time‐variable gravity</topic>
<topic>slab window</topic>
<topic>ice shelves</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0762">Mass balance</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1217">Time variable gravity</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1225">Global change from geodesy</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1218">Mass balance</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1223">Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1222">Ocean monitoring with geodetic techniques</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1225">Global change from geodesy</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1222">Ocean monitoring with geodetic techniques</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1641">Sea level change</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1622">Earth system modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1630">Impacts of global change</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1641">Sea level change</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1645">Solid Earth</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4304">Oceanic</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4556">Sea level: variations and mean</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4556">Sea level: variations and mean</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7223">Earthquake interaction, forecasting, and prediction</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7230">Seismicity and tectonics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8031">Rheology: crust and lithosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8159">Rheology: crust and lithosphere</topic>
</subject>
<subject>
<genre>article category</genre>
<topic>Geodesy and Gravity/Tectonophysics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B2</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>24</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4A8D34D378535181D5176921FFA275C7CF925457</identifier>
<identifier type="DOI">10.1029/2010JB007607</identifier>
<identifier type="ArticleID">2010JB007607</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4A8D34D378535181D5176921FFA275C7CF925457
   |texte=   On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021