Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

Identifieur interne : 000193 ( PascalFrancis/Corpus ); précédent : 000192; suivant : 000194

A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

Auteurs : Larry W. Horowitz ; Stacy Walters ; Denise L. Mauzerall ; Louisa K. Emmons ; Philip J. Rasch ; Claire Granier ; XUEXI TIE ; Jean-Francois Lamarque ; Martin G. Schultz ; Geoffrey S. Tyndall ; John J. Orlando ; Guy P. Brasseur

Source :

RBID : Pascal:04-0207514

Descripteurs français

English descriptors

Abstract

[1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8° latitude x 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 108
A06       @2 D24
A08 01  1  ENG  @1 A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2
A11 01  1    @1 HOROWITZ (Larry W.)
A11 02  1    @1 WALTERS (Stacy)
A11 03  1    @1 MAUZERALL (Denise L.)
A11 04  1    @1 EMMONS (Louisa K.)
A11 05  1    @1 RASCH (Philip J.)
A11 06  1    @1 GRANIER (Claire)
A11 07  1    @1 XUEXI TIE
A11 08  1    @1 LAMARQUE (Jean-Francois)
A11 09  1    @1 SCHULTZ (Martin G.)
A11 10  1    @1 TYNDALL (Geoffrey S.)
A11 11  1    @1 ORLANDO (John J.)
A11 12  1    @1 BRASSEUR (Guy P.)
A14 01      @1 Geophysical Fluid Dynamics Laboratory, NOAA @2 Princeton, New Jersey @3 USA @Z 1 aut.
A14 02      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 2 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut. @Z 8 aut. @Z 10 aut. @Z 11 aut.
A14 03      @1 Woodrow Wilson School, Princeton University @2 Princeton, New Jersey @3 USA @Z 3 aut.
A14 04      @1 Aeronomy Laboratory, NOAA @2 Boulder, Colorado @3 USA @Z 6 aut.
A14 05      @1 Service d'Aeronomie, University of Paris @2 Paris @3 FRA @Z 6 aut.
A14 06      @1 Max Planck Institute for Meteorology @2 Hamburg @3 DEU @Z 9 aut. @Z 12 aut.
A20       @2 ACH16.1-ACH16.25
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000119209650570
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 04-0207514
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8° latitude x 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.
C02 01  2    @0 220
C02 02  3    @0 001E
C03 01  2  FRE  @0 Troposphère @5 26
C03 01  2  ENG  @0 troposphere @5 26
C03 02  2  FRE  @0 Ozone @5 27
C03 02  2  ENG  @0 ozone @5 27
C03 02  2  SPA  @0 Ozono @5 27
C03 03  2  FRE  @0 Traceur @5 28
C03 03  2  ENG  @0 tracers @5 28
C03 03  2  SPA  @0 Trazador @5 28
C03 04  X  FRE  @0 Modèle chimique @5 29
C03 04  X  ENG  @0 Chemical model @5 29
C03 04  X  SPA  @0 Modelo químico @5 29
C03 05  X  FRE  @0 Modèle atmosphère @5 30
C03 05  X  ENG  @0 Atmosphere model @5 30
C03 05  X  SPA  @0 Modelo atmósfera @5 30
C03 06  3  FRE  @0 Chimie atmosphérique @5 31
C03 06  3  ENG  @0 Atmospheric chemistry @5 31
C03 07  3  FRE  @0 Modèle climat @5 32
C03 07  3  ENG  @0 Climate models @5 32
C03 08  X  FRE  @0 Azote oxyde @5 33
C03 08  X  ENG  @0 Nitrogen oxide @5 33
C03 08  X  SPA  @0 Nitrógeno óxido @5 33
C03 09  2  FRE  @0 Hydrocarbure @5 34
C03 09  2  ENG  @0 hydrocarbons @5 34
C03 09  2  SPA  @0 Hidrocarburo @5 34
C03 10  X  FRE  @0 Lagrangien @5 35
C03 10  X  ENG  @0 Lagrangian @5 35
C03 10  X  SPA  @0 Lagrangiano @5 35
C03 11  X  FRE  @0 Couche convective @5 36
C03 11  X  ENG  @0 Convective layer @5 36
C03 11  X  SPA  @0 Capa convectiva @5 36
C03 12  2  FRE  @0 Couche limite @5 37
C03 12  2  ENG  @0 boundary layer @5 37
C03 12  2  SPA  @0 Capa límite @5 37
C03 13  X  FRE  @0 Paramétrisation @5 38
C03 13  X  ENG  @0 Parameterization @5 38
C03 13  X  SPA  @0 Parametrización @5 38
C03 14  X  FRE  @0 Combustible fossile @5 39
C03 14  X  ENG  @0 Fossil fuel @5 39
C03 14  X  SPA  @0 Combustible fósil @5 39
C03 15  X  FRE  @0 Feu végétation @5 40
C03 15  X  ENG  @0 Vegetation fire @5 40
C03 15  X  SPA  @0 Fuego vegetación @5 40
C03 16  X  FRE  @0 Facteur biogène @5 41
C03 16  X  ENG  @0 Biogenic factor @5 41
C03 16  X  SPA  @0 Factor biógeno @5 41
C03 17  X  FRE  @0 Retombée sèche @5 42
C03 17  X  ENG  @0 Dry deposition @5 42
C03 17  X  SPA  @0 Recaída seca @5 42
C03 18  X  FRE  @0 Retombée humide @5 43
C03 18  X  ENG  @0 Wet deposition @5 43
C03 18  X  SPA  @0 Recaída húmeda @5 43
C03 19  2  FRE  @0 Stratosphère @5 44
C03 19  2  ENG  @0 stratosphere @5 44
C03 19  2  SPA  @0 Estratosfera @5 44
C03 20  X  FRE  @0 Relaxation @5 45
C03 20  X  ENG  @0 Relaxation @5 45
C03 20  X  SPA  @0 Relajación @5 45
C03 21  2  FRE  @0 Hémisphère Nord @5 46
C03 21  2  ENG  @0 Northern Hemisphere @5 46
C03 21  2  SPA  @0 Hemisferio norte @5 46
C03 22  2  FRE  @0 Gradient horizontal @5 90
C03 22  2  ENG  @0 horizontal gradient @5 90
C03 23  X  FRE  @0 Gradient vertical @5 91
C03 23  X  ENG  @0 Vertical gradient @5 91
C03 23  X  SPA  @0 Gradiente vertical @5 91
C03 24  X  FRE  @0 Tropopause @5 92
C03 24  X  ENG  @0 Tropopause @5 92
C03 24  X  SPA  @0 Tropopausa @5 92
C03 25  X  FRE  @0 Haute latitude @5 93
C03 25  X  ENG  @0 High latitude @5 93
C03 25  X  SPA  @0 Alta latitud @5 93
C03 26  X  FRE  @0 Azote monoxyde @2 NK @2 FX @5 94
C03 26  X  ENG  @0 Nitric oxide @2 NK @2 FX @5 94
C03 26  X  SPA  @0 Nitrógeno monóxido @2 NK @2 FX @5 94
C03 27  X  FRE  @0 Nitrique acide @2 NK @5 95
C03 27  X  ENG  @0 Nitric acid @2 NK @5 95
C03 27  X  SPA  @0 Nítrico ácido @2 NK @5 95
N21       @1 138
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0207514 INIST
ET : A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2
AU : HOROWITZ (Larry W.); WALTERS (Stacy); MAUZERALL (Denise L.); EMMONS (Louisa K.); RASCH (Philip J.); GRANIER (Claire); XUEXI TIE; LAMARQUE (Jean-Francois); SCHULTZ (Martin G.); TYNDALL (Geoffrey S.); ORLANDO (John J.); BRASSEUR (Guy P.)
AF : Geophysical Fluid Dynamics Laboratory, NOAA/Princeton, New Jersey/Etats-Unis (1 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (2 aut., 4 aut., 5 aut., 7 aut., 8 aut., 10 aut., 11 aut.); Woodrow Wilson School, Princeton University/Princeton, New Jersey/Etats-Unis (3 aut.); Aeronomy Laboratory, NOAA/Boulder, Colorado/Etats-Unis (6 aut.); Service d'Aeronomie, University of Paris/Paris/France (6 aut.); Max Planck Institute for Meteorology/Hamburg/Allemagne (9 aut., 12 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2003; Vol. 108; No. D24; ACH16.1-ACH16.25; Bibl. 1 p.1/4
LA : Anglais
EA : [1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8° latitude x 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.
CC : 220; 001E
FD : Troposphère; Ozone; Traceur; Modèle chimique; Modèle atmosphère; Chimie atmosphérique; Modèle climat; Azote oxyde; Hydrocarbure; Lagrangien; Couche convective; Couche limite; Paramétrisation; Combustible fossile; Feu végétation; Facteur biogène; Retombée sèche; Retombée humide; Stratosphère; Relaxation; Hémisphère Nord; Gradient horizontal; Gradient vertical; Tropopause; Haute latitude; Azote monoxyde; Nitrique acide
ED : troposphere; ozone; tracers; Chemical model; Atmosphere model; Atmospheric chemistry; Climate models; Nitrogen oxide; hydrocarbons; Lagrangian; Convective layer; boundary layer; Parameterization; Fossil fuel; Vegetation fire; Biogenic factor; Dry deposition; Wet deposition; stratosphere; Relaxation; Northern Hemisphere; horizontal gradient; Vertical gradient; Tropopause; High latitude; Nitric oxide; Nitric acid
SD : Ozono; Trazador; Modelo químico; Modelo atmósfera; Nitrógeno óxido; Hidrocarburo; Lagrangiano; Capa convectiva; Capa límite; Parametrización; Combustible fósil; Fuego vegetación; Factor biógeno; Recaída seca; Recaída húmeda; Estratosfera; Relajación; Hemisferio norte; Gradiente vertical; Tropopausa; Alta latitud; Nitrógeno monóxido; Nítrico ácido
LO : INIST-3144.354000119209650570
ID : 04-0207514

Links to Exploration step

Pascal:04-0207514

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa K" sort="Emmons, Louisa K" uniqKey="Emmons L" first="Louisa K." last="Emmons">Louisa K. Emmons</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Philip J" sort="Rasch, Philip J" uniqKey="Rasch P" first="Philip J." last="Rasch">Philip J. Rasch</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Service d'Aeronomie, University of Paris</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, Jean Francois" sort="Lamarque, Jean Francois" uniqKey="Lamarque J" first="Jean-Francois" last="Lamarque">Jean-Francois Lamarque</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Martin G" sort="Schultz, Martin G" uniqKey="Schultz M" first="Martin G." last="Schultz">Martin G. Schultz</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tyndall, Geoffrey S" sort="Tyndall, Geoffrey S" uniqKey="Tyndall G" first="Geoffrey S." last="Tyndall">Geoffrey S. Tyndall</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Orlando, John J" sort="Orlando, John J" uniqKey="Orlando J" first="John J." last="Orlando">John J. Orlando</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0207514</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0207514 INIST</idno>
<idno type="RBID">Pascal:04-0207514</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000193</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa K" sort="Emmons, Louisa K" uniqKey="Emmons L" first="Louisa K." last="Emmons">Louisa K. Emmons</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Philip J" sort="Rasch, Philip J" uniqKey="Rasch P" first="Philip J." last="Rasch">Philip J. Rasch</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Service d'Aeronomie, University of Paris</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, Jean Francois" sort="Lamarque, Jean Francois" uniqKey="Lamarque J" first="Jean-Francois" last="Lamarque">Jean-Francois Lamarque</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Martin G" sort="Schultz, Martin G" uniqKey="Schultz M" first="Martin G." last="Schultz">Martin G. Schultz</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tyndall, Geoffrey S" sort="Tyndall, Geoffrey S" uniqKey="Tyndall G" first="Geoffrey S." last="Tyndall">Geoffrey S. Tyndall</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Orlando, John J" sort="Orlando, John J" uniqKey="Orlando J" first="John J." last="Orlando">John J. Orlando</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmosphere model</term>
<term>Atmospheric chemistry</term>
<term>Biogenic factor</term>
<term>Chemical model</term>
<term>Climate models</term>
<term>Convective layer</term>
<term>Dry deposition</term>
<term>Fossil fuel</term>
<term>High latitude</term>
<term>Lagrangian</term>
<term>Nitric acid</term>
<term>Nitric oxide</term>
<term>Nitrogen oxide</term>
<term>Northern Hemisphere</term>
<term>Parameterization</term>
<term>Relaxation</term>
<term>Tropopause</term>
<term>Vegetation fire</term>
<term>Vertical gradient</term>
<term>Wet deposition</term>
<term>boundary layer</term>
<term>horizontal gradient</term>
<term>hydrocarbons</term>
<term>ozone</term>
<term>stratosphere</term>
<term>tracers</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Ozone</term>
<term>Traceur</term>
<term>Modèle chimique</term>
<term>Modèle atmosphère</term>
<term>Chimie atmosphérique</term>
<term>Modèle climat</term>
<term>Azote oxyde</term>
<term>Hydrocarbure</term>
<term>Lagrangien</term>
<term>Couche convective</term>
<term>Couche limite</term>
<term>Paramétrisation</term>
<term>Combustible fossile</term>
<term>Feu végétation</term>
<term>Facteur biogène</term>
<term>Retombée sèche</term>
<term>Retombée humide</term>
<term>Stratosphère</term>
<term>Relaxation</term>
<term>Hémisphère Nord</term>
<term>Gradient horizontal</term>
<term>Gradient vertical</term>
<term>Tropopause</term>
<term>Haute latitude</term>
<term>Azote monoxyde</term>
<term>Nitrique acide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8° latitude x 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NO
<sub>x</sub>
) and nitric acid (HNO
<sub>3</sub>
) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>108</s2>
</fA05>
<fA06>
<s2>D24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WALTERS (Stacy)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAUZERALL (Denise L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>EMMONS (Louisa K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RASCH (Philip J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GRANIER (Claire)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LAMARQUE (Jean-Francois)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SCHULTZ (Martin G.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TYNDALL (Geoffrey S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>ORLANDO (John J.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>BRASSEUR (Guy P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Geophysical Fluid Dynamics Laboratory, NOAA</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Service d'Aeronomie, University of Paris</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s2>ACH16.1-ACH16.25</s2>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000119209650570</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0207514</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8° latitude x 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NO
<sub>x</sub>
) and nitric acid (HNO
<sub>3</sub>
) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>ozone</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>tracers</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle atmosphère</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Atmosphere model</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo atmósfera</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Azote oxyde</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nitrogen oxide</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Nitrógeno óxido</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Hydrocarbure</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>hydrocarbons</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Hidrocarburo</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Lagrangien</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Lagrangian</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Lagrangiano</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche convective</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Convective layer</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa convectiva</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Couche limite</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>boundary layer</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Capa límite</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Paramétrisation</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Parameterization</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Parametrización</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Combustible fossile</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Fossil fuel</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Combustible fósil</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Feu végétation</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Vegetation fire</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fuego vegetación</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Facteur biogène</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Biogenic factor</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Factor biógeno</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Retombée sèche</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Dry deposition</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Recaída seca</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Retombée humide</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Wet deposition</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Recaída húmeda</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Stratosphère</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>stratosphere</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Estratosfera</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Relaxation</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Relaxation</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Relajación</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Hémisphère Nord</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>Northern Hemisphere</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Hemisferio norte</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Gradient horizontal</s0>
<s5>90</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>horizontal gradient</s0>
<s5>90</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Gradient vertical</s0>
<s5>91</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Vertical gradient</s0>
<s5>91</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Gradiente vertical</s0>
<s5>91</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Tropopause</s0>
<s5>92</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Tropopause</s0>
<s5>92</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Tropopausa</s0>
<s5>92</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Haute latitude</s0>
<s5>93</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>High latitude</s0>
<s5>93</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Alta latitud</s0>
<s5>93</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Azote monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>94</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Nitric oxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>94</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Nitrógeno monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>94</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Nitrique acide</s0>
<s2>NK</s2>
<s5>95</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Nitric acid</s0>
<s2>NK</s2>
<s5>95</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Nítrico ácido</s0>
<s2>NK</s2>
<s5>95</s5>
</fC03>
<fN21>
<s1>138</s1>
</fN21>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0207514 INIST</NO>
<ET>A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</ET>
<AU>HOROWITZ (Larry W.); WALTERS (Stacy); MAUZERALL (Denise L.); EMMONS (Louisa K.); RASCH (Philip J.); GRANIER (Claire); XUEXI TIE; LAMARQUE (Jean-Francois); SCHULTZ (Martin G.); TYNDALL (Geoffrey S.); ORLANDO (John J.); BRASSEUR (Guy P.)</AU>
<AF>Geophysical Fluid Dynamics Laboratory, NOAA/Princeton, New Jersey/Etats-Unis (1 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (2 aut., 4 aut., 5 aut., 7 aut., 8 aut., 10 aut., 11 aut.); Woodrow Wilson School, Princeton University/Princeton, New Jersey/Etats-Unis (3 aut.); Aeronomy Laboratory, NOAA/Boulder, Colorado/Etats-Unis (6 aut.); Service d'Aeronomie, University of Paris/Paris/France (6 aut.); Max Planck Institute for Meteorology/Hamburg/Allemagne (9 aut., 12 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2003; Vol. 108; No. D24; ACH16.1-ACH16.25; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>[1] We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8° latitude x 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NO
<sub>x</sub>
) and nitric acid (HNO
<sub>3</sub>
) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</EA>
<CC>220; 001E</CC>
<FD>Troposphère; Ozone; Traceur; Modèle chimique; Modèle atmosphère; Chimie atmosphérique; Modèle climat; Azote oxyde; Hydrocarbure; Lagrangien; Couche convective; Couche limite; Paramétrisation; Combustible fossile; Feu végétation; Facteur biogène; Retombée sèche; Retombée humide; Stratosphère; Relaxation; Hémisphère Nord; Gradient horizontal; Gradient vertical; Tropopause; Haute latitude; Azote monoxyde; Nitrique acide</FD>
<ED>troposphere; ozone; tracers; Chemical model; Atmosphere model; Atmospheric chemistry; Climate models; Nitrogen oxide; hydrocarbons; Lagrangian; Convective layer; boundary layer; Parameterization; Fossil fuel; Vegetation fire; Biogenic factor; Dry deposition; Wet deposition; stratosphere; Relaxation; Northern Hemisphere; horizontal gradient; Vertical gradient; Tropopause; High latitude; Nitric oxide; Nitric acid</ED>
<SD>Ozono; Trazador; Modelo químico; Modelo atmósfera; Nitrógeno óxido; Hidrocarburo; Lagrangiano; Capa convectiva; Capa límite; Parametrización; Combustible fósil; Fuego vegetación; Factor biógeno; Recaída seca; Recaída húmeda; Estratosfera; Relajación; Hemisferio norte; Gradiente vertical; Tropopausa; Alta latitud; Nitrógeno monóxido; Nítrico ácido</SD>
<LO>INIST-3144.354000119209650570</LO>
<ID>04-0207514</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000193 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000193 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0207514
   |texte=   A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023